Lecture 6 Atmospheric Pressure

18
Lecture 6 Atmospheric Pressure Pressure Profiles for Idealized Atmosphere ATMOS 5130

Transcript of Lecture 6 Atmospheric Pressure

Page 1: Lecture 6 Atmospheric Pressure

Lecture6

• AtmosphericPressure• PressureProfilesforIdealizedAtmosphere

ATMOS5130

Page 2: Lecture 6 Atmospheric Pressure

Goal

Allowforcalculationofpressureatanyheight

Δ𝑧 = 𝑅&𝑇(𝑔 ln

𝑝-𝑝.

HypsometricEquation

Recallfromlastlecture

• Understandhowtemperature,pressureandaltitudearerelatedintheatmosphere.

Page 3: Lecture 6 Atmospheric Pressure

PressureProfilesforIdealizedAtmosphere• ConstantDensityAtmosphere

• Unrealistic• Betterrepresentationoftheocean• Atmospherehadthesamemassasnow,buthadaconstantdensityitwouldbeonly8.3kmdeep

/ 𝑑𝑝1(3)

15= −𝜌𝑔/ 𝑑𝑧

8

9

:1:8≈ −𝜌𝑔 HydrostaticEquation

𝑝 𝑧 = 𝑝9 − 𝜌𝑔𝑧

Pressuredecreaseslinearlywithheight

Page 4: Lecture 6 Atmospheric Pressure

PressureProfilesforIdealizedAtmosphere• ConstantDensityAtmosphere• Pressureisdecreasingwithheight• Densityisconstant• SO,Temperaturemustdeceasewithheight

𝑝 𝑧 = 𝑝9 − 𝜌𝑔𝑧

𝑝 = 𝜌𝑅&𝑇 IDEALGASLAW

𝜕𝑝𝜕𝑧 = 𝜌𝑅&

𝜕𝑇𝜕𝑧

Differentiatewithrespecttoelevation

:=:8= − >

?@=-34.1C/km

SubstituteinHydrostaticEquation 𝜕𝑝𝜕𝑧 = −𝜌𝑔

Page 5: Lecture 6 Atmospheric Pressure

ConstantDensityAtmosphereAutoconvective LapseRate

𝑝 𝑧 = 𝑝9 − 𝜌𝑔𝑧

:=:8= − >

?@=-34.1C/km=ΓBCDE𝑊ℎ𝑒𝑛: Γ > ΓBCDE

Densityabovegreaterthanbelow!DensityInversion =>CreatesamirageAboveaveryhotroad,alayerofwarmairwhosedensityislowerthanairabove.

Thedenserairslowslightveryslightlymorethanthelessdenselayer.So,oneseesskywheretheroadshouldbe,weofteninterpretthisasareflectioncausedbywaterontheroad

Page 6: Lecture 6 Atmospheric Pressure

PressureProfilesforIdealizedAtmosphereConstantDensity

Page 7: Lecture 6 Atmospheric Pressure

PressureProfilesforIdealizedAtmosphere• IsothermalAtmosphere

&1&8= −𝜌𝑔 HydrostaticEquation

Againsubstituteintheidealgaslaw,𝑑𝑝𝑑𝑧 = −𝜌𝑔 = −

𝑝𝑔𝑅&𝑇

Solve1𝑝 𝑑𝑝 = −

𝑔𝑅&𝑇

𝑑𝑧

/1𝑝

1

15𝑑𝑝 = −

𝑔𝑅&𝑇

/ 𝑑𝑧8

9

ln𝑝𝑝9

= −𝑔𝑧𝑅&𝑇

𝐻 = 𝑅&𝑇9𝑔

Where:

𝑝 𝑧 = 𝑝9exp −𝑧𝐻

Page 8: Lecture 6 Atmospheric Pressure

ScaleHeight

𝑝 𝑧 = 𝑝9 − 𝜌𝑔𝑧

ScaleHeight(H):solveforz,whenp(z)=0,

𝐻 =𝑝9𝜌𝑔

substitutetheIdealGasLaw

𝐻 = 𝑅&𝑇9𝑔

Inotherwords:scaleheightistheincreaseinaltitudeforwhichtheatmosphericpressuredecreasesbyafactorofe-1 orabout37%ofitsoriginalvalue.

ApproximatescaleheightsforselectedSolarSystembodies

Venus:15.9kmEarth:8.3kmMars:11.1kmJupiter:27kmSaturn:59.5kmTitan:40km

Uranus:27.7kmNeptune:19.1–20.3km

Pluto:~60km

ConstantDensityAtmosphere

Page 9: Lecture 6 Atmospheric Pressure

• ConstantLapseRateatmosphere

• NormallyΓ >0,temperaturedecreaseswithaltitude• WhenΓ >0,temperatureincreaseswithaltitude

• INVERSION

PressureProfilesforIdealizedAtmosphere

𝑇 =𝑇9 − Γ𝑧

Page 10: Lecture 6 Atmospheric Pressure

• ConstantLapseRateatmosphere

PressureProfilesforIdealizedAtmosphere

𝑇 = 𝑇9 − Γ𝑧

𝑑𝑝𝑑𝑧 = −𝜌𝑔 = −

𝑝𝑔𝑅&(𝑇9−Γ𝑧)

TakethehydrostaticequationandcombinewithIdealGasLaw

1𝑝 𝑑𝑝 = −

𝑔𝑅&

𝑑𝑧𝑇9 − Γ𝑧

/1𝑝

1

15𝑑𝑝 = −

𝑔𝑅&

/𝑑𝑧

𝑇9 − Γ𝑧

8

9

ln𝑝𝑝9

=𝑔𝑅&Γ

ln −𝑇9 − Γ𝑧𝑇9

𝑝(𝑧) = 𝑝9𝑇9 − Γ𝑧𝑇9

>?@Q

Page 11: Lecture 6 Atmospheric Pressure

• ConstantLapseRateatmosphere

PressureProfilesforIdealizedAtmosphere

𝑇 = 𝑇9 − Γ𝑧

𝑑𝑝𝑑𝑧 = −𝜌𝑔 = −

𝑝𝑔𝑅&(𝑇9−Γ𝑧)

TakethehydrostaticequationandcombinewithIdealGasLaw

1𝑝 𝑑𝑝 = −

𝑔𝑅&

𝑑𝑧𝑇9 − Γ𝑧

/1𝑝

1

15𝑑𝑝 = −

𝑔𝑅&

/𝑑𝑧

𝑇9 − Γ𝑧

8

9

ln𝑝𝑝9

=𝑔𝑅&Γ

ln −𝑇9 − Γ𝑧𝑇9

𝑝(𝑧) = 𝑝9𝑇9 − Γ𝑧𝑇9

>?@Q

𝑇(𝑧)

Page 12: Lecture 6 Atmospheric Pressure

PressureProfilesforIdealizedAtmosphere• ConstantLapserateatmosphere

𝑝(𝑧) = 𝑝9𝑇(𝑧)𝑇9

>?@Q

ValidforΓ < 0Exponentoftheratioisnegative,sopressurestilldecreaseswithheight

>?@Q

isratioofautoconvective toactuallapserate

So,whathappensif𝜞 = 𝜞𝒂𝒖𝒕𝒐 ?

Page 13: Lecture 6 Atmospheric Pressure

PressureProfilesforIdealizedAtmosphere• ConstantLapserateatmosphere

𝑝(𝑧) = 𝑝9𝑇(𝑧)𝑇9

>?@Q

ValidforΓ < 0Exponentoftheratioisnegative,sopressurestilldecreaseswithheight

>?@Q

isratioofautoconvective toactuallapserate

So,whathappensif𝜞 = 𝜞𝒂𝒖𝒕𝒐 ?

𝑝(𝑧) = 𝑝9=(8)=5

- Pressureislinearfunctionofz

Page 14: Lecture 6 Atmospheric Pressure

0 200 400 600 800 1000 1200

0

5

10

15

20

Γ=0

Γ=6.5 K/km

Γ=Γauto

p [hPa]

z [km]

Pressure vs. Altitude

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0

5

10

15

20

Γ=0

Γ=6.5 K/km

Γ=Γauto

ρ (kg/m3)

z [km]

Density vs. Altitude

0 100 200 300

0

5

10

15

20

Γ=0

Γ=6.5 K

/km

Γ=Γauto

T [K]

z [km]

Temperature vs. Altitude

Fig.4.4

Γ =0;IsothermalΓ =6.5K/km;ConstantLapseRateΓ =Γauto;Autoconvective;ConstantDensity=g/Rd

Page 15: Lecture 6 Atmospheric Pressure

0 200 400 600 800 1000 1200

0

5

10

15

20

Γ=0

Γ=6.5 K/km

Γ=Γauto

p [hPa]

z [km]

Pressure vs. Altitude

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0

5

10

15

20

Γ=0

Γ=6.5 K/km

Γ=Γauto

ρ (kg/m3)

z [km]

Density vs. Altitude

0 100 200 300

0

5

10

15

20

Γ=0

Γ=6.5 K

/km

Γ=Γauto

T [K]

z [km]

Temperature vs. Altitude

Fig.4.4

Γ =0;IsothermalΓ =6.5K/km;ConstantLapseRateΓ =Γauto;Autoconvective ConstantDensity

𝑝 𝑧 = 𝑝9exp −𝑧𝐻

𝑝(𝑧) = 𝑝9𝑇(𝑧)𝑇9

>?@Q

𝑝 𝑧 = 𝑝9 − 𝜌𝑔𝑧Autoconvective

ConstantLapseRate

Isothermal

Page 16: Lecture 6 Atmospheric Pressure

0 200 400 600 800 1000 1200

0

5

10

15

20

Γ=0

Γ=6.5 K/km

Γ=Γauto

p [hPa]

z [km]

Pressure vs. Altitude

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0

5

10

15

20

Γ=0

Γ=6.5 K/km

Γ=Γauto

ρ (kg/m3)

z [km]

Density vs. Altitude

0 100 200 300

0

5

10

15

20

Γ=0

Γ=6.5 K

/km

Γ=Γauto

T [K]

z [km]

Temperature vs. Altitude

Fig.4.4

Γ =0;IsothermalΓ =6.5K/km;ConstantLapseRateΓ =Γauto;Autoconvective ConstantDensity

Page 17: Lecture 6 Atmospheric Pressure

PiecewiseLinearTemperatureProfile

• UltimateApproximationismodelbasedonseriesofstackedlayers• Eachlayerexhibitsadifferentconstantlapserate• Generallyspeaking,ifalayeristhinenough,thenalltheabovemethodsgiveyouaboutthesameresult.

𝑝YZ- = 𝑝Y𝑇YZ-𝑇Y

>?@Q[

Page 18: Lecture 6 Atmospheric Pressure

-40 -30 -20 -10 0 10 20 30 40

Temperature [!

C]-50-60-80-90 -70

10

20

30

50

70

100

150

200

250

300

400

500

700

850925

1000

Three Layers

Pre

ssu

re [h

Pa

]

-40 -30 -20 -10 0 10 20 30 40

Temperature [!

C]-50-60-80-90 -70

10

20

30

50

70

100

150

200

250

300

400

500

700

850925

1000

24 Layers

Pre

ssu

re [h

Pa

]

Piecewise Linear Profiles

Fig.4.5