Lecture29 AT620 110711 - Colorado State...

32
Virtual temperature AMS glossary: (h/p://amsglossary.allenpress.com/glossary/search?id=virtualtemperature1 ) virtual temperature—(Also called density temperature.) The virtual temperature is computed from T v = T(1 + r v / ε)/(1 + r v ), where r v is the mixing raIo of water vapor and ε is the raIo of the gas constants of air and water vapor , ≈ 0.622. Always warmer than the physical temperature (corresponds to decrease in density due to water vapor; biggest deviaIons in moist boundary layer). The virtual temperature allows the use of the dryair equaIon of state for moist air , except with T replaced by T v . The virtual temperature is the temperature that dry dry air would have if its pressure and density were equal to those of a given sample of moist air. For typical observed values of r v , the virtual temperature may be approximated by T v = (1 + 0.61 r v ) T. Some authors incorporate the density increment due to liquid or solid water into virtual temperature, in which case the definiIon becomes T v = T(1 + r v /ε)/ (1 + r v + r l )≈ T(1 + 0.61r v r l ), where r l is the liquid or liquid plus solid water mixing raIo.

Transcript of Lecture29 AT620 110711 - Colorado State...

Virtual  temperature  

•  AMS  glossary:  (h/p://amsglossary.allenpress.com/glossary/search?id=virtual-­‐temperature1)  

•  virtual  temperature—(Also  called  density  temperature.)  The  virtual  temperature  is  computed  from  

           Tv  =  T(1  +  rv/  ε)/(1  +  rv),    

where  rv  is  the  mixing  raIo  of  water  vapor  and  ε  is  the  raIo  of  the  gas  constants  of  air  and  water  vapor,  ≈  0.622.    

•  Always  warmer  than  the  physical  temperature  (corresponds  to  decrease  in  density  due  to  water  vapor;  biggest  deviaIons  in  moist  boundary  layer).  –  The  virtual  temperature  allows  the  use  of  the  dry-­‐air  equaIon  of  state  for  

moist  air,  except  with  T  replaced  by  Tv.  –  The  virtual  temperature  is  the  temperature  that  dry  dry  air  would  have  if  its  

pressure  and  density  were  equal  to  those  of  a  given  sample  of  moist  air.    –  For  typical  observed  values  of  rv,  the  virtual  temperature  may  be  

approximated  by  Tv  =  (1  +  0.61  rv)  T.    –  Some  authors  incorporate  the  density  increment  due  to  liquid  or  solid  water  

into  virtual  temperature,  in  which  case  the  definiIon  becomes  Tv  =  T(1  +  rv/ε)/(1  +  rv  +  rl)  ≈  T(1  +  0.61rv  −  rl),  where  rl  is  the  liquid  or  liquid  plus  solid  water  mixing  raIo.    

Mass-­‐based  Ideal  Gas  Law  

“d”  means  dry  air;  “v”  refers  to  water  vapor  

“qv”  is  commonly  used  nota9on  for  specific  humidity,  mass  of  water  vapor  per  mass  of  dry  air  (the  variable  on  the  skew-­‐T  diagram)  

Virtual  temperature,      Tv  =  (1  +  0.61  qv)  T  

Why  do  we  need  virtual  temperature?  

•  cf:  h/p://cimms.ou.edu/~doswell/virtual/virtual.html;    Chapter  5  in  Lamb  &  Verlinde  

•  When  we  calculate  bouyancy  forces,  we  are  dealing  with  the  net  forces  that  arise  because  of  density  differences.  To  relate  air  density  to  measured  quanIIes  (e.g.,  T),  we  need  the  Ideal  Gas  Law  to  be  wri/en  for  variable  average  molecular  weights  that  arise  due  to  variable  water  vapor  contents.  

•  Net  verIcal  force:  

•  Bouyancy  is  expressed  as  a  net  force  per  unit  mass  (posiIve  =  upward):  

Subscript  p=  parcel  Others  =  surrounding  air  

We  had  to  use  virtual  temperature,  since  we  subs9tuted  from  the  mass-­‐based  Ideal  Gas  Law  

We  must  adjust  soundings  for  Tv  

before  we  compute  buoyancy  or  CAPE  

h/p://cimms.ou.edu/~doswell/virtual/virtual.html  

Figure  1.  SchemaIc  sounding,  showing  the  processes  with  and  without  the  virtual  correcIon  (see  the  key).  The  parcel  ascent  curve  is  for  the  surface  parcel.  

The  process  of  making  the  virtual  correcIon  to  the  parcel  ascent  trace  occurs  only  ader  having  computed  the  uncorrected  parcel  ascent  curve.  Never  use  the  corrected  sounding  profile  to  compute  the  parcel  ascent  curve!  The  virtual  correcIon  to  the  parcel  ascent  curve  uses  the  dewpoint  of  the  ascending  parcel  (which  is  along  the  mixing  raIo  line  below  the  saturaIon  point,  and  is  equal  to  the  temperature  along  the  moist  adiabat  which  the  parcel  ascends  at  and  above  the  saturaIon  point).  The  LCL  is  the  same  as  that  found  using  the  uncorrected  parcel  ascent  process,  whereas  the  CAPE,  CIN,  LFC,  and  EL  should  be  found  from  the  corrected  sounding  and  parcel  ascent  traces.  

ConvecIon  and  associated  microphysics  

•  h/p://www.atmos.albany.edu/daes/atmclasses/atm301/CAPE.htm  –  Cartoons  and  writeup  showing  convecIve  cloud  life  cycle  (discuss  briefly)  

–  What’s  a  “cold  pool”?  Is  it  stable  or  unstable?  

•  Unstable  sounding  –  Review  condiIonal  instability  

•  Use  sounding  that  was  used  for  simulaIon  •  Be  sure  we  are  dealing  with  adjusted  curves  (ie.  virtual  temperatures)  •  Contrast  with  a  mariIme  sounding  with  similar  CAPE  but  different  structure?  •  Overcoming  CIN  

–  Show  how  to  calculate  CAPE  •  What  does  this  mean,  energy  wise?  Job  of  convecIon:  redistribuIon  in  the  verIcal  •  Where  will  this  energy  go?  (discuss)  

Water-­‐related  variables  used  in  models  (from  slide  by  Dudhia  re  WRF)  

Ferrier

Qi/Qs/ Qg

Qv

Qc

Qr

Kessler WSM3

Lin et al./WSM6 WSM5

Illustration of Microphysics Processes

Scheme  differences:    which  water  variables  are  carried;  whether  bulk  or  binned  are  carried;    how  rates  between  them  are  represented,  e.g.,  Kessler  is  threshold  type  –  when  qc  gets  large  enough,  some  converts  to  qr  with  a  specified  “rate”  (specified  amount  in  a  Imestep)  

 (slide  from  Wei-­‐Kuo  Tao)  

Goddard Microphysics (12 DifferentSchemes)

Cloud

Water

Water Vapor

Rain GraupelHail

Precipitation on Ground

Snow

Cloud

Ice

Characteristics ReferencesWarm Rain qc, qr Kessler (1969), Soong and Ogura (1973)

2 Ice qc, qr, qi, qg Cotton et al (1982), Chen (1983),McCumber et al (1991)

3Ice - 1 qc, qr, qi, qs, qh Lin et al (1983), Tao and Simpson (1989,1993)

3Ice - 2 qc, qr, qi, qs, qg Rutledge and Hobbs (1984), Tao andSimpson (1989, 1993)

3Ice - 3 qc, qr, qi, qs, qh Lin et al (1983), Rutledge and Hobbs(1984), Ferrier at al (1995)

3Ice - 4 qc, qr, qi, qs, qg or qh Lin et al (1983), Scott et al (2000)

3Ice - 5 Saturation Technique Tao et al (1989), Tao et al (2000)

4Ice - 1 qc, qr, qi, qs, qg, qhNi, Ns, Ng, Nh

Ferrier (1994)

4Ice - 2 qc, qr, qi, qs, qg, qhNi, Ns, Ng, Nh

Tao, Ferrier et al (2000)

One-MomentSpectral - Bin

33 bins for 6 types ice, liquid wate rand cloud condensation nucleiKhain and Sednev (1996) and Khain et al.

(1998)

Multi-componentSpectral - Bin

Liquid: 46 bins for water mass, 25for solute mass

Ice: water mass, solute mass, aspectratio

Aqueous-phase chemistry (NH3,H 2SO4, HNO3, SO2, O3, H2O2, CO2)

Chen and Lamb (1994, 1999)

No Microphysical Scheme is perfect !

NoIce  that  some  schemes  add  in  a  number  concentraIon  variable,  and  some  use  bins  to  represent  the  distribuIon  within  a  water  category  (RAMS)  WHY  would  the  size  of  hydrometeor  maMer?  

From  Co/on,  Anthes  and  van  den  Heever  

RAMS  

ConvecIon  and  associated  microphysics  

•  h/p://www.atmos.albany.edu/daes/atmclasses/atm301/CAPE.htm  –  Cartoons  and  writeup  showing  convecIve  cloud  life  cycle  (discuss  briefly)  

–  What’s  a  “cold  pool”?  Is  it  stable  or  unstable?  

•  Unstable  sounding  –  Review  condiIonal  instability  

•  Use  sounding  that  was  used  for  simulaIon  •  Be  sure  we  are  dealing  with  adjusted  curves  (ie.  virtual  temperatures)  •  Contrast  with  a  mariIme  sounding  with  similar  CAPE  but  different  structure?  •  Overcoming  CIN  

–  Show  how  to  calculate  CAPE  •  What  does  this  mean,  energy  wise?  Job  of  convecIon:  redistribuIon  in  the  verIcal  •  Where  will  this  energy  go?  (discuss)  

•  Warm  bubble  –  Why  do  we  need  this  to  “get  things  going”?  

–  What  happens  first  –  how  does  moIon  get  started?  

–  AnimaIon:  h/p://chem.atmos.colostate.edu/AT620/Rob_uploads/bubble/bubbleSTART.gif  

ConvecIon  and  associated  microphysics  

•  How  are  microphysical  processes  evolving?  –  When  do  we  start  to  see  cloud  water  converIng  into  rain?  

–  Where  in  the  cloud  is  this  occurring?  

–  What  are  the  associated  heat  releases?  

–  AnimaIon:  h/p://chem.atmos.colostate.edu/AT620/Rob_uploads/bubble/bubbleCLD.gif  

Sketch  sounding  at    40  min  

ConvecIon  and  associated  microphysics  

•  How  are  microphysical  processes  evolving?  –  When  do  we  start  to  see  cloud  water  converIng  into  rain?  

–  Where  in  the  cloud  is  this  occurring?  

–  What  are  the  associated  heat  releases?  

•  Ice  phase  iniIaIon  –  When  do  we  start  to  see  cloud  water  converIng  into  rain?  

–  Where  in  the  cloud  is  this  occurring?  

–  What  are  the  associated  heat  releases?  

–  AnimaIon:  h/p://chem.atmos.colostate.edu/AT620/Rob_uploads/bubble/bubbleRAIN.gif  

ConvecIon  and  associated  microphysics  

•  How  are  microphysical  processes  evolving?  –  When  do  we  start  to  see  cloud  water  converIng  into  rain?  

–  Where  in  the  cloud  is  this  occurring?  

–  What  are  the  associated  heat  releases?  

•  Ice  phase  iniIaIon  –  When  do  we  start  to  see  cloud  water  converIng  into  rain?  

–  Where  in  the  cloud  is  this  occurring?  

–  What  are  the  associated  heat  releases?  

–  AnimaIon:  h/p://chem.atmos.colostate.edu/AT620/Rob_uploads/bubble/bubbleRAIN.gif  

•  Ice  species  evoluIon  –  What  are  the  rates  at  which  water  is  being  transferred  into  other  species?  

–  Where  in  the  cloud  does  this  occur?  

–  AnimaIon:  h/p://chem.atmos.colostate.edu/AT620/Rob_uploads/bubble/bubbleICE.gif  

–  AnimaIon:  h/p://chem.atmos.colostate.edu/AT620/Rob_uploads/bubble/bubbleHAIL.gif  

The  cloud  collapses  

•  What  determines  when  the  cloud  collapses?  

•  Sketch  the  environmental  sounding  at  the  end  of  the  life  cycle  of  the  one  convecIve  cloud  we  followed  –  What  is  the  CAPE  now?  

•  What’s  happening  at  the  sides  of  the  domain  and  why?  

Sketch  sounding  at    80  min  

The  cold  pool  

•  What  iniIated  the  cold  pool?  

•  Where  does  the  cold  pool  first  form?  Why?  

•  What  role  does  the  cold  pool  play  in  subsequent  convecIon?  

•  When  does  the  cold  pool  become  ‘strongest’?  How  can  we  define  cold  pool  ‘strength’?  

•  AnimaIon:  h/p://chem.atmos.colostate.edu/AT620/Rob_uploads/bubble/bubbleCP.gif  

(Extra)