Lecture 2 - Chemical Kinetics - Princeton University · Two of the important questions in chemical...

15
6/26/11 Copyright ©2011 by Moshe Matalon. This material is not to be sold, reproduced or distributed without the prior wri@en permission of the owner, M. Matalon. 1 Lecture 2 Chemical Kinetics 1 N i=1 ν i M i N i=1 ν i M i Example: H 2 +O 2 2 OH N =3 H 2 (i = 1) : ν 1 =1 ν 1 =0 O 2 (i = 2) : ν 2 =1 ν 2 =0 OH (i = 3) : ν 3 =0 ν 3 =2 One (elementary) step reaction ν i , ν i are the stoichiometric coecients N is the number of species ν i = 0 if i is not a reactant ν i = 0 if i is not a product Chemical Kinetics 2

Transcript of Lecture 2 - Chemical Kinetics - Princeton University · Two of the important questions in chemical...

Page 1: Lecture 2 - Chemical Kinetics - Princeton University · Two of the important questions in chemical kinetics are • determine all the elementary steps by which a given chemical reaction

6/26/11  

Copyright  ©2011  by  Moshe  Matalon.  This  material  is  not  to  be  sold,  reproduced  or  distributed  without  the  prior  wri@en  permission  of  the  owner,  M.  Matalon.   1  

Lecture 2 Chemical Kinetics

1  

N�

i=1

ν�iMi →N�

i=1

�i Mi

Example:  H2 + O2 → 2 OH

N = 3H2 (i = 1) : ν�1 = 1 ν��1 = 0O2 (i = 2) : ν�2 = 1 ν��2 = 0OH (i = 3) : ν�3 = 0 ν��3 = 2

One (elementary) step reaction

ν�i, ν��i are the stoichiometric coefficients

N is the number of species

ν�i = 0 if i is not a reactantν��i = 0 if i is not a product

Chemical Kinetics

2  

Page 2: Lecture 2 - Chemical Kinetics - Princeton University · Two of the important questions in chemical kinetics are • determine all the elementary steps by which a given chemical reaction

6/26/11  

Copyright  ©2011  by  Moshe  Matalon.  This  material  is  not  to  be  sold,  reproduced  or  distributed  without  the  prior  wri@en  permission  of  the  owner,  M.  Matalon.   2  

N�

i=1

ν�iMi →N�

i=1

�i Mi

there is a relation between the change in the number of moles of each species;i.e., for any two species i and j

dni

ν��i − ν�i=

dnj

ν��j − ν�j

ωi

ν��i − ν�i=

ωj

ν��j − ν�j

If ωi is the time rate of change of the concentration of species i (moles, per unitvolume per second), i.e., ωi = dCi/dt, then

ωi

ν��i − ν�i=

ωj

ν��j − ν�j= ωor

3  

and we may the common ratio ω, which is species independent, as the reactionrate (moles per unit volume per second)

ω = k(T )N�

i=1

Cν�i

i

the reaction rate is proportional to the products of the concentrations reactants

Law of Mass Action

CH4 + 2 O2 → CO2 + 2 H2O

ω = k CCH4C2

O2

ωH2O

2=

ωCO2

1= −

ωCH4O

1= −

ωO2

2= ω

phenomenological law that was verified experimentally

(specific) reaction rate constant

the units of k depend on the reaction order n =�

ν�iand is [concentration(n−1)· time]−1

example

4  

Page 3: Lecture 2 - Chemical Kinetics - Princeton University · Two of the important questions in chemical kinetics are • determine all the elementary steps by which a given chemical reaction

6/26/11  

Copyright  ©2011  by  Moshe  Matalon.  This  material  is  not  to  be  sold,  reproduced  or  distributed  without  the  prior  wri@en  permission  of  the  owner,  M.  Matalon.   3  

N�

i=1

ν�i,jMi →N�

i=1

�i,jMi j = 1, 2, . . . ,M

Chemical reaction involving M elementary steps

ωi =M�

j=1

(ν��i,j−ν�i,j)ωj

net rate of production of species i ωi =M�j=1

ωi,j

where ωj is the reaction rate of the elementary step j, namely

ωj = k(T )N�

i=1

Cν�i,j

i

where forward and backward reactionsare written as separate steps

5  

Br2 + Mk1→ 2Br + M

Br + H2k2→ HBr + H

H + Br2k3→ HBr + Br

H + HBrk4→ Br + H2

2Br + Mk5→ Br2 + M

Chain reaction - hydrogen-bromine reaction

for  example    

ωBr =dCBr

dt= 2k1CBr2 − k2CBrCH2 + k3CHCBr2 + k4CHCHBr − 2k5C

2

Br

ωi =5�

j=1

(ν��i,j−ν�i,j)ωj

i = H2, Br2, H, Br, HBr

ωj = k(T )5�

i=1

Cν�i,j

i

⇒ H2 + Br2 → 2HBr

6  

Page 4: Lecture 2 - Chemical Kinetics - Princeton University · Two of the important questions in chemical kinetics are • determine all the elementary steps by which a given chemical reaction

6/26/11  

Copyright  ©2011  by  Moshe  Matalon.  This  material  is  not  to  be  sold,  reproduced  or  distributed  without  the  prior  wri@en  permission  of  the  owner,  M.  Matalon.   4  

Two of the important questions in chemical kinetics are

• determine all the elementary steps by which a given chemical reactionactually proceeds

• determine the specific rate constant for each step

7  

Reaction Mechanisms

8  

• First order decomposition reaction

• One step opposing reactions

• Chain reaction

• Reduced mechanisms modeling

Page 5: Lecture 2 - Chemical Kinetics - Princeton University · Two of the important questions in chemical kinetics are • determine all the elementary steps by which a given chemical reaction

6/26/11  

Copyright  ©2011  by  Moshe  Matalon.  This  material  is  not  to  be  sold,  reproduced  or  distributed  without  the  prior  wri@en  permission  of  the  owner,  M.  Matalon.   5  

First order decomposition reaction

Ak→ B

dCA

dt= kCA CA(0) given

CA = CA(0)e−kt

t =1

kln

�CA(0)

CA

�⇒ tc ∼

1

k

characteristic time scale

large k corresponds to a small time scale or very fast reactionthis is a source of stiffness in the differential equations

Ca

CA(0)

k

t

9  

Akf→ B

Bkb→ A

dCA

dt= −kfCA + kbCB

dCB

dt= kfCA − kbCB

CA(0) specified, CB(0) = 0

M =

�−kf kbkf −kb

there are two characteristic times, corresponding to λ−11 and λ−1

2

One step opposing reaction

d

dtC = M ·C C =

�CA

CB

C = V1eλ1t +V2e

λ2t

10  

Page 6: Lecture 2 - Chemical Kinetics - Princeton University · Two of the important questions in chemical kinetics are • determine all the elementary steps by which a given chemical reaction

6/26/11  

Copyright  ©2011  by  Moshe  Matalon.  This  material  is  not  to  be  sold,  reproduced  or  distributed  without  the  prior  wri@en  permission  of  the  owner,  M.  Matalon.   6  

�CA

CB

�=

CA(0)

kf + kb

�kbkf

�+

kfCA(0)

kf + kb

�1−1

�e−(kf+kb)t

����−kf − λ kb

kf −kb − λ

���� = 0λ1 = 0,

λ2 = −(kf + kb)⇒

�CA

CB

�= Ceq

A

�1

kf/kb

�+ Ceq

B

�1−1

�e−(kf+kb)t

CeqA =

kbkf + kb

CA(0) CeqB =

kfkf + kb

CA(0)

the characteristic times are t1 = ∞ and t2 = (kf + kb)−1 corresponding to thereciprocal of the eigenvalues; i.e., λ−1

1 and λ−12

at equilibrium, kfCeqA − kbC

eqB = 0

11  

d

dt[CA + CB ] = 0

In fact, for this simple system, one easily see that

d

dt[kfCA − kbCB ] = −(kf + kb)[kfCA − kbCB ]

d

dt

�z1z2

�=

�0 00 −(kf+kb)

��z1z2

z2 = kfCA − kbCB

z1 = CA + CB ⇒

z1 = z1(0) e0

z2 = z2(0) e−(kf+kb)t

CA + CB = CA(0)

kfCA − kbCB = kfCA(0)e−(kf+kb)t

CA

CB

k fCA

− k bCB

when kf + kb � 1, the characteristic times aret1 = 0 (slow time) and t2 = (kf + kb)−1 (fast time)

CA + CB is a conserved quantity,kfCA − kbCB ≈ 0 almost all the time

12  

Page 7: Lecture 2 - Chemical Kinetics - Princeton University · Two of the important questions in chemical kinetics are • determine all the elementary steps by which a given chemical reaction

6/26/11  

Copyright  ©2011  by  Moshe  Matalon.  This  material  is  not  to  be  sold,  reproduced  or  distributed  without  the  prior  wri@en  permission  of  the  owner,  M.  Matalon.   7  

Chain Reaction

any halogen molecule (F2, CL2 or I2) may replace Br2

the intermediates H, Br are the chain carriers

H2 + Br2 → 2 HBr

Hydrogen-Bromine Reaction

Br2 + Mk1→ 2Br + M

Br + H2k2→ HBr + H

H + Br2k3→ HBr + Br

H + HBrk4→ Br + H2

2Br + Mk5→ Br2 + M

�chain carrying

chain initiating

chain terminating

13  

Br2 + Mk1→ 2Br + M

Br + H2k2→ HBr + H

H + Br2k3→ HBr + Br

H + HBrk4→ Br + H2

2Br + Mk5→ Br2 + M

⇒ H2 + Br2 → 2HBr

dCHBr

dt= k2CBrCH2 + k3CHCBr2 − k4CHCHBr

dCBr

dt= 2k1CBr2 − k2CBrCH2 + k3CHCBr2 + k4CHCHBr − 2k5C

2

Br

dCH

dt= k2CBrCH2 − k3CHCBr2 − k4CHCHBr

dCH2

dt= −k2CBrCH2 + k4CHCHBr

dCBr2

dt= −k1CBr2 − k3CHCBr2 + k5C

2

Br

14  

Page 8: Lecture 2 - Chemical Kinetics - Princeton University · Two of the important questions in chemical kinetics are • determine all the elementary steps by which a given chemical reaction

6/26/11  

Copyright  ©2011  by  Moshe  Matalon.  This  material  is  not  to  be  sold,  reproduced  or  distributed  without  the  prior  wri@en  permission  of  the  owner,  M.  Matalon.   8  

1H.J. Curran, P. Gaffuri, W.J. Pitz and C.K. Westbrook (C&F 2002)

We are faced with a set of N nonlinear coupled differential equations (for spa-tially homogeneous system, as discussed here, these are ODEs), withN generally

a large number

The description of the combustion of real fuels may involve 1000 species or more,involved in a complex network of elementary steps that add up to few thousands.For example, the detailed kinetic mechanism of the primary reference fuel (PRF)contains 1034 species participating in 4236 elementary reactions1.

15  

16  

Page 9: Lecture 2 - Chemical Kinetics - Princeton University · Two of the important questions in chemical kinetics are • determine all the elementary steps by which a given chemical reaction

6/26/11  

Copyright  ©2011  by  Moshe  Matalon.  This  material  is  not  to  be  sold,  reproduced  or  distributed  without  the  prior  wri@en  permission  of  the  owner,  M.  Matalon.   9  

IllustraLon  of  the  various  Lmes  scales  governing  chemical  reacLng  flows    

100  s  

10-­‐2  s  

10-­‐4  s  

10-­‐6  s  

10-­‐8  s  

chemical    Lme  scales  

physical    Lme  scales  

Lme  scales  of  flow,    transport,  turbulence  

slow  Lme  scales  (NO  formaLon)  

fast  Lme  scales  (steady-­‐state,    parLal  equilibrium)  

Intermediate    Lme  scales  

17  

Radicals  form  and  react  very  rapidly  (at  nearly  equal  rates)  such  that  their  concentraLons    remains  nearly  constant  

dCBr

dt≈ 0

dCH

dt≈ 0

Rate  of  formaLon  of  HBr  

dCHBr

dt= k2CBrCH2 + k3CHCBr2 − k4CHCHBr

Br2 + Mk1→ 2Br + M

Br + H2k2→ HBr + H

H + Br2k3→ HBr + Br

H + HBrk4→ Br + H2

2Br + Mk5→ Br2 + M

⇒ H2 + Br2 → 2HBr

18  

Page 10: Lecture 2 - Chemical Kinetics - Princeton University · Two of the important questions in chemical kinetics are • determine all the elementary steps by which a given chemical reaction

6/26/11  

Copyright  ©2011  by  Moshe  Matalon.  This  material  is  not  to  be  sold,  reproduced  or  distributed  without  the  prior  wri@en  permission  of  the  owner,  M.  Matalon.   10  

dCH

dt≈ 0 ⇒ k2CBrCH2 − k3CHCBr2 − k4CHCHBr = 0

dCBr

dt≈ 0 ⇒ 2k1CBr2−k2CBrCH2+k3CHCBr2+k4CHCHBr−2k5C

2

Br= 0

CBr =

�k1k5

C1/2Br2 CH =

k2�k1/k5 CH2 C

1/2Br2

k3CBr2 + k4CHBr

dCHBr

dt= 2k0 CH2 CBr2

⇒ dCHBr

dt=

2k2�k1/k5 CH2 C

1/2Br2

1 + (k4/k3)CHBrC−1

Br2

19  

dCHBr

dt=

2k2�k1/k5 CH2 C

1/2Br2

1 + (k4/k3)CHBrC−1

Br2

dCHBr

dt≈ 2k0 CH2 C

1/2Br2

when k4/k3 � 1; (k0 = k2�k1/k5)

                                                                 

       

ω = kN�

i=1

Cnii i = reactants only

20  

Page 11: Lecture 2 - Chemical Kinetics - Princeton University · Two of the important questions in chemical kinetics are • determine all the elementary steps by which a given chemical reaction

6/26/11  

Copyright  ©2011  by  Moshe  Matalon.  This  material  is  not  to  be  sold,  reproduced  or  distributed  without  the  prior  wri@en  permission  of  the  owner,  M.  Matalon.   11  

21  

C1  

C3  

C2    

C = (C1, C2, . . . , CN )T

dC

dt= F(C)

C(0) = C0

22  

Page 12: Lecture 2 - Chemical Kinetics - Princeton University · Two of the important questions in chemical kinetics are • determine all the elementary steps by which a given chemical reaction

6/26/11  

Copyright  ©2011  by  Moshe  Matalon.  This  material  is  not  to  be  sold,  reproduced  or  distributed  without  the  prior  wri@en  permission  of  the  owner,  M.  Matalon.   12  

dCdt

= J · C

(J− λI)v = 0 eigenvalues    eigenvectors  

λnvn

23  

dCdt

= VΛV · C

VdCdt

= ΛV · C

z ≡ VCdzdt

= Λz

dzi

dt=λizi i = 1, . . . , n

24  

Page 13: Lecture 2 - Chemical Kinetics - Princeton University · Two of the important questions in chemical kinetics are • determine all the elementary steps by which a given chemical reaction

6/26/11  

Copyright  ©2011  by  Moshe  Matalon.  This  material  is  not  to  be  sold,  reproduced  or  distributed  without  the  prior  wri@en  permission  of  the  owner,  M.  Matalon.   13  

25  

z ≡ VCdzdt

= Λz

dzi

dt=λizi i = 1, . . . , n

26  

Page 14: Lecture 2 - Chemical Kinetics - Princeton University · Two of the important questions in chemical kinetics are • determine all the elementary steps by which a given chemical reaction

6/26/11  

Copyright  ©2011  by  Moshe  Matalon.  This  material  is  not  to  be  sold,  reproduced  or  distributed  without  the  prior  wri@en  permission  of  the  owner,  M.  Matalon.   14  

Simple*  hydrogen-­‐oxygen  kineLcs  mechanism  H2  ,  H  ,  O  ,  OH  ,  H2O  ,  N2  

*  RepresentaLon  of  H2  /O2  chemistry  would  involve  O2  ,  HO2  ,  H2O2  as  well  as  NO  and  related  species.  

Ren  et  al.  (J.  Chem.  Phys;  2006)  

27  

Al-­‐Khateeb  et  al.  (J.  Chem.  Phys;  2009)  

28  

Page 15: Lecture 2 - Chemical Kinetics - Princeton University · Two of the important questions in chemical kinetics are • determine all the elementary steps by which a given chemical reaction

6/26/11  

Copyright  ©2011  by  Moshe  Matalon.  This  material  is  not  to  be  sold,  reproduced  or  distributed  without  the  prior  wri@en  permission  of  the  owner,  M.  Matalon.   15  

Specific Reaction-Rate Constant

The Arrhenius Lawthe pre-exponential factor has a weak temperature dependence,with −1 < α � 2. The coefficient B is the frequency factor,and E is the activation energy.

ReacLon  coordinate  

Energy  

Reactants  

Products  

E

−∆H

−(∆H) is the heat of reaction

k(T ) = BTαe−E/RT

The probability that a molecule possessesenergy ≥ E is proportional toexp−(E/RT ). The exponential factorin the reaction rate ω representsthe fraction of collisions between reactantmolecules for which products can be formed.

29  

N�

i=1

ν�iMi →N�

i=1

�i Mi

The reaction rate of a elementary reaction

ω = BTαe−E/RTN�

i=1

Cν�i

i

30