Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of...
Embed Size (px)
Transcript of Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of...
-
1
Polymer Thermodynamics
Prof. Dr. rer. nat. habil. S. Enders
Faculty III for Process ScienceInstitute of Chemical EngineeringDepartment of Thermodynamics
Lecture
0331 L 337
5. Thermodynamics of Pure Polymers
-
2Polymer Thermodynamics
5. Thermodynamics of Pure Polymers5.1. Thermodynamics of Polymerization
Stoichiometric coefficients νi
1 H2S + 2 NaOH 1 Na2S + 2 H2O
Example.: ν = -1 ν = -2 ν = +1 ν = +2negative = educts positive = products
reaction variable λ
Goal: Reduction of ni variables to only one variable λ
() (0)i int nt= =+
i
i
dn dλν
= i idn dν λ=or
( ) ( 0)i i in t n t ν λ= = +The reaction variable gives information about the progress of the chemical reaction.l [mol]
-
3Polymer Thermodynamics5. Thermodynamics of Pure Polymers5.1. Thermodynamics of Polymerization
Example:
Calculation of ni and xi as function of reaction variable λ:
2
2
21 12 2
1 0
1 1
H O
H
O
n
n mol
n mol
λ
λ
λ
= +
= − +
= − +
( )
( )( )
( )
2
2
2
12
12
1 12 2
12
1 23 3
2 113 3
13 3
H O
H
O
xmol mol
molmolxmol mol
mol molxmol mol
λ λλ λ
λλλ λλ λλ λ
= =− −
−−= =
− −
− −= =
− −
3 mole fraction can be reduced to one λ( )
312 2
12 3
jn mol
mol
λ
λ
= − +
= −∑
2 2 212
H O H O+
-
4Polymer Thermodynamics
5. Thermodynamics of Pure Polymers5.1. Thermodynamics of Polymerization
NaOH + H2O AlCl3 + H2O
heating cooling
exothermic reaction endothermic reaction
0RHΔ < 0RHΔ >
-
5Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
equilibrium
dG=0
free
enth
alpy
G
state variable
λpure educts pure products
equilibrium
spontaneous
spontaneous
free
enth
alpy
5.1. Thermodynamics of Polymerization
i
i
dn dλν
=
reaction variable λ
-
6Polymer Thermodynamics
5. Thermodynamics of Pure Polymers5.1. Thermodynamics of Polymerization
Spontaneous run of chemical reactions R R Rg h T sΔ = Δ − Δ
at higher temperature preferred→entropy drivenT>ΔRh/ΔRs spontaneousT=ΔRh/ΔRs equilibriumT0>0d
at low temperature preferred→ enthalpy-drivenTΔRh/ΔRs not spontaneous
-
7Polymer Thermodynamics
5. Thermodynamics of Pure Polymers5.1. Thermodynamics of Polymerization
Calculation of enthalpy of reaction
Kirchhoff Law
with
( ) ( ) 00 0 ( )iT
B i B i pT
h T h T c T dT+
+ + +Δ = Δ + ∫
0( ) ( )R i B ii
h T h Tν+ +Δ = Δ∑
( )0B ih T+Δ( )0B ih T+ +Δ
0( ) ( )R i B ii
h T h Tν+ + + +Δ = Δ∑
( )Rh T+ +Δ( ) ( ) ( )
T
R R R pT
h T h T c T dT+
+ + +Δ = Δ + Δ∫( )Rh T+Δ
0 iR p i pi
c cνΔ = ∑
-
8Polymer Thermodynamics
5. Thermodynamics of Pure Polymers5.1. Thermodynamics of Polymerization
Calculation of entropy of reaction
( )Rs T+ΔCalculation of free enthalpy of reaction
0iR R R ii
g h T s gν+ + + +Δ = Δ − Δ = ∑
( )0is T+ + ( ) ( )0
0 0
( )i
Tp
i iT
c Ts T s T dT
T++ + += + ∫ ( )0is T+
0( ) ( )R i ii
s T s Tν+ +Δ = ∑0( ) ( )R i i
i
s T s Tν+ + + +Δ = ∑
( )Rs T+ +Δ( ) ( ) ( )
TR p
R RT
c Ts T s T dT
T++ + + ΔΔ = Δ + ∫
( )Rs T+Δ
-
9Polymer Thermodynamics
5. Thermodynamics of Pure Polymers5.1. Thermodynamics of Polymerization
00
iR R R ii
g h T s gν+ + + +Δ = Δ − Δ =
-
10Polymer Thermodynamics
5. Thermodynamics of Pure Polymers5.1. Thermodynamics of Polymerization
00
iR R R ii
g h T s gν+ + + +Δ = Δ − Δ = Δ >
lower limit in temperature = Floor – temperature TF
entropy-driven reaction
reason: during polymerization the number of degree of freedom regarding rotationincrease
example: ring-opening polymerization of oxepines
-
11Polymer Thermodynamics
5. Thermodynamics of Pure Polymers5.2. Physical Properties of Pure Polymersfundamental characteristics of polymer
chemical structurenature of repeating unitsnature of end groupscomposition of possible branches and cross-linksnature of defects in the structure sequence
molecular mass distributionaverage molecular sizepolydispersity
both controlcohesive forcespacking densitymolecular mobilitymorphologyrelaxation phenomena
} properties of polymers
-
12Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
Application of topological formalism in developing of structure-property correlationPrediction of thermodynamic properties using only chemical composition
Introduction of connectivity indices via graph theoretical concepts
Starting Point: construction of hydrogen-suppressed graph of the moleculeexample: vinyl fluoride
vertex
C CH
H H
F edgeδ number of non-hydrogen atoms
to which a given non-hydrogen atom is bonded
δV valence connectivity indexelectronic configuration of eachnon-hydrogen atom= lowest oxidation state of the
elements
5.2. Physical Properties of Pure Polymers
-
13Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
Application of topological formalism in developing of structure-property correlation
1
VV H
V
Z NZ Z
δ −=− −
ZV number of valence electrons of an atomNH number of hydrogen atoms bonded to itZ atomic numberZ=ZV + number of inner shell electrons
Examples-CH3
4 3VVZ
δ −=2 VZ+ −
1 11
Vδ= =−
-CH2-4 2V
VZδ −=
2 VZ+ −2 2
1Vδ= =
−
=O6 0V
VZδ −=
2 VZ+ −6 1
1Vδ= =
−
5.2. Physical Properties of Pure Polymers
-
14Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
Application of topological formalism in developing of structure-property correlation
Bond indices βij and βijV for each bond (edge) do not involved a hydrogen atom
V V Vij i j ij i jβ δ δ β δ δ= =
vertex
C CH
H H
F edge
0 0 1 11 1 1 1V VV V
vertices vertices edges edgesij ij
χ χ χ χδ βδ β
≡ ≡ ≡ ≡∑ ∑ ∑ ∑
5.2. Physical Properties of Pure Polymers
-
15Polymer Thermodynamics5. Thermodynamics of Pure Polymers
Application of topological formalism in developing of structure-property correlation
V V Vij i j ij i jβ δ δ β δ δ= =
vertex
C C
H
H H
Fedge
0
0
1
1
1 1 1 1 2.70711 2 1
1 1 1 1 1.66252 3 7
1 1 1 1.41411*2 1*2
1 1 1 0.62642*3 3*7
vertices
V
Vvertices
edges ij
V
Vedges ij
χδ
χδ
χβ
χβ
≡ = + + =
≡ = + + =
≡ = + =
≡ = + =
∑
∑
∑
∑
Example
5.2. Physical Properties of Pure Polymers
δ number of non-hydrogen atomsto which a given non-hydrogen atom is bonded
δV valence connectivity indexelectronic configuration of eachnon-hydrogen atom= lowest oxidation state of the
elements
-
16Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
Application of topological formalism in developing of structure-property correlationApplication to polymers:
literature: J. Bicerano, Prediction of Polymer Properties, Marcel Dekker, 1993
5.2. Physical Properties of Pure Polymers
0
1
1 1 1 1.66252 3 71 1 1 1.03472*3 2*3 3*7
V
V
χ
χ
= + + =
= + + =
-
17Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
phase transition
critical point
triple point
solid liquid
vapor
P
T
low-molecular weight componentpolymers
polymers cannot be evaporated sincethey decompose before boiling
no vapor pressureliquid state: very high viscosity,
viscoelasticity
solid state: very complexpartially or totally amorphous
The typical state of polymers are rubbery, glassy or semicrystalline, which are thermodynamically metastable.
5.2. Physical Properties of Pure Polymers
-
18Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
phase transition
SRO – short range orderLRO – long range orderSTS – short time stiffnessLTS – long time stiffness
low-molecular weight molecules
polymers
5.2. Physical Properties of Pure Polymers
-
19Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
phase transitions
SRO LRO
STS LTS
SRO LRO
STS LTS
SRO LRO
STS LTS
SRO LRO
STS LTS
SRO LRO
STS LTS
SRO LRO
STS LTS
SRO – short range order LRO – long range order STS – short time stiffness LTS – long time stiffness
blue – not presentred – presentmagenta - partly
gas liquid(polymer melt)
rubbery state
glass
semicrystalline crystalline
5.2. Physical Properties of Pure Polymers
-
20Polymer Thermodynamics5. Thermodynamics of Pure Polymers
amorphous polymer
semicrystalline polymer
5.2. Physical Properties of Pure Polymers
T
T
M
M
viscousliquid
viscousliquid
thermal decomposition
thermal decomposition
rigid (semi) crystalline
glassy
glass transition
glass transitionmelting point
rubbery
rubbery
leathery
diffuse transition state
-
21Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
Formability at higher temperature: glass transition temperature Tgmelting ⇔ glass transition
crystal
glass
super cooledmelt
melt
First-order phase transitions- exhibit a discontinuity in the firstderivative of the G with respect to a thermodynamic variable
- latent heat is involved
Second-order phase transitionshave a discontinuity in a second derivative of the free energy.
Ehrenfest classification
ii
G ρμ
⎛ ⎞∂=⎜ ⎟∂⎝ ⎠
5.2. Physical Properties of Pure Polymers
2
2, i
P
P n
G CT T
⎛ ⎞∂= −⎜ ⎟∂⎝ ⎠
i.e.
i.e.
-
22Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
volume
thermal expansion
specific heat
heat conductivity
modulus ln(G)
5.2. Physical Properties of Pure Polymerspr
oper
ty
T
amorphous crystalline semi-crystalline
-
23Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
Tg is dependent on the viscoelastic materials properties, and so varies with rate of applied load.
rubber plateau
5.2. Physical Properties of Pure Polymers
Tg TM T
E [Pa]
E1
E2
-
24Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
glass transition temperature
durability at higher temperature
i.e. coffee cup from PS
glass transition temperature TgThe glass transition temperature is characterizedby the transition from amorphous or semi-crystallinestate to a rubbery state.
Reason: Below the glass transition temperature themolecules have very little relative mobility.Above Tg, the secondary, non-covalent bondsbetween the polymer chains become weak in comparison to thermal motion, and the polymer becomes rubbery and capable of elastic or plastic deformation without fracture.
Consequences: large change in viscosity, hardness, modulus, volume, enthalpy, entropy
Tg>100°C
5.2. Physical Properties of Pure Polymers
-
25Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
The glass transition temperature depends on the structure of the chain molecules. (i.e. flexibility, side-groups [softener])
Flexibility of the backbone: high flexibility → low Tg
H3C Si O
CH3
CH3
Si O Si
CH3
CH3
CH3
CH3
CH3
nPDMS Tg=-127°C
i.e.
liquid at room temperatureApplication: hair shampoo
CH2 CH
COOH n
Poly acryl acid Tg= 106 °C
5.2. Physical Properties of Pure Polymers
-
26Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
Measurement of Tg
thermal methodsi.e. expansion coefficient
heat capacity
Attentionresult depends on heating rate
mechanic methodsi.e. rheology
AttentionTg depends on load respectively frequency
5.2. Physical Properties of Pure Polymers
-
27Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
Glass transition temperature Tg
Measurement – Differential-Scanning-Calorimetry (DSC)
Differential scanning calorimetry or DSC is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and reference are measured as a function of temperature. Both the sample and reference are maintained at very nearly the same temperature throughout the experiment.
Crystallization → exothermic procedure → positive signalMelting → endothermic procedure → negative signal
5.2. Physical Properties of Pure Polymers
-
28Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
sample reference
sample holder
oven
thermocouple
oven temperaturecontrol
Measurement of Glass Transition Temperature via DSC
5.2. Physical Properties of Pure Polymers
computer recorder
-
29Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
Measurement of Glass Transition Temperature via DSC
5.2. Physical Properties of Pure Polymers
exo-thermic effect
endothermic effect
endo-thermic
effect
Hea
t flo
w [m
W]
T [°C]
glass transition
crystallization
melting
-
30Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
Glass transition temperature Tg
The glass transition temperaturedepends on molecular weight.
( ) ( )g gn
AT M T MM
= → ∞ −
5.2. Physical Properties of Pure Polymers
1 2 3 4 5 105 M [g/mol]
450
420
380
340
T [K]
-
31Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
Prediction of Glass Transition Temperature5.2. Physical Properties of Pure Polymers
13
1 2 3 4 5 6 7 8
9 10 11 12
351 5.63 31.68 23.94
15 4 23 12 8 4 8 5
11 8 11 4
g
g
Tg
T
i
NT x
NN x x x x x x x x
x x x xx structural parameters given in textbooks
δ= + + −
= − + + − − − +
+ + − −
231213poly(ε-caprolactone)202203polyisoprene
187195polyethylene
Tg [K] (pred.)Tg [K] (exp.) polymerexamples
rule of thumb
0.52 / 3
g
M
T for symmetrical polymersfor unsymmetrical polymersT
⎧= ⎨
⎩
-
32Polymer Thermodynamics5. Thermodynamics of Pure Polymers
The most polymers consist of an amorphous and a crystalline part.Experimental Investigations: X-ray-measurements (X-ray diffraction)
The degree of crystallization depends onthe following factors:
cooling ratemelting temperaturechemical compositiontacticitymolar massdegree of branchingtype of additives
ideal crystal PIB semi-crystalline amorphous
0.4artificial silk0.7cotton
0.1PVC
0.6PE (branched)
0.8 – 0.95PE (linear)
Degree of crystallinitypolymer
5.2. Physical Properties of Pure Polymers
-
33Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
fringe-crystallite folding-crystallite
high regularity→ application as fibersi.e. polyamide, polyester
Mixture (crystalline + amorphous)i.e. cellulose, protein
The totality of orientation of the crystallites are called Texture.
exp. estimation: electron microscopy, tunneling microscopy
Crystallinity
5.2. Physical Properties of Pure Polymers
-
34Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
liquid crystal's
Gan
ghöh
e p
( )
nematic phase smectic phase cholesteric phase
5.2. Physical Properties of Pure Polymers
-
35Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
Crystallinity
192
185 ± 15
165 ± 18
193 ± 28
TM [°C]
0.946triclinic
0.922rhombic
6.10.93trigonal
4.20.931hexagonal
8.40.94monoclinic
ΔMH [kJ/mol]density [g/cm3]Crystal structure
i.e. polypropylene
5.2. Physical Properties of Pure Polymers
-
36Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
Estimation of degree of crystallinity
( )1
crys amorph crys amorph
crys amorph crys crys amorph amorph
crys amorph cry
cryscrys crys crys
crys amorph
amorphcrys
c
s am
rys amorp
orph
crys amo
h
rph
V V V m m m
m m V VmV V V
V V
V V
Vφ φ φ
ρ ρφ
ρ ρ
ρ ρρ
ρ ρ ρ≡+
−=
−
= + = +
+ += = =
+ +
= + −
→Measurement of density ρ (flotation experiments)
available from the crystal structure
transformation in amorphous state via cooling down very rapidly; measurement of the density
ordensity measurements of polymer and extrapolation to crystallization temperature
5.2. Physical Properties of Pure Polymers
-
37Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
semicrystalline polymers consist of a portion of amorphous properties and a portionof crystalline properties
5.2. Physical Properties of Pure Polymers
at glass transition temperature: the amorphous portion will “melt” or “soften”the crystalline portion remain “solid” up to the melting temperature
semicrystalline polymers can be treated as a solid below Tgcan be treated as composite consisting of solid and rubbery phase
above Tg but below Tmcan be treated as fluid above Tm
-
38Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
Approximations: ( )( )
( ) (298 ) 0.106 0.003 / /( )
( ) (298 ) 0.64 0.0012 / /( )
S SP P
L LP P
c T c K T K J molK
c T c K T K J molK
≈ +
≈ +
5.2. Physical Properties of Pure Polymers
polypropylene
Isobaric heat capacitiescP [J/(molK)]
50
100
T [K]
Tg Tm
100 200 300 400 500
amorphous
crystalline
-
39Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
polypropylene
Enthalpy and Entropy
( 0) ( 0)AACh T h TΔ → = →from T→0 to Tg both lines run parallel ( 0) ( ) 0AC AC gh T h T T T TΔ → = Δ → ≤ ≤
( )( )( )
SL M
AC M
M M
h Th Th T
Δ= Δ= Δ
heat offusion
5.2. Physical Properties of Pure Polymers
amorphouscrystalline
h [kJ/mol]
0
10
20
30
40
T [K]100 200 300 400 500
Tg Tm
-
40
100 200 300 400 500
Polymer Thermodynamics5. Thermodynamics of Pure Polymers
Enthalpy and Entropy
0
0
0
0
( ) ( )
( ) ( )
T
P p iiP T
TpP
iiP T
h c h T h T c dT hT
cs c s T s T dT sT T T
∂⎛ ⎞ = → = + + Δ⎜ ⎟∂⎝ ⎠
∂⎛ ⎞ = → = + + Δ⎜ ⎟∂⎝ ⎠
∑∫
∑∫first-order phase transitions
5.2. Physical Properties of Pure Polymers
polypropylene
Enthalpy and Entropy
amorphouscrystalline
h [kJ/mol]
0
10
20
30
40
T [K]
-
41Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
Example: poly (ethylene terephthalate)1) molar heat capacity of the solid and liquid
polymer at 25°Cgroup – contribution method
M=n*192.2g/mol
table book: i.e. D.W. van Krevelen, Properties of Polymers, Elsevier 1990.
(298 ) 221.5 /( )
(298 ) 304.0 /( )
SPLP
c K J molK
c K J molK
=
=exp. value for solid polymer: 223.9 J/(molK)exp. value for liquid polymer: 321.2 J/(molK)
5.2. Physical Properties of Pure Polymers
-
42Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
Example: poly (ethylene terephthalate)1) molar heat capacity of the solid and liquid
polymer at 25°C
exp. value for solid polymer: 223.9J/(molK)
5.2. Physical Properties of Pure Polymers
0 1(298 ) 8.985304* 20.920972* 7.304602( 5 )S VP ROT SiJc K N N
molKχ χ⎡ ⎤= + + +⎣ ⎦
NROT= rotation degree
for PET0 19.9663 4.2152 7 0
(298 ) 228.9 /( )
VROT Si
SP
N N
c K J molK
χ χ= = = =
→ =
topological method
-
43Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
Example: poly (ethylene terephthalate)1) molar heat capacity of the solid and liquid
polymer at 25°C
exp. value for liquid polymer: 321.2J/(molK)
5.2. Physical Properties of Pure Polymers
0 08.162061* 23.215188*(298 )
8.47737 5.350331
VLP
BBrot SGrot
Jc KmolKN N
χ χ⎡ ⎤+= ⎢ ⎥+ +⎣ ⎦
NBBrot= rotation degree into backboneNSGrot= rotation degree into side groups
for PET0 09.9663 7.3566 7 0
(298 ) 311.5 /( )
VBBrot SGrot
LP
N N
c K J molK
χ χ= = = =
→ =
topological method
-
44Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
Example: poly (ethylene terephthalate)2) molar heat capacity of the solid polymer at 277°C
(spinning temperature)
(298 ) 304 /( )LPc K J molK=
( )( )
( ) (298 ) 0.64 0.0012 / /( )
304 0.64 0.0012*550 /(550 ) 395.2 /( )
L LP P
LP
c T c K T K J molK
K K Jc K J molK
molK
≈ +
+= =
exp. value for liquid polymer at 550K: 386.3J/(molK)
5.2. Physical Properties of Pure Polymers
-
45Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
Example: poly (ethylene terephthalate)3) heat of fusion at melting temperature
(TM=543K)
exp. value: 26.9 kJ/(molK)25 /M h kJ molΔ =
5.2. Physical Properties of Pure Polymers
-
46Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
Example: poly (ethylene terephthalate)4) enthalpy difference between the solid and the
rubbery form at the glass transition temperature(TM=543K, Tg=343K)
0
0( ) ( )T
pT
h T h T c dT= + ∫general:application:
( )
0
( ) ( ) ( )
( ) 25 /
g g
M M
M g
T TL S
M g M M M p M M P PT T
M M
T T T T
h T h T c dT h T c c dT
h T kJ mol
= =
Δ = Δ + Δ = Δ + −
Δ =
∫ ∫
( )( )
( ) (298 ) 0.106 0.003 / /( )
( ) (298 ) 0.64 0.0012 / /( )
S SP P
L LP P
c T c K T K J molK
c T c K T K J molK
≈ +
≈ +
with
5.2. Physical Properties of Pure Polymers
-
47Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
Example: poly (ethylene terephthalate)4) enthalpy difference between the solid and the
rubbery form at the glass transition temperature(TM=543K, Tg=343K)
( )( )
( )( )
( ) ( )2 2
(298 ) 0.64 0.0012 / /( )( ) ( )
(298 ) 0.106 0.003 / /( )
( ) ( )
(298 )*0.64 (298 )*0,106
(298 )*0.0012 / (298 )*0.003 /2
g
M
LTP
M g M M ST P
M g M M
L SP P g M
g ML SP P
c K T K J molKh T h T dT
c K T K J molK
h T h T
c K c K T T
T Tc K T K c K T K
⎛ ⎞+Δ = Δ + ⎜ ⎟
⎜ ⎟− +⎝ ⎠Δ = Δ
⎡ ⎤− −⎢
+ ⎢ −⎢ + −⎢⎣ ⎦
∫
/( )
( ) 17.34 /M g
J molK
h T kJ mol
⎥⎥⎥⎥
Δ =
5.2. Physical Properties of Pure Polymers
-
48Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
Example: poly (ethylene terephthalate)5) entropy difference between the solid and the
rubbery form at the glass transition temperature(TM=543K, Tg=343K)
0
0( ) ( )T
p
T
cs T s T dT
T= + ∫general:
application:
( )0
( ) ( ) ( )g g
M M
M g
L ST TP PM p
M g M M M MT T
T T T T
c ccs T s T dT s T dT
T T
= =
−ΔΔ = Δ + = Δ +∫ ∫
( )( )
( ) (298 ) 0.106 0.003 / /( )
( ) (298 ) 0.64 0.0012 / /( )
S SP P
L LP P
c T c K T K J molK
c T c K T K J molK
≈ +
≈ +
( ) ( ) / 46 /( )M M M M Ms T h T T J molKΔ = Δ =with
5.2. Physical Properties of Pure Polymers
-
49Polymer Thermodynamics5. Thermodynamics of Pure Polymers
Example: poly (ethylene terephthalate)5) entropy difference between the solid and the rubbery form at the glass transition
temperature (TM=543K, Tg=343K)
( )( )
( )
(298 ) 0.64 0.0012 /
(298 ) 0.106 0.003 /( ) ( )
(298 )*0.64 (298 )*0.106( ) ( )
(298 )*0.0012 (298 )*0.003
(
g
M
g
M
LP
T SP
M g M MT
L SP PT
M g M MT L S
P P
M g
c K T K
c K T K Js T s T dTT molK
c K c KJTs T s T dT
molKc K c K
s T
⎛ ⎞+⎜ ⎟⎜ ⎟− +⎝ ⎠Δ = Δ +
⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟
Δ = Δ + ⎝ ⎠⎜ ⎟⎜ ⎟⎜ ⎟+ −⎝ ⎠
Δ
∫
∫
( )
( )( )
) ( ) (298 )*0.64 (298 )*0.106 ln
(298 )*0.0012 (298 )*0.003 27.39 /( )
gL SM M P P
M
L SP P g M
T Js T c K c KT molKJc K c K T T J molK
molK
⎛ ⎞= Δ + − ⎜ ⎟
⎝ ⎠
+ − − =
5.2. Physical Properties of Pure Polymers
-
50Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
Example: poly (ethylene terephthalate)
07.9Free enthalpy [kJ/mol]
yesnoEquilibrium
4627.39Entropy [J/(molK)]
2517.34Enthalpy [kJ/mol]
TM=543 KTg=343 KTemperature [K]MeltingGlass transitionQuantity
summary
The knowledge of the chemical structure, glass transition temperature and melting temperatureallows the estimation of thermodynamic quantities,like enthalpy and entropy.
5.2. Physical Properties of Pure Polymers
-
51Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
Coefficient of volumetric thermal expansion, a, at 25°C
2.9 10-4PE8 10-5PVC7 10-5PS
3.7 10-4CS2
3.8 10-7Quarzglasa [K-1]Material
Reason: strong covalent bonds within the polymer chainweak van-der Waals forces between polymer chains
a depends strongly on the chemical bond strength
1( )P
VTV T
α ∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠
5.2. Physical Properties of Pure Polymers
Impact on: injection molding and extrusion process
-
52Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
Coefficient of volumetric thermal expansion
1( )P
VTV T
α ∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠ 3αβ ≡
molar volume v W P Tv v v v= + +vW is the space truly occupied by its molecules, often called van der Waals volume,
it is impenetrable to other moleculesvP packing volume = amount of additional “empty space” due to packing constraints
imposed by the sizes and shapes of moleculesvT expansion volume resulting from the thermal motions of molecules;
is the difference between the molar volume at the temperature of interest and themolar volume at absolute zero temperature
empirical correlation
0.15 11.42 0.159.47
WW
Pg g g
vT vv vT T T T T
α⎛ ⎞⎛ ⎞ ∂⎛ ⎞= + → = → =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ∂ +⎝ ⎠⎝ ⎠⎝ ⎠
Coefficient of linear thermal expansion
Tg = glass transition temperature
5.2. Physical Properties of Pure Polymers
-
53Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
Estimation of vWliterature: J. Bicerano, Prediction of Polymer Properties, Marcel Dekker, 1993.
5.2. Physical Properties of Pure Polymers
( )3
0 13.861803* 13.748435* VWcmvmol
χ χ= +or
( )0 1 3
( )
2.28694* 17.14057* 1.369231 /
0.5 2 3 42.5 2 7 8 4
VW vdW
vdW menomar mear alamid OH cyanide carbonate cyc
fused C C Si S Br
v N cm mol
N N N N N N N NN N N N N
χ χ
= − −
= + +
= + + + + − −
− + + − −
number of methyl groups attached to non-aromatic ring
number of methyl groups attached to aromatic ring
number of non-aromatic rings with no double-bond
number of rings in fused ring structures
-
54Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
Concept of Simha and Boyer 19625.2. Physical Properties of Pure Polymers
( ) ( 0) 0.001298
( ) ( 0) ( ) ( 0)298 2980.00045
( ) ( ) 0.00055
( 0) 1.3 (298 ) 1.435(298 ) 1.6
L LW
g g c c
W
g g c W g
c w c w
g w
v T v T v
v T v T v T v T
vv v T v T v T
v T v v K vv K v
− →≈
− → − →=
≈Δ = − ≈
→ ≈ ≈≈
V
TTg TM
VW
crystalline solid
glass
crystallization range
undercooledliquid
liquid
excess volume
VCVC
Vg
VL
ΔVg
ΔVm
-
55Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
Tait-relation (1888)( 0, ) ( , ) ln 1
( 0, ) ( )v P T v P T PC
v P T B T⎛ ⎞= −
= +⎜ ⎟= ⎝ ⎠
C dimensionless constant B(T) dimension of pressure v [cm3/g]
Simha-relation (1973)( )( )
( ) ( )1 2
20 1 2
0.0894 ( ) exp 273.15
(0, ) 273.15 273.15
C B T b b T K
V T A A T A T
= = − −
= + − + −
4.083.16polycarbonate4.142.44polystyrene
4.151.91polyisobutylene
5.11.99polyethylene
10-3 b2 [°C]103 b1 [bar]polymer
J. Appl. Phys. 42 (1971) 4592.
5.2. Physical Properties of Pure Polymers
-
56
100 120 140 160 180 200
0,98
1,00
1,02
1,04
Polystyrene
V [cm3/g]=0.92351+0.00053158 T/[°C]
V [c
m3 /g
]
T [°C]
Polymer Thermodynamics5. Thermodynamics of Pure Polymers
Example: polystyrene
( ) ( )3 7 3 7 3 20 1 28 3 1
1 2
0.000938 / 3.31*10 / 6.69*10 /
2.5*10 4.18*10 0.0894
A cm g A cm Kg A cm K g
b Pa b K C
− −
− −
= = =
= = =
P=0.1 MPa
5.2. Physical Properties of Pure Polymers
-
57Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
Cohesive Energy ecohCohesive Energy eCoh: internal energy of the material if all of its intermolecular
forces are eliminatedCohesive Energy Density εCoh: is the energy required to break all intermolecular
physical links in a unit volume of material
CohCoh
ev
ε =
Cohesive Energy plays a role in the prediction of many other physical propertiessolubility parameterglass transition temperaturesurface tensiondielectric constantmechanical propertiespermeability
low molecular weight substances
0VL
Coh VL i VLe h P v= Δ − ΔProblem: polymers do not evaporate
5.2. Physical Properties of Pure Polymers
-
58Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
Cohesive Energy ecoh
( )( )( )
2
0 0 1 1 3
2
(298 )
97.95 2
134.61
Coh
V V
Si Br Cyc
Fev K
Jcmwhere FmolN N N
χ χ χ χ
=
⎡ ⎤− + + +⎢ ⎥=⎢ ⎥+ − −⎣ ⎦
F molar attraction constantv molar volume
1. Possibility
5.2. Physical Properties of Pure Polymers
-
59Polymer Thermodynamics
5. Thermodynamics of Pure Polymers
Cohesive Energy ecoh
2. Possibility Coh D P He e e e= + +
dispersioninteraction
polar interaction
hydrogen bonding
5.2. Physical Properties of Pure Polymers
3. Possibility
( ) ( )( )0 0 1 110570.9 9072.8 2 1018.2V VCoh VKH Je N molχ χ χ χ= − + − +NVKH group contribution method
Hanson method
-
60Polymer Thermodynamics
5. Thermodynamics of Pure Polymers5.3. Polydispersity
Prop
erty
molar mass
Some thermic (i.e. expansion coefficient) and some mechanical properties (i.e. loss modulus) depend for M>MC only very slightly on molecular weight.The critical molar weight, MC, depends on the type of polymers.
i.e. PE MC≈20000g/mol PET MC ≈ 5000 g/mol
MC
All quantities of the second law of thermodynamics (entropy, free enthalpy, free energy) depends on the molecular weight and on the molecular weight distribution.
-
61Polymer Thermodynamics
5. Thermodynamics of Pure Polymers5.3. Polydispersity
Estimation of molecular weight – thermodynamic method→ use colligative properties → membrane osmometry
,
,
,
,1
B
spB B BB
B B
sp B
sp Bsp B
B
c RTcn mc
V M V Mc
RT ideal diluted s
RT B c polymer solutionc M
olution
M
M
Π=
=
Π ⎛ ⎞= + +⎜ ⎟
= =
⎠
Π
⎝
=
…
Van't Hoff`sche equation
B second osmotic virial coefficient
-
62Polymer Thermodynamics
5. Thermodynamics of Pure Polymers5.3. Polydispersity
Estimation of molecular weight – thermodynamic method→ use colligative properties → membrane osmometry
solution
semipermeable membrane
solvent
The difference in height Δh corresponds to the osmotic pressure π.
-
63Polymer Thermodynamics
5. Thermodynamics of Pure Polymers5.3. Polydispersity
Estimation of molecular weight – thermodynamic method→ use colligative properties → membrane osmometry
,,
1 sp Bsp B
RT B cc M MΠ ⎛ ⎞= + +⎜ ⎟
⎝ ⎠…
-
64Polymer Thermodynamics
5. Thermodynamics of Pure Polymers5.3. Polydispersity
Estimation of molecular weight – thermodynamic method→ use colligative properties → vapor pressure osmometry
solution pure solvent
T2, PLV T1,
Two thermistors are located in a chamber saturated with pure solvent vapor. The difference between PLV and caused a new equilibrium between the two drops. Solvent from the vapor phase will condense on the thermistor connected to the solution. The formed condensation heat leads to a measurable temperature difference DT=T2-T1.
0LVAP
0LVAP
-
65Polymer Thermodynamics5. Thermodynamics of Pure Polymers
5.3. PolydispersityEstimation of molecular weight – thermodynamic method→ use colligative properties → vapor pressure osmometry
syringe
Al-block for thermostatingthe syringes
thermistors
measurement cell (Al)
windowglass container for solvent
sealing
vapor pressure osmometry
1. saturation of sample chamberwith solvent vapor
2. filling with solution and puresolvent using thermostatic syringes
3. measurement of ΔT
-
66Polymer Thermodynamics5. Thermodynamics of Pure Polymers
data analysis of vapor pressure osmometry experiments:vapor pressure depletion:
0
0
0
VL VLA
VLA BB B B
BVLA A B A B A
P P P
P mP n n mx PP n n M n M n
Δ = −
Δ= = ≈ = → Δ =
temperature dependence of vapor pressure – Clausius-Clapeyron equation
( )0 0 0 0
0 0 0 0
0
00 0
0 0 0 0 0
0 0 0 0
VL A VL A VL A VL AVL VL V VL VVL V LA A A A AA A
VL VL VL VVL A A B B A A A
VL V VLA A B A A
B AB
A
h h h h TdP P PdT T v T v T T vT v v
m Kh T P m m P T vT v M n
MTn h T
Δ Δ Δ Δ ΔΔ= = ≈ ≈ → Δ =
Δ Δ−
Δ Δ= ==
Δ Δ Δ→
→ for the estimation of molecular weight is only one experimental value isnecessary
5.3. Polydispersity
-
67Polymer Thermodynamics
5. Thermodynamics of Pure Polymers5.3. Polydispersity
Wi(M
) 1
1
( )
( )
i ik
iik
ii
n W M M
n n
n W M M
=
=
= Δ
=
= Δ
∑
∑
ΔM
molecular weight
-
68Polymer Thermodynamics
5. Thermodynamics of Pure Polymers5.3. Polydispersity
2
1 2
1
,
0
( )
( )
M
M MM
n W M dM
n W M dM∞
=
=
∫
∫
W(M
)
molecular weight
M1
M2
extensive
intensive
2
1 2
1
,
0
( )
1 ( )
M
M MM
x w M dM
w M dM∞
=
=
∫
∫
-
69Polymer Thermodynamics
5. Thermodynamics of Pure Polymers5.3. Polydispersity
differential distribution function cumulative distribution function
0
( ) ( )x
F x f x dx= ∫
-
70Polymer Thermodynamics
5. Thermodynamics of Pure Polymers5.3. Polydispersity
Characterization of the distribution function using moments
( ) ( )
1 0
( )k
n n n ni i
iM w M M M w M M dM
∞
=
= Δ ⇔ =∑ ∫
n=0 normalization condition
( (0)
1
0)
0
1 ( ) 1k
ii
M w M M w M dM∞
=
= Δ = ⇔ = =∑ ∫
n=1 average value
( ) ( )
1 0
1 1 ( )k
i ii
M w M M M w M MdM∞
=
= Δ ⇔ =∑ ∫
-
71Polymer Thermodynamics
5. Thermodynamics of Pure Polymers5.3. Polydispersity
( ) ( )
1 0
( )k
n n n ni i
iM w M M M w M M dM
∞
=
= Δ ⇔ =∑ ∫
n=2 broadness
n=3 asymmetry
( ) ( )
1 0
2 2 2 2( )k
i ii
M w M M M w M M dM∞
=
= Δ ⇔ =∑ ∫
( ) ( )
1 0
3 3 3 3( )k
i ii
M w M M M w M M dM∞
=
= Δ ⇔ =∑ ∫
Characterization of the distribution function using moments
-
72Polymer Thermodynamics
5. Thermodynamics of Pure Polymers5.3. Polydispersity
Relation between the moments and experimental quantities
( ) ( )
1 0
( )k
n n n ni i
i
M w M M M w M M dM∞
=
= Δ ⇔ =∑ ∫
number-average molar mass
(1)1
(0)1
1
(1)0
(0)0
0
( )( )
( )
k
i i ki
n i iki
ii
n
w M MMM w M MM w M
w M MdMMM w M MdMM
w M dM
=
=
=
∞
∞
∞
Δ= = = Δ
Δ
= = =
∑∑
∑
∫∫
∫
Experiment:methods, which are proportionalto the number of molecules
colligativeproperties
vapor pressure osmosesmembrane osmoses
-
73Polymer Thermodynamics
5. Thermodynamics of Pure Polymers5.3. Polydispersity
( ) ( )
1 0
( )k
n n n ni i
i
M w M M M w M M dM∞
=
= Δ ⇔ =∑ ∫
mass-average molar mass
2 2(2)
1 1(1)
1
1
2 2(2)
0 0(1)
1
0
( ) ( )
( )
k k
i i i ii i
w kn
i ii
wn
w M M w M MMMM Mw M M
w M M dM w M M dMMMM M
w M M dM
= =
=
∞ ∞
∞
Δ Δ= = =
Δ
= = =
∑ ∑
∑
∫ ∫
∫
Experiment:methods, which are proportionalto the mass of molecules
light scattering
Relation between the moments and experimental quantities
-
74Polymer Thermodynamics
5. Thermodynamics of Pure Polymers5.3. Polydispersity
( ) ( )
1 0
( )k
n n n ni i
i
M w M M M w M M dM∞
=
= Δ ⇔ =∑ ∫
z-average molar mass 3 3(3)1 1
(2)2
1
3 3(3)
0 0(2)
2
0
( ) ( )
( )
k k
i i i ii i
z kw n
i ii
zw n
w M M w M MMMM M Mw M M
w M M dM w M M dMMMM M M
w M M dM
= =
=
∞ ∞
∞
Δ Δ= = =
Δ
= = =
∑ ∑
∑
∫ ∫
∫
Experiment:ultracentrifugeestimation via the distribution
GPC
Relation between the moments and experimental quantities
-
75Polymer Thermodynamics
5. Thermodynamics of Pure Polymers5.3. Polydispersity
( ) ( )
1 0
( )k
n n n ni i
i
M w M M M w M M dM∞
=
= Δ ⇔ =∑ ∫
viscosity-average molar mass 1/ 1/( )
(0)1
1/1/( )
(0)0
( )
0,5 0,9
a aa ka
i ii
aaaa
MM w M MM
MM w M M dMM
η
η
α
=
∞
⎛ ⎞ ⎛ ⎞= = Δ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞= = ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠≤ ≤
∑
∫Experiment:rheology
Staudingerindex
Relation between the moments and experimental quantities
-
76Polymer Thermodynamics
5. Thermodynamics of Pure Polymers5.3. Polydispersitydefinition of uniformity
polydispersity D
( )
2
21
1
0
1
0
k
i i ki
i in i
nn n
n w
w
n
z
n z
w
n
w
MDM
M
w M Mw M M
MM M
M M M M
Ufor U monodispers polymer
M M
UM
M M
η
η
=
=
ΔΔ
= =
≤
=
= − ≤ ≤
⇒ ≥=
⇒ = = =
∑∑
uniformity U
-
77Polymer Thermodynamics
5. Thermodynamics of Pure Polymers5.3. Polydispersity
0 200 400 600 800 1000 1200 1400 1600 18000,0
0,5
1,0
1,5
2,0
2,5
103 W
(M)
M [g/mol]
0,097942878
800blue curve
0,035U854Mz
828Mw
800Mn
red curvequantity
-
78Polymer Thermodynamics
5. Thermodynamics of Pure Polymers5.3. Polydispersity
molar weight distributionGPC field-flow-fractionationMALDI -TOF
average values of distributionnumber-average: exp. methods which are proportional to the number of
moleculesend-group analysis, colligative properties
mass-average: exp. methods which are proportional to the mass of moleculesLight-scattering, SANS, SAXS
z-average: ultracentrifugeviscosity-average: rheology
-
79Polymer Thermodynamics
5. Thermodynamics of Pure Polymers5.3. Polydispersity
GPC – gel permeation chromatographySize-Exclusion Chromatography (SEC)
-
80Polymer Thermodynamics
5. Thermodynamics of Pure Polymers5.3. Polydispersity
( )22
1( ) exp22
M Mw M
σσ π
⎛ ⎞−⎜ ⎟= −⎜ ⎟⎝ ⎠
normal distribution function= bell curve= probability density functionfor random distributed variables(i.e. to play dice)
C.F. Gauß (1777-1855)
0 500 1000 1500 20000,0
0,2
0,4
0,6
0,8
1,0
1,2
1,4
1,6
1,8
103 W
(M)
M [g/mol]
symmetrical distribution
M average values standard derivation
-
81Polymer Thermodynamics
5. Thermodynamics of Pure Polymers5.3. Polydispersity
Schulz-Flory-Distribution( ) exp
( )
kkk r rw r kk r r r
⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟Γ ⎝ ⎠ ⎝ ⎠
r – segment number polymer molecules will be divided into segments of equal size
J.P. Flory (1910-1985) Nobel Prize 1974
description of kinetics of chain-growth polymerization (statistical, anionic and cationic polymerization)
most probable distribution
w(r
)
segment numberhttp://nobelprize.org
-
82Polymer Thermodynamics
5. Thermodynamics of Pure Polymers5.3. Polydispersity
Calculation of moments n=0 normalization condition
( )
( )
(0)
0 0 0
(0)
0
10
(0)
( ) exp exp( ) ( )
exp( )
( 1)exp
( 1( )
k kk k
kk
mm
k
k r r k r rM w r dr k dr k drk r r r k r r r
r dr k rsubstitution x dx dr rdx M x kx dxr r k r
mtextbook of mathematics x axa
k r kMk r
∞ ∞ ∞
∞
∞
+
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟Γ Γ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
= = = → = −Γ
Γ +− =
Γ +=
Γ
∫ ∫ ∫
∫
∫
1
) ( 1) ( ) 1( ) ( )k
k k kk k k k k+
Γ + Γ= = =
Γ Γ
( )( ) 1 !( 1) ( )x x x Nx x x
Γ = − ∈
Γ + = Γ
Distribution function fulfills the normalization condition.
-
83Polymer Thermodynamics
5. Thermodynamics of Pure Polymers5.3. Polydispersity
Schulz-Flory-distribution
Calculation of moments n=1 average value
( )
( ) ( )
(1)
0 0 0
(1)
0
2(1) 1
0 0
( ) exp exp( ) ( )
exp( )
( 1)exp exp( )
k kk k
kk
kk m
k r r r k r rM rw r dr k dr r k drk r r r k r r r
r dr k rsubstitution x dx dr rdx M xrx kx dxr r k r
k r mM x kx dx textbook x axk r a
∞ ∞ ∞
∞
∞ ∞+
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟Γ Γ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
= = = → = −Γ
Γ += − − =
Γ
∫ ∫ ∫
∫
∫ ∫ 1
(1)1 1 2 2 2
(1)
( 1 1) ( 2) ( 1) ( 1) ( 1) ( )( ) ( ) ( ) ( )( 1)
m
k
k
k r k r k r k k r k k kMk k k k k k k k
r kMk
+
+ +
Γ + + Γ + + Γ + + Γ= = = =
Γ Γ Γ Γ+
=
( )( ) 1 !( 1) ( )x x x Nx x x
Γ = − ∈
Γ + = Γ
-
84Polymer Thermodynamics
5. Thermodynamics of Pure Polymers5.3. Polydispersity
Schulz-Flory-distribution
calculation of moments n=2 broadness
( )
( ) ( )
2(2) 2 2
0 0 0
(2) 2 2
0
2(2) 2
0 0
( ) exp exp( ) ( )
exp( )
(exp exp( )
k kk k
kk
kk m
k r r r k r rM r w r dr k dr r k drk r r r k r r r
r dr k rsubstitution x dx dr rdx M x r x kx dxr r k r
k r mM x kx dx textbook x axk
∞ ∞ ∞
∞
∞ ∞+
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟Γ Γ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
= = = → = −Γ
Γ= − − =
Γ
∫ ∫ ∫
∫
∫ ∫ 12 2 2
(2)2 1 2 1 3
2 2 2(2)
3 3 2
1)
( 2 1) ( 2 1) ( 2) ( 2)( ) ( ) ( )
( 2)( 1) ( 1) ( 2)( 1) ( ) ( 2)( 1)( ) ( )
m
k
k
a
k r k r k r k kMk k k k k k
r k k k r k k k k r k kMk k k k k
+
+ + +
+
Γ + + Γ + + + Γ += = =
Γ Γ Γ
+ + Γ + + + Γ + += = =
Γ Γ
( )( ) 1 !( 1) ( )x x x Nx x x
Γ = − ∈
Γ + = Γ
-
85Polymer Thermodynamics
5. Thermodynamics of Pure Polymers5.3. Polydispersity
Schulz-Flory-distribution
Calculation of moments n=2 asymmetry
( )
( ) ( )
3(3) 3 3
0 0 0
(3) 3 3
0
3(3) 3
0 0
( ) exp exp( ) ( )
exp( )
(exp exp( )
k kk k
kk
kk m
k r r r k r rM r w r dr k dr r k drk r r r k r r r
r dr k rsubstitution x dx dr rdx M x r x kx dxr r k r
k r mM x kx dx textbook x axk
∞ ∞ ∞
∞
∞ ∞+
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟Γ Γ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
= = = → = −Γ
Γ= − − =
Γ
∫ ∫ ∫
∫
∫ ∫ 13 3 3
(3)3 1 3 1 4
3 3(3)
4 3
1)
( 3 1) ( 3 1) ( 3) ( 3)( ) ( ) ( )
( 3)( 2)( 1) ( ) ( 3)( 2)( 1)( )
m
k
k
a
k r k r k r k kMk k k k k k
r k k k k k r k k kMk k k
+
+ + +
+
Γ + + Γ + + + Γ += = =
Γ Γ Γ
+ + + Γ + + += =
Γ
( )( ) 1 !( 1) ( )x x x Nx x x
Γ = − ∈
Γ + = Γ
-
86Polymer Thermodynamics
5. Thermodynamics of Pure Polymers5.3. Polydispersity
Schulz-Flory-distributionCalculation of moments n=-1
( )
( )
1( 1) 1 1
0 0 0
( 1) 1 1
0
( 1) 1
0 0
( ) exp exp( ) ( )
exp( )
exp exp( )
k kk k
kk
kk m
k r r r k r rM r w r dr k dr r k drk r r r k r r r
r dr k rsubstitution x dx dr rdx M x r x kx dxr r k r
kM x kx dx textbook xk r
∞ ∞ ∞−− − −
∞− − −
∞ ∞− −
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟Γ Γ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
= = = → = −Γ
= −Γ
∫ ∫ ∫
∫
∫ ∫ ( ) 1
( 1)1 1
( 1)
( 1 1) ( ) 1( ) ( )
m
k k
k k
maxa
k k k kMk r k k r k r
+
−− +
Γ +− =
Γ − + Γ= =
Γ Γ
( )( ) 1 !( 1) ( )x x x Nx x x
Γ = − ∈
Γ + = Γ
The characterization variable segment number requires the (-1) moment.
-
87Polymer Thermodynamics
5. Thermodynamics of Pure Polymers5.3. Polydispersity
calculation of experimental available average values number-average
(1)0
(0)0
0
( )( )
( )n
w M MdMMM w M MdMM
w M dM
∞
∞
∞= = =∫
∫∫
characterization variable: molar mass
characterization variable: segment number
(0)0
( 1)
0
( )1
1/( )n
w r drMr rM rw r dr
r
∞
∞−= = = =∫
∫
-
88Polymer Thermodynamics
5. Thermodynamics of Pure Polymers5.3. Polydispersity
calculation of experimental available average values weight-average
characterization variable: molar mass
characterization variable: segment number
2(2)
0(1)
0
( )
( )w
w M M dMMMM
w M MdM
∞
∞= =∫
∫
(1)0
(0)
0
( )( 1)( 1)
( )
nw
w r rdrr kM r kr
M k kw r dr
∞
∞
++= = = =
∫
∫
-
89Polymer Thermodynamics
5. Thermodynamics of Pure Polymers5.3. Polydispersity
calculation of experimental available average values z-average
characterization variable: molar mass
characterization variable: segment number
3(3)
0(2)
2
0
( )
( )z
w M M dMMMM
w M M dM
∞
∞= =∫
∫
22(2) 2
0(1)
0
( 2)( 1)( )( 2)
( 1)( )
z
r k kw r r drM r kkr r kM k
w r rdr k
∞
∞
+ ++
= = = =+
∫
∫
-
90Polymer Thermodynamics
5. Thermodynamics of Pure Polymers5.3. Polydispersity
Uniformity U
1Uk
= nr r=
( )(1/ 1) 11/
nw n
r Ur r UU
+= = +
( )(1/ 2) 1 21/z
r Ur r UU
+= = +
After the estimation of the average values of the segment-molar distributionfunction (rn, rw or rz) the parameters U respectively k can be calculated.
The parameters U (respectively k) can also be estimated using kinetic data.
-
91Polymer Thermodynamics
5. Thermodynamics of Pure Polymers5.3. Polydispersity
0 200 400 600 800 10000,0
0,5
1,0
1,5
2,0
2,5
3,0
3,5
4,0
rn=100 k=1rw=200 rz=300
103 w
(r)
r
Schulz-Flory-distribution
-
92Polymer Thermodynamics5. Thermodynamics of Pure Polymers
5.3. Polydispersitygeneral log-normal distribution
( )22
ln( ) ln( )1( ) expr r
w rAAr π
⎛ ⎞−= −⎜ ⎟
⎜ ⎟⎝ ⎠
( )2 ln Aσ =
( )21 2
ln( ) ln( )1( ) expz
z
r rrw rr y AA π +
⎛ ⎞−= −⎜ ⎟
⎜ ⎟⎝ ⎠
special cases: z=-1 y=1 Wesslau-distribution
20 exp( / 2)z y σ= = Lansing-distribution
( )222
ln( ) ln( )1 exp( / 2)( ) expr r
w rr AAσ
π
⎛ ⎞−= −⎜ ⎟
⎜ ⎟⎝ ⎠
( )( )
( )
2
21
ln( ) ln( )1( ) expln 2 2 ln
z
z
r rrw rr yσ π σ+
⎛ ⎞−= −⎜ ⎟
⎜ ⎟⎝ ⎠
-
93Polymer Thermodynamics
5. Thermodynamics of Pure Polymers5.3. Polydispersity
Wesslau-distribution
( )22
ln( ) ln( )1( ) expr r
w rAAr π
⎛ ⎞−= −⎜ ⎟
⎜ ⎟⎝ ⎠
( )( )( )
2
2
2
exp / 4
exp / 4
exp 3 / 4
n
w
z
r r A
r r A
r r A
= −
=
=
suitable for high polydispersity (i.e. PE)
-
94Polymer Thermodynamics
5. Thermodynamics of Pure Polymers5.3. PolydispersityPoisson-distribution
( ) 11 exp(1 )( )( )
Pn nP Pw P
P
−− −=
Γ
2
1 11wn n n
PP P P
= + −
suitable for polymers with small polydispersity
P = degree of polymerization
In the limiting case of high molar mass the uniformity goes to zero.
polymers produced with anionic or living polymerization
-
95Polymer Thermodynamics
5. Thermodynamics of Pure Polymers5.3. Polydispersity
degree of polymerization
Poisson distribution
Schulz-Flory-distribution
102
W(P
)
-
96Polymer Thermodynamics
5. Thermodynamics of Pure Polymers5.3. Polydispersity
0 200 400 600 800 1000 1200 14000
2
4
6
8
W(M
)
M [kg/mol]
variation of molar masses and of molar mass distribution functionlow molecular weight (oligomere) → polymer → ultra-high molecular weight
small distribution → broad distribution → mono-modal → bimodal → multimodal