Lecture Set 3 - Purdue Engineeringsudhoff/ece321/Lecture Set 3.pdf · Lecture Set 3 Variable...

48
Lecture Set 3 Variable Reluctance Stepper Motors S.D. Sudhoff Spring 2018

Transcript of Lecture Set 3 - Purdue Engineeringsudhoff/ece321/Lecture Set 3.pdf · Lecture Set 3 Variable...

Lecture Set 3

Variable Reluctance Stepper Motors

S.D. Sudhoff

Spring 2018

2

Reading

• Electromechanical Motion Devices, 2nd

Edition�Sections 9.1-9.5

3

VR Stepper Motor

• Characteristics

• Uses

4

Construction

5

Physical Configuration

Physical Configuration

6

7

Some Definitions

Rotor Teeth (RT):Tooth Pitch (TP):Number of Phases (N):Step Length (SL):

8

Example

Rotor Teeth (RT):Tooth Pitch (TP):Number of Phases (N):Step Length (SL):

9

Analysis of VR Stepper

• Voltage Equations

• Flux Linkage Equations

• Torque Equation

• Mechanical Dynamics

10

VR Stepper Voltage Equations

• Voltage Equations

• In Matrix Form

dt

dirv asassas

λ+=

dt

dirv bsbssbs

λ+=

dt

dirv cscsscs

λ+=

abcs s abcs abcsp= +v r i λ

] [)( csbsasT

abcs fff=f

11

Flux Linkage Equations

Flux Linkage Equations

12

Flux Linkage Equations

13

Flux Linkage Equations

14

15

Flux Linkage Equations

• For any multi-stack VR stepper

• For this machine

=

cs

bs

as

cscs

bsbs

asas

cs

bs

as

i

i

i

L

L

L

00

00

00

λ

λ

λ

rmBAlsasas LLLL θ2cos++=

)32

(2cos πθ −++= rmBAlsbsbs LLLL

)34

(2cos πθ −++= rmBAlscscs LLLL

16

Flux Linkage Equations

17

Flux Linkage Equations

18

Flux Linkage Equations(Figure 8.2-3)

19

Flux Linkage Equations(Figure 8.2-3)

• We have…

• Or …

rmBAlsasas LLLL θ4cos++=

)31

(4cos πθ −++= rmBAlsbsbs LLLL

)32

(4cos πθ −++= rmBAlscscs LLLL

20

Flux Linkage Equations(Figure 8.2-4)

21

Flux Linkage Equations(Figure 8.2-4)

• We have…

• Or …

rmBAlsasas LLLL θ8cos++=

)3

1(8cos πθ −++= rmBAlsbsbs LLLL

)3

2(8coscscs πθ −++= rmBAls LLLL

22

Generalized Flux Linkage Eqns

• Thus in general, we have

• Or

)cos( rmBAlsasas RTLLLL θ++=

)](cos[ SLRTLLLL rmBAlsbsbs +++= θ

)](cos[ SLRTLLLL rmBAlscscs −++= θ

)cos( rmBAlsasas RTLLLL θ++=

)](cos[ SLRTLLLL mBAlsbsbs −++= θ)](cos[ SLRTLLLL rmBAlscscs +++= θ

23

Derivation of Torque

24

Derivation of Torque

25

Derivation of Torque

26

Electromagnetic Torque

• Thus

{}

2 2

2cs

sin( ) sin[ ( )]2

i sin[ ( )]

e B as rm bs rm

rm

RTT L i RT i RT SL

RT SL

θ θ

θ

= − + ±

+ ∓

2 2

2cs

2 2sin sin

2 3

2 i sin

3

e B as rm bs rm

rm

RT TPT L i i

TP TP

TP

TP

π πθ θ

π θ

= − + ±

+ ∓

27

Torque Position Characteristics

28

Mechanical Dynamics

29

Stable and Unstable Equilibrium

30

Example

• Consider a VR stepper with the following parameters�Rs: 2 Ohms�LA=12 mH�LB=10 mH�RT=8�N=3

• Suppose 6 V applied to a-phase with load torque of 0.25 Nm. Compute position.

31

Solution

32

Basic Stepping Operation: Forward

33

Basic Stepping Operation: Backward

34

Basic Stepping: Irregular

35

Stepping Operation: Missing a Step

36

Basic Stepping OperationLoad Torque Range for Forward

37

Derivation of Advance Torque

• Start with

−+

++

−=

32

sin

32

sin2

sin2

22

TP

TPi

TP

TPi

TPiL

RTT

rm2cs

rmbsrmasBe

θπ

θπθπ

38

Derivation of Advance Torque

39

Half-Step Operation

40

Driving VR Stepper Motor

• Common solution

41

Driving VR Stepper

• Typical waveforms

42

Driving VR Stepper

• Better (but more expensive) solution

43

Driving VR Stepper

• Typical waveforms

44

Example

• Consider a multistack VR stepper motor with N=3 and 8 rotor teeth being fed from a single transistor per stack circuit. If the dc voltage is 12 V, the transistor drop is 1 V, and the diode drop is 2 V, sketch the a-phase voltage waveform if the machine is traveling at 20 rad/s (average speed).

45

Solution

46

Single Stack VR Stepper

47

Modeling the VR Stepper

• Primary issue: mutual inductance

48

Single Stack VR Stepper