Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of...

96
1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science Institute of Chemical Engineering Department of Thermodynamics Lecture 0331 L 337 5. Thermodynamics of Pure Polymers

Transcript of Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of...

Page 1: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

1

Polymer Thermodynamics

Prof. Dr. rer. nat. habil. S. Enders

Faculty III for Process ScienceInstitute of Chemical EngineeringDepartment of Thermodynamics

Lecture

0331 L 337

5. Thermodynamics of Pure Polymers

Page 2: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

2Polymer Thermodynamics

5. Thermodynamics of Pure Polymers5.1. Thermodynamics of Polymerization

Stoichiometric coefficients νi

1 H2S + 2 NaOH 1 Na2S + 2 H2O

Example.: ν = -1 ν = -2 ν = +1 ν = +2negative = educts positive = products

reaction variable λ

Goal: Reduction of ni variables to only one variable λ

() (0)i int nt= =+

i

i

dn dλν

= i idn dν λ=or

( ) ( 0)i i in t n t ν λ= = +The reaction variable gives information about the progress of the chemical reaction.l [mol]

Page 3: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

3Polymer Thermodynamics5. Thermodynamics of Pure Polymers5.1. Thermodynamics of Polymerization

Example:

Calculation of ni and xi as function of reaction variable λ:

2

2

21 12 2

1 0

1 1

H O

H

O

n

n mol

n mol

λ

λ

λ

= +

= − +

= − +

( )

( )( )

( )

2

2

2

12

12

1 12 2

12

1 23 3

2 113 3

13 3

H O

H

O

xmol mol

molmolxmol mol

mol molxmol mol

λ λλ λ

λλλ λλ λλ λ

= =− −

−−= =

− −

− −= =

− −

3 mole fraction can be reduced to one λ( )

312 2

12 3

jn mol

mol

λ

λ

= − +

= −∑

2 2 212

H O H O+

Page 4: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

4Polymer Thermodynamics

5. Thermodynamics of Pure Polymers5.1. Thermodynamics of Polymerization

NaOH + H2O AlCl3 + H2O

heating cooling

exothermic reaction endothermic reaction

0RHΔ < 0RHΔ >

Page 5: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

5Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

equilibrium

dG=0

free

enth

alpy

G

state variable

λpure educts pure products

equilibrium

spontaneous

spontaneous

free

enth

alpy

5.1. Thermodynamics of Polymerization

i

i

dn dλν

=

reaction variable λ

Page 6: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

6Polymer Thermodynamics

5. Thermodynamics of Pure Polymers5.1. Thermodynamics of Polymerization

Spontaneous run of chemical reactions R R Rg h T sΔ = Δ − Δ

at higher temperature preferred→entropy drivenT>ΔRh/ΔRs spontaneousT=ΔRh/ΔRs equilibriumT<ΔRh/ΔRs not spontaneous

>0>0d

at low temperature preferred→ enthalpy-drivenT<ΔRh/ΔRs spontaneousT=ΔRh/ΔRs equilibriumT>ΔRh/ΔRs not spontaneous

<0<0c

at no temperature possible ΔRg>0<0>0b

at any temperature possible ΔRg<0>0<0a

Spontaneous reactionΔRsΔRh

Page 7: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

7Polymer Thermodynamics

5. Thermodynamics of Pure Polymers5.1. Thermodynamics of Polymerization

Calculation of enthalpy of reaction

Kirchhoff Law

with

( ) ( ) 00 0 ( )i

T

B i B i pT

h T h T c T dT+

+ + +Δ = Δ + ∫

0( ) ( )R i B ii

h T h Tν+ +Δ = Δ∑

( )0B ih T+Δ( )0B ih T+ +Δ

0( ) ( )R i B ii

h T h Tν+ + + +Δ = Δ∑

( )Rh T+ +Δ

( ) ( ) ( )T

R R R pT

h T h T c T dT+

+ + +Δ = Δ + Δ∫( )Rh T+Δ

0 iR p i pi

c cνΔ = ∑

Page 8: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

8Polymer Thermodynamics

5. Thermodynamics of Pure Polymers5.1. Thermodynamics of Polymerization

Calculation of entropy of reaction

( )Rs T+Δ

Calculation of free enthalpy of reaction

0iR R R ii

g h T s gν+ + + +Δ = Δ − Δ = ∑

( )0is T+ + ( ) ( ) 00 0

( )i

Tp

i iT

c Ts T s T dT

T+

+ + += + ∫ ( )0is T+

0( ) ( )R i ii

s T s Tν+ +Δ = ∑0( ) ( )R i i

i

s T s Tν+ + + +Δ = ∑

( )Rs T+ +Δ

( ) ( ) ( )TR p

R RT

c Ts T s T dT

T+

+ + + ΔΔ = Δ + ∫

( )Rs T+Δ

Page 9: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

9Polymer Thermodynamics

5. Thermodynamics of Pure Polymers5.1. Thermodynamics of Polymerization

00

iR R R ii

g h T s gν+ + + +Δ = Δ − Δ = <∑

for the most polymerization reactions is valid:

0 0R Rh and s+ +Δ < Δ <

upper limit in temperature = Ceiling – temperature TC

a-methyl styrene: TC=60°Ctrichloroacetaldehyde : TC<0°C

enthalpy-driven reaction

Page 10: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

10Polymer Thermodynamics

5. Thermodynamics of Pure Polymers5.1. Thermodynamics of Polymerization

00

iR R R ii

g h T s gν+ + + +Δ = Δ − Δ = <∑for rare polymerization reactions is valid:

0 0R Rh and s+ +Δ > Δ >

lower limit in temperature = Floor – temperature TF

entropy-driven reaction

reason: during polymerization the number of degree of freedom regarding rotationincrease

example: ring-opening polymerization of oxepines

Page 11: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

11Polymer Thermodynamics

5. Thermodynamics of Pure Polymers5.2. Physical Properties of Pure Polymersfundamental characteristics of polymer

chemical structurenature of repeating unitsnature of end groupscomposition of possible branches and cross-linksnature of defects in the structure sequence

molecular mass distributionaverage molecular sizepolydispersity

both controlcohesive forcespacking densitymolecular mobilitymorphologyrelaxation phenomena

} properties of polymers

Page 12: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

12Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

Application of topological formalism in developing of structure-property correlationPrediction of thermodynamic properties using only chemical composition

Introduction of connectivity indices via graph theoretical concepts

Starting Point: construction of hydrogen-suppressed graph of the moleculeexample: vinyl fluoride

vertex

C CH

H H

F edgeδ number of non-hydrogen atoms

to which a given non-hydrogen atom is bonded

δV valence connectivity indexelectronic configuration of eachnon-hydrogen atom= lowest oxidation state of the

elements

5.2. Physical Properties of Pure Polymers

Page 13: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

13Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

Application of topological formalism in developing of structure-property correlation

1

VV H

V

Z NZ Z

δ −=

− −

ZV number of valence electrons of an atomNH number of hydrogen atoms bonded to itZ atomic numberZ=ZV + number of inner shell electrons

Examples-CH3

4 3VVZ

δ −=

2 VZ+ −1 1

1Vδ= =

-CH2-4 2V

VZδ −

=2 VZ+ −

2 21

Vδ= =−

=O6 0V

VZδ −

=2 VZ+ −

6 11

Vδ= =−

5.2. Physical Properties of Pure Polymers

Page 14: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

14Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

Application of topological formalism in developing of structure-property correlation

Bond indices βij and βijV for each bond (edge) do not involved a hydrogen atom

V V Vij i j ij i jβ δ δ β δ δ= =

vertex

C CH

H H

F edge

0 0 1 11 1 1 1V V

V Vvertices vertices edges edgesij ij

χ χ χ χδ βδ β

≡ ≡ ≡ ≡∑ ∑ ∑ ∑

5.2. Physical Properties of Pure Polymers

Page 15: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

15Polymer Thermodynamics5. Thermodynamics of Pure Polymers

Application of topological formalism in developing of structure-property correlation

V V Vij i j ij i jβ δ δ β δ δ= =

vertex

C C

H

H H

Fedge

0

0

1

1

1 1 1 1 2.70711 2 1

1 1 1 1 1.66252 3 7

1 1 1 1.41411*2 1*2

1 1 1 0.62642*3 3*7

vertices

V

Vvertices

edges ij

V

Vedges ij

χδ

χδ

χβ

χβ

≡ = + + =

≡ = + + =

≡ = + =

≡ = + =

Example

5.2. Physical Properties of Pure Polymers

δ number of non-hydrogen atomsto which a given non-hydrogen atom is bonded

δV valence connectivity indexelectronic configuration of eachnon-hydrogen atom= lowest oxidation state of the

elements

Page 16: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

16Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

Application of topological formalism in developing of structure-property correlationApplication to polymers:

literature: J. Bicerano, Prediction of Polymer Properties, Marcel Dekker, 1993

5.2. Physical Properties of Pure Polymers

0

1

1 1 1 1.66252 3 71 1 1 1.03472*3 2*3 3*7

V

V

χ

χ

= + + =

= + + =

Page 17: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

17Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

phase transition

critical point

triple point

solid liquid

vapor

P

T

low-molecular weight componentpolymers

polymers cannot be evaporated sincethey decompose before boiling

no vapor pressureliquid state: very high viscosity,

viscoelasticity

solid state: very complexpartially or totally amorphous

The typical state of polymers are rubbery, glassy or semicrystalline, which are thermodynamically metastable.

5.2. Physical Properties of Pure Polymers

Page 18: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

18Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

phase transition

SRO – short range orderLRO – long range orderSTS – short time stiffnessLTS – long time stiffness

low-molecular weight molecules

polymers

5.2. Physical Properties of Pure Polymers

Page 19: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

19Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

phase transitions

SRO LRO

STS LTS

SRO LRO

STS LTS

SRO LRO

STS LTS

SRO LRO

STS LTS

SRO LRO

STS LTS

SRO LRO

STS LTS

SRO – short range order LRO – long range order STS – short time stiffness LTS – long time stiffness

blue – not presentred – presentmagenta - partly

gas liquid(polymer melt)

rubbery state

glass

semicrystalline crystalline

5.2. Physical Properties of Pure Polymers

Page 20: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

20Polymer Thermodynamics5. Thermodynamics of Pure Polymers

amorphous polymer

semicrystalline polymer

5.2. Physical Properties of Pure Polymers

T

T

M

M

viscousliquid

viscousliquid

thermal decomposition

thermal decomposition

rigid (semi) crystalline

glassy

glass transition

glass transitionmelting point

rubbery

rubbery

leathery

diffuse transition state

Page 21: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

21Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

Formability at higher temperature: glass transition temperature Tg

melting ⇔ glass transition

crystal

glass

super cooledmelt

melt

First-order phase transitions- exhibit a discontinuity in the firstderivative of the G with respect to a thermodynamic variable

- latent heat is involved

Second-order phase transitionshave a discontinuity in a second derivative of the free energy.

Ehrenfest classification

ii

G ρμ

⎛ ⎞∂=⎜ ⎟∂⎝ ⎠

5.2. Physical Properties of Pure Polymers

2

2, i

P

P n

G CT T

⎛ ⎞∂= −⎜ ⎟∂⎝ ⎠

i.e.

i.e.

Page 22: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

22Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

volume

thermal expansion

specific heat

heat conductivity

modulus ln(G)

5.2. Physical Properties of Pure Polymerspr

oper

ty

T

amorphous crystalline semi-crystalline

Page 23: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

23Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

Tg is dependent on the viscoelastic materials properties, and so varies with rate of applied load.

rubber plateau

5.2. Physical Properties of Pure Polymers

Tg TM T

E [Pa]

E1

E2

Page 24: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

24Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

glass transition temperature

durability at higher temperature

i.e. coffee cup from PS

glass transition temperature Tg

The glass transition temperature is characterizedby the transition from amorphous or semi-crystallinestate to a rubbery state.

Reason: Below the glass transition temperature themolecules have very little relative mobility.Above Tg, the secondary, non-covalent bondsbetween the polymer chains become weak in comparison to thermal motion, and the polymer becomes rubbery and capable of elastic or plastic deformation without fracture.

Consequences: large change in viscosity, hardness, modulus, volume, enthalpy, entropy

Tg>100°C

5.2. Physical Properties of Pure Polymers

Page 25: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

25Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

The glass transition temperature depends on the structure of the chain molecules. (i.e. flexibility, side-groups [softener])

Flexibility of the backbone: high flexibility → low Tg

H3C Si O

CH3

CH3

Si O Si

CH3

CH3

CH3

CH3

CH3

nPDMS Tg=-127°C

i.e.

liquid at room temperatureApplication: hair shampoo

CH2 CH

COOH n

Poly acryl acid Tg= 106 °C

5.2. Physical Properties of Pure Polymers

Page 26: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

26Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

Measurement of Tg

thermal methodsi.e. expansion coefficient

heat capacity

Attentionresult depends on heating rate

mechanic methodsi.e. rheology

AttentionTg depends on load respectively frequency

5.2. Physical Properties of Pure Polymers

Page 27: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

27Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

Glass transition temperature Tg

Measurement – Differential-Scanning-Calorimetry (DSC)

Differential scanning calorimetry or DSC is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and reference are measured as a function of temperature. Both the sample and reference are maintained at very nearly the same temperature throughout the experiment.

Crystallization → exothermic procedure → positive signalMelting → endothermic procedure → negative signal

5.2. Physical Properties of Pure Polymers

Page 28: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

28Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

sample reference

sample holder

oven

thermocouple

oven temperaturecontrol

Measurement of Glass Transition Temperature via DSC

5.2. Physical Properties of Pure Polymers

computer recorder

Page 29: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

29Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

Measurement of Glass Transition Temperature via DSC

5.2. Physical Properties of Pure Polymers

exo-thermic effect

endothermic effect

endo-thermic

effect

Hea

t flo

w [m

W]

T [°C]

glass transition

crystallization

melting

Page 30: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

30Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

Glass transition temperature Tg

The glass transition temperaturedepends on molecular weight.

( ) ( )g gn

AT M T MM

= → ∞ −

5.2. Physical Properties of Pure Polymers

1 2 3 4 5 105 M [g/mol]

450

420

380

340

T [K]

Page 31: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

31Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

Prediction of Glass Transition Temperature5.2. Physical Properties of Pure Polymers

13

1 2 3 4 5 6 7 8

9 10 11 12

351 5.63 31.68 23.94

15 4 23 12 8 4 8 5

11 8 11 4

g

g

Tg

T

i

NT x

NN x x x x x x x x

x x x xx structural parameters given in textbooks

δ= + + −

= − + + − − − +

+ + − −

231213poly(ε-caprolactone)202203polyisoprene

187195polyethylene

Tg [K] (pred.)Tg [K] (exp.) polymerexamples

rule of thumb

0.52 / 3

g

M

T for symmetrical polymersfor unsymmetrical polymersT

⎧= ⎨

Page 32: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

32Polymer Thermodynamics5. Thermodynamics of Pure Polymers

The most polymers consist of an amorphous and a crystalline part.Experimental Investigations: X-ray-measurements (X-ray diffraction)

The degree of crystallization depends onthe following factors:

cooling ratemelting temperaturechemical compositiontacticitymolar massdegree of branchingtype of additives

ideal crystal PIB semi-crystalline amorphous

0.4artificial silk0.7cotton

0.1PVC

0.6PE (branched)

0.8 – 0.95PE (linear)

Degree of crystallinitypolymer

5.2. Physical Properties of Pure Polymers

Page 33: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

33Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

fringe-crystallite folding-crystallite

high regularity→ application as fibersi.e. polyamide, polyester

Mixture (crystalline + amorphous)i.e. cellulose, protein

The totality of orientation of the crystallites are called Texture.

exp. estimation: electron microscopy, tunneling microscopy

Crystallinity

5.2. Physical Properties of Pure Polymers

Page 34: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

34Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

liquid crystal's

Gan

ghöh

e p

( )

nematic phase smectic phase cholesteric phase

5.2. Physical Properties of Pure Polymers

Page 35: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

35Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

Crystallinity

192

185 ± 15

165 ± 18

193 ± 28

TM [°C]

0.946triclinic

0.922rhombic

6.10.93trigonal

4.20.931hexagonal

8.40.94monoclinic

ΔMH [kJ/mol]density [g/cm3]Crystal structure

i.e. polypropylene

5.2. Physical Properties of Pure Polymers

Page 36: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

36Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

Estimation of degree of crystallinity

( )1

crys amorph crys amorph

crys amorph crys crys amorph amorph

crys amorph cry

cryscrys crys crys

crys amorph

amorphcrys

c

s am

rys amorp

orph

crys amo

h

rph

V V V m m m

m m V VmV V V

V V

V V

Vφ φ φ

ρ ρφ

ρ ρ

ρ ρρ

ρ ρ ρ≡+

−=

= + = +

+ += = =

+ +

= + −

→Measurement of density ρ (flotation experiments)

available from the crystal structure

transformation in amorphous state via cooling down very rapidly; measurement of the density

ordensity measurements of polymer and extrapolation to crystallization temperature

5.2. Physical Properties of Pure Polymers

Page 37: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

37Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

semicrystalline polymers consist of a portion of amorphous properties and a portionof crystalline properties

5.2. Physical Properties of Pure Polymers

at glass transition temperature: the amorphous portion will “melt” or “soften”the crystalline portion remain “solid” up to the melting temperature

semicrystalline polymers can be treated as a solid below Tgcan be treated as composite consisting of solid and rubbery phase

above Tg but below Tmcan be treated as fluid above Tm

Page 38: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

38Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

Approximations: ( )( )

( ) (298 ) 0.106 0.003 / /( )

( ) (298 ) 0.64 0.0012 / /( )

S SP P

L LP P

c T c K T K J molK

c T c K T K J molK

≈ +

≈ +

5.2. Physical Properties of Pure Polymers

polypropylene

Isobaric heat capacitiescP [J/(molK)]

50

100

T [K]

TgTm

100 200 300 400 500

amorphous

crystalline

Page 39: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

39Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

polypropylene

Enthalpy and Entropy

( 0) ( 0)AACh T h TΔ → = →

from T→0 to Tg both lines run parallel( 0) ( ) 0AC AC gh T h T T T TΔ → = Δ → ≤ ≤

( )( )( )

SL M

AC M

M M

h Th Th T

Δ= Δ= Δ

heat offusion

5.2. Physical Properties of Pure Polymers

amorphouscrystalline

h [kJ/mol]

0

10

20

30

40

T [K]100 200 300 400 500

TgTm

Page 40: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

40

100 200 300 400 500

Polymer Thermodynamics5. Thermodynamics of Pure Polymers

Enthalpy and Entropy

0

0

0

0

( ) ( )

( ) ( )

T

P p iiP T

TpP

iiP T

h c h T h T c dT hT

cs c s T s T dT sT T T

∂⎛ ⎞ = → = + + Δ⎜ ⎟∂⎝ ⎠

∂⎛ ⎞ = → = + + Δ⎜ ⎟∂⎝ ⎠

∑∫

∑∫first-order phase transitions

5.2. Physical Properties of Pure Polymers

polypropylene

Enthalpy and Entropy

amorphouscrystalline

h [kJ/mol]

0

10

20

30

40

T [K]

Page 41: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

41Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

Example: poly (ethylene terephthalate)1) molar heat capacity of the solid and liquid

polymer at 25°Cgroup – contribution method

M=n*192.2g/mol

table book: i.e. D.W. van Krevelen, Properties of Polymers, Elsevier 1990.

(298 ) 221.5 /( )

(298 ) 304.0 /( )

SPLP

c K J molK

c K J molK

=

=exp. value for solid polymer: 223.9 J/(molK)exp. value for liquid polymer: 321.2 J/(molK)

5.2. Physical Properties of Pure Polymers

Page 42: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

42Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

Example: poly (ethylene terephthalate)1) molar heat capacity of the solid and liquid

polymer at 25°C

exp. value for solid polymer: 223.9J/(molK)

5.2. Physical Properties of Pure Polymers

0 1(298 ) 8.985304* 20.920972* 7.304602( 5 )S VP ROT Si

Jc K N NmolK

χ χ⎡ ⎤= + + +⎣ ⎦

NROT= rotation degree

for PET0 19.9663 4.2152 7 0

(298 ) 228.9 /( )

VROT Si

SP

N N

c K J molK

χ χ= = = =

→ =

topological method

Page 43: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

43Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

Example: poly (ethylene terephthalate)1) molar heat capacity of the solid and liquid

polymer at 25°C

exp. value for liquid polymer: 321.2J/(molK)

5.2. Physical Properties of Pure Polymers

0 08.162061* 23.215188*(298 )

8.47737 5.350331

VLP

BBrot SGrot

Jc KmolKN N

χ χ⎡ ⎤+= ⎢ ⎥+ +⎣ ⎦

NBBrot= rotation degree into backboneNSGrot= rotation degree into side groups

for PET0 09.9663 7.3566 7 0

(298 ) 311.5 /( )

VBBrot SGrot

LP

N N

c K J molK

χ χ= = = =

→ =

topological method

Page 44: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

44Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

Example: poly (ethylene terephthalate)2) molar heat capacity of the solid polymer at 277°C

(spinning temperature)

(298 ) 304 /( )LPc K J molK=

( )( )

( ) (298 ) 0.64 0.0012 / /( )

304 0.64 0.0012*550 /(550 ) 395.2 /( )

L LP P

LP

c T c K T K J molK

K K Jc K J molK

molK

≈ +

+= =

exp. value for liquid polymer at 550K: 386.3J/(molK)

5.2. Physical Properties of Pure Polymers

Page 45: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

45Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

Example: poly (ethylene terephthalate)3) heat of fusion at melting temperature

(TM=543K)

exp. value: 26.9 kJ/(molK)25 /M h kJ molΔ =

5.2. Physical Properties of Pure Polymers

Page 46: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

46Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

Example: poly (ethylene terephthalate)4) enthalpy difference between the solid and the

rubbery form at the glass transition temperature(TM=543K, Tg=343K)

0

0( ) ( )T

pT

h T h T c dT= + ∫general:

application:

( )

0

( ) ( ) ( )

( ) 25 /

g g

M M

M g

T TL S

M g M M M p M M P PT T

M M

T T T T

h T h T c dT h T c c dT

h T kJ mol

= =

Δ = Δ + Δ = Δ + −

Δ =

∫ ∫

( )( )

( ) (298 ) 0.106 0.003 / /( )

( ) (298 ) 0.64 0.0012 / /( )

S SP P

L LP P

c T c K T K J molK

c T c K T K J molK

≈ +

≈ +

with

5.2. Physical Properties of Pure Polymers

Page 47: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

47Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

Example: poly (ethylene terephthalate)4) enthalpy difference between the solid and the

rubbery form at the glass transition temperature(TM=543K, Tg=343K)

( )( )

( )( )

( ) ( )2 2

(298 ) 0.64 0.0012 / /( )( ) ( )

(298 ) 0.106 0.003 / /( )

( ) ( )

(298 )*0.64 (298 )*0,106

(298 )*0.0012 / (298 )*0.003 /2

g

M

LTP

M g M M ST P

M g M M

L SP P g M

g ML SP P

c K T K J molKh T h T dT

c K T K J molK

h T h T

c K c K T T

T Tc K T K c K T K

⎛ ⎞+Δ = Δ + ⎜ ⎟

⎜ ⎟− +⎝ ⎠Δ = Δ

⎡ ⎤− −⎢

+ ⎢ −⎢ + −⎢⎣ ⎦

/( )

( ) 17.34 /M g

J molK

h T kJ mol

⎥⎥⎥⎥

Δ =

5.2. Physical Properties of Pure Polymers

Page 48: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

48Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

Example: poly (ethylene terephthalate)5) entropy difference between the solid and the

rubbery form at the glass transition temperature(TM=543K, Tg=343K)

0

0( ) ( )T

p

T

cs T s T dT

T= + ∫general:

application:

( )0

( ) ( ) ( )g g

M M

M g

L ST TP PM p

M g M M M MT T

T T T T

c ccs T s T dT s T dT

T T

= =

−ΔΔ = Δ + = Δ +∫ ∫

( )( )

( ) (298 ) 0.106 0.003 / /( )

( ) (298 ) 0.64 0.0012 / /( )

S SP P

L LP P

c T c K T K J molK

c T c K T K J molK

≈ +

≈ +

( ) ( ) / 46 /( )M M M M Ms T h T T J molKΔ = Δ =with

5.2. Physical Properties of Pure Polymers

Page 49: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

49Polymer Thermodynamics5. Thermodynamics of Pure Polymers

Example: poly (ethylene terephthalate)5) entropy difference between the solid and the rubbery form at the glass transition

temperature (TM=543K, Tg=343K)

( )( )

( )

(298 ) 0.64 0.0012 /

(298 ) 0.106 0.003 /( ) ( )

(298 )*0.64 (298 )*0.106( ) ( )

(298 )*0.0012 (298 )*0.003

(

g

M

g

M

LP

T SP

M g M MT

L SP PT

M g M MT L S

P P

M g

c K T K

c K T K Js T s T dTT molK

c K c KJTs T s T dT

molKc K c K

s T

⎛ ⎞+⎜ ⎟⎜ ⎟− +⎝ ⎠Δ = Δ +

⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟

Δ = Δ + ⎝ ⎠⎜ ⎟⎜ ⎟⎜ ⎟+ −⎝ ⎠

Δ

( )

( )( )

) ( ) (298 )*0.64 (298 )*0.106 ln

(298 )*0.0012 (298 )*0.003 27.39 /( )

gL SM M P P

M

L SP P g M

T Js T c K c KT molKJc K c K T T J molK

molK

⎛ ⎞= Δ + − ⎜ ⎟

⎝ ⎠

+ − − =

5.2. Physical Properties of Pure Polymers

Page 50: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

50Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

Example: poly (ethylene terephthalate)

07.9Free enthalpy [kJ/mol]

yesnoEquilibrium

4627.39Entropy [J/(molK)]

2517.34Enthalpy [kJ/mol]

TM=543 KTg=343 KTemperature [K]MeltingGlass transitionQuantity

summary

The knowledge of the chemical structure, glass transition temperature and melting temperatureallows the estimation of thermodynamic quantities,like enthalpy and entropy.

5.2. Physical Properties of Pure Polymers

Page 51: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

51Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

Coefficient of volumetric thermal expansion, a, at 25°C

2.9 10-4PE8 10-5PVC7 10-5PS

3.7 10-4CS2

3.8 10-7Quarzglasa [K-1]Material

Reason: strong covalent bonds within the polymer chainweak van-der Waals forces between polymer chains

a depends strongly on the chemical bond strength

1( )P

VTV T

α ∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠

5.2. Physical Properties of Pure Polymers

Impact on: injection molding and extrusion process

Page 52: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

52Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

Coefficient of volumetric thermal expansion

1( )P

VTV T

α ∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠ 3αβ ≡

molar volume v W P Tv v v v= + +

vW is the space truly occupied by its molecules, often called van der Waals volume,it is impenetrable to other molecules

vP packing volume = amount of additional “empty space” due to packing constraintsimposed by the sizes and shapes of molecules

vT expansion volume resulting from the thermal motions of molecules;is the difference between the molar volume at the temperature of interest and themolar volume at absolute zero temperature

empirical correlation

0.15 11.42 0.159.47

WW

Pg g g

vT vv vT T T T T

α⎛ ⎞⎛ ⎞ ∂⎛ ⎞= + → = → =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ∂ +⎝ ⎠⎝ ⎠⎝ ⎠

Coefficient of linear thermal expansion

Tg = glass transition temperature

5.2. Physical Properties of Pure Polymers

Page 53: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

53Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

Estimation of vW

literature: J. Bicerano, Prediction of Polymer Properties, Marcel Dekker, 1993.

5.2. Physical Properties of Pure Polymers

( )3

0 13.861803* 13.748435* VW

cmvmol

χ χ= +

or

( )0 1 3

( )

2.28694* 17.14057* 1.369231 /

0.5 2 3 42.5 2 7 8 4

VW vdW

vdW menomar mear alamid OH cyanide carbonate cyc

fused C C Si S Br

v N cm mol

N N N N N N N NN N N N N

χ χ

= − −

= + +

= + + + + − −

− + + − −

number of methyl groups attached to non-aromatic ring

number of methyl groups attached to aromatic ring

number of non-aromatic rings with no double-bond

number of rings in fused ring structures

Page 54: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

54Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

Concept of Simha and Boyer 19625.2. Physical Properties of Pure Polymers

( ) ( 0) 0.001298

( ) ( 0) ( ) ( 0)298 2980.00045

( ) ( ) 0.00055

( 0) 1.3 (298 ) 1.435(298 ) 1.6

L LW

g g c c

W

g g c W g

c w c w

g w

v T v T v

v T v T v T v T

vv v T v T v T

v T v v K vv K v

− →≈

− → − →=

≈Δ = − ≈

→ ≈ ≈≈

V

TTg TM

VW

crystalline solid

glass

crystallization range

undercooledliquid

liquid

excess volume

VCVC

Vg

VL

ΔVg

ΔVm

Page 55: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

55Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

Tait-relation (1888)( 0, ) ( , ) ln 1

( 0, ) ( )v P T v P T PC

v P T B T⎛ ⎞= −

= +⎜ ⎟= ⎝ ⎠

C dimensionless constant B(T) dimension of pressure v [cm3/g]

Simha-relation (1973)( )( )

( ) ( )1 2

20 1 2

0.0894 ( ) exp 273.15

(0, ) 273.15 273.15

C B T b b T K

V T A A T A T

= = − −

= + − + −

4.083.16polycarbonate4.142.44polystyrene

4.151.91polyisobutylene

5.11.99polyethylene

10-3 b2 [°C]103 b1 [bar]polymer

J. Appl. Phys. 42 (1971) 4592.

5.2. Physical Properties of Pure Polymers

Page 56: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

56

100 120 140 160 180 200

0,98

1,00

1,02

1,04

Polystyrene

V [cm3/g]=0.92351+0.00053158 T/[°C]

V [c

m3 /g

]

T [°C]

Polymer Thermodynamics5. Thermodynamics of Pure Polymers

Example: polystyrene

( ) ( )3 7 3 7 3 20 1 2

8 3 11 2

0.000938 / 3.31*10 / 6.69*10 /

2.5*10 4.18*10 0.0894

A cm g A cm Kg A cm K g

b Pa b K C

− −

− −

= = =

= = =

P=0.1 MPa

5.2. Physical Properties of Pure Polymers

Page 57: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

57Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

Cohesive Energy ecoh

Cohesive Energy eCoh: internal energy of the material if all of its intermolecularforces are eliminated

Cohesive Energy Density εCoh: is the energy required to break all intermolecularphysical links in a unit volume of material

CohCoh

ev

ε =

Cohesive Energy plays a role in the prediction of many other physical propertiessolubility parameterglass transition temperaturesurface tensiondielectric constantmechanical propertiespermeability

low molecular weight substances

0VL

Coh VL i VLe h P v= Δ − ΔProblem: polymers do not evaporate

5.2. Physical Properties of Pure Polymers

Page 58: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

58Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

Cohesive Energy ecoh

( )( )( )

2

0 0 1 1 3

2

(298 )

97.95 2

134.61

Coh

V V

Si Br Cyc

Fev K

Jcmwhere FmolN N N

χ χ χ χ

=

⎡ ⎤− + + +⎢ ⎥=⎢ ⎥+ − −⎣ ⎦

F molar attraction constantv molar volume

1. Possibility

5.2. Physical Properties of Pure Polymers

Page 59: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

59Polymer Thermodynamics

5. Thermodynamics of Pure Polymers

Cohesive Energy ecoh

2. Possibility Coh D P He e e e= + +

dispersioninteraction

polar interaction

hydrogen bonding

5.2. Physical Properties of Pure Polymers

3. Possibility

( ) ( )( )0 0 1 110570.9 9072.8 2 1018.2V VCoh VKH

Je Nmol

χ χ χ χ= − + − +

NVKH group contribution method

Hanson method

Page 60: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

60Polymer Thermodynamics

5. Thermodynamics of Pure Polymers5.3. Polydispersity

Prop

erty

molar mass

Some thermic (i.e. expansion coefficient) and some mechanical properties (i.e. loss modulus) depend for M>MC only very slightly on molecular weight.The critical molar weight, MC, depends on the type of polymers.

i.e. PE MC≈20000g/mol PET MC ≈ 5000 g/mol

MC

All quantities of the second law of thermodynamics (entropy, free enthalpy, free energy) depends on the molecular weight and on the molecular weight distribution.

Page 61: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

61Polymer Thermodynamics

5. Thermodynamics of Pure Polymers5.3. Polydispersity

Estimation of molecular weight – thermodynamic method→ use colligative properties → membrane osmometry

,

,

,

,1

B

spB B BB

B B

sp B

sp Bsp B

B

c RTcn mc

V M V Mc

RT ideal diluted s

RT B c polymer solutionc M

olution

M

M

Π=

=

Π ⎛ ⎞= + +⎜ ⎟

= =

Π

=

Van't Hoff`sche equation

B second osmotic virial coefficient

Page 62: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

62Polymer Thermodynamics

5. Thermodynamics of Pure Polymers5.3. Polydispersity

Estimation of molecular weight – thermodynamic method→ use colligative properties → membrane osmometry

solution

semipermeable membrane

solvent

The difference in height Δh corresponds to the osmotic pressure π.

Page 63: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

63Polymer Thermodynamics

5. Thermodynamics of Pure Polymers5.3. Polydispersity

Estimation of molecular weight – thermodynamic method→ use colligative properties → membrane osmometry

,,

1 sp Bsp B

RT B cc M MΠ ⎛ ⎞= + +⎜ ⎟

⎝ ⎠…

Page 64: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

64Polymer Thermodynamics

5. Thermodynamics of Pure Polymers5.3. Polydispersity

Estimation of molecular weight – thermodynamic method→ use colligative properties → vapor pressure osmometry

solution pure solvent

T2, PLV T1,

Two thermistors are located in a chamber saturated with pure solvent vapor. The difference between PLV and caused a new equilibrium between the two drops. Solvent from the vapor phase will condense on the thermistor connected to the solution. The formed condensation heat leads to a measurable temperature difference DT=T2-T1.

0LVAP

0LVAP

Page 65: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

65Polymer Thermodynamics5. Thermodynamics of Pure Polymers

5.3. PolydispersityEstimation of molecular weight – thermodynamic method→ use colligative properties → vapor pressure osmometry

syringe

Al-block for thermostatingthe syringes

thermistors

measurement cell (Al)

windowglass container for solvent

sealing

vapor pressure osmometry

1. saturation of sample chamberwith solvent vapor

2. filling with solution and puresolvent using thermostatic syringes

3. measurement of ΔT

Page 66: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

66Polymer Thermodynamics5. Thermodynamics of Pure Polymers

data analysis of vapor pressure osmometry experiments:vapor pressure depletion:

0

0

0

VL VLA

VLA BB B B

BVLA A B A B A

P P P

P mP n n mx PP n n M n M n

Δ = −

Δ= = ≈ = → Δ =

temperature dependence of vapor pressure – Clausius-Clapeyron equation

( )0 0 0 0

0 0 0 0

0

00 0

0 0 0 0 0

0 0 0 0

VL A VL A VL A VL AVL VL V VL VVL V LA A A A AA A

VL VL VL VVL A A B B A A A

VL V VLA A B A A

B AB

A

h h h h TdP P PdT T v T v T T vT v v

m Kh T P m m P T vT v M n

MTn h T

Δ Δ Δ Δ ΔΔ= = ≈ ≈ → Δ =

Δ Δ−

Δ Δ= ==

Δ Δ Δ→

→ for the estimation of molecular weight is only one experimental value isnecessary

5.3. Polydispersity

Page 67: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

67Polymer Thermodynamics

5. Thermodynamics of Pure Polymers5.3. Polydispersity

Wi(M

) 1

1

( )

( )

i ik

iik

ii

n W M M

n n

n W M M

=

=

= Δ

=

= Δ

ΔM

molecular weight

Page 68: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

68Polymer Thermodynamics

5. Thermodynamics of Pure Polymers5.3. Polydispersity

2

1 2

1

,

0

( )

( )

M

M MM

n W M dM

n W M dM∞

=

=

W(M

)

molecular weight

M1

M2

extensive

intensive

2

1 2

1

,

0

( )

1 ( )

M

M MM

x w M dM

w M dM∞

=

=

Page 69: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

69Polymer Thermodynamics

5. Thermodynamics of Pure Polymers5.3. Polydispersity

differential distribution function cumulative distribution function

0

( ) ( )x

F x f x dx= ∫

Page 70: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

70Polymer Thermodynamics

5. Thermodynamics of Pure Polymers5.3. Polydispersity

Characterization of the distribution function using moments

( ) ( )

1 0

( )k

n n n ni i

iM w M M M w M M dM

=

= Δ ⇔ =∑ ∫

n=0 normalization condition

( (0)

1

0)

0

1 ( ) 1k

ii

M w M M w M dM∞

=

= Δ = ⇔ = =∑ ∫

n=1 average value

( ) ( )

1 0

1 1 ( )k

i ii

M w M M M w M MdM∞

=

= Δ ⇔ =∑ ∫

Page 71: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

71Polymer Thermodynamics

5. Thermodynamics of Pure Polymers5.3. Polydispersity

( ) ( )

1 0

( )k

n n n ni i

iM w M M M w M M dM

=

= Δ ⇔ =∑ ∫

n=2 broadness

n=3 asymmetry

( ) ( )

1 0

2 2 2 2( )k

i ii

M w M M M w M M dM∞

=

= Δ ⇔ =∑ ∫

( ) ( )

1 0

3 3 3 3( )k

i ii

M w M M M w M M dM∞

=

= Δ ⇔ =∑ ∫

Characterization of the distribution function using moments

Page 72: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

72Polymer Thermodynamics

5. Thermodynamics of Pure Polymers5.3. Polydispersity

Relation between the moments and experimental quantities

( ) ( )

1 0

( )k

n n n ni i

i

M w M M M w M M dM∞

=

= Δ ⇔ =∑ ∫

number-average molar mass

(1)1

(0)1

1

(1)0

(0)0

0

( )( )

( )

k

i i ki

n i iki

ii

n

w M MMM w M MM w M

w M MdMMM w M MdMM

w M dM

=

=

=

Δ= = = Δ

Δ

= = =

∑∑

∫∫

Experiment:methods, which are proportionalto the number of molecules

colligativeproperties

vapor pressure osmosesmembrane osmoses

Page 73: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

73Polymer Thermodynamics

5. Thermodynamics of Pure Polymers5.3. Polydispersity

( ) ( )

1 0

( )k

n n n ni i

i

M w M M M w M M dM∞

=

= Δ ⇔ =∑ ∫

mass-average molar mass

2 2(2)

1 1(1)

1

1

2 2(2)

0 0(1)

1

0

( ) ( )

( )

k k

i i i ii i

w kn

i ii

wn

w M M w M MMMM Mw M M

w M M dM w M M dMMMM M

w M M dM

= =

=

∞ ∞

Δ Δ= = =

Δ

= = =

∑ ∑

∫ ∫

Experiment:methods, which are proportionalto the mass of molecules

light scattering

Relation between the moments and experimental quantities

Page 74: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

74Polymer Thermodynamics

5. Thermodynamics of Pure Polymers5.3. Polydispersity

( ) ( )

1 0

( )k

n n n ni i

i

M w M M M w M M dM∞

=

= Δ ⇔ =∑ ∫

z-average molar mass 3 3(3)

1 1(2)

2

1

3 3(3)

0 0(2)

2

0

( ) ( )

( )

k k

i i i ii i

z kw n

i ii

zw n

w M M w M MMMM M Mw M M

w M M dM w M M dMMMM M M

w M M dM

= =

=

∞ ∞

Δ Δ= = =

Δ

= = =

∑ ∑

∫ ∫

Experiment:ultracentrifugeestimation via the distribution

GPC

Relation between the moments and experimental quantities

Page 75: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

75Polymer Thermodynamics

5. Thermodynamics of Pure Polymers5.3. Polydispersity

( ) ( )

1 0

( )k

n n n ni i

i

M w M M M w M M dM∞

=

= Δ ⇔ =∑ ∫

viscosity-average molar mass 1/ 1/( )

(0)1

1/1/( )

(0)0

( )

0,5 0,9

a aa ka

i ii

aaaa

MM w M MM

MM w M M dMM

η

η

α

=

⎛ ⎞ ⎛ ⎞= = Δ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞= = ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠≤ ≤

∫Experiment:rheology

Staudingerindex

Relation between the moments and experimental quantities

Page 76: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

76Polymer Thermodynamics

5. Thermodynamics of Pure Polymers5.3. Polydispersitydefinition of uniformity

polydispersity D

( )

2

21

1

0

1

0

k

i i ki

i in i

nn n

n w

w

n

z

n z

w

n

w

MDM

M

w M Mw M M

MM M

M M M M

Ufor U monodispers polymer

M M

UM

M M

η

η

=

=

ΔΔ

= =

=

= − ≤ ≤

⇒ ≥=

⇒ = = =

∑∑

uniformity U

Page 77: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

77Polymer Thermodynamics

5. Thermodynamics of Pure Polymers5.3. Polydispersity

0 200 400 600 800 1000 1200 1400 1600 18000,0

0,5

1,0

1,5

2,0

2,5

103 W

(M)

M [g/mol]

0,097942878

800blue curve

0,035U854Mz

828Mw

800Mn

red curvequantity

Page 78: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

78Polymer Thermodynamics

5. Thermodynamics of Pure Polymers5.3. Polydispersity

molar weight distributionGPC field-flow-fractionationMALDI -TOF

average values of distributionnumber-average: exp. methods which are proportional to the number of

moleculesend-group analysis, colligative properties

mass-average: exp. methods which are proportional to the mass of moleculesLight-scattering, SANS, SAXS

z-average: ultracentrifugeviscosity-average: rheology

Page 79: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

79Polymer Thermodynamics

5. Thermodynamics of Pure Polymers5.3. Polydispersity

GPC – gel permeation chromatographySize-Exclusion Chromatography (SEC)

Page 80: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

80Polymer Thermodynamics

5. Thermodynamics of Pure Polymers5.3. Polydispersity

( )2

2

1( ) exp22

M Mw M

σσ π

⎛ ⎞−⎜ ⎟= −⎜ ⎟⎝ ⎠

normal distribution function= bell curve= probability density functionfor random distributed variables(i.e. to play dice)

C.F. Gauß (1777-1855)

0 500 1000 1500 20000,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

103 W

(M)

M [g/mol]

symmetrical distribution

M average value

s standard derivation

Page 81: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

81Polymer Thermodynamics

5. Thermodynamics of Pure Polymers5.3. Polydispersity

Schulz-Flory-Distribution( ) exp

( )

kkk r rw r kk r r r

⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟Γ ⎝ ⎠ ⎝ ⎠

r – segment number polymer molecules will be divided into segments of equal size

J.P. Flory (1910-1985) Nobel Prize 1974

description of kinetics of chain-growth polymerization (statistical, anionic and cationic polymerization)

most probable distribution

w(r

)

segment numberhttp://nobelprize.org

Page 82: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

82Polymer Thermodynamics

5. Thermodynamics of Pure Polymers5.3. Polydispersity

Calculation of moments n=0 normalization condition

( )

( )

(0)

0 0 0

(0)

0

10

(0)

( ) exp exp( ) ( )

exp( )

( 1)exp

( 1( )

k kk k

kk

mm

k

k r r k r rM w r dr k dr k drk r r r k r r r

r dr k rsubstitution x dx dr rdx M x kx dxr r k r

mtextbook of mathematics x axa

k r kMk r

∞ ∞ ∞

+

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟Γ Γ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= = = → = −Γ

Γ +− =

Γ +=

Γ

∫ ∫ ∫

1

) ( 1) ( ) 1( ) ( )k

k k kk k k k k+

Γ + Γ= = =

Γ Γ

( )( ) 1 !( 1) ( )x x x Nx x x

Γ = − ∈

Γ + = Γ

Distribution function fulfills the normalization condition.

Page 83: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

83Polymer Thermodynamics

5. Thermodynamics of Pure Polymers5.3. Polydispersity

Schulz-Flory-distribution

Calculation of moments n=1 average value

( )

( ) ( )

(1)

0 0 0

(1)

0

2(1) 1

0 0

( ) exp exp( ) ( )

exp( )

( 1)exp exp( )

k kk k

kk

kk m

k r r r k r rM rw r dr k dr r k drk r r r k r r r

r dr k rsubstitution x dx dr rdx M xrx kx dxr r k r

k r mM x kx dx textbook x axk r a

∞ ∞ ∞

∞ ∞+

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟Γ Γ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= = = → = −Γ

Γ += − − =

Γ

∫ ∫ ∫

∫ ∫ 1

(1)1 1 2 2 2

(1)

( 1 1) ( 2) ( 1) ( 1) ( 1) ( )( ) ( ) ( ) ( )( 1)

m

k

k

k r k r k r k k r k k kMk k k k k k k k

r kMk

+

+ +

Γ + + Γ + + Γ + + Γ= = = =

Γ Γ Γ Γ+

=

( )( ) 1 !( 1) ( )x x x Nx x x

Γ = − ∈

Γ + = Γ

Page 84: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

84Polymer Thermodynamics

5. Thermodynamics of Pure Polymers5.3. Polydispersity

Schulz-Flory-distribution

calculation of moments n=2 broadness

( )

( ) ( )

2(2) 2 2

0 0 0

(2) 2 2

0

2(2) 2

0 0

( ) exp exp( ) ( )

exp( )

(exp exp( )

k kk k

kk

kk m

k r r r k r rM r w r dr k dr r k drk r r r k r r r

r dr k rsubstitution x dx dr rdx M x r x kx dxr r k r

k r mM x kx dx textbook x axk

∞ ∞ ∞

∞ ∞+

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟Γ Γ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= = = → = −Γ

Γ= − − =

Γ

∫ ∫ ∫

∫ ∫ 1

2 2 2(2)

2 1 2 1 3

2 2 2(2)

3 3 2

1)

( 2 1) ( 2 1) ( 2) ( 2)( ) ( ) ( )

( 2)( 1) ( 1) ( 2)( 1) ( ) ( 2)( 1)( ) ( )

m

k

k

a

k r k r k r k kMk k k k k k

r k k k r k k k k r k kMk k k k k

+

+ + +

+

Γ + + Γ + + + Γ += = =

Γ Γ Γ

+ + Γ + + + Γ + += = =

Γ Γ

( )( ) 1 !( 1) ( )x x x Nx x x

Γ = − ∈

Γ + = Γ

Page 85: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

85Polymer Thermodynamics

5. Thermodynamics of Pure Polymers5.3. Polydispersity

Schulz-Flory-distribution

Calculation of moments n=2 asymmetry

( )

( ) ( )

3(3) 3 3

0 0 0

(3) 3 3

0

3(3) 3

0 0

( ) exp exp( ) ( )

exp( )

(exp exp( )

k kk k

kk

kk m

k r r r k r rM r w r dr k dr r k drk r r r k r r r

r dr k rsubstitution x dx dr rdx M x r x kx dxr r k r

k r mM x kx dx textbook x axk

∞ ∞ ∞

∞ ∞+

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟Γ Γ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= = = → = −Γ

Γ= − − =

Γ

∫ ∫ ∫

∫ ∫ 1

3 3 3(3)

3 1 3 1 4

3 3(3)

4 3

1)

( 3 1) ( 3 1) ( 3) ( 3)( ) ( ) ( )

( 3)( 2)( 1) ( ) ( 3)( 2)( 1)( )

m

k

k

a

k r k r k r k kMk k k k k k

r k k k k k r k k kMk k k

+

+ + +

+

Γ + + Γ + + + Γ += = =

Γ Γ Γ

+ + + Γ + + += =

Γ

( )( ) 1 !( 1) ( )x x x Nx x x

Γ = − ∈

Γ + = Γ

Page 86: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

86Polymer Thermodynamics

5. Thermodynamics of Pure Polymers5.3. Polydispersity

Schulz-Flory-distributionCalculation of moments n=-1

( )

( )

1( 1) 1 1

0 0 0

( 1) 1 1

0

( 1) 1

0 0

( ) exp exp( ) ( )

exp( )

exp exp( )

k kk k

kk

kk m

k r r r k r rM r w r dr k dr r k drk r r r k r r r

r dr k rsubstitution x dx dr rdx M x r x kx dxr r k r

kM x kx dx textbook xk r

∞ ∞ ∞−− − −

∞− − −

∞ ∞− −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟Γ Γ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= = = → = −Γ

= −Γ

∫ ∫ ∫

∫ ∫ ( ) 1

( 1)1 1

( 1)

( 1 1) ( ) 1( ) ( )

m

k k

k k

maxa

k k k kMk r k k r k r

+

−− +

Γ +− =

Γ − + Γ= =

Γ Γ

( )( ) 1 !( 1) ( )x x x Nx x x

Γ = − ∈

Γ + = Γ

The characterization variable segment number requires the (-1) moment.

Page 87: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

87Polymer Thermodynamics

5. Thermodynamics of Pure Polymers5.3. Polydispersity

calculation of experimental available average values number-average

(1)0

(0)0

0

( )( )

( )n

w M MdMMM w M MdMM

w M dM

∞= = =∫

∫∫

characterization variable: molar mass

characterization variable: segment number

(0)0

( 1)

0

( )1

1/( )n

w r drMr rM rw r dr

r

∞−= = = =∫

Page 88: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

88Polymer Thermodynamics

5. Thermodynamics of Pure Polymers5.3. Polydispersity

calculation of experimental available average values weight-average

characterization variable: molar mass

characterization variable: segment number

2(2)

0(1)

0

( )

( )w

w M M dMMMM

w M MdM

∞= =∫

(1)0

(0)

0

( )( 1)( 1)

( )

nw

w r rdrr kM r kr

M k kw r dr

++= = = =

Page 89: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

89Polymer Thermodynamics

5. Thermodynamics of Pure Polymers5.3. Polydispersity

calculation of experimental available average values z-average

characterization variable: molar mass

characterization variable: segment number

3(3)

0(2)

2

0

( )

( )z

w M M dMMMM

w M M dM

∞= =∫

22(2) 2

0(1)

0

( 2)( 1)( )( 2)

( 1)( )

z

r k kw r r drM r kkr r kM k

w r rdr k

+ ++

= = = =+

Page 90: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

90Polymer Thermodynamics

5. Thermodynamics of Pure Polymers5.3. Polydispersity

Uniformity U

1Uk

= nr r=

( )(1/ 1) 11/

nw n

r Ur r UU

+= = +

( )(1/ 2) 1 21/z

r Ur r UU

+= = +

After the estimation of the average values of the segment-molar distributionfunction (rn, rw or rz) the parameters U respectively k can be calculated.

The parameters U (respectively k) can also be estimated using kinetic data.

Page 91: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

91Polymer Thermodynamics

5. Thermodynamics of Pure Polymers5.3. Polydispersity

0 200 400 600 800 10000,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

rn=100 k=1rw=200 rz=300

103 w

(r)

r

Schulz-Flory-distribution

Page 92: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

92Polymer Thermodynamics5. Thermodynamics of Pure Polymers

5.3. Polydispersitygeneral log-normal distribution

( )2

2

ln( ) ln( )1( ) expr r

w rAAr π

⎛ ⎞−= −⎜ ⎟

⎜ ⎟⎝ ⎠

( )2 ln Aσ =

( )2

1 2

ln( ) ln( )1( ) expz

z

r rrw rr y AA π +

⎛ ⎞−= −⎜ ⎟

⎜ ⎟⎝ ⎠

special cases: z=-1 y=1 Wesslau-distribution

20 exp( / 2)z y σ= = Lansing-distribution

( )22

2

ln( ) ln( )1 exp( / 2)( ) expr r

w rr AAσ

π

⎛ ⎞−= −⎜ ⎟

⎜ ⎟⎝ ⎠

( )( )

( )

2

21

ln( ) ln( )1( ) expln 2 2 ln

z

z

r rrw rr yσ π σ+

⎛ ⎞−= −⎜ ⎟

⎜ ⎟⎝ ⎠

Page 93: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

93Polymer Thermodynamics

5. Thermodynamics of Pure Polymers5.3. Polydispersity

Wesslau-distribution

( )2

2

ln( ) ln( )1( ) expr r

w rAAr π

⎛ ⎞−= −⎜ ⎟

⎜ ⎟⎝ ⎠

( )( )( )

2

2

2

exp / 4

exp / 4

exp 3 / 4

n

w

z

r r A

r r A

r r A

= −

=

=

suitable for high polydispersity (i.e. PE)

Page 94: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

94Polymer Thermodynamics

5. Thermodynamics of Pure Polymers5.3. PolydispersityPoisson-distribution

( ) 11 exp(1 )( )

( )

Pn nP P

w PP

−− −=

Γ

2

1 11w

n n n

PP P P

= + −

suitable for polymers with small polydispersity

P = degree of polymerization

In the limiting case of high molar mass the uniformity goes to zero.

polymers produced with anionic or living polymerization

Page 95: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

95Polymer Thermodynamics

5. Thermodynamics of Pure Polymers5.3. Polydispersity

degree of polymerization

Poisson distribution

Schulz-Flory-distribution

102

W(P

)

Page 96: Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of topological formalism in developing of structure-property correlation Prediction of thermodynamic

96Polymer Thermodynamics

5. Thermodynamics of Pure Polymers5.3. Polydispersity

0 200 400 600 800 1000 1200 14000

2

4

6

8

W(M

)

M [kg/mol]

variation of molar masses and of molar mass distribution functionlow molecular weight (oligomere) → polymer → ultra-high molecular weight

small distribution → broad distribution → mono-modal → bimodal → multimodal