Lecture #26 Coordination Chemistry: Hydrolysis · 2020-03-04 · Lecture #26. Coordination...

31
Lecture #26 Coordination Chemistry : Hydrolysis (Stumm & Morgan, Chapt.6: pg.260-271) Benjamin; Chapter 8.1-8.6 David Reckhow CEE 680 #26 1 Updated: 4 March 2020 Print version

Transcript of Lecture #26 Coordination Chemistry: Hydrolysis · 2020-03-04 · Lecture #26. Coordination...

  • Lecture #26Coordination Chemistry: Hydrolysis

    (Stumm & Morgan, Chapt.6: pg.260-271)

    Benjamin; Chapter 8.1-8.6

    David Reckhow CEE 680 #26 1

    Updated: 4 March 2020 Print version

    http://www.ecs.umass.edu/cee/reckhow/courses/680/slides/680l26p.pdf

  • David Reckhow CEE 680 #20 2

    Α

    Β

    Titrant Volume (mL)

    0 5 10 15 20 25 30 35 40 45

    pH

    2

    345

    678

    9101112

    1st Equivalence Point

    2nd Equivalence Point

    Vph Vmo

    H ++HCO3

    -=H

    2 CO3

    H ++CO3-2

    =HCO3-

    H++OH

    -=H2O

    A

    B

    Acid Titration Curve for a Water Containing Hydroxide and Carbonate Alkalinity

    From

    Lec

    ture

    #20

    A

    B

    T

    i

    t

    r

    a

    n

    t

    V

    o

    l

    u

    m

    e

    (

    m

    L

    )

    0

    5

    1

    0

    1

    5

    2

    0

    2

    5

    3

    0

    3

    5

    4

    0

    4

    5

    p

    H

    2

    3

    4

    5

    6

    7

    8

    9

    1

    0

    1

    1

    1

    2

    1

    s

    t

    E

    q

    u

    i

    v

    a

    l

    e

    n

    c

    e

    P

    o

    i

    n

    t

    2

    n

    d

    E

    q

    u

    i

    v

    a

    l

    e

    n

    c

    e

    P

    o

    i

    n

    t

    V

    p

    h

    V

    m

    o

    H

    +

    +

    H

    C

    O

    3

    -

    =

    H

    2

    C

    O

    3

    H

    +

    +

    C

    O

    3

    -

    2

    =

    H

    C

    O

    3

    -

    H

    +

    +

    O

    H

    -

    =

    H

    2

    O

    A

    B

  • Acid Titration Curve for a Water Containing Carbonate and Bicarbonate Alkalinity

    David Reckhow CEE 680 #20 3

    Α

    Β

    Titrant Volume (mL)

    0 5 10 15 20 25 30 35 40 45

    pH

    2

    345

    678

    9101112

    1st Equivalence Point

    2nd Equivalence Point

    Vph Vmo

    Y[CO3-2

    ] + Z[HCO3-]

    C

    (Y + Z)[HCO3-]

    (Y + Z)[H2CO3]

    (Y + Z)Vs/Nt(Y)Vs/Nt

    From

    Lec

    ture

    #20

    A

    B

    T

    i

    t

    r

    a

    n

    t

    V

    o

    l

    u

    m

    e

    (

    m

    L

    )

    0

    5

    1

    0

    1

    5

    2

    0

    2

    5

    3

    0

    3

    5

    4

    0

    4

    5

    p

    H

    2

    3

    4

    5

    6

    7

    8

    9

    1

    0

    1

    1

    1

    2

    1

    s

    t

    E

    q

    u

    i

    v

    a

    l

    e

    n

    c

    e

    P

    o

    i

    n

    t

    2

    n

    d

    E

    q

    u

    i

    v

    a

    l

    e

    n

    c

    e

    P

    o

    i

    n

    t

    V

    p

    h

    V

    m

    o

    Y

    [

    C

    O

    3

    -

    2

    ]

    +

    Z

    [

    H

    C

    O

    3

    -

    ]

    C

    (

    Y

    +

    Z

    )

    [

    H

    C

    O

    3

    -

    ]

    (

    Y

    +

    Z

    )

    [

    H

    2

    C

    O

    3

    ]

    (

    Y

    +

    Z

    )

    V

    s

    /

    N

    t

    (

    Y

    )

    V

    s

    /

    N

    t

  • Buffer Intensity Amount of strong

    acid or base required to cause a specific small shift in pH

    David Reckhow CEE 680 #17 4f-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

    pH

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    g-0.20.00.20.40.60.81.01.2

    pH 3.35

    pH 4.7

    pH 8.35

    Starting Point

    Mid-point

    End Point

    dpHdC

    dpHdC AB −==β

    10-2M HAc

    BC∆

    pH∆BC

    pH∆

    Slope = 1/β

    From

    Lec

    ture

    #17

  • Base titration of an acid For a monoprotic

    Lecture #16 CB ≡ [Na+] = [A-] + [OH-] - [H+]

    For a diprotic Using the same ENE

    approach

    David Reckhow CEE 680 #26 5

    T

    T

    T

    B

    s

    B

    ss

    BB

    CHOH

    CHOHA

    CC

    molesequ

    MVNVf

    ][][

    ][][][

    1

    +−

    +−−

    −+=

    −+=

    ===

    α

    𝑓𝑓 =2 𝐴𝐴−2 + 𝐻𝐻𝐴𝐴− + 𝑂𝑂𝐻𝐻− + 𝐻𝐻+

    𝐶𝐶𝑇𝑇

    𝑓𝑓 = 2𝛼𝛼2 + 𝛼𝛼1 +𝑂𝑂𝐻𝐻− + 𝐻𝐻+

    𝐶𝐶𝑇𝑇

    11

    221

    2 ][][ ++++

    KH

    KKH

    ][][ 2

    111

    +

    +

    ++HK

    KH1

    𝐻𝐻+𝐾𝐾𝑎𝑎

    + 1

  • Example Titration Base titration

    Vs = 1000 mL Ms = 0.001 M NB = 0.1 M

    Starting acids Pure water 1 mM HAc 1 mM H2CO3

    David Reckhow CEE 680 #26 6

    s

    B

    ss

    BB

    molesequ

    MVNVf ==

    pHi = 3.85 pKa = ??

    pKas = ??

  • Titration of Humics Model for

    aquatic humic substances Acetic acid +

    phenol

    David Reckhow CEE 680 #18 7

    From

    Lec

    ture

    #18

  • Protons & Metals Ions

    David Reckhow CEE 680 #26 8

    Fig 6.2 pg.259

    Why??

  • FeOH(H2O)5+2

    David Reckhow CEE 680 #28 9

    Fe

    O

    H

  • Fe(OH)2(H2O)4+

    David Reckhow CEE 680 #28 10

    H

    O

    Fe

    O

    H

  • Lake Taihu

    David Reckhow CEE 680 #25 11

    C106H263O110N16P

    CO2 H2ONO3-

    HPO4-2

    Limits to Growth

  • Another Problem Statement

    Photosynthesis with nitrate assimilation 106 CO2 + 16 NO3- + HPO4-2 + 122 H2O + 18 H+

    = C106H263O110N16P + 138 O2 Basis for stoichiometry and limits to growth Algal cells are: C106H263O110N16P But what if they are: C106H263O110N16P1Fe0.001

    David Reckhow CEE 680 #25 12

  • Elemental abundance in crust O Si Al Fe Ca Na Mg K Ti H P Mn F

    David Reckhow CEE 680 #2 13

  • Elemental abundance in fresh water

    David Reckhow CEE 680 #2 14

    From: Stumm & Morgan, 1996; Benjamin, 2002; fig 1.1

  • Complexation of hydroxide?

    David Reckhow CEE 680 #2 15

    NoYes, a bit

    Yes, quite a bit

  • Precipitation and Dissolution Environmental Significance

    Engineered systems coagulation, softening, removal of heavy metals

    Natural systems composition of natural waters formation and composition of aquatic sediments global cycling of elements

    Composition of natural waters S&M, 3rd ed., figure 15.1 (pg. 873)

    David Reckhow CEE 680 #26 16

  • Intro: Chemical Reactions Driving force

    Reactants strive to improve the stability of their electron configurations (i.e., lower ∆G)

    Types Redox reactions: change in oxidation state Coordinative reactions: change in

    coordinative relationships

    David Reckhow CEE 680 #26 17

  • Intro: Coordinative Reactions Definition: where the coordination number or

    coordination partner changes Types

    Acid/base reactions

    Precipitation reactions

    Complexation reactions

    David Reckhow CEE 680 #26 18

    HClO + H2O = H3O+ + ClO-

    Mg+2 + 2OH- = Mg(OH)2(s)

    Cu+2 + 4NH3 = Cu(NH3)4+2

    HClO = H+ + ClO-

    Mg(H2O)2+2 + 2OH- = Mg(OH)2(s) + 2H2O

    Cu(H2O)4+2 + 4NH3 = Cu(NH3)4+2 + 4H2O

  • Coordination Chemistry: References Benjamin, 2002: Chapt. 8

    Appendix A4 Stumm & Morgan, 1996: Chapt. 6 Butler, 1998: Chapt. 7 & 8 Pankow, 1991: Chapt. 18 Langmuir, 1997: Chapt. 3 Snoeyink & Jenkins, 1980: Chapt. 5 Morel & Hering, 1993: Chapt. 6

    Morel, 1983: Chapt. 6 Buffle, 1988: Chapt. 5 & 6

    David Reckhow CEE 680 #26 19

  • Coordination Definition

    Any combining of cations with molecules or anions containing free pairs of electrons

    David Reckhow CEE 680 #26 20

    Cu+2 + 4NH3 = Cu(NH3)4+2

    Central atom

    Ligand

    Ligand atom

    NH

    HH

    Complex or Coordination Compound

  • Ligand types Constituent Ligand atoms

    Nitrogen Oxygen Others: halides

    Numbers of active ligand atoms per ligand One: monodentate (e.g., ammonia) Two: bidentate (e.g., oxalate) Three: tridentate (e.g., citrate) Six: hexadentate (e.g., EDTA)

    David Reckhow CEE 680 #26 21

    MultidentateResulting complexes are called chelates

    http://en.wikipedia.org/wiki/File:Zitronens%C3%A4ure_-_Citric_acid.svghttp://en.wikipedia.org/wiki/File:Zitronens%C3%A4ure_-_Citric_acid.svghttp://en.wikipedia.org/wiki/File:Ethylenediaminetetraacetic.pnghttp://en.wikipedia.org/wiki/File:Ethylenediaminetetraacetic.png

  • Coordination Basics Importance

    Affects solubility of metals e.g., Al(OH)3 solubility

    Used in Analytical chemistry Determination of hardness

    Metals act as buffers in natural waters

    Coordination Number 1 for Hydrogen 2, 4, or 6 for most metals

    David Reckhow CEE 680 #26 22

  • Ion Pairs & Complexes Two types of complex species

    Ion Pairs Ions of opposite charge that form an association of lesser charge Ion pairs are separated by at least one water molecule

    These are called “outer-sphere” complexes

    Complexes Metal ion and neutral or anionic ligand Direct bond formed with no water molecule between

    These are called “inner-sphere” complexes

    David Reckhow CEE 680 #26 23

  • Ion pair stability Determined based on simple coulombic interactions

    David Reckhow CEE 680 #26 24

    Ion Charge

    Log K (I=0)

    Log K (seawater)

    1 0 to 1 -0.5 to 0.5

    2 1.5 to 2.4 0.1 to 1.2

    3 2.8 to 4.0

  • Natural Particle as Ligands Natural Particles

    High surface area Usually coated with oxygen-containing surface

    groups which can donate electrons to metals (i.e., act as ligands)

    David Reckhow CEE 680 #26 25

    OH

    S

    O-

    S

    O-M

    S

    M+

  • Chemical Speciation

    David Reckhow CEE 680 #26 26Fig 6.1, pg. 258

  • Protons & Metals Ions

    David Reckhow CEE 680 #26 27

    Fig 6.2 pg.259

    All “free” metals and protons are actually hydrated in water Both can bind with hydroxide

  • David Reckhow CEE 680 #26 28

    Fig 6.3Pg.259

    Cu(NH3)X

  • Brønsted & Lewis Acidity Definition of Acids

    Brønsted: proton donors Species with excess H+

    Lewis: electron acceptors H+, metal ions, others

    Strength Tendency to accept electrons (or donate protons)

    Measured by equilibrium constant

    David Reckhow CEE 680 #26 29

    PresenterPresentation NotesOthers include: SOCl2, AlCl3, SO2, and BF3

  • Complexes: Coordination #

    Me(Ligand)x Fe(H2O)6+3

    Fe(H2O)4(OH)2+1

    PtCl6-2

    Cu(NH3)4+2

    Si(OH)4 HgS2-2

    HOH

    David Reckhow CEE 680 #26 30

    6

    4

    2

    CoordinationNumber

    Coordination # Depends on:1. Size of central Atom2. Charge of central Atom3. Size of Ligand

  • To next lecture

    David Reckhow CEE 680 #26 31

    http://www.ecs.umass.edu/cee/reckhow/courses/680/slides/680l27.pdf

    CEE 680: Water ChemistryAcid Titration Curve for a Water Containing Hydroxide and Carbonate AlkalinityAcid Titration Curve for a Water Containing Carbonate and Bicarbonate AlkalinityBuffer IntensityBase titration of an acidExample TitrationTitration of HumicsProtons & Metals IonsFeOH(H2O)5+2Fe(OH)2(H2O)4+Limits to GrowthAnother Problem StatementElemental abundance in crustElemental abundance in fresh waterComplexation of hydroxide?Precipitation and DissolutionIntro: Chemical ReactionsIntro: Coordinative ReactionsCoordination Chemistry: ReferencesCoordinationLigand typesCoordination BasicsIon Pairs & ComplexesIon pair stabilityNatural Particle as LigandsChemical SpeciationProtons & Metals IonsSlide Number 28Brønsted & Lewis AcidityComplexes: Coordination #Slide Number 31