Lecture Angular Momentum - Physics...

60
Angular Momentum Tidal-Torque Theory Halo spin Angular-momentum distribution within halos Gas Condensation and Disk Formation The AM Problem(s) Thin disk, thick disk, bulge Lecture

Transcript of Lecture Angular Momentum - Physics...

  • Angular MomentumTidal-Torque Theory

    Halo spin

    Angular-momentum distribution within halos

    Gas Condensation and Disk Formation

    The AM Problem(s)

    Thin disk, thick disk, bulge

    Lecture

  • Disk Size

    RVMJ /~λ

    VRVRMJconst diskvirial ~~/. λ=Conservation of specificangular momentum

    J/M

    λ~virial

    disk

    RR

    Spin parameter

    R

    V

  • Tidal-Torque Theory (TTT)

    Peebles 1976 White 1984

  • N-body simulation of Halo Formation

  • N-body simulation of Halo Formation

  • Origin of Angular Momentum

    Tidal Torque Theory (TTT):qr

    Γ

    proto-galaxy perturber

    Peebles 1976 White 1984

    ∫Γ= qdqqaI jiij33

    00ρ

    lkjlijki ITtJ ε∝

    jiij qqT

    ∂∂

    ∂−=

    φ2Tidal: Inertia:

    Result:

  • Tidal-Torque Theory

    HaloProto-halo:

    a Lagrangian patch _

    _

  • Tidal-Torque TheoryrdtVtvtRtrtrtL cmcm∫ −×−= Eulerian3)]()([)]()([),()(

    γρ

    rrrrrrangular momentum in Eulerian patch

    1)(// −≡≡≡ txavarx ρρδ&rrrr xdxtXtxtxtattL cm33 )]()([)],(1[)()()( &r

    rrrr×−+= ∫γ δρ

    comoving coordinates

    const. in m.d.

    ),(),( tqSqtqxxq rrrrrrr

    −=→

    qdxdtqJtqx acobian331 )1(),()],([1 =+→=+ − δδ

    ∫Γ ×−+−= Lagrangian33

    00 ),()]),(()[()( qdtqSStqSqqatL &r

    ρ

    displacement fromLagrangian q to Eulerian xlaminar flow

    average over q in _

    SStDtatGtqqqtDtqS &rr

    //)]()()(4/[),()()()(),( 2grav →=∇−= ρπϕφφ

    qdqqqatDtatL ∫Γ ∇×−−=33

    002 )()()()()( ϕρ&

    r

    Zel’dovichapproximation

    qqqqqqq

    qq

    q jiqji

    iqi

    rrrr

    rr

    −≡∂∂

    ∂+

    ∂+≈

    == 0

    2

    021)0()( φφφφ2nd-order Taylor expansion

    of potential about qcm=0

    tDDa ∝∝ 2/32 &in a flat universe in EdS

    0

    2

    ==∂∂

    ∂−≡

    cmqqlj

    jl qqD φ

    lkjlijki IDtDtatL ε)()()(2 &=

    ijkεqdqqaI kllk33

    00 ∫Γ≡ ρDeformationtensor

    Inertiatensor

    antisymmetrictensor

  • Tidal-Torque Theory

    Tidal tensor = Shear tensor 3/ijiiijij DDT δ−≡

    0

    2

    ==∂∂

    ∂−≡

    cmqqlj

    jl qqD φlkjlijki ITtDtatL ε)()()(

    2 &=

    ijkεqdqqaI kllk33

    00 ∫Γ≡ ρDeformation tensor Inertia tensor antisymmetric

    Quadrupolar Inertia 3/ijiiij II δ−Only the trace-less part contributes

    qr

    Γ

    perturber

    L by gravitational coupling ofQuadrupole moment of _ withTidal field from neighboring fluctuations°Ṫ and I must be misaligned.

    L∝t till~turnaround

  • TTT vs Simulations (Porciani, Dekel & Hoffman 2002)

    Alignment of T and I:Spin originates from theresidual misalignment.

    ° ̇Small spin !

  • TTT vs. Simulations: Amplitude Growth RatePorciani, Dekel & Hoffman 02

    Amplitude Direction

  • TTT vs Simulations: Scatter(Porciani, Dekel & Hoffman 2002)

  • TTT predicts the spin amplitudeto within a factor of ~2,

    but it is not a very reliablepredictor of spin direction.

  • Alignment of I and T: Protohalos and Filaments

  • Alignment of I and T: Protohalos and Filaments

  • Stages in Halo Formation

  • Spin axis and Large-Scale Structure

    The spin direction is correlated with the intermediateprincipal axis of the Iij tensor at turnaround.

    In a large-scale pancake: the spin axis should tend tolie in the plane.

    )(

    )(

    )(

    2

    2

    2

    yyxxz

    zzxxy

    zzyyx

    IIyx

    J

    IIzx

    J

    IIzy

    J

    −∂∂

    ∂=

    −∂∂

    ∂=

    −∂∂

    ∂=

    φ

    φ

    φTTT:

    zzyyxx III >>

  • Spin axis and Large-Scale Structure

  • Disk-Pancake Alignment in theLocal Supercluster

  • Halo Spin ParameterFall & Efstathiou 1980

    Barnes & Efstathiou 1984

    Steinmetz et al. 1994-…

    Bullock et al. 2001b

  • Halo Spin Parameter

    2/5

    2/1

    GMEJ

    ≡λPeebles 76: dimensionless

    RVMJ /

    43

    ≡λ

    2222 221

    23

    σσσ === VRGMME

    Bullock et al. 2001 same for isothermal sphere

    simulations: _~0.05

    3/52/1200

    22 ~~ MaMRDaJ φ∇&

    110

    22 ~~:1~when~ −−∇→∇ aDD φδφδ

    2/32 ~~ atDa &

    MMR ~/~comoving 030 ρ

    3/512 ~/~ MaRME −MaMR 313 ~~Physical −ρ

    TTT:

    J determined at turnaround

    _ is constant, independent of a or M

  • Distribution of Halo Spins

    ~ 0.04

    _ln_ ~ 0.5

  • Spin vs Mass, Concentration, History_ distribution is universal

    _ correlated with ac,anti-correlated with C

  • Spin Jump in a Major MergerBurkert & D’onghia 04

    quiet halos with norecent major merger

    J

    time

    _

  • J Distribution inside Halos

    Bullock et al. 2001b

  • Universal Distribution of J inside Halos

    1)(0

    >+

    =< µµjjjMjM vir

    Bullock et al. 2001b

    1)1ln()('2)(/1

    10

    0max −−−≡==−

    = −µµµλµµ

    bVRbjMJjj

    Two parameter family:spin parameter _ and shape parameter _

    P(_)

    _-1

    _

    _-1

  • Distribution of J with radius:a power-law profile

    s=1.3°æ0.3

    j(r) /jmax

    M(

  • Distribution of J in spaceToy model: J by minor mergers

    −=drdMrrM

    rl

    llm tt

    t )(2)( 32

    )()]([ rMrlmrM t ∝→∝α

    Tidal radius rl

    )()]([)()()(4 2 rrVdrdm

    drrrVdrmrjrr +=ρπ

    rMMjlmrM ∝∝→∝∝ )(,

    Assume m and j are deposited locally in a shell r

    s=1.3°æ0.3

    j(r) /jmax

    M(

  • Formation of StellarDisks and Spheroids

    inside DM HalosWhite & Rees 1978

    Fall & Efstathiou 1980

    Mo, Mao & White

  • Galaxy Types: Disks and Spheroids

    • The morphology of a galaxy is a transient feature dictatedby the mass accretion history of its dark matter halo– most stars form in disks; spheroids result from

    subsequent mergers– disks result from smooth gas accretion; oldest disk stars

    are often used to date the last major merger event

  • merger

    hhalos

    accretion

    disk

    Galaxy Formation in halosradiative cooling

    cold

    hot

    cold gas → young stars

    spheroid

    → old stars

  • Gas versus Dark MatterNavarro, Steinmetz

  • Flat gaseous disk vs spheroidal DM halo

  • Disk/Bulge Formation (gas only) (Navarro, Steinmetz)

  • Disk Size

    RVMJ /~λ

    VRVRMJconst diskvirial ~~/. λ=Conservation of specificangular momentum

    J/M

    λ~virial

    disk

    RR

    Spin parameter

    R

    V

  • Disk Profile from the Halo J Distribution)()( jMfjM gas

  • Disk Profile: Shape Problem

    r/Rvir

    _d(r) [Md/Rv2]

    r/Rvir

    _d(r) [Md/Rv2]

    Bullock et al. 2001b

  • The Angular-Momentum ProblemNavarro & Steinmetz

  • The Spin Catastrophe

    observations simulations

    jj

    Navarro & Steinmetz et al.

  • The spin catastrophe

    observed

    SimulatedSPH

    diskj

    Steinmetz, Navarro, et al.

  • BBShalodisk

    van den Bosch, Burkert & Swaters 2002

    Observed j distribution in dwarfs

    P(j/jtot )

    j/jtot

    Low fbaryons≈0.03

    Missing low j

    High λbaryons≈0.07

  • +DM halo

    gas cooling

    satellite

    Over-cooling → spin catastrophe

    dynamical friction

    tidal stripping

    Feedback cansave the day

    Maller & Dekel 02

  • Merger history

    t

    Orbital-merger model:

    Binney & Tremaine

    Orbit parameters

    and random orientation

    Add orbital angular momentum in merger history

  • Succes of orbital-merger model

    model simulationsMaller, Dekel & Somerville 2002

  • model

    simulations

    Model success: j distribution in halos

  • model

    simulations

    Low/high-j from minor/major mergers

    Low-j from minor mergers

    High-j from major mergersJ

  • Supernova Feedback: VSN (Dekel & Silk 86; Dekel &Woo 03)

    Energy fed to the ISM during the “adiabatic” phase:

    ff* tMM ≈∗&

    )( ffrad*radSN ttMtME ∝≈ ∗&νε

    KTT 51 10~atfor −∝Λ01.0≈

    oMMV10

    critcrit 103km/s100 ×≈→≈→ ∗

    Energy required for blowout:2

    gasSN VME ≈

  • Feedback in satellite halos

    blow out →jb>jDMDM

    hot gas

    hot gas

    fbvir VV >

    2/fbvir VV <

    fbvir VV ≤

    jb

  • Model vs Data (Maller & Dekel 02)

    spin parameter

    BBSdata

    model dwarfsVvir=60

    baryon fractionmodel dwarfs

    bright

    BBSdata

    BBS data: 14 dwarfs, van den Bosch, Burkert & Swaters 02

    One free parameter in model: Vfeedback≅ 90 km s-1

  • J-distribution within galaxies

    modeldata

    disk

    DM halo

    BBS: van den Bosch, Burkert & Swaters 2002

  • Summary: feedback effect on spin

    In big satellites (merging to big galaxies)heating → gas expansion Rb~RDM→ tidal stripping together → λbar~ λDM

    In small satellites (merging to dwarfs)gas blowout → fbar downblowout of low j gas → λbar > λDM

  • Thin Disk and Thick DiskNavarro & Steinmetz

  • Dynamical Components of a Simulated galaxy

  • Orbital Circularity Orbital Circularity Abadi et al 03Abadi et al 03

    Dynamical components of a simulated galaxyDynamical components of a simulated galaxy

    non-rotatingspheroid thick disk thin disk

  • Formation of Thick DiskStellar satellite merging with disk: edge-on

  • Formation of Thick DiskStellar satellite merging with disk: face-on