Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of...

of 96 /96
1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science Institute of Chemical Engineering Department of Thermodynamics Lecture 0331 L 337 5. Thermodynamics of Pure Polymers

Embed Size (px)

Transcript of Lecture - thermodynamik.tu-berlin.de · 5. Thermodynamics of Pure Polymers Application of...

  • 1

    Polymer Thermodynamics

    Prof. Dr. rer. nat. habil. S. Enders

    Faculty III for Process ScienceInstitute of Chemical EngineeringDepartment of Thermodynamics

    Lecture

    0331 L 337

    5. Thermodynamics of Pure Polymers

  • 2Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers5.1. Thermodynamics of Polymerization

    Stoichiometric coefficients νi

    1 H2S + 2 NaOH 1 Na2S + 2 H2O

    Example.: ν = -1 ν = -2 ν = +1 ν = +2negative = educts positive = products

    reaction variable λ

    Goal: Reduction of ni variables to only one variable λ

    () (0)i int nt= =+

    i

    i

    dn dλν

    = i idn dν λ=or

    ( ) ( 0)i i in t n t ν λ= = +The reaction variable gives information about the progress of the chemical reaction.l [mol]

  • 3Polymer Thermodynamics5. Thermodynamics of Pure Polymers5.1. Thermodynamics of Polymerization

    Example:

    Calculation of ni and xi as function of reaction variable λ:

    2

    2

    21 12 2

    1 0

    1 1

    H O

    H

    O

    n

    n mol

    n mol

    λ

    λ

    λ

    = +

    = − +

    = − +

    ( )

    ( )( )

    ( )

    2

    2

    2

    12

    12

    1 12 2

    12

    1 23 3

    2 113 3

    13 3

    H O

    H

    O

    xmol mol

    molmolxmol mol

    mol molxmol mol

    λ λλ λ

    λλλ λλ λλ λ

    = =− −

    −−= =

    − −

    − −= =

    − −

    3 mole fraction can be reduced to one λ( )

    312 2

    12 3

    jn mol

    mol

    λ

    λ

    = − +

    = −∑

    2 2 212

    H O H O+

  • 4Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers5.1. Thermodynamics of Polymerization

    NaOH + H2O AlCl3 + H2O

    heating cooling

    exothermic reaction endothermic reaction

    0RHΔ < 0RHΔ >

  • 5Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    equilibrium

    dG=0

    free

    enth

    alpy

    G

    state variable

    λpure educts pure products

    equilibrium

    spontaneous

    spontaneous

    free

    enth

    alpy

    5.1. Thermodynamics of Polymerization

    i

    i

    dn dλν

    =

    reaction variable λ

  • 6Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers5.1. Thermodynamics of Polymerization

    Spontaneous run of chemical reactions R R Rg h T sΔ = Δ − Δ

    at higher temperature preferred→entropy drivenT>ΔRh/ΔRs spontaneousT=ΔRh/ΔRs equilibriumT0>0d

    at low temperature preferred→ enthalpy-drivenTΔRh/ΔRs not spontaneous

  • 7Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers5.1. Thermodynamics of Polymerization

    Calculation of enthalpy of reaction

    Kirchhoff Law

    with

    ( ) ( ) 00 0 ( )iT

    B i B i pT

    h T h T c T dT+

    + + +Δ = Δ + ∫

    0( ) ( )R i B ii

    h T h Tν+ +Δ = Δ∑

    ( )0B ih T+Δ( )0B ih T+ +Δ

    0( ) ( )R i B ii

    h T h Tν+ + + +Δ = Δ∑

    ( )Rh T+ +Δ( ) ( ) ( )

    T

    R R R pT

    h T h T c T dT+

    + + +Δ = Δ + Δ∫( )Rh T+Δ

    0 iR p i pi

    c cνΔ = ∑

  • 8Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers5.1. Thermodynamics of Polymerization

    Calculation of entropy of reaction

    ( )Rs T+ΔCalculation of free enthalpy of reaction

    0iR R R ii

    g h T s gν+ + + +Δ = Δ − Δ = ∑

    ( )0is T+ + ( ) ( )0

    0 0

    ( )i

    Tp

    i iT

    c Ts T s T dT

    T++ + += + ∫ ( )0is T+

    0( ) ( )R i ii

    s T s Tν+ +Δ = ∑0( ) ( )R i i

    i

    s T s Tν+ + + +Δ = ∑

    ( )Rs T+ +Δ( ) ( ) ( )

    TR p

    R RT

    c Ts T s T dT

    T++ + + ΔΔ = Δ + ∫

    ( )Rs T+Δ

  • 9Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers5.1. Thermodynamics of Polymerization

    00

    iR R R ii

    g h T s gν+ + + +Δ = Δ − Δ =

  • 10Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers5.1. Thermodynamics of Polymerization

    00

    iR R R ii

    g h T s gν+ + + +Δ = Δ − Δ = Δ >

    lower limit in temperature = Floor – temperature TF

    entropy-driven reaction

    reason: during polymerization the number of degree of freedom regarding rotationincrease

    example: ring-opening polymerization of oxepines

  • 11Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers5.2. Physical Properties of Pure Polymersfundamental characteristics of polymer

    chemical structurenature of repeating unitsnature of end groupscomposition of possible branches and cross-linksnature of defects in the structure sequence

    molecular mass distributionaverage molecular sizepolydispersity

    both controlcohesive forcespacking densitymolecular mobilitymorphologyrelaxation phenomena

    } properties of polymers

  • 12Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    Application of topological formalism in developing of structure-property correlationPrediction of thermodynamic properties using only chemical composition

    Introduction of connectivity indices via graph theoretical concepts

    Starting Point: construction of hydrogen-suppressed graph of the moleculeexample: vinyl fluoride

    vertex

    C CH

    H H

    F edgeδ number of non-hydrogen atoms

    to which a given non-hydrogen atom is bonded

    δV valence connectivity indexelectronic configuration of eachnon-hydrogen atom= lowest oxidation state of the

    elements

    5.2. Physical Properties of Pure Polymers

  • 13Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    Application of topological formalism in developing of structure-property correlation

    1

    VV H

    V

    Z NZ Z

    δ −=− −

    ZV number of valence electrons of an atomNH number of hydrogen atoms bonded to itZ atomic numberZ=ZV + number of inner shell electrons

    Examples-CH3

    4 3VVZ

    δ −=2 VZ+ −

    1 11

    Vδ= =−

    -CH2-4 2V

    VZδ −=

    2 VZ+ −2 2

    1Vδ= =

    =O6 0V

    VZδ −=

    2 VZ+ −6 1

    1Vδ= =

    5.2. Physical Properties of Pure Polymers

  • 14Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    Application of topological formalism in developing of structure-property correlation

    Bond indices βij and βijV for each bond (edge) do not involved a hydrogen atom

    V V Vij i j ij i jβ δ δ β δ δ= =

    vertex

    C CH

    H H

    F edge

    0 0 1 11 1 1 1V VV V

    vertices vertices edges edgesij ij

    χ χ χ χδ βδ β

    ≡ ≡ ≡ ≡∑ ∑ ∑ ∑

    5.2. Physical Properties of Pure Polymers

  • 15Polymer Thermodynamics5. Thermodynamics of Pure Polymers

    Application of topological formalism in developing of structure-property correlation

    V V Vij i j ij i jβ δ δ β δ δ= =

    vertex

    C C

    H

    H H

    Fedge

    0

    0

    1

    1

    1 1 1 1 2.70711 2 1

    1 1 1 1 1.66252 3 7

    1 1 1 1.41411*2 1*2

    1 1 1 0.62642*3 3*7

    vertices

    V

    Vvertices

    edges ij

    V

    Vedges ij

    χδ

    χδ

    χβ

    χβ

    ≡ = + + =

    ≡ = + + =

    ≡ = + =

    ≡ = + =

    Example

    5.2. Physical Properties of Pure Polymers

    δ number of non-hydrogen atomsto which a given non-hydrogen atom is bonded

    δV valence connectivity indexelectronic configuration of eachnon-hydrogen atom= lowest oxidation state of the

    elements

  • 16Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    Application of topological formalism in developing of structure-property correlationApplication to polymers:

    literature: J. Bicerano, Prediction of Polymer Properties, Marcel Dekker, 1993

    5.2. Physical Properties of Pure Polymers

    0

    1

    1 1 1 1.66252 3 71 1 1 1.03472*3 2*3 3*7

    V

    V

    χ

    χ

    = + + =

    = + + =

  • 17Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    phase transition

    critical point

    triple point

    solid liquid

    vapor

    P

    T

    low-molecular weight componentpolymers

    polymers cannot be evaporated sincethey decompose before boiling

    no vapor pressureliquid state: very high viscosity,

    viscoelasticity

    solid state: very complexpartially or totally amorphous

    The typical state of polymers are rubbery, glassy or semicrystalline, which are thermodynamically metastable.

    5.2. Physical Properties of Pure Polymers

  • 18Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    phase transition

    SRO – short range orderLRO – long range orderSTS – short time stiffnessLTS – long time stiffness

    low-molecular weight molecules

    polymers

    5.2. Physical Properties of Pure Polymers

  • 19Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    phase transitions

    SRO LRO

    STS LTS

    SRO LRO

    STS LTS

    SRO LRO

    STS LTS

    SRO LRO

    STS LTS

    SRO LRO

    STS LTS

    SRO LRO

    STS LTS

    SRO – short range order LRO – long range order STS – short time stiffness LTS – long time stiffness

    blue – not presentred – presentmagenta - partly

    gas liquid(polymer melt)

    rubbery state

    glass

    semicrystalline crystalline

    5.2. Physical Properties of Pure Polymers

  • 20Polymer Thermodynamics5. Thermodynamics of Pure Polymers

    amorphous polymer

    semicrystalline polymer

    5.2. Physical Properties of Pure Polymers

    T

    T

    M

    M

    viscousliquid

    viscousliquid

    thermal decomposition

    thermal decomposition

    rigid (semi) crystalline

    glassy

    glass transition

    glass transitionmelting point

    rubbery

    rubbery

    leathery

    diffuse transition state

  • 21Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    Formability at higher temperature: glass transition temperature Tgmelting ⇔ glass transition

    crystal

    glass

    super cooledmelt

    melt

    First-order phase transitions- exhibit a discontinuity in the firstderivative of the G with respect to a thermodynamic variable

    - latent heat is involved

    Second-order phase transitionshave a discontinuity in a second derivative of the free energy.

    Ehrenfest classification

    ii

    G ρμ

    ⎛ ⎞∂=⎜ ⎟∂⎝ ⎠

    5.2. Physical Properties of Pure Polymers

    2

    2, i

    P

    P n

    G CT T

    ⎛ ⎞∂= −⎜ ⎟∂⎝ ⎠

    i.e.

    i.e.

  • 22Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    volume

    thermal expansion

    specific heat

    heat conductivity

    modulus ln(G)

    5.2. Physical Properties of Pure Polymerspr

    oper

    ty

    T

    amorphous crystalline semi-crystalline

  • 23Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    Tg is dependent on the viscoelastic materials properties, and so varies with rate of applied load.

    rubber plateau

    5.2. Physical Properties of Pure Polymers

    Tg TM T

    E [Pa]

    E1

    E2

  • 24Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    glass transition temperature

    durability at higher temperature

    i.e. coffee cup from PS

    glass transition temperature TgThe glass transition temperature is characterizedby the transition from amorphous or semi-crystallinestate to a rubbery state.

    Reason: Below the glass transition temperature themolecules have very little relative mobility.Above Tg, the secondary, non-covalent bondsbetween the polymer chains become weak in comparison to thermal motion, and the polymer becomes rubbery and capable of elastic or plastic deformation without fracture.

    Consequences: large change in viscosity, hardness, modulus, volume, enthalpy, entropy

    Tg>100°C

    5.2. Physical Properties of Pure Polymers

  • 25Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    The glass transition temperature depends on the structure of the chain molecules. (i.e. flexibility, side-groups [softener])

    Flexibility of the backbone: high flexibility → low Tg

    H3C Si O

    CH3

    CH3

    Si O Si

    CH3

    CH3

    CH3

    CH3

    CH3

    nPDMS Tg=-127°C

    i.e.

    liquid at room temperatureApplication: hair shampoo

    CH2 CH

    COOH n

    Poly acryl acid Tg= 106 °C

    5.2. Physical Properties of Pure Polymers

  • 26Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    Measurement of Tg

    thermal methodsi.e. expansion coefficient

    heat capacity

    Attentionresult depends on heating rate

    mechanic methodsi.e. rheology

    AttentionTg depends on load respectively frequency

    5.2. Physical Properties of Pure Polymers

  • 27Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    Glass transition temperature Tg

    Measurement – Differential-Scanning-Calorimetry (DSC)

    Differential scanning calorimetry or DSC is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and reference are measured as a function of temperature. Both the sample and reference are maintained at very nearly the same temperature throughout the experiment.

    Crystallization → exothermic procedure → positive signalMelting → endothermic procedure → negative signal

    5.2. Physical Properties of Pure Polymers

  • 28Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    sample reference

    sample holder

    oven

    thermocouple

    oven temperaturecontrol

    Measurement of Glass Transition Temperature via DSC

    5.2. Physical Properties of Pure Polymers

    computer recorder

  • 29Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    Measurement of Glass Transition Temperature via DSC

    5.2. Physical Properties of Pure Polymers

    exo-thermic effect

    endothermic effect

    endo-thermic

    effect

    Hea

    t flo

    w [m

    W]

    T [°C]

    glass transition

    crystallization

    melting

  • 30Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    Glass transition temperature Tg

    The glass transition temperaturedepends on molecular weight.

    ( ) ( )g gn

    AT M T MM

    = → ∞ −

    5.2. Physical Properties of Pure Polymers

    1 2 3 4 5 105 M [g/mol]

    450

    420

    380

    340

    T [K]

  • 31Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    Prediction of Glass Transition Temperature5.2. Physical Properties of Pure Polymers

    13

    1 2 3 4 5 6 7 8

    9 10 11 12

    351 5.63 31.68 23.94

    15 4 23 12 8 4 8 5

    11 8 11 4

    g

    g

    Tg

    T

    i

    NT x

    NN x x x x x x x x

    x x x xx structural parameters given in textbooks

    δ= + + −

    = − + + − − − +

    + + − −

    231213poly(ε-caprolactone)202203polyisoprene

    187195polyethylene

    Tg [K] (pred.)Tg [K] (exp.) polymerexamples

    rule of thumb

    0.52 / 3

    g

    M

    T for symmetrical polymersfor unsymmetrical polymersT

    ⎧= ⎨

  • 32Polymer Thermodynamics5. Thermodynamics of Pure Polymers

    The most polymers consist of an amorphous and a crystalline part.Experimental Investigations: X-ray-measurements (X-ray diffraction)

    The degree of crystallization depends onthe following factors:

    cooling ratemelting temperaturechemical compositiontacticitymolar massdegree of branchingtype of additives

    ideal crystal PIB semi-crystalline amorphous

    0.4artificial silk0.7cotton

    0.1PVC

    0.6PE (branched)

    0.8 – 0.95PE (linear)

    Degree of crystallinitypolymer

    5.2. Physical Properties of Pure Polymers

  • 33Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    fringe-crystallite folding-crystallite

    high regularity→ application as fibersi.e. polyamide, polyester

    Mixture (crystalline + amorphous)i.e. cellulose, protein

    The totality of orientation of the crystallites are called Texture.

    exp. estimation: electron microscopy, tunneling microscopy

    Crystallinity

    5.2. Physical Properties of Pure Polymers

  • 34Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    liquid crystal's

    Gan

    ghöh

    e p

    ( )

    nematic phase smectic phase cholesteric phase

    5.2. Physical Properties of Pure Polymers

  • 35Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    Crystallinity

    192

    185 ± 15

    165 ± 18

    193 ± 28

    TM [°C]

    0.946triclinic

    0.922rhombic

    6.10.93trigonal

    4.20.931hexagonal

    8.40.94monoclinic

    ΔMH [kJ/mol]density [g/cm3]Crystal structure

    i.e. polypropylene

    5.2. Physical Properties of Pure Polymers

  • 36Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    Estimation of degree of crystallinity

    ( )1

    crys amorph crys amorph

    crys amorph crys crys amorph amorph

    crys amorph cry

    cryscrys crys crys

    crys amorph

    amorphcrys

    c

    s am

    rys amorp

    orph

    crys amo

    h

    rph

    V V V m m m

    m m V VmV V V

    V V

    V V

    Vφ φ φ

    ρ ρφ

    ρ ρ

    ρ ρρ

    ρ ρ ρ≡+

    −=

    = + = +

    + += = =

    + +

    = + −

    →Measurement of density ρ (flotation experiments)

    available from the crystal structure

    transformation in amorphous state via cooling down very rapidly; measurement of the density

    ordensity measurements of polymer and extrapolation to crystallization temperature

    5.2. Physical Properties of Pure Polymers

  • 37Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    semicrystalline polymers consist of a portion of amorphous properties and a portionof crystalline properties

    5.2. Physical Properties of Pure Polymers

    at glass transition temperature: the amorphous portion will “melt” or “soften”the crystalline portion remain “solid” up to the melting temperature

    semicrystalline polymers can be treated as a solid below Tgcan be treated as composite consisting of solid and rubbery phase

    above Tg but below Tmcan be treated as fluid above Tm

  • 38Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    Approximations: ( )( )

    ( ) (298 ) 0.106 0.003 / /( )

    ( ) (298 ) 0.64 0.0012 / /( )

    S SP P

    L LP P

    c T c K T K J molK

    c T c K T K J molK

    ≈ +

    ≈ +

    5.2. Physical Properties of Pure Polymers

    polypropylene

    Isobaric heat capacitiescP [J/(molK)]

    50

    100

    T [K]

    Tg Tm

    100 200 300 400 500

    amorphous

    crystalline

  • 39Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    polypropylene

    Enthalpy and Entropy

    ( 0) ( 0)AACh T h TΔ → = →from T→0 to Tg both lines run parallel ( 0) ( ) 0AC AC gh T h T T T TΔ → = Δ → ≤ ≤

    ( )( )( )

    SL M

    AC M

    M M

    h Th Th T

    Δ= Δ= Δ

    heat offusion

    5.2. Physical Properties of Pure Polymers

    amorphouscrystalline

    h [kJ/mol]

    0

    10

    20

    30

    40

    T [K]100 200 300 400 500

    Tg Tm

  • 40

    100 200 300 400 500

    Polymer Thermodynamics5. Thermodynamics of Pure Polymers

    Enthalpy and Entropy

    0

    0

    0

    0

    ( ) ( )

    ( ) ( )

    T

    P p iiP T

    TpP

    iiP T

    h c h T h T c dT hT

    cs c s T s T dT sT T T

    ∂⎛ ⎞ = → = + + Δ⎜ ⎟∂⎝ ⎠

    ∂⎛ ⎞ = → = + + Δ⎜ ⎟∂⎝ ⎠

    ∑∫

    ∑∫first-order phase transitions

    5.2. Physical Properties of Pure Polymers

    polypropylene

    Enthalpy and Entropy

    amorphouscrystalline

    h [kJ/mol]

    0

    10

    20

    30

    40

    T [K]

  • 41Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    Example: poly (ethylene terephthalate)1) molar heat capacity of the solid and liquid

    polymer at 25°Cgroup – contribution method

    M=n*192.2g/mol

    table book: i.e. D.W. van Krevelen, Properties of Polymers, Elsevier 1990.

    (298 ) 221.5 /( )

    (298 ) 304.0 /( )

    SPLP

    c K J molK

    c K J molK

    =

    =exp. value for solid polymer: 223.9 J/(molK)exp. value for liquid polymer: 321.2 J/(molK)

    5.2. Physical Properties of Pure Polymers

  • 42Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    Example: poly (ethylene terephthalate)1) molar heat capacity of the solid and liquid

    polymer at 25°C

    exp. value for solid polymer: 223.9J/(molK)

    5.2. Physical Properties of Pure Polymers

    0 1(298 ) 8.985304* 20.920972* 7.304602( 5 )S VP ROT SiJc K N N

    molKχ χ⎡ ⎤= + + +⎣ ⎦

    NROT= rotation degree

    for PET0 19.9663 4.2152 7 0

    (298 ) 228.9 /( )

    VROT Si

    SP

    N N

    c K J molK

    χ χ= = = =

    → =

    topological method

  • 43Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    Example: poly (ethylene terephthalate)1) molar heat capacity of the solid and liquid

    polymer at 25°C

    exp. value for liquid polymer: 321.2J/(molK)

    5.2. Physical Properties of Pure Polymers

    0 08.162061* 23.215188*(298 )

    8.47737 5.350331

    VLP

    BBrot SGrot

    Jc KmolKN N

    χ χ⎡ ⎤+= ⎢ ⎥+ +⎣ ⎦

    NBBrot= rotation degree into backboneNSGrot= rotation degree into side groups

    for PET0 09.9663 7.3566 7 0

    (298 ) 311.5 /( )

    VBBrot SGrot

    LP

    N N

    c K J molK

    χ χ= = = =

    → =

    topological method

  • 44Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    Example: poly (ethylene terephthalate)2) molar heat capacity of the solid polymer at 277°C

    (spinning temperature)

    (298 ) 304 /( )LPc K J molK=

    ( )( )

    ( ) (298 ) 0.64 0.0012 / /( )

    304 0.64 0.0012*550 /(550 ) 395.2 /( )

    L LP P

    LP

    c T c K T K J molK

    K K Jc K J molK

    molK

    ≈ +

    += =

    exp. value for liquid polymer at 550K: 386.3J/(molK)

    5.2. Physical Properties of Pure Polymers

  • 45Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    Example: poly (ethylene terephthalate)3) heat of fusion at melting temperature

    (TM=543K)

    exp. value: 26.9 kJ/(molK)25 /M h kJ molΔ =

    5.2. Physical Properties of Pure Polymers

  • 46Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    Example: poly (ethylene terephthalate)4) enthalpy difference between the solid and the

    rubbery form at the glass transition temperature(TM=543K, Tg=343K)

    0

    0( ) ( )T

    pT

    h T h T c dT= + ∫general:application:

    ( )

    0

    ( ) ( ) ( )

    ( ) 25 /

    g g

    M M

    M g

    T TL S

    M g M M M p M M P PT T

    M M

    T T T T

    h T h T c dT h T c c dT

    h T kJ mol

    = =

    Δ = Δ + Δ = Δ + −

    Δ =

    ∫ ∫

    ( )( )

    ( ) (298 ) 0.106 0.003 / /( )

    ( ) (298 ) 0.64 0.0012 / /( )

    S SP P

    L LP P

    c T c K T K J molK

    c T c K T K J molK

    ≈ +

    ≈ +

    with

    5.2. Physical Properties of Pure Polymers

  • 47Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    Example: poly (ethylene terephthalate)4) enthalpy difference between the solid and the

    rubbery form at the glass transition temperature(TM=543K, Tg=343K)

    ( )( )

    ( )( )

    ( ) ( )2 2

    (298 ) 0.64 0.0012 / /( )( ) ( )

    (298 ) 0.106 0.003 / /( )

    ( ) ( )

    (298 )*0.64 (298 )*0,106

    (298 )*0.0012 / (298 )*0.003 /2

    g

    M

    LTP

    M g M M ST P

    M g M M

    L SP P g M

    g ML SP P

    c K T K J molKh T h T dT

    c K T K J molK

    h T h T

    c K c K T T

    T Tc K T K c K T K

    ⎛ ⎞+Δ = Δ + ⎜ ⎟

    ⎜ ⎟− +⎝ ⎠Δ = Δ

    ⎡ ⎤− −⎢

    + ⎢ −⎢ + −⎢⎣ ⎦

    /( )

    ( ) 17.34 /M g

    J molK

    h T kJ mol

    ⎥⎥⎥⎥

    Δ =

    5.2. Physical Properties of Pure Polymers

  • 48Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    Example: poly (ethylene terephthalate)5) entropy difference between the solid and the

    rubbery form at the glass transition temperature(TM=543K, Tg=343K)

    0

    0( ) ( )T

    p

    T

    cs T s T dT

    T= + ∫general:

    application:

    ( )0

    ( ) ( ) ( )g g

    M M

    M g

    L ST TP PM p

    M g M M M MT T

    T T T T

    c ccs T s T dT s T dT

    T T

    = =

    −ΔΔ = Δ + = Δ +∫ ∫

    ( )( )

    ( ) (298 ) 0.106 0.003 / /( )

    ( ) (298 ) 0.64 0.0012 / /( )

    S SP P

    L LP P

    c T c K T K J molK

    c T c K T K J molK

    ≈ +

    ≈ +

    ( ) ( ) / 46 /( )M M M M Ms T h T T J molKΔ = Δ =with

    5.2. Physical Properties of Pure Polymers

  • 49Polymer Thermodynamics5. Thermodynamics of Pure Polymers

    Example: poly (ethylene terephthalate)5) entropy difference between the solid and the rubbery form at the glass transition

    temperature (TM=543K, Tg=343K)

    ( )( )

    ( )

    (298 ) 0.64 0.0012 /

    (298 ) 0.106 0.003 /( ) ( )

    (298 )*0.64 (298 )*0.106( ) ( )

    (298 )*0.0012 (298 )*0.003

    (

    g

    M

    g

    M

    LP

    T SP

    M g M MT

    L SP PT

    M g M MT L S

    P P

    M g

    c K T K

    c K T K Js T s T dTT molK

    c K c KJTs T s T dT

    molKc K c K

    s T

    ⎛ ⎞+⎜ ⎟⎜ ⎟− +⎝ ⎠Δ = Δ +

    ⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟

    Δ = Δ + ⎝ ⎠⎜ ⎟⎜ ⎟⎜ ⎟+ −⎝ ⎠

    Δ

    ( )

    ( )( )

    ) ( ) (298 )*0.64 (298 )*0.106 ln

    (298 )*0.0012 (298 )*0.003 27.39 /( )

    gL SM M P P

    M

    L SP P g M

    T Js T c K c KT molKJc K c K T T J molK

    molK

    ⎛ ⎞= Δ + − ⎜ ⎟

    ⎝ ⎠

    + − − =

    5.2. Physical Properties of Pure Polymers

  • 50Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    Example: poly (ethylene terephthalate)

    07.9Free enthalpy [kJ/mol]

    yesnoEquilibrium

    4627.39Entropy [J/(molK)]

    2517.34Enthalpy [kJ/mol]

    TM=543 KTg=343 KTemperature [K]MeltingGlass transitionQuantity

    summary

    The knowledge of the chemical structure, glass transition temperature and melting temperatureallows the estimation of thermodynamic quantities,like enthalpy and entropy.

    5.2. Physical Properties of Pure Polymers

  • 51Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    Coefficient of volumetric thermal expansion, a, at 25°C

    2.9 10-4PE8 10-5PVC7 10-5PS

    3.7 10-4CS2

    3.8 10-7Quarzglasa [K-1]Material

    Reason: strong covalent bonds within the polymer chainweak van-der Waals forces between polymer chains

    a depends strongly on the chemical bond strength

    1( )P

    VTV T

    α ∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠

    5.2. Physical Properties of Pure Polymers

    Impact on: injection molding and extrusion process

  • 52Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    Coefficient of volumetric thermal expansion

    1( )P

    VTV T

    α ∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠ 3αβ ≡

    molar volume v W P Tv v v v= + +vW is the space truly occupied by its molecules, often called van der Waals volume,

    it is impenetrable to other moleculesvP packing volume = amount of additional “empty space” due to packing constraints

    imposed by the sizes and shapes of moleculesvT expansion volume resulting from the thermal motions of molecules;

    is the difference between the molar volume at the temperature of interest and themolar volume at absolute zero temperature

    empirical correlation

    0.15 11.42 0.159.47

    WW

    Pg g g

    vT vv vT T T T T

    α⎛ ⎞⎛ ⎞ ∂⎛ ⎞= + → = → =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ∂ +⎝ ⎠⎝ ⎠⎝ ⎠

    Coefficient of linear thermal expansion

    Tg = glass transition temperature

    5.2. Physical Properties of Pure Polymers

  • 53Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    Estimation of vWliterature: J. Bicerano, Prediction of Polymer Properties, Marcel Dekker, 1993.

    5.2. Physical Properties of Pure Polymers

    ( )3

    0 13.861803* 13.748435* VWcmvmol

    χ χ= +or

    ( )0 1 3

    ( )

    2.28694* 17.14057* 1.369231 /

    0.5 2 3 42.5 2 7 8 4

    VW vdW

    vdW menomar mear alamid OH cyanide carbonate cyc

    fused C C Si S Br

    v N cm mol

    N N N N N N N NN N N N N

    χ χ

    = − −

    = + +

    = + + + + − −

    − + + − −

    number of methyl groups attached to non-aromatic ring

    number of methyl groups attached to aromatic ring

    number of non-aromatic rings with no double-bond

    number of rings in fused ring structures

  • 54Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    Concept of Simha and Boyer 19625.2. Physical Properties of Pure Polymers

    ( ) ( 0) 0.001298

    ( ) ( 0) ( ) ( 0)298 2980.00045

    ( ) ( ) 0.00055

    ( 0) 1.3 (298 ) 1.435(298 ) 1.6

    L LW

    g g c c

    W

    g g c W g

    c w c w

    g w

    v T v T v

    v T v T v T v T

    vv v T v T v T

    v T v v K vv K v

    − →≈

    − → − →=

    ≈Δ = − ≈

    → ≈ ≈≈

    V

    TTg TM

    VW

    crystalline solid

    glass

    crystallization range

    undercooledliquid

    liquid

    excess volume

    VCVC

    Vg

    VL

    ΔVg

    ΔVm

  • 55Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    Tait-relation (1888)( 0, ) ( , ) ln 1

    ( 0, ) ( )v P T v P T PC

    v P T B T⎛ ⎞= −

    = +⎜ ⎟= ⎝ ⎠

    C dimensionless constant B(T) dimension of pressure v [cm3/g]

    Simha-relation (1973)( )( )

    ( ) ( )1 2

    20 1 2

    0.0894 ( ) exp 273.15

    (0, ) 273.15 273.15

    C B T b b T K

    V T A A T A T

    = = − −

    = + − + −

    4.083.16polycarbonate4.142.44polystyrene

    4.151.91polyisobutylene

    5.11.99polyethylene

    10-3 b2 [°C]103 b1 [bar]polymer

    J. Appl. Phys. 42 (1971) 4592.

    5.2. Physical Properties of Pure Polymers

  • 56

    100 120 140 160 180 200

    0,98

    1,00

    1,02

    1,04

    Polystyrene

    V [cm3/g]=0.92351+0.00053158 T/[°C]

    V [c

    m3 /g

    ]

    T [°C]

    Polymer Thermodynamics5. Thermodynamics of Pure Polymers

    Example: polystyrene

    ( ) ( )3 7 3 7 3 20 1 28 3 1

    1 2

    0.000938 / 3.31*10 / 6.69*10 /

    2.5*10 4.18*10 0.0894

    A cm g A cm Kg A cm K g

    b Pa b K C

    − −

    − −

    = = =

    = = =

    P=0.1 MPa

    5.2. Physical Properties of Pure Polymers

  • 57Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    Cohesive Energy ecohCohesive Energy eCoh: internal energy of the material if all of its intermolecular

    forces are eliminatedCohesive Energy Density εCoh: is the energy required to break all intermolecular

    physical links in a unit volume of material

    CohCoh

    ev

    ε =

    Cohesive Energy plays a role in the prediction of many other physical propertiessolubility parameterglass transition temperaturesurface tensiondielectric constantmechanical propertiespermeability

    low molecular weight substances

    0VL

    Coh VL i VLe h P v= Δ − ΔProblem: polymers do not evaporate

    5.2. Physical Properties of Pure Polymers

  • 58Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    Cohesive Energy ecoh

    ( )( )( )

    2

    0 0 1 1 3

    2

    (298 )

    97.95 2

    134.61

    Coh

    V V

    Si Br Cyc

    Fev K

    Jcmwhere FmolN N N

    χ χ χ χ

    =

    ⎡ ⎤− + + +⎢ ⎥=⎢ ⎥+ − −⎣ ⎦

    F molar attraction constantv molar volume

    1. Possibility

    5.2. Physical Properties of Pure Polymers

  • 59Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers

    Cohesive Energy ecoh

    2. Possibility Coh D P He e e e= + +

    dispersioninteraction

    polar interaction

    hydrogen bonding

    5.2. Physical Properties of Pure Polymers

    3. Possibility

    ( ) ( )( )0 0 1 110570.9 9072.8 2 1018.2V VCoh VKH Je N molχ χ χ χ= − + − +NVKH group contribution method

    Hanson method

  • 60Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers5.3. Polydispersity

    Prop

    erty

    molar mass

    Some thermic (i.e. expansion coefficient) and some mechanical properties (i.e. loss modulus) depend for M>MC only very slightly on molecular weight.The critical molar weight, MC, depends on the type of polymers.

    i.e. PE MC≈20000g/mol PET MC ≈ 5000 g/mol

    MC

    All quantities of the second law of thermodynamics (entropy, free enthalpy, free energy) depends on the molecular weight and on the molecular weight distribution.

  • 61Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers5.3. Polydispersity

    Estimation of molecular weight – thermodynamic method→ use colligative properties → membrane osmometry

    ,

    ,

    ,

    ,1

    B

    spB B BB

    B B

    sp B

    sp Bsp B

    B

    c RTcn mc

    V M V Mc

    RT ideal diluted s

    RT B c polymer solutionc M

    olution

    M

    M

    Π=

    =

    Π ⎛ ⎞= + +⎜ ⎟

    = =

    Π

    =

    Van't Hoff`sche equation

    B second osmotic virial coefficient

  • 62Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers5.3. Polydispersity

    Estimation of molecular weight – thermodynamic method→ use colligative properties → membrane osmometry

    solution

    semipermeable membrane

    solvent

    The difference in height Δh corresponds to the osmotic pressure π.

  • 63Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers5.3. Polydispersity

    Estimation of molecular weight – thermodynamic method→ use colligative properties → membrane osmometry

    ,,

    1 sp Bsp B

    RT B cc M MΠ ⎛ ⎞= + +⎜ ⎟

    ⎝ ⎠…

  • 64Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers5.3. Polydispersity

    Estimation of molecular weight – thermodynamic method→ use colligative properties → vapor pressure osmometry

    solution pure solvent

    T2, PLV T1,

    Two thermistors are located in a chamber saturated with pure solvent vapor. The difference between PLV and caused a new equilibrium between the two drops. Solvent from the vapor phase will condense on the thermistor connected to the solution. The formed condensation heat leads to a measurable temperature difference DT=T2-T1.

    0LVAP

    0LVAP

  • 65Polymer Thermodynamics5. Thermodynamics of Pure Polymers

    5.3. PolydispersityEstimation of molecular weight – thermodynamic method→ use colligative properties → vapor pressure osmometry

    syringe

    Al-block for thermostatingthe syringes

    thermistors

    measurement cell (Al)

    windowglass container for solvent

    sealing

    vapor pressure osmometry

    1. saturation of sample chamberwith solvent vapor

    2. filling with solution and puresolvent using thermostatic syringes

    3. measurement of ΔT

  • 66Polymer Thermodynamics5. Thermodynamics of Pure Polymers

    data analysis of vapor pressure osmometry experiments:vapor pressure depletion:

    0

    0

    0

    VL VLA

    VLA BB B B

    BVLA A B A B A

    P P P

    P mP n n mx PP n n M n M n

    Δ = −

    Δ= = ≈ = → Δ =

    temperature dependence of vapor pressure – Clausius-Clapeyron equation

    ( )0 0 0 0

    0 0 0 0

    0

    00 0

    0 0 0 0 0

    0 0 0 0

    VL A VL A VL A VL AVL VL V VL VVL V LA A A A AA A

    VL VL VL VVL A A B B A A A

    VL V VLA A B A A

    B AB

    A

    h h h h TdP P PdT T v T v T T vT v v

    m Kh T P m m P T vT v M n

    MTn h T

    Δ Δ Δ Δ ΔΔ= = ≈ ≈ → Δ =

    Δ Δ−

    Δ Δ= ==

    Δ Δ Δ→

    → for the estimation of molecular weight is only one experimental value isnecessary

    5.3. Polydispersity

  • 67Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers5.3. Polydispersity

    Wi(M

    ) 1

    1

    ( )

    ( )

    i ik

    iik

    ii

    n W M M

    n n

    n W M M

    =

    =

    = Δ

    =

    = Δ

    ΔM

    molecular weight

  • 68Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers5.3. Polydispersity

    2

    1 2

    1

    ,

    0

    ( )

    ( )

    M

    M MM

    n W M dM

    n W M dM∞

    =

    =

    W(M

    )

    molecular weight

    M1

    M2

    extensive

    intensive

    2

    1 2

    1

    ,

    0

    ( )

    1 ( )

    M

    M MM

    x w M dM

    w M dM∞

    =

    =

  • 69Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers5.3. Polydispersity

    differential distribution function cumulative distribution function

    0

    ( ) ( )x

    F x f x dx= ∫

  • 70Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers5.3. Polydispersity

    Characterization of the distribution function using moments

    ( ) ( )

    1 0

    ( )k

    n n n ni i

    iM w M M M w M M dM

    =

    = Δ ⇔ =∑ ∫

    n=0 normalization condition

    ( (0)

    1

    0)

    0

    1 ( ) 1k

    ii

    M w M M w M dM∞

    =

    = Δ = ⇔ = =∑ ∫

    n=1 average value

    ( ) ( )

    1 0

    1 1 ( )k

    i ii

    M w M M M w M MdM∞

    =

    = Δ ⇔ =∑ ∫

  • 71Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers5.3. Polydispersity

    ( ) ( )

    1 0

    ( )k

    n n n ni i

    iM w M M M w M M dM

    =

    = Δ ⇔ =∑ ∫

    n=2 broadness

    n=3 asymmetry

    ( ) ( )

    1 0

    2 2 2 2( )k

    i ii

    M w M M M w M M dM∞

    =

    = Δ ⇔ =∑ ∫

    ( ) ( )

    1 0

    3 3 3 3( )k

    i ii

    M w M M M w M M dM∞

    =

    = Δ ⇔ =∑ ∫

    Characterization of the distribution function using moments

  • 72Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers5.3. Polydispersity

    Relation between the moments and experimental quantities

    ( ) ( )

    1 0

    ( )k

    n n n ni i

    i

    M w M M M w M M dM∞

    =

    = Δ ⇔ =∑ ∫

    number-average molar mass

    (1)1

    (0)1

    1

    (1)0

    (0)0

    0

    ( )( )

    ( )

    k

    i i ki

    n i iki

    ii

    n

    w M MMM w M MM w M

    w M MdMMM w M MdMM

    w M dM

    =

    =

    =

    Δ= = = Δ

    Δ

    = = =

    ∑∑

    ∫∫

    Experiment:methods, which are proportionalto the number of molecules

    colligativeproperties

    vapor pressure osmosesmembrane osmoses

  • 73Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers5.3. Polydispersity

    ( ) ( )

    1 0

    ( )k

    n n n ni i

    i

    M w M M M w M M dM∞

    =

    = Δ ⇔ =∑ ∫

    mass-average molar mass

    2 2(2)

    1 1(1)

    1

    1

    2 2(2)

    0 0(1)

    1

    0

    ( ) ( )

    ( )

    k k

    i i i ii i

    w kn

    i ii

    wn

    w M M w M MMMM Mw M M

    w M M dM w M M dMMMM M

    w M M dM

    = =

    =

    ∞ ∞

    Δ Δ= = =

    Δ

    = = =

    ∑ ∑

    ∫ ∫

    Experiment:methods, which are proportionalto the mass of molecules

    light scattering

    Relation between the moments and experimental quantities

  • 74Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers5.3. Polydispersity

    ( ) ( )

    1 0

    ( )k

    n n n ni i

    i

    M w M M M w M M dM∞

    =

    = Δ ⇔ =∑ ∫

    z-average molar mass 3 3(3)1 1

    (2)2

    1

    3 3(3)

    0 0(2)

    2

    0

    ( ) ( )

    ( )

    k k

    i i i ii i

    z kw n

    i ii

    zw n

    w M M w M MMMM M Mw M M

    w M M dM w M M dMMMM M M

    w M M dM

    = =

    =

    ∞ ∞

    Δ Δ= = =

    Δ

    = = =

    ∑ ∑

    ∫ ∫

    Experiment:ultracentrifugeestimation via the distribution

    GPC

    Relation between the moments and experimental quantities

  • 75Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers5.3. Polydispersity

    ( ) ( )

    1 0

    ( )k

    n n n ni i

    i

    M w M M M w M M dM∞

    =

    = Δ ⇔ =∑ ∫

    viscosity-average molar mass 1/ 1/( )

    (0)1

    1/1/( )

    (0)0

    ( )

    0,5 0,9

    a aa ka

    i ii

    aaaa

    MM w M MM

    MM w M M dMM

    η

    η

    α

    =

    ⎛ ⎞ ⎛ ⎞= = Δ⎜ ⎟ ⎜ ⎟

    ⎝ ⎠⎝ ⎠

    ⎛ ⎞⎛ ⎞= = ⎜ ⎟⎜ ⎟

    ⎝ ⎠ ⎝ ⎠≤ ≤

    ∫Experiment:rheology

    Staudingerindex

    Relation between the moments and experimental quantities

  • 76Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers5.3. Polydispersitydefinition of uniformity

    polydispersity D

    ( )

    2

    21

    1

    0

    1

    0

    k

    i i ki

    i in i

    nn n

    n w

    w

    n

    z

    n z

    w

    n

    w

    MDM

    M

    w M Mw M M

    MM M

    M M M M

    Ufor U monodispers polymer

    M M

    UM

    M M

    η

    η

    =

    =

    ΔΔ

    = =

    =

    = − ≤ ≤

    ⇒ ≥=

    ⇒ = = =

    ∑∑

    uniformity U

  • 77Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers5.3. Polydispersity

    0 200 400 600 800 1000 1200 1400 1600 18000,0

    0,5

    1,0

    1,5

    2,0

    2,5

    103 W

    (M)

    M [g/mol]

    0,097942878

    800blue curve

    0,035U854Mz

    828Mw

    800Mn

    red curvequantity

  • 78Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers5.3. Polydispersity

    molar weight distributionGPC field-flow-fractionationMALDI -TOF

    average values of distributionnumber-average: exp. methods which are proportional to the number of

    moleculesend-group analysis, colligative properties

    mass-average: exp. methods which are proportional to the mass of moleculesLight-scattering, SANS, SAXS

    z-average: ultracentrifugeviscosity-average: rheology

  • 79Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers5.3. Polydispersity

    GPC – gel permeation chromatographySize-Exclusion Chromatography (SEC)

  • 80Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers5.3. Polydispersity

    ( )22

    1( ) exp22

    M Mw M

    σσ π

    ⎛ ⎞−⎜ ⎟= −⎜ ⎟⎝ ⎠

    normal distribution function= bell curve= probability density functionfor random distributed variables(i.e. to play dice)

    C.F. Gauß (1777-1855)

    0 500 1000 1500 20000,0

    0,2

    0,4

    0,6

    0,8

    1,0

    1,2

    1,4

    1,6

    1,8

    103 W

    (M)

    M [g/mol]

    symmetrical distribution

    M average values standard derivation

  • 81Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers5.3. Polydispersity

    Schulz-Flory-Distribution( ) exp

    ( )

    kkk r rw r kk r r r

    ⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟Γ ⎝ ⎠ ⎝ ⎠

    r – segment number polymer molecules will be divided into segments of equal size

    J.P. Flory (1910-1985) Nobel Prize 1974

    description of kinetics of chain-growth polymerization (statistical, anionic and cationic polymerization)

    most probable distribution

    w(r

    )

    segment numberhttp://nobelprize.org

  • 82Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers5.3. Polydispersity

    Calculation of moments n=0 normalization condition

    ( )

    ( )

    (0)

    0 0 0

    (0)

    0

    10

    (0)

    ( ) exp exp( ) ( )

    exp( )

    ( 1)exp

    ( 1( )

    k kk k

    kk

    mm

    k

    k r r k r rM w r dr k dr k drk r r r k r r r

    r dr k rsubstitution x dx dr rdx M x kx dxr r k r

    mtextbook of mathematics x axa

    k r kMk r

    ∞ ∞ ∞

    +

    ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟Γ Γ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

    = = = → = −Γ

    Γ +− =

    Γ +=

    Γ

    ∫ ∫ ∫

    1

    ) ( 1) ( ) 1( ) ( )k

    k k kk k k k k+

    Γ + Γ= = =

    Γ Γ

    ( )( ) 1 !( 1) ( )x x x Nx x x

    Γ = − ∈

    Γ + = Γ

    Distribution function fulfills the normalization condition.

  • 83Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers5.3. Polydispersity

    Schulz-Flory-distribution

    Calculation of moments n=1 average value

    ( )

    ( ) ( )

    (1)

    0 0 0

    (1)

    0

    2(1) 1

    0 0

    ( ) exp exp( ) ( )

    exp( )

    ( 1)exp exp( )

    k kk k

    kk

    kk m

    k r r r k r rM rw r dr k dr r k drk r r r k r r r

    r dr k rsubstitution x dx dr rdx M xrx kx dxr r k r

    k r mM x kx dx textbook x axk r a

    ∞ ∞ ∞

    ∞ ∞+

    ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟Γ Γ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

    = = = → = −Γ

    Γ += − − =

    Γ

    ∫ ∫ ∫

    ∫ ∫ 1

    (1)1 1 2 2 2

    (1)

    ( 1 1) ( 2) ( 1) ( 1) ( 1) ( )( ) ( ) ( ) ( )( 1)

    m

    k

    k

    k r k r k r k k r k k kMk k k k k k k k

    r kMk

    +

    + +

    Γ + + Γ + + Γ + + Γ= = = =

    Γ Γ Γ Γ+

    =

    ( )( ) 1 !( 1) ( )x x x Nx x x

    Γ = − ∈

    Γ + = Γ

  • 84Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers5.3. Polydispersity

    Schulz-Flory-distribution

    calculation of moments n=2 broadness

    ( )

    ( ) ( )

    2(2) 2 2

    0 0 0

    (2) 2 2

    0

    2(2) 2

    0 0

    ( ) exp exp( ) ( )

    exp( )

    (exp exp( )

    k kk k

    kk

    kk m

    k r r r k r rM r w r dr k dr r k drk r r r k r r r

    r dr k rsubstitution x dx dr rdx M x r x kx dxr r k r

    k r mM x kx dx textbook x axk

    ∞ ∞ ∞

    ∞ ∞+

    ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟Γ Γ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

    = = = → = −Γ

    Γ= − − =

    Γ

    ∫ ∫ ∫

    ∫ ∫ 12 2 2

    (2)2 1 2 1 3

    2 2 2(2)

    3 3 2

    1)

    ( 2 1) ( 2 1) ( 2) ( 2)( ) ( ) ( )

    ( 2)( 1) ( 1) ( 2)( 1) ( ) ( 2)( 1)( ) ( )

    m

    k

    k

    a

    k r k r k r k kMk k k k k k

    r k k k r k k k k r k kMk k k k k

    +

    + + +

    +

    Γ + + Γ + + + Γ += = =

    Γ Γ Γ

    + + Γ + + + Γ + += = =

    Γ Γ

    ( )( ) 1 !( 1) ( )x x x Nx x x

    Γ = − ∈

    Γ + = Γ

  • 85Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers5.3. Polydispersity

    Schulz-Flory-distribution

    Calculation of moments n=2 asymmetry

    ( )

    ( ) ( )

    3(3) 3 3

    0 0 0

    (3) 3 3

    0

    3(3) 3

    0 0

    ( ) exp exp( ) ( )

    exp( )

    (exp exp( )

    k kk k

    kk

    kk m

    k r r r k r rM r w r dr k dr r k drk r r r k r r r

    r dr k rsubstitution x dx dr rdx M x r x kx dxr r k r

    k r mM x kx dx textbook x axk

    ∞ ∞ ∞

    ∞ ∞+

    ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟Γ Γ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

    = = = → = −Γ

    Γ= − − =

    Γ

    ∫ ∫ ∫

    ∫ ∫ 13 3 3

    (3)3 1 3 1 4

    3 3(3)

    4 3

    1)

    ( 3 1) ( 3 1) ( 3) ( 3)( ) ( ) ( )

    ( 3)( 2)( 1) ( ) ( 3)( 2)( 1)( )

    m

    k

    k

    a

    k r k r k r k kMk k k k k k

    r k k k k k r k k kMk k k

    +

    + + +

    +

    Γ + + Γ + + + Γ += = =

    Γ Γ Γ

    + + + Γ + + += =

    Γ

    ( )( ) 1 !( 1) ( )x x x Nx x x

    Γ = − ∈

    Γ + = Γ

  • 86Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers5.3. Polydispersity

    Schulz-Flory-distributionCalculation of moments n=-1

    ( )

    ( )

    1( 1) 1 1

    0 0 0

    ( 1) 1 1

    0

    ( 1) 1

    0 0

    ( ) exp exp( ) ( )

    exp( )

    exp exp( )

    k kk k

    kk

    kk m

    k r r r k r rM r w r dr k dr r k drk r r r k r r r

    r dr k rsubstitution x dx dr rdx M x r x kx dxr r k r

    kM x kx dx textbook xk r

    ∞ ∞ ∞−− − −

    ∞− − −

    ∞ ∞− −

    ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟Γ Γ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

    = = = → = −Γ

    = −Γ

    ∫ ∫ ∫

    ∫ ∫ ( ) 1

    ( 1)1 1

    ( 1)

    ( 1 1) ( ) 1( ) ( )

    m

    k k

    k k

    maxa

    k k k kMk r k k r k r

    +

    −− +

    Γ +− =

    Γ − + Γ= =

    Γ Γ

    ( )( ) 1 !( 1) ( )x x x Nx x x

    Γ = − ∈

    Γ + = Γ

    The characterization variable segment number requires the (-1) moment.

  • 87Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers5.3. Polydispersity

    calculation of experimental available average values number-average

    (1)0

    (0)0

    0

    ( )( )

    ( )n

    w M MdMMM w M MdMM

    w M dM

    ∞= = =∫

    ∫∫

    characterization variable: molar mass

    characterization variable: segment number

    (0)0

    ( 1)

    0

    ( )1

    1/( )n

    w r drMr rM rw r dr

    r

    ∞−= = = =∫

  • 88Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers5.3. Polydispersity

    calculation of experimental available average values weight-average

    characterization variable: molar mass

    characterization variable: segment number

    2(2)

    0(1)

    0

    ( )

    ( )w

    w M M dMMMM

    w M MdM

    ∞= =∫

    (1)0

    (0)

    0

    ( )( 1)( 1)

    ( )

    nw

    w r rdrr kM r kr

    M k kw r dr

    ++= = = =

  • 89Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers5.3. Polydispersity

    calculation of experimental available average values z-average

    characterization variable: molar mass

    characterization variable: segment number

    3(3)

    0(2)

    2

    0

    ( )

    ( )z

    w M M dMMMM

    w M M dM

    ∞= =∫

    22(2) 2

    0(1)

    0

    ( 2)( 1)( )( 2)

    ( 1)( )

    z

    r k kw r r drM r kkr r kM k

    w r rdr k

    + ++

    = = = =+

  • 90Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers5.3. Polydispersity

    Uniformity U

    1Uk

    = nr r=

    ( )(1/ 1) 11/

    nw n

    r Ur r UU

    += = +

    ( )(1/ 2) 1 21/z

    r Ur r UU

    += = +

    After the estimation of the average values of the segment-molar distributionfunction (rn, rw or rz) the parameters U respectively k can be calculated.

    The parameters U (respectively k) can also be estimated using kinetic data.

  • 91Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers5.3. Polydispersity

    0 200 400 600 800 10000,0

    0,5

    1,0

    1,5

    2,0

    2,5

    3,0

    3,5

    4,0

    rn=100 k=1rw=200 rz=300

    103 w

    (r)

    r

    Schulz-Flory-distribution

  • 92Polymer Thermodynamics5. Thermodynamics of Pure Polymers

    5.3. Polydispersitygeneral log-normal distribution

    ( )22

    ln( ) ln( )1( ) expr r

    w rAAr π

    ⎛ ⎞−= −⎜ ⎟

    ⎜ ⎟⎝ ⎠

    ( )2 ln Aσ =

    ( )21 2

    ln( ) ln( )1( ) expz

    z

    r rrw rr y AA π +

    ⎛ ⎞−= −⎜ ⎟

    ⎜ ⎟⎝ ⎠

    special cases: z=-1 y=1 Wesslau-distribution

    20 exp( / 2)z y σ= = Lansing-distribution

    ( )222

    ln( ) ln( )1 exp( / 2)( ) expr r

    w rr AAσ

    π

    ⎛ ⎞−= −⎜ ⎟

    ⎜ ⎟⎝ ⎠

    ( )( )

    ( )

    2

    21

    ln( ) ln( )1( ) expln 2 2 ln

    z

    z

    r rrw rr yσ π σ+

    ⎛ ⎞−= −⎜ ⎟

    ⎜ ⎟⎝ ⎠

  • 93Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers5.3. Polydispersity

    Wesslau-distribution

    ( )22

    ln( ) ln( )1( ) expr r

    w rAAr π

    ⎛ ⎞−= −⎜ ⎟

    ⎜ ⎟⎝ ⎠

    ( )( )( )

    2

    2

    2

    exp / 4

    exp / 4

    exp 3 / 4

    n

    w

    z

    r r A

    r r A

    r r A

    = −

    =

    =

    suitable for high polydispersity (i.e. PE)

  • 94Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers5.3. PolydispersityPoisson-distribution

    ( ) 11 exp(1 )( )( )

    Pn nP Pw P

    P

    −− −=

    Γ

    2

    1 11wn n n

    PP P P

    = + −

    suitable for polymers with small polydispersity

    P = degree of polymerization

    In the limiting case of high molar mass the uniformity goes to zero.

    polymers produced with anionic or living polymerization

  • 95Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers5.3. Polydispersity

    degree of polymerization

    Poisson distribution

    Schulz-Flory-distribution

    102

    W(P

    )

  • 96Polymer Thermodynamics

    5. Thermodynamics of Pure Polymers5.3. Polydispersity

    0 200 400 600 800 1000 1200 14000

    2

    4

    6

    8

    W(M

    )

    M [kg/mol]

    variation of molar masses and of molar mass distribution functionlow molecular weight (oligomere) → polymer → ultra-high molecular weight

    small distribution → broad distribution → mono-modal → bimodal → multimodal