Lecture 40 Turbulent Flow in Pipe

9
NPTEL , IIT Kharagpur, Prof. Saikat Chakraborty, Department of Chemical Engineering 1 Module 5: Mass transfer in turbulant flows Lecture 40: Turbulent Flow in a Pipe

Transcript of Lecture 40 Turbulent Flow in Pipe

 

 

NPTEL , IIT Kharagpur, Prof. Saikat Chakraborty, Department of Chemical Engineering  

 

 

Module 5:

Mass transfer in turbulant flows

Lecture 40:

Turbulent Flow in a Pipe  

 

 

NPTEL , IIT Kharagpur, Prof. Saikat Chakraborty, Department of Chemical Engineering  

 

 

Two methods for applying the concept of the Universal Velocity Profile (UVP) to pipe flow.

a) Assume that UVP applies even though τ should be zero at the centerline.

Then

max

max0

2 4 ( )[1 ] (1)y

ze

R u yR u y dyv y

++

+ + ++

< >= = −∫

20

0* **

*

2

( ),

R

z z

z

u u r drR

u yu R r uu y with uu v v

τρ

+ +

< >=

−= = = =

 

 

NPTEL , IIT Kharagpur, Prof. Saikat Chakraborty, Department of Chemical Engineering  

 

 

With

0

max 0r

Ry y

v

τρ+ +

== =

Further, since:

2 00 2

212 z

z

f u fuττ ρ

ρ= < > ⇒ =

< >,

We get

max Re (2)8fy+ =

 

 

NPTEL , IIT Kharagpur, Prof. Saikat Chakraborty, Department of Chemical Engineering  

 

 

Universal Velocity Profile (UVP)

202.5ln 5.5 20

u y yu y y

+ + +

+ + +

≈ <

≈ + >

0max

max

2.5ln 5.52.5

2.5|

0 0, . .

r

u ydudy y

dudy y

only if y i e Re

+ +

+

+ +

+

=+ +

+

= +

⇒ =

⇒ =

→ → →∞

The velocity profile shows a peak at the center of the pipe and the velocity derivative does

not go to zero there, as it shows

 

 

NPTEL , IIT Kharagpur, Prof. Saikat Chakraborty, Department of Chemical Engineering  

 

 

0rzrR

τ τ=

Given Re, use UVP and eq. (1) to find ymax+ and find f from eq. (2).

4 4max

4 4 5 5 6 6 7

3

3exp.

116 315 815 2366 6349 1.6 10 5.2 10 1.58

Re 3000 10 3.10 10 3.10 10 3.10 10

10 12.01 7.96 5.91 4.48 3.58 2.88 2.40 1.99

10 11 7.6 5.8 4.5 3.5 2.8 2.4 2.00

y

f

f

+ × ×

Now, for pipe flow (for both turbulent and laminar flow)

( )( )

0

( )

max

( )( )

(1 ) 1

tt z

rz

t

u dur dy

du r ydy R y

μ μτ μ μ τμ

μμ

+

+

+ +

+ +

∂ += − + = ⇒

+ = = −

See Figure 1 below.

 

 

NPTEL , IIT Kharagpur, Prof. Saikat Chakraborty, Department of Chemical Engineering  

 

 

Therefore, method a) yields ( )tμ μ= − at the centerline which is unreasonable.

b) Assume that the total viscosity is given by Fig. 2 (below) and utilize the actual shear stress

distribution

 

 

NPTEL , IIT Kharagpur, Prof. Saikat Chakraborty, Department of Chemical Engineering  

 

 

( )max

( )max 0

1(1 ) 1

1

yt

t

yydu y u dy

dy yμ

μμμ

+

+

++ ++

+ +

−+ = − ⇒ =

+∫

At various values of maxy+ evaluate integral (1) (Method a)) to find Re and then find f again.

The integration using u + just presented should be carried out numerically.

4 4max

3 4 4 5 5 6 6 7

3

125 333 851 2455 6561 1.95 10 5.33 10 1.62

Re 3 10 10 3 10 10 3 10 10 3 10 10

10 13.89 8.85 6.44 4.82 3.83 3.05 2.53 2.10

y

f

+ × ×

× × × ×

The gross results are not much different, but (1+μ(t)/μ) does not go to zero at r=0. This does not

mean that the total viscosity at the center of the pipe is correct, but it seems that has a more

reasonable value than zero.

See Figures 2 and 3 below.

 

 

NPTEL , IIT Kharagpur, Prof. Saikat Chakraborty, Department of Chemical Engineering  

 

 

 

 

NPTEL , IIT Kharagpur, Prof. Saikat Chakraborty, Department of Chemical Engineering