Lecture 5: HBT AC properties

47
Lecture 5, Slide # 1 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56 Lecture 5: HBT AC properties

Transcript of Lecture 5: HBT AC properties

Page 1: Lecture 5: HBT AC properties

Lecture 5, Slide # 1 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

Lecture 5: HBT AC properties

Page 2: Lecture 5: HBT AC properties

Lecture 5, Slide # 2 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

“Normal active” bias

•  E-B forward bias (Vb>Ve)

•  C-B reverse bias (Vc>Vb)

•  Ice = 100 Ibe=βIbe

Ib

Ic

Ie

Like a diode.

Page 3: Lecture 5: HBT AC properties

Lecture 5, Slide # 3 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

Equivalent circuit Ic

Ib

Ie

kTeVse

BEeII /=α

B

pos XAeDn

I ≡

( ) kTeVskTeVses

BEBE eIeIII // 1)/(αα

α ≈−=→

αα

β−

=1

Page 4: Lecture 5: HBT AC properties

Lecture 5, Slide # 4 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

E-M model AC with parasitics Ic

Ib

Ie

)/( αsI

eIα Cjc

Cej

Note: at frequencies near fT, things are not quite this simple.

j is for junction (discuss) Diffusion capacitance not shown.

Page 5: Lecture 5: HBT AC properties

Lecture 5, Slide # 5 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

Global dc properties

http://www.toshiba.com/taec/components/Datasheet/2SA1244DS.pdf

It is assumed you know this, so it is rare to see on data sheets!

Note Early effect.

Page 6: Lecture 5: HBT AC properties

Lecture 5, Slide # 6 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

ac properties: notation

Ib

Ic

Ie

eEE

e

E

iIiiI

+= totalac

dc

We will use equivalent circuit #1 (implicitly).

Page 7: Lecture 5: HBT AC properties

Lecture 5, Slide # 7 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

ac properties

tibeBEBE evVv ω+=

common-emitter configuration

Rc

VCC

tibBB eiIi ω+=

tieEE eiIi ω+=

ticCC eiIi ω+=

“output”

Note: three terminal device has three-terminal equivalent ac circuit.

ticCC evVv ω+=

Page 8: Lecture 5: HBT AC properties

Lecture 5, Slide # 8 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

dc analysis

IB

IC

IE

tibeBEBE evVv ω+=

common-emitter configuration

Rc

VCC

CCCCCEC

CB

CE

kTeVSC

RIVVVIIIIeII BE

−==

=

=

=

β

α

//

/

0 for now

Page 9: Lecture 5: HBT AC properties

Lecture 5, Slide # 9 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

ac analysis

tibeBEBE evVv ω+=

Rc

VCC

tibBB eiIi ω+=

tieEE eiIi ω+=

ticCC eiIi ω+=

“output”

Note: three terminal device has three-terminal equivalent ac circuit.

ticCC evVv ω+=

We will prove:

kTeI

vi C

be

c =

“Transconductance”

Page 10: Lecture 5: HBT AC properties

Lecture 5, Slide # 10 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

Transconductance Rc

VCC

tibBB eiIi ω+=

tieEE eiIi ω+=

ticCC eiIi ω+=

ticCC evVv ω+=

tibeBEBE evVv ω+=

kTeevC

kTeevkTeVS

kTevVeS

kTevSC

tibe

tibeBE

tibeBE

BE

eI

eeI

eI

eIi

/

//

/)(

/

ω

ω

ω

=

=

=

=+

tibeBEBE evVv ω+=

x smallfor 1 xex +≈

⎟⎠

⎞⎜⎝

⎛ +≈ tibeCC e

kTevIi ω1

ticCC eiIi ω+=

But So:

kTeI

vi

kTevIi C

be

cbeCc =⇒=

Typical number is 40 mA/V.

gm

Page 11: Lecture 5: HBT AC properties

Lecture 5, Slide # 11 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

Input impedance Rc

VCC

tibBB eiIi ω+=

tieEE eiIi ω+=

ticCC eiIi ω+=

ticCC evVv ω+= tibe

CC

ticCC

B ekTevIIeiIii ω

ω

ββββ1

+=+

==tibeBEBE evVv ω+=

?=b

be

iv

tibBB eiIi ω+=

But

So:

bembe

Cb vgkTevIi

ββ==

1

So:

βm

b

be giv

=What is typical input impedance?

Page 12: Lecture 5: HBT AC properties

Lecture 5, Slide # 12 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

Gain Rc

VCC

tibBB eiIi ω+=

tieEE eiIi ω+=

ticCC eiIi ω+=

ticCC evVv ω+=

( )( )

tiCcC

tiCcCCCC

Cti

cCCC

CCCCC

eRiVeRiRIV

ReiIVRiVv

ω

ω

ω

+=

+−=

+−=

−=

tibeBEBE evVv ω+=

?=be

c

vv

But

So:

So:

Cmbe

c Rgvv

=What is typical gain?

ticCC evVv ω+=

CbemCcC RvgRiv −=−=

Page 13: Lecture 5: HBT AC properties

Lecture 5, Slide # 13 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

Summary Rc

VCC

tibBB eiIi ω+=

tieEE eiIi ω+=

ticCC eiIi ω+=

ticCC evVv ω+=ti

beBEBE evVv ω+=

bem

b vgiβ

=

beC

c vkTeIi = transcond.

input imp.

⎟⎟⎠

⎞⎜⎜⎝

⎟⎟⎟⎟

⎜⎜⎜⎜

=⎟⎟⎠

⎞⎜⎜⎝

c

be

C

m

c

b

vv

kTeI

g

ii

0

In matrix form:

Admittance (Y) matrix

Page 14: Lecture 5: HBT AC properties

Lecture 5, Slide # 14 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

AC equivalent circuit:

Rc

VCC

tibBB eiIi ω+=

tieEE eiIi ω+=

ticCC eiIi ω+=

ticCC evVv ω+=ti

beBEBE evVv ω+=

⎟⎟⎠

⎞⎜⎜⎝

⎟⎟⎟⎟

⎜⎜⎜⎜

=⎟⎟⎠

⎞⎜⎜⎝

c

be

C

m

c

b

vv

kTeI

g

ii

0

If we are only interested in ac components, life can be simplified:

bev

bicv

ci

Hybrid π model:

biβmgβ

Page 15: Lecture 5: HBT AC properties

Lecture 5, Slide # 15 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

T-model

Rc

VCC

tibBB eiIi ω+=

tieEE eiIi ω+=

ticCC eiIi ω+=

ticCC evVv ω+=ti

beBEBE evVv ω+=

⎟⎟⎠

⎞⎜⎜⎝

⎟⎟⎟⎟

⎜⎜⎜⎜

=⎟⎟⎠

⎞⎜⎜⎝

c

be

C

m

c

b

vv

kTeI

g

ii

0

If we are only interested in ac components, life can be simplified:

bev

bi

cv ci

T model:

bemvg

mgα

Page 16: Lecture 5: HBT AC properties

Lecture 5, Slide # 16 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

Rules for ac analysis

•  From complete circuit, calculate dc currents and voltages

•  For ac analysis only: – dc voltage source -> short circuit – dc current source -> open circuit

•  Replace transistor with π or T-model •  Now solve (simplified) ac circuit

Page 17: Lecture 5: HBT AC properties

Lecture 5, Slide # 17 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

Next

•  Generalized y-parameters •  not just common emitters •  Capacitances •  y-parameters from doping profile •  Definition of fT

Page 18: Lecture 5: HBT AC properties

Lecture 5, Slide # 18 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

AC equivalent circuit:

Rc

VCC

tibBB eiIi ω+=

tieEE eiIi ω+=

ticCC eiIi ω+=

ticCC evVv ω+=ti

beBEBE evVv ω+=

⎟⎟⎠

⎞⎜⎜⎝

⎟⎟⎟⎟

⎜⎜⎜⎜

=⎟⎟⎠

⎞⎜⎜⎝

c

be

C

m

c

b

vv

kTeI

g

ii

0

If we are only interested in ac components, life can be simplified:

bev

bicv

ci

Hybrid π model:

biβmgβ

Discuss easy interpretation of π model.

Page 19: Lecture 5: HBT AC properties

Lecture 5, Slide # 19 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

Goal for today: Rc

VCC

tibBB eiIi ω+=

tieEE eiIi ω+=

ticCC eiIi ω+=

ticCC evVv ω+=

tibeBEBE evVv ω+= bev

bicv

ci

Hybrid π model: Red is new for ac:

been

B veigLX

M 2/

02

2

31

21 ωτ

ωω

⎥⎦

⎤⎢⎣

⎡−⎟⎟

⎞⎜⎜⎝

⎛−

m

dc

DC

jcC

jeC depC

2Me

depgC τ

Page 20: Lecture 5: HBT AC properties

Lecture 5, Slide # 20 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

General admittance matrix

⎟⎟⎠

⎞⎜⎜⎝

⎟⎟⎟⎟

⎜⎜⎜⎜

=⎟⎟⎠

⎞⎜⎜⎝

c

be

C

m

c

b

vv

kTeI

g

ii

0

Last lecture, we had emitter grounded. Called common emitter configuration:

bb vi ,

cc vi ,

ee vi ,⎟⎟⎟

⎜⎜⎜

⎟⎟⎟

⎜⎜⎜

=⎟⎟⎟

⎜⎜⎜

c

b

e

c

b

e

vvv

iii

...

...

...

In general:

Y-matrix has 9 elements, but once you know 4 you know them all because:

cbe iii +=and:

cebecb vvv =+ See book about details procedure to get 9 parameters from only 4.

Page 21: Lecture 5: HBT AC properties

Lecture 5, Slide # 21 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

Three configurations:

[ ] ⎟⎟⎠

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

c

be

c

b

cccb

bcbb

c

b

vv

yvv

yyyy

ii

Common emitter configuration (ve=0):

Common base configuration (vb=0):

[ ] ⎟⎟⎠

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

c

eb

c

e

ccce

ecee

c

e

vv

yvv

yyyy

ii

Common collector configuration (vc=0):

[ ] ⎟⎟⎠

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

e

bc

e

b

eeeb

bebb

e

b

vv

yvv

yyyy

ii

Easiest to calculate from doping profile.

Page 22: Lecture 5: HBT AC properties

Lecture 5, Slide # 22 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

Generalized π model: Regardless of which configuration you use, the following π model applies:

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

2

1

2221

1211

2

1

vv

yyyy

ii

1v

1i

2v

2i11y

212vy

121vy22y

Common emitter: 1=base, 2=collector Common base: 1=emitter, 2=collector Common collector: 1=base, 2= emitter

Page 23: Lecture 5: HBT AC properties

Lecture 5, Slide # 23 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

You might be used to V=IR

Page 24: Lecture 5: HBT AC properties

Lecture 5, Slide # 24 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

General impedance matrix

bb vi ,

cc vi ,

ee vi ,

⎟⎟⎟

⎜⎜⎜

⎟⎟⎟

⎜⎜⎜

=⎟⎟⎟

⎜⎜⎜

c

b

e

c

b

e

iii

vvv

...

...

...

Y-matrix has 9 elements, but once you know 4 you know them all because:

Page 25: Lecture 5: HBT AC properties

Lecture 5, Slide # 25 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

h matrix:

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

2

1

2221

1211

2

1

vi

hhhh

iv

Common emitter: 1=base, 2=collector Common base: 1=emitter, 2=collector Common collector: 1=base, 2= emitter

Note: In general, matrix elements depend on dc currents, dc voltages, and frequency. Spec. sheet (or model) will provide the matrix elements as a table vs. frequency, usually for only one bias current.

Page 26: Lecture 5: HBT AC properties

Lecture 5, Slide # 26 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

Common emitter h matrix:

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

c

b

ee

ee

c

b

vi

hhhh

iv

2221

1211

•  Early effect: Collector voltage changes current gain (β).

•  β depends on frequency and collector voltage. •  How do we define frequency at which β = 1? •  At vc=0. This is h21e

becebec ihvhihi 212221 →+=

1)(21 =Te fh•  We define fT such that:

Page 27: Lecture 5: HBT AC properties

Lecture 5, Slide # 27 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

Next:

•  How do we relate doping profile and geometry to Y-matrix?

•  We will calculated common-base Y-matrix because it is easiest

•  You can get any other Y-matrix from this.

Page 28: Lecture 5: HBT AC properties

Lecture 5, Slide # 28 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

Common base

tieEE eiIi ω+=

ticCC eiIi ω+=

ticCC evVv ω+=

tieEE evVv ω+=

cc vi ,

ee vi ,

⎟⎟⎠

⎞⎜⎜⎝

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

∂∂

∂∂

∂∂

∂∂

=⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

cb

be

VCB

C

VBE

C

VCB

E

VBE

E

cb

be

ccce

ecee

c

e

vv

vi

vi

vi

vi

vv

yyyy

ii

BECB

BECB

Page 29: Lecture 5: HBT AC properties

Lecture 5, Slide # 29 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

yec

tieEE eiIi ω+=

ticCC eiIi ω+=

ticCC evVv ω+=

tieEE evVv ω+=

cc vi ,

ee vi ,

0=∂∂

=BEVCB

Eec v

iyNeglecting Early effect,

OK for GaAs HBTs, but not Si.

Page 30: Lecture 5: HBT AC properties

Lecture 5, Slide # 30 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

So far:

tieEE eiIi ω+=

ticCC eiIi ω+=

ticCC evVv ω+=

tieEE evVv ω+=

cc vi ,

ee vi ,

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

cb

be

cb

be

ccce

ecee

c

e

vv

vv

yyyy

ii

??0?

Page 31: Lecture 5: HBT AC properties

Lecture 5, Slide # 31 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

ycc

tieEE eiIi ω+=

ticCC eiIi ω+=

ticCC evVv ω+=

tieEE evVv ω+=

cc vi ,

ee vi ,

capacitorviy

BEVCB

Ccc =

∂∂

=Neglecting Early effect, this is just capacitance of a p-n junction! (Space charge region shrinks/grows with applied voltage.)

Recall lecture 4 slide 20:

Page 32: Lecture 5: HBT AC properties

Lecture 5, Slide # 32 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

p type n type - - - - - -

+ + + + + +

p n diode capacitance

charge density no electrons or holes in depletion region

)/1(1)(2

0daa

biaap NNNq

VqANNqAXQ+

−−=−=

φε

)()(2

2 ad

ad

bi NNNN

VqA

dVdQC

+−==

φε

ap NqAXQ 0−= dn NqAXQ 0−=

dep

Cjc X

AC ε=

In Liu notation: jc stands for junction capacitance

)(2CBCB

Cdep V

qNX += φ

εwhere:

Page 33: Lecture 5: HBT AC properties

Lecture 5, Slide # 33 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

ycc

( )

jccc

VCB

Ccc

Ciy

ViCdtdVC

dtdQI

CVQ

capacitorviy

BE

ω

ω

=⇒

===

=

=∂∂

=

Page 34: Lecture 5: HBT AC properties

Lecture 5, Slide # 34 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

So far:

tieEE eiIi ω+=

ticCC eiIi ω+=

ticCC evVv ω+=

tieEE evVv ω+=

cc vi ,

ee vi ,

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

cb

be

jccb

be

ccce

ecee

c

e

vv

Civv

yyyy

ii

ω?0?

Page 35: Lecture 5: HBT AC properties

Lecture 5, Slide # 35 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

yee

tieEE eiIi ω+=

ticCC eiIi ω+=

ticCC evVv ω+=

tieEE evVv ω+=

cc vi ,

ee vi ,

diodelikeCidiodelikecapacitorviy jc

VBE

Eee

CB

+=+=∂∂

= ω

Edep

Eje X

AC,

ε= )(2

, BEBEE

Edep VqN

X += φε

Recall lecture 5 slides 14,19 (and HW3):

Page 36: Lecture 5: HBT AC properties

Lecture 5, Slide # 36 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

“Normal active” schematic

p type base n type collector n type emitter

electrons electrons Ic Ie

carr

ier c

once

ntra

tion

x

n (no recombination in base) kTeV

ppBEenn /

0)0( =

(explain) (consider V=0)

b

kTeVp

b

p

c

Xen

eD

Xn

eD

dxxdneDJ

BE /0

)0(

)(

=

=

=Xb

(Liu 3.2)

How to calculate: Don’t use line for n(x) but tanh. dn/dx em. – dn/dx coll = base curr.

Ib

Page 37: Lecture 5: HBT AC properties

Lecture 5, Slide # 37 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

Time dependence:

p type base n type collector n type emitter

electrons electrons Ic Ie

carr

ier c

once

ntra

tion

x

n kTeVpp

BEenn /0)0( =

Ib

( ) kTevVepp

tibeBEentxn /

0),0(ω+==

0),( ≈= tXxn BpMust solve for n(x,t)! Current is dn/dx.

Page 38: Lecture 5: HBT AC properties

Lecture 5, Slide # 38 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

Time dependence:

( )

tidc

tidc

tibekTeVp

kTeVp

tibekTeVp

kTeevkTeVp

kTevVepp

exnxntxnenn

ekTevenene

kTeven

eenentxn

BEBEBE

tibeBE

tibeBE

ωω

ωω

ωω

)(~)(),( :form of is solution If )0(~)0(

1

),0(

/0

/0

/0

//0

/0

+=+→

+=⎟⎠

⎞⎜⎝

⎛ +≈

=== +

carr

ier c

once

ntra

tion

x

n kTeV

ppBEenn /

0)0( =

( ) ( ) ( )tidcti

dc

tidc

n exnxnexnxnx

Dt

exnxnnxnD

tn ωω

ω

ττ)(~)(1)(~)()(~)(

2

2

2

2

+−+∂∂

=∂+∂

⇒−∂∂

=∂∂

From lecture 2, slide 22:

)(~1)(~)(~

)(1)(0

2

2

2

2

xnxnx

Dxni

xnxnx

D dcdc

τω

τ

−∂∂

=⇒

−∂∂

=⇒

page!next see

sinh)/sinh(

)0()(

⎟⎟⎠

⎞⎜⎜⎝

⎛ −=⇒

n

B

nB

dcdc L

xXLX

nxn

(discuss)

Page 39: Lecture 5: HBT AC properties

Lecture 5, Slide # 39 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

Time dependence: ca

rrie

r con

cent

ratio

n

x

n kTeV

ppBEenn /

0)0( =

)(~1)(~)(~

)(1)(0

2

2

2

2

xnxnx

Dxni

xnxnx

D dcdc

τω

τ

−∂∂

=⇒

−∂∂

=⇒⎟⎟⎠

⎞⎜⎜⎝

⎛ −=⇒

n

B

nB

dcdc L

xXLX

nxn sinh)/sinh(

)0()(

)sinh())(sinh()0()(~

Bac

Bacebdc X

xXkTevnxn

ξξ −

=τωτ

ξDi

ac+

≡1

( ) tidctidc e

dxxndeAD

dxxdneADexnxn

dxdeAD

dxtxdneADI ωω )(~)()(~)(),(

+=+==

From lecture 2:

We only want ac part at x=0 (discuss):

⇒= tiBacac

ebdcac eX

kTevII ωξξ )coth()0( )coth()0( Bacacdc

eb

acee X

kTeI

vIy ξξ=≡

Page 40: Lecture 5: HBT AC properties

Lecture 5, Slide # 40 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

Time dependence: kTeV

ppBEenn /

0)0( =

carr

ier c

once

ntra

tion

x

n

)coth()0( Bacacdceb

acee X

kTeI

vIy ξξ=≡

2021

Btransit XD

=≡τ

ω

For small frequencies,

DeBacacdc CigXkTeI ωξξ +≈)coth()0(

DXgC B

eD 3

2

The “diffusion” capacitance is the extra (time dependent) charge stored as excess electrons in the base:

kTeIg dce )0(≡

Page 41: Lecture 5: HBT AC properties

Lecture 5, Slide # 41 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

So far:

tieEE eiIi ω+=

ticCC eiIi ω+=

ticCC evVv ω+=

tieEE evVv ω+=

cc vi ,

ee vi ,

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛ ++=⎟⎟

⎞⎜⎜⎝

cb

be

jc

jeDe

c

e

vv

CiCiCig

ii

ω

ωω

?0

Page 42: Lecture 5: HBT AC properties

Lecture 5, Slide # 42 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

yce

tieEE eiIi ω+=

ticCC eiIi ω+=

ticCC evVv ω+=

tieEE evVv ω+=

cc vi ,

ee vi ,

?=∂∂

=CBVBE

Cce v

iy

We need solution of time-dependent diffusion equation again. ic equal to dn/dx at collector side.

Page 43: Lecture 5: HBT AC properties

Lecture 5, Slide # 43 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

Time dependence: ca

rrie

r con

cent

ratio

n

x

n kTeV

ppBEenn /

0)0( =

)(~1)(~)(~

)(1)(0

2

2

2

2

xnxnx

Dxni

xnxnx

D dcdc

τω

τ

−∂∂

=⇒

−∂∂

=⇒

)sinh())(sinh()0()(~

Bac

Bacebdc X

xXkTevnxn

ξξ −

=τωτ

ξDi

ac+

≡1

( ) tidctidc e

dxxndeAD

dxxdneADexnxn

dxdeAD

dxtxdneADI ωω )(~)()(~)(),(

+=+==

From lecture 2:

We only want ac part at x=XB (discuss):

⇒⎟⎟⎠

⎞⎜⎜⎝

⎛−= )(csc2

1 2

2

Bacacen

Bebac Xhg

LXvI ξξ )(csc

21 2

2

Bacacen

B

eb

acce Xhg

LX

vIy ξξ⎟⎟

⎞⎜⎜⎝

⎛−≡

not quite…

Page 44: Lecture 5: HBT AC properties

Lecture 5, Slide # 44 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

Time dependence: ca

rrie

r con

cent

ratio

n

x

n kTeV

ppBEenn /

0)0( =

2/2

2

2

2

)(csc2

1

)(csc2

1

MiBacace

n

B

Bacacen

B

eb

acce

eXhgLX

XhgLX

vIy

ωτξξ

ξξ

⎟⎟⎠

⎞⎜⎜⎝

⎛−→

⎟⎟⎠

⎞⎜⎜⎝

⎛−=≡

It takes an electron some time to get through depletion region here. (Question for class: What about the other depletion region?)

sat

depM v

X≡τ This is how long it takes an electron to get through depletion region.

(There is no scattering in the depletion region in this approximation.)

2/

02

2

31

21 Mi

en

Bce eig

LXy ωτ

ωω −

⎥⎦

⎤⎢⎣

⎡−⎟⎟

⎞⎜⎜⎝

⎛−−≈

At low frequencies:

Page 45: Lecture 5: HBT AC properties

Lecture 5, Slide # 45 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

So far:

tieEE eiIi ω+=

ticCC eiIi ω+=

ticCC evVv ω+=

tieEE evVv ω+=

cc vi ,

ee vi ,

⎟⎟⎠

⎞⎜⎜⎝

⎟⎟⎟

⎜⎜⎜

⎥⎦

⎤⎢⎣

⎡−⎟⎟

⎞⎜⎜⎝

⎛−−≈

++

=⎟⎟⎠

⎞⎜⎜⎝

⎛−

cb

be

jci

en

Bce

jeDe

c

e

vv

CieigLXy

CiCig

ii

M ωωω

ωω

ωτ 2/

02

2

31

21

0

You will calculate for typical parameters in HW.

Page 46: Lecture 5: HBT AC properties

Lecture 5, Slide # 46 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

Next steps

•  Translate back to common-emitter model •  Generate equivalent circuit.

Page 47: Lecture 5: HBT AC properties

Lecture 5, Slide # 47 EECS277B © P.J. Burke, Fall 2013 Last modified 9/19/13 19:56

AC equivalent circuit: Rc

VCC

tibBB eiIi ω+=

tieEE eiIi ω+=

ticCC eiIi ω+=

ticCC evVv ω+=

tibeBEBE evVv ω+= bev

bicv

ci

Hybrid π model: Red is new for ac:

been

B veigLX

M 2/

02

2

31

21 ωτ

ωω

⎥⎦

⎤⎢⎣

⎡−⎟⎟

⎞⎜⎜⎝

⎛−

m

dc

DC

jcC

jeC depC

2Me

depgC τ

• Circuit model good only for low frequencies • At high frequencies computer must be used! • That concludes our derivation of intrinsic HBT behavior. • Next will include parasitics, and discuss fT, fmax