Lecture 5: Variance Reduction - LAGA - Accueilkebaier/Lecture5.pdfAntithetic Variables Antithetic...
Embed Size (px)
Transcript of Lecture 5: Variance Reduction - LAGA - Accueilkebaier/Lecture5.pdfAntithetic Variables Antithetic...
![Page 2: Lecture 5: Variance Reduction - LAGA - Accueilkebaier/Lecture5.pdfAntithetic Variables Antithetic Variables Assume that we aim at computing ˇ= E(g(U)), where U ˘U([0;1]): We simulate](https://reader033.fdocument.org/reader033/viewer/2022052519/5f8dc882f6ffaa497a7a5af9/html5/thumbnails/2.jpg)
Antithetic Variables
Outline of The Talk
1 Antithetic Variables
![Page 3: Lecture 5: Variance Reduction - LAGA - Accueilkebaier/Lecture5.pdfAntithetic Variables Antithetic Variables Assume that we aim at computing ˇ= E(g(U)), where U ˘U([0;1]): We simulate](https://reader033.fdocument.org/reader033/viewer/2022052519/5f8dc882f6ffaa497a7a5af9/html5/thumbnails/3.jpg)
Antithetic Variables
Outline
1 Antithetic Variables
![Page 4: Lecture 5: Variance Reduction - LAGA - Accueilkebaier/Lecture5.pdfAntithetic Variables Antithetic Variables Assume that we aim at computing ˇ= E(g(U)), where U ˘U([0;1]): We simulate](https://reader033.fdocument.org/reader033/viewer/2022052519/5f8dc882f6ffaa497a7a5af9/html5/thumbnails/4.jpg)
Antithetic Variables
Antithetic Variables
Assume that we aim at computing π = E(g(U)), whereU ∼ U([0, 1]).
We simulate a sample (U1, . . . ,Un) of indepedentent copies of Uand we approximate target π by
Sn =1
n
n∑i=1
g(Ui ).
Noticing that ULaw= 1− U, suppose n is even, then one can
consider the new estimator
Sn =1
n
n/2∑i=1
g(Ui ) + g(1− Ui ).
Compute Var(Sn) and compare with Var(Sn) ?
![Page 5: Lecture 5: Variance Reduction - LAGA - Accueilkebaier/Lecture5.pdfAntithetic Variables Antithetic Variables Assume that we aim at computing ˇ= E(g(U)), where U ˘U([0;1]): We simulate](https://reader033.fdocument.org/reader033/viewer/2022052519/5f8dc882f6ffaa497a7a5af9/html5/thumbnails/5.jpg)
Antithetic Variables
Antithetic Variables
Assume that we aim at computing π = E(g(U)), whereU ∼ U([0, 1]).
We simulate a sample (U1, . . . ,Un) of indepedentent copies of Uand we approximate target π by
Sn =1
n
n∑i=1
g(Ui ).
Noticing that ULaw= 1− U, suppose n is even, then one can
consider the new estimator
Sn =1
n
n/2∑i=1
g(Ui ) + g(1− Ui ).
Compute Var(Sn) and compare with Var(Sn) ?
![Page 6: Lecture 5: Variance Reduction - LAGA - Accueilkebaier/Lecture5.pdfAntithetic Variables Antithetic Variables Assume that we aim at computing ˇ= E(g(U)), where U ˘U([0;1]): We simulate](https://reader033.fdocument.org/reader033/viewer/2022052519/5f8dc882f6ffaa497a7a5af9/html5/thumbnails/6.jpg)
Antithetic Variables
Antithetic Variables
Assume that we aim at computing π = E(g(U)), whereU ∼ U([0, 1]).
We simulate a sample (U1, . . . ,Un) of indepedentent copies of Uand we approximate target π by
Sn =1
n
n∑i=1
g(Ui ).
Noticing that ULaw= 1− U, suppose n is even, then one can
consider the new estimator
Sn =1
n
n/2∑i=1
g(Ui ) + g(1− Ui ).
Compute Var(Sn) and compare with Var(Sn) ?
![Page 7: Lecture 5: Variance Reduction - LAGA - Accueilkebaier/Lecture5.pdfAntithetic Variables Antithetic Variables Assume that we aim at computing ˇ= E(g(U)), where U ˘U([0;1]): We simulate](https://reader033.fdocument.org/reader033/viewer/2022052519/5f8dc882f6ffaa497a7a5af9/html5/thumbnails/7.jpg)
Antithetic Variables
Answer: Var(Sn) = Var(Sn) + 1nCov (g(U), g(1− U))
Theorem 1
Let X be a random variable, f and g be two non-decreasingfunctions. Then
Cov (f (X ), g(X )) ≥ 0.
Hint: Consider Y an independent copy of X and use that(f (X )− f (Y ))(g(X )− g(Y )) ≥ 0
![Page 8: Lecture 5: Variance Reduction - LAGA - Accueilkebaier/Lecture5.pdfAntithetic Variables Antithetic Variables Assume that we aim at computing ˇ= E(g(U)), where U ˘U([0;1]): We simulate](https://reader033.fdocument.org/reader033/viewer/2022052519/5f8dc882f6ffaa497a7a5af9/html5/thumbnails/8.jpg)
Antithetic Variables
Answer: Var(Sn) = Var(Sn) + 1nCov (g(U), g(1− U))
Theorem 1
Let X be a random variable, f and g be two non-decreasingfunctions. Then
Cov (f (X ), g(X )) ≥ 0.
Hint: Consider Y an independent copy of X and use that(f (X )− f (Y ))(g(X )− g(Y )) ≥ 0
![Page 9: Lecture 5: Variance Reduction - LAGA - Accueilkebaier/Lecture5.pdfAntithetic Variables Antithetic Variables Assume that we aim at computing ˇ= E(g(U)), where U ˘U([0;1]): We simulate](https://reader033.fdocument.org/reader033/viewer/2022052519/5f8dc882f6ffaa497a7a5af9/html5/thumbnails/9.jpg)
Antithetic Variables
Answer: Var(Sn) = Var(Sn) + 1nCov (g(U), g(1− U))
Theorem 1
Let X be a random variable, f and g be two non-decreasingfunctions. Then
Cov (f (X ), g(X )) ≥ 0.
Hint: Consider Y an independent copy of X and use that(f (X )− f (Y ))(g(X )− g(Y )) ≥ 0
![Page 10: Lecture 5: Variance Reduction - LAGA - Accueilkebaier/Lecture5.pdfAntithetic Variables Antithetic Variables Assume that we aim at computing ˇ= E(g(U)), where U ˘U([0;1]): We simulate](https://reader033.fdocument.org/reader033/viewer/2022052519/5f8dc882f6ffaa497a7a5af9/html5/thumbnails/10.jpg)
Antithetic Variables
Exercise
The aim of the following exercise is to use antithetic variableswhen computing the price of a call option in the Black-Scholesmodel with maturity T and strike K . More precisely, let
ψ(x) = e−rT (λeσ√Tx − K )+, where λ = S0e
(r−σ2
2)T .
For G ∼ N (0, 1), our aim is to compute
E(ψ(G )).
Noticing that GLaw= −G use a variance reduction method based on
antithetic variables and compare the variances.
![Page 11: Lecture 5: Variance Reduction - LAGA - Accueilkebaier/Lecture5.pdfAntithetic Variables Antithetic Variables Assume that we aim at computing ˇ= E(g(U)), where U ˘U([0;1]): We simulate](https://reader033.fdocument.org/reader033/viewer/2022052519/5f8dc882f6ffaa497a7a5af9/html5/thumbnails/11.jpg)
Antithetic Variables
Exercise
The aim of the following exercise is to use antithetic variableswhen computing the price of a call option in the Black-Scholesmodel with maturity T and strike K . More precisely, let
ψ(x) = e−rT (λeσ√Tx − K )+, where λ = S0e
(r−σ2
2)T .
For G ∼ N (0, 1), our aim is to compute
E(ψ(G )).
Noticing that GLaw= −G use a variance reduction method based on
antithetic variables and compare the variances.
![Page 12: Lecture 5: Variance Reduction - LAGA - Accueilkebaier/Lecture5.pdfAntithetic Variables Antithetic Variables Assume that we aim at computing ˇ= E(g(U)), where U ˘U([0;1]): We simulate](https://reader033.fdocument.org/reader033/viewer/2022052519/5f8dc882f6ffaa497a7a5af9/html5/thumbnails/12.jpg)
Antithetic Variables
Solution
function y=BSCallAntithetic(S0,K,T,r,sigma,M)
tic();
X=rand(1,M,’normal’);
G=X(1:M/2);
C=exp(-r*T)*max(S0*exp(sigma*sqrt(T)*X+(r-sigma^ 2/2)*T)-K,0);
hatC=exp(-r*T)*max(S0*exp(sigma*sqrt(T)*G+(r-sigma^ 2/2)*T)-K,0)
+exp(-r*T)*max(S0*exp(-sigma*sqrt(T)*G+(r-sigma^ 2/2)*T)-K,0);
price=sum(C)/M;
hatprice=sum(hatC)/M;
VarEst=sum((C-price).^ 2)/(M-1);
hatVarEst=sum((hatC-hatprice).^ 2)/(M-1);
RMSE=sqrt(VarEst)/sqrt(M);
hatRMSE=sqrt(hatVarEst)/sqrt(M);
time=toc();
y=[price hatprice RMSE hatRMSE]
endfunction
![Page 13: Lecture 5: Variance Reduction - LAGA - Accueilkebaier/Lecture5.pdfAntithetic Variables Antithetic Variables Assume that we aim at computing ˇ= E(g(U)), where U ˘U([0;1]): We simulate](https://reader033.fdocument.org/reader033/viewer/2022052519/5f8dc882f6ffaa497a7a5af9/html5/thumbnails/13.jpg)
Antithetic Variables
Solution
function y=BSCallAntithetic(S0,K,T,r,sigma,M)
tic();
X=rand(1,M,’normal’);
G=X(1:M/2);
C=exp(-r*T)*max(S0*exp(sigma*sqrt(T)*X+(r-sigma^ 2/2)*T)-K,0);
hatC=exp(-r*T)*max(S0*exp(sigma*sqrt(T)*G+(r-sigma^ 2/2)*T)-K,0)
+exp(-r*T)*max(S0*exp(-sigma*sqrt(T)*G+(r-sigma^ 2/2)*T)-K,0);
price=sum(C)/M;
hatprice=sum(hatC)/M;
VarEst=sum((C-price).^ 2)/(M-1);
hatVarEst=sum((hatC-hatprice).^ 2)/(M-1);
RMSE=sqrt(VarEst)/sqrt(M);
hatRMSE=sqrt(hatVarEst)/sqrt(M);
time=toc();
y=[price hatprice RMSE hatRMSE]
endfunction
![Page 14: Lecture 5: Variance Reduction - LAGA - Accueilkebaier/Lecture5.pdfAntithetic Variables Antithetic Variables Assume that we aim at computing ˇ= E(g(U)), where U ˘U([0;1]): We simulate](https://reader033.fdocument.org/reader033/viewer/2022052519/5f8dc882f6ffaa497a7a5af9/html5/thumbnails/14.jpg)
Antithetic Variables
Solution
function y=BSCallAntithetic(S0,K,T,r,sigma,M)
tic();
X=rand(1,M,’normal’);
G=X(1:M/2);
C=exp(-r*T)*max(S0*exp(sigma*sqrt(T)*X+(r-sigma^ 2/2)*T)-K,0);
hatC=exp(-r*T)*max(S0*exp(sigma*sqrt(T)*G+(r-sigma^ 2/2)*T)-K,0)
+exp(-r*T)*max(S0*exp(-sigma*sqrt(T)*G+(r-sigma^ 2/2)*T)-K,0);
price=sum(C)/M;
hatprice=sum(hatC)/M;
VarEst=sum((C-price).^ 2)/(M-1);
hatVarEst=sum((hatC-hatprice).^ 2)/(M-1);
RMSE=sqrt(VarEst)/sqrt(M);
hatRMSE=sqrt(hatVarEst)/sqrt(M);
time=toc();
y=[price hatprice RMSE hatRMSE]
endfunction
![Page 15: Lecture 5: Variance Reduction - LAGA - Accueilkebaier/Lecture5.pdfAntithetic Variables Antithetic Variables Assume that we aim at computing ˇ= E(g(U)), where U ˘U([0;1]): We simulate](https://reader033.fdocument.org/reader033/viewer/2022052519/5f8dc882f6ffaa497a7a5af9/html5/thumbnails/15.jpg)
Antithetic Variables
Importance Sampling
Importance sampling involves a change of probability measure.Instead of taking X from a distribution with density p(x) weinstead take it from a different distribution Y with density p(x).We can write
E(f (X )) =
∫f (x)
p(x)
p(x)p(x)dx
= E(f (Y )
p(Y )
p(Y )
)We want the new variance Var
(f (Y )p(Y )
p(Y )
)<< Var(f (X )).
Var
(f (Y )
p(Y )
p(Y )
)=
∫f (x)2p(x)2
p(x)dx − E(f (X ))2
The optimal choice is then
p(x) =p(x)f (x)
Ef (X )
![Page 16: Lecture 5: Variance Reduction - LAGA - Accueilkebaier/Lecture5.pdfAntithetic Variables Antithetic Variables Assume that we aim at computing ˇ= E(g(U)), where U ˘U([0;1]): We simulate](https://reader033.fdocument.org/reader033/viewer/2022052519/5f8dc882f6ffaa497a7a5af9/html5/thumbnails/16.jpg)
Antithetic Variables
Importance Sampling
Importance sampling involves a change of probability measure.Instead of taking X from a distribution with density p(x) weinstead take it from a different distribution Y with density p(x).We can write
E(f (X )) =
∫f (x)
p(x)
p(x)p(x)dx
= E(f (Y )
p(Y )
p(Y )
)We want the new variance Var
(f (Y )p(Y )
p(Y )
)<< Var(f (X )).
Var
(f (Y )
p(Y )
p(Y )
)=
∫f (x)2p(x)2
p(x)dx − E(f (X ))2
The optimal choice is then
p(x) =p(x)f (x)
Ef (X )
![Page 17: Lecture 5: Variance Reduction - LAGA - Accueilkebaier/Lecture5.pdfAntithetic Variables Antithetic Variables Assume that we aim at computing ˇ= E(g(U)), where U ˘U([0;1]): We simulate](https://reader033.fdocument.org/reader033/viewer/2022052519/5f8dc882f6ffaa497a7a5af9/html5/thumbnails/17.jpg)
Antithetic Variables
Importance Sampling
Importance sampling involves a change of probability measure.Instead of taking X from a distribution with density p(x) weinstead take it from a different distribution Y with density p(x).We can write
E(f (X )) =
∫f (x)
p(x)
p(x)p(x)dx
= E(f (Y )
p(Y )
p(Y )
)We want the new variance Var
(f (Y )p(Y )
p(Y )
)<< Var(f (X )).
Var
(f (Y )
p(Y )
p(Y )
)=
∫f (x)2p(x)2
p(x)dx − E(f (X ))2
The optimal choice is then
p(x) =p(x)f (x)
Ef (X )
![Page 18: Lecture 5: Variance Reduction - LAGA - Accueilkebaier/Lecture5.pdfAntithetic Variables Antithetic Variables Assume that we aim at computing ˇ= E(g(U)), where U ˘U([0;1]): We simulate](https://reader033.fdocument.org/reader033/viewer/2022052519/5f8dc882f6ffaa497a7a5af9/html5/thumbnails/18.jpg)
Antithetic Variables
Gaussian variables
Our aim is to compute π = E(f (G )) where G ∼ N (0, Id). Then,prove that for all µ ∈ Rd we have
π = E(f (G )) = E(f (G + µ)e−
|µ|22−µ·G
).
The variance associated to the estimation of the term on r.h.s fthe above relation is of order
E(f 2(G + µ)e−|µ|
2−2µ·G)
= E(f 2(G )e
|µ|22−µ·G
)
![Page 19: Lecture 5: Variance Reduction - LAGA - Accueilkebaier/Lecture5.pdfAntithetic Variables Antithetic Variables Assume that we aim at computing ˇ= E(g(U)), where U ˘U([0;1]): We simulate](https://reader033.fdocument.org/reader033/viewer/2022052519/5f8dc882f6ffaa497a7a5af9/html5/thumbnails/19.jpg)
Antithetic Variables
Gaussian variables
Our aim is to compute π = E(f (G )) where G ∼ N (0, Id). Then,prove that for all µ ∈ Rd we have
π = E(f (G )) = E(f (G + µ)e−
|µ|22−µ·G
).
The variance associated to the estimation of the term on r.h.s fthe above relation is of order
E(f 2(G + µ)e−|µ|
2−2µ·G)
= E(f 2(G )e
|µ|22−µ·G
)
![Page 20: Lecture 5: Variance Reduction - LAGA - Accueilkebaier/Lecture5.pdfAntithetic Variables Antithetic Variables Assume that we aim at computing ˇ= E(g(U)), where U ˘U([0;1]): We simulate](https://reader033.fdocument.org/reader033/viewer/2022052519/5f8dc882f6ffaa497a7a5af9/html5/thumbnails/20.jpg)
Antithetic Variables
Exercise
The aim of the following exercise is to use an Importance Samplingmethod when computing the price of a call option in theBlack-Scholes model with maturity T and strike K . More precisely,let
ψ(x) = e−rT (λeσ√Tx − K )+, where λ = S0e
(r−σ2
2)T .
For G ∼ N (0, 1), our aim is to compute E(ψ(G )).
Noticing thatfor λ ∈ R
π = E(ψ(G )) = E(f (G + λ)e−
λ2
2−λG
).
1 Use this last relation to implement a Monte Carlo methodsand compute the associated variance v(λ).
2 Prove tha λ 7→ v(λ) is a deacrising function on the interval(−∞, log(K/λ)/σ].
![Page 21: Lecture 5: Variance Reduction - LAGA - Accueilkebaier/Lecture5.pdfAntithetic Variables Antithetic Variables Assume that we aim at computing ˇ= E(g(U)), where U ˘U([0;1]): We simulate](https://reader033.fdocument.org/reader033/viewer/2022052519/5f8dc882f6ffaa497a7a5af9/html5/thumbnails/21.jpg)
Antithetic Variables
Exercise
The aim of the following exercise is to use an Importance Samplingmethod when computing the price of a call option in theBlack-Scholes model with maturity T and strike K . More precisely,let
ψ(x) = e−rT (λeσ√Tx − K )+, where λ = S0e
(r−σ2
2)T .
For G ∼ N (0, 1), our aim is to compute E(ψ(G )). Noticing thatfor λ ∈ R
π = E(ψ(G )) = E(f (G + λ)e−
λ2
2−λG
).
1 Use this last relation to implement a Monte Carlo methodsand compute the associated variance v(λ).
2 Prove tha λ 7→ v(λ) is a deacrising function on the interval(−∞, log(K/λ)/σ].
![Page 22: Lecture 5: Variance Reduction - LAGA - Accueilkebaier/Lecture5.pdfAntithetic Variables Antithetic Variables Assume that we aim at computing ˇ= E(g(U)), where U ˘U([0;1]): We simulate](https://reader033.fdocument.org/reader033/viewer/2022052519/5f8dc882f6ffaa497a7a5af9/html5/thumbnails/22.jpg)
Antithetic Variables
Generalisation
Let (Ω,F = (Ft)0≤t≤T ,P) be a filtred probability space with finiteHorizon T . Assume that (B)0≤t≤T is a standard F-Brownianmotion and θ ∈ Rd be an F-adapted process such that∫ T0 |θs |
2ds <∞ a.s. If the process
Lθt = exp
(−∫ t
0θsdBs −
1
2
∫ T
0|θs |2ds
)is a martingale then under the probability Q defined by
dQdP
= LθT
then the process
Wt = Bt +
∫ t
0θsds
is a Brownian motion under Q.