Lecture 3 gl theory

48
Lecture 3 Phenomenology: Ginsburg-Landau Theory Landau Theory of Phase Transitions Ginsburg-Landau Expansion Coherence Length The Ginsburg-Landau Equations Abrikosov Lattice and Flux Pinning

Transcript of Lecture 3 gl theory

Page 1: Lecture 3 gl theory

Lecture 3 Phenomenology:

Ginsburg-Landau Theory

•Landau Theory of Phase Transitions

•Ginsburg-Landau Expansion

•Coherence Length

•The Ginsburg-Landau Equations

•Abrikosov Lattice and Flux Pinning

Page 2: Lecture 3 gl theory
Page 3: Lecture 3 gl theory
Page 4: Lecture 3 gl theory

Landau Theory of Phase Transitions

Let Ψ be a complex order parameter.

Consider a normal phase n, and an ordered phase A. Choose the density of ordered particles to be

For a superconducting system, the ordered phase is the superconducting phase s, and the density of superconducting particles (the density of normal particles is n*).

We expand the Gibbs Free Energy G about the order parameter Ψ:

(we omit odd powers since is real as is G)

2

Sn

...2

1 42 nA GG

2

Page 5: Lecture 3 gl theory
Page 6: Lecture 3 gl theory
Page 7: Lecture 3 gl theory

Next we introduce the superconductor into a magnetic field B= xA

Page 8: Lecture 3 gl theory
Page 9: Lecture 3 gl theory

Work done on SC in bringing it into non-zero B is -∫M∙dBA

Page 10: Lecture 3 gl theory

For the ordered state of a type I superconductor we can evaluate the inside magnetic field. The magnetization

M is given by (SI), and B= inside field

= applied field

Consider a Type I SC again:

At and

=> energy/vol. required to

suppress SC is:

area =

0,0

Applied magnetic field

MBB a 0

aB

M0

CH

0, BHC CBM 0

2

02

1

))((2

1

C

CC

H

HB

Page 11: Lecture 3 gl theory
Page 12: Lecture 3 gl theory

This intuition is clearer if one considers that the gradient term is just the kinetic energy term in the

presence of a magnetic field ½ m l(-ih/(2π) -q*A) ψ(r)l

2

Page 13: Lecture 3 gl theory
Page 14: Lecture 3 gl theory
Page 15: Lecture 3 gl theory
Page 16: Lecture 3 gl theory
Page 17: Lecture 3 gl theory
Page 18: Lecture 3 gl theory
Page 19: Lecture 3 gl theory
Page 20: Lecture 3 gl theory
Page 21: Lecture 3 gl theory
Page 22: Lecture 3 gl theory
Page 23: Lecture 3 gl theory
Page 24: Lecture 3 gl theory
Page 25: Lecture 3 gl theory
Page 26: Lecture 3 gl theory
Page 27: Lecture 3 gl theory
Page 28: Lecture 3 gl theory
Page 29: Lecture 3 gl theory

Great success

(London 1950)

Page 30: Lecture 3 gl theory
Page 31: Lecture 3 gl theory
Page 32: Lecture 3 gl theory
Page 33: Lecture 3 gl theory
Page 34: Lecture 3 gl theory
Page 35: Lecture 3 gl theory
Page 36: Lecture 3 gl theory
Page 37: Lecture 3 gl theory
Page 38: Lecture 3 gl theory
Page 39: Lecture 3 gl theory
Page 40: Lecture 3 gl theory

Conclusions

• Theory of second order transitions and expansion in terms of order parameter is powerful tool for many different applications – Limited to regions close to transition

– Macroscopic physics – no microscopic

• GLT makes key predictions capturing fundamental physics of superconductivity – especially type II (Hc2) – Same limitations as 2nd order phase transitions

– Cannot predict transport properties

Page 41: Lecture 3 gl theory
Page 42: Lecture 3 gl theory
Page 43: Lecture 3 gl theory
Page 44: Lecture 3 gl theory
Page 45: Lecture 3 gl theory
Page 46: Lecture 3 gl theory
Page 47: Lecture 3 gl theory
Page 48: Lecture 3 gl theory