Lecture 12 - Stanford Universityweb.stanford.edu/class/ee102/lectures/samp_mod.pdf · 2003. 3....

21
EE 102 spring 2001-2002 Handout #25 Lecture 12 Modulation and Sampling The Fourier transform of the product of two signals Modulation of a signal with a sinusoid Sampling with an impulse train The sampling theorem 12–1

Transcript of Lecture 12 - Stanford Universityweb.stanford.edu/class/ee102/lectures/samp_mod.pdf · 2003. 3....

Page 1: Lecture 12 - Stanford Universityweb.stanford.edu/class/ee102/lectures/samp_mod.pdf · 2003. 3. 24. · Lecture 12 Modulation and Sampling • The Fourier transform of the product

EE 102 spring 2001-2002 Handout #25

Lecture 12Modulation and Sampling

• The Fourier transform of the product of two signals

• Modulation of a signal with a sinusoid

• Sampling with an impulse train

• The sampling theorem

12–1

Page 2: Lecture 12 - Stanford Universityweb.stanford.edu/class/ee102/lectures/samp_mod.pdf · 2003. 3. 24. · Lecture 12 Modulation and Sampling • The Fourier transform of the product

Convolution and the Fourier transform

suppose f(t), g(t) have Fourier transforms F (ω), G(ω)

the convolution y = f ∗ g of f and g is given by

y(t) =∫ ∞

−∞f(τ)g(t − τ) dτ

(we integrate from −∞ to ∞ because f(t) and g(t) are not necessarilyzero for negative t)

from the table of Fourier transform properties:

Y (ω) = F (ω)G(ω)

i.e., convolution in the time domain corresponds to multiplication in thefrequency domain

Modulation and Sampling 12–2

Page 3: Lecture 12 - Stanford Universityweb.stanford.edu/class/ee102/lectures/samp_mod.pdf · 2003. 3. 24. · Lecture 12 Modulation and Sampling • The Fourier transform of the product

Multiplication and the Fourier transform

the Fourier transform of the product

y(t) = f(t)g(t)

is given by

Y (ω) =12π

∫ ∞

−∞F (λ)G(ω − λ)dλ

Y =12π

(F ∗ G)

i.e., multiplication in the time domain corresponds to convolution in thefrequency domain

Modulation and Sampling 12–3

Page 4: Lecture 12 - Stanford Universityweb.stanford.edu/class/ee102/lectures/samp_mod.pdf · 2003. 3. 24. · Lecture 12 Modulation and Sampling • The Fourier transform of the product

example:

f(t) = e−|t|, F (ω) =2

1 + ω2

g(t) = cos 20t, G(ω) = πδ(ω − 20) + πδ(ω + 20)

the Fourier transform of y(t) = e−|t| cos 20t is given by

Y (ω) =12π

∫ ∞

−∞F (λ)G(ω − λ) dλ

=12

∫ ∞

−∞F (λ)δ(ω − λ − 20) dλ +

12

∫ ∞

−∞F (λ)δ(ω − λ + 20) dλ

=12F (ω − 20) +

12F (ω + 20)

=1

1 + (ω − 20)2+

11 + (ω + 20)2

Modulation and Sampling 12–4

Page 5: Lecture 12 - Stanford Universityweb.stanford.edu/class/ee102/lectures/samp_mod.pdf · 2003. 3. 24. · Lecture 12 Modulation and Sampling • The Fourier transform of the product

−3 −2 −1 0 1 2 30

0.2

0.4

0.6

0.8

1

t

f(t

)

−30 −20 −10 0 10 20 300

0.5

1

1.5

2

ω

F(ω

)

−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1

t

y(t

)

−30 −20 −10 0 10 20 30

0

0.2

0.4

0.6

0.8

1

ω

Y(ω

)

Modulation and Sampling 12–5

Page 6: Lecture 12 - Stanford Universityweb.stanford.edu/class/ee102/lectures/samp_mod.pdf · 2003. 3. 24. · Lecture 12 Modulation and Sampling • The Fourier transform of the product

Sinusoidal amplitude modulation (AM)

cos ω0t

u(t) y(t) = u(t) cos ω0t

Fourier transform of y

Y (ω) =12π

U(ω) ∗ (πδ(ω − ω0) + πδ(ω + ω0))

=12U(ω − ω0) +

12U(ω + ω0)

• cosω0t is the carrier signal

• y(t) is the modulated signal

• the Fourier transform of the modulated signal is the Fourier transformof the input signal, shifted by ±ω0

Modulation and Sampling 12–6

Page 7: Lecture 12 - Stanford Universityweb.stanford.edu/class/ee102/lectures/samp_mod.pdf · 2003. 3. 24. · Lecture 12 Modulation and Sampling • The Fourier transform of the product

Sinusoidal amplitude modulation

ω

U(ω)

0

ω0

ω

(1/2)U(ω−ω0)

0

πδ(ω−ω0)πδ(ω+ω0)

(1/2)U(ω+ω0)

*

=

Baseband Signal

Carrier

ModulatedSignal

Modulation and Sampling 12–7

Page 8: Lecture 12 - Stanford Universityweb.stanford.edu/class/ee102/lectures/samp_mod.pdf · 2003. 3. 24. · Lecture 12 Modulation and Sampling • The Fourier transform of the product

example: u(t) = 2 + cos t, ω0 = 20

0 2 4 6 8 10

1

1.5

2

2.5

3

t

u(t

)

U(ω) = 4πδ(ω)+πδ(ω−1)+πδ(ω+1)

−1 0 1

π

π

ω

0 2 4 6 8 10−3

−2

−1

0

1

2

3

t

y(t

)

Y (ω) =1

2U(ω − 20) +

1

2U(ω + 20)

−21 −19 0 19 21

π/2

π/2 π/2

π/2

ω

Modulation and Sampling 12–8

Page 9: Lecture 12 - Stanford Universityweb.stanford.edu/class/ee102/lectures/samp_mod.pdf · 2003. 3. 24. · Lecture 12 Modulation and Sampling • The Fourier transform of the product

demodulation

cos ω0t

z(t) lowpass

filter

y(t) = u(t) cos ω0t u(t)

Fourier transform of y and z:

Y (ω) =12U(ω − ω0) +

12U(ω + ω0)

Z(ω) =12π

Y (ω) ∗ (πδ(ω − ω0) + πδ(ω + ω0))

=12Y (ω − ω0) +

12Y (ω + ω0)

=14U(ω − 2ω0) +

12U(ω) +

14U(ω + 2ω0)

if U is bandlimited, we can eliminate the 1st and 3rd term by lowpassfiltering

Modulation and Sampling 12–9

Page 10: Lecture 12 - Stanford Universityweb.stanford.edu/class/ee102/lectures/samp_mod.pdf · 2003. 3. 24. · Lecture 12 Modulation and Sampling • The Fourier transform of the product

Sinusoidal amplitude demodulation

ω0

πδ(ω−ω0)πδ(ω+ω0)*

=

ω

(1/2)U(ω)

0

ω

(1/2)U(ω−ω0)

0

(1/2)U(ω+ω0)

(1/4)U(ω−2ω0)(1/4)U(ω+2ω0)

LowpassFilter

ModulatedSignal

DemodulationCosine

Demodulated Signal

Modulation and Sampling 12–10

Page 11: Lecture 12 - Stanford Universityweb.stanford.edu/class/ee102/lectures/samp_mod.pdf · 2003. 3. 24. · Lecture 12 Modulation and Sampling • The Fourier transform of the product

Application

Suppose for example that u(t) is an audio signal (frequency range10Hz − 20kHz)

We rather not transmit u directly using electromagnetic waves:

• the wavelength is several 100 km, so we’d need very large antennas

• we’d be able to transmit only one signal at a time

• the Navy communicates with submerged submarines in this band

Modulating the signal with a carrier signal with frequency 500 kHz to 5GHz:

• allows us to transmit and receive the signal

• allows us to transmit many signals simultaneously (frequency divisionmultiplexing)

Modulation and Sampling 12–11

Page 12: Lecture 12 - Stanford Universityweb.stanford.edu/class/ee102/lectures/samp_mod.pdf · 2003. 3. 24. · Lecture 12 Modulation and Sampling • The Fourier transform of the product

Sampling with an impulse train

Multiply a signal x(t) with a unit impulse train with period T

x(t) y(t)

p(t) =

∞�

k=−∞δ(t − kT )

Sampled signal: y(t) = x(t)∞∑

k=−∞δ(t − kT ) =

∞∑k=−∞

x(kT )δ(t − kT )

t

x(t)

t

y(t)

T 2T

(a train of impulses with magnitude . . . , x(−T ), x(0), x(T ), x(2T ), . . . )

Modulation and Sampling 12–12

Page 13: Lecture 12 - Stanford Universityweb.stanford.edu/class/ee102/lectures/samp_mod.pdf · 2003. 3. 24. · Lecture 12 Modulation and Sampling • The Fourier transform of the product

The Fourier transform of an impulse train

train of unit impulses with period T : p(t) =∞∑

k=−∞δ(t − kT )

t0 T 2T 3T 4T 5T 6T−T

1

Fourier transform (from table): P (ω) =2π

T

∞∑k=−∞

δ(ω − 2πk

T)

ω0 2π

T4πT

6πT

8πT

10πT

20πT

−2πT

2π/T

Modulation and Sampling 12–13

Page 14: Lecture 12 - Stanford Universityweb.stanford.edu/class/ee102/lectures/samp_mod.pdf · 2003. 3. 24. · Lecture 12 Modulation and Sampling • The Fourier transform of the product

Consequences of Sampling

t

t

t

ω << 2π/T

ω = 2π/T

ω = 4π/T

3Τ 4Τ

Τ 2Τ0

Τ 2Τ0 3Τ 4Τ

Τ 2Τ0 3Τ 4Τ

• Frequencies well below the sampling rate (ω << 2π/T ) are “sampled”in the sense we expect.

• Frequencies at multiples of the sampling rate (ω = 2πn/T ) look likethey are constant. We can’t tell them from DC. These frequencies“alias” as DC.

Modulation and Sampling 12–14

Page 15: Lecture 12 - Stanford Universityweb.stanford.edu/class/ee102/lectures/samp_mod.pdf · 2003. 3. 24. · Lecture 12 Modulation and Sampling • The Fourier transform of the product

Frequency domain interpretation of sampling

The Fourier transform of the sampled signal is

Y =12π

(X ∗ P ),

i.e., the convolution of X with P (ω) = 2πT

∑∞k=−∞ δ(ω − 2πk

T )

Y (ω) =12π

∫ ∞

−∞X(λ)P (ω − λ) dλ

=1T

∫ ∞

−∞X(λ)

∞∑

k=−∞δ(ω − λ − 2πk

T)

=1T

∞∑k=−∞

∫ ∞

−∞X(λ)δ(ω − λ − 2πk

T) dλ

=1T

∞∑k=−∞

X(ω − 2πk

T)

Modulation and Sampling 12–15

Page 16: Lecture 12 - Stanford Universityweb.stanford.edu/class/ee102/lectures/samp_mod.pdf · 2003. 3. 24. · Lecture 12 Modulation and Sampling • The Fourier transform of the product

example: sample x(t) = e−|t| at different rates

−3 −2 −1 0 1 2 30

0.2

0.4

0.6

0.8

1

t

x(t

)

−30 −20 −10 0 10 20 300

0.5

1

1.5

2

ω

X(ω

)

x sampled with T = 1 (2π/T = 6.3)

−3 −2 −1 0 1 2 30

0.2

0.4

0.6

0.8

1

t

y(t

)

−30 −20 −10 0 10 20 300

0.5

1

1.5

2

ω

Y(ω

)

Modulation and Sampling 12–16

Page 17: Lecture 12 - Stanford Universityweb.stanford.edu/class/ee102/lectures/samp_mod.pdf · 2003. 3. 24. · Lecture 12 Modulation and Sampling • The Fourier transform of the product

x sampled with T = 0.5 (2π/T = 12.6)

−3 −2 −1 0 1 2 30

0.2

0.4

0.6

0.8

1

t

y(t

)

−30 −20 −10 0 10 20 300

0.5

1

1.5

2

2.5

3

3.5

4

ω

Y(ω

)

x sampled with T = 0.2 (2π/T = 31.4)

−3 −2 −1 0 1 2 30

0.2

0.4

0.6

0.8

1

t

y(t

)

−50 0 500

2

4

6

8

10

ω

Y(ω

)

Modulation and Sampling 12–17

Page 18: Lecture 12 - Stanford Universityweb.stanford.edu/class/ee102/lectures/samp_mod.pdf · 2003. 3. 24. · Lecture 12 Modulation and Sampling • The Fourier transform of the product

The sampling theorem

can we recover the original signal x from the sampled signal y ?

example: a band-limited signal x (with bandwidth W )

ω

X(ω)

1

W−W

Fourier transform of y(t) =∑

k x(kT )δ(t − kT ):

ω

Y (ω)

1/T

2π/T 4π/TW−W

Modulation and Sampling 12–18

Page 19: Lecture 12 - Stanford Universityweb.stanford.edu/class/ee102/lectures/samp_mod.pdf · 2003. 3. 24. · Lecture 12 Modulation and Sampling • The Fourier transform of the product

suppose we filter y through an ideal lowpass filter with cutoff frequency ωc,i.e., we multiply Y (ω) with

H(ω) ={

1 −ωc ≤ ω ≤ ωc

0 |ω| ≥ ωc

if W ≤ ωc ≤ 2π/T −W , then the result is H(ω)Y (ω) = X(ω)/T , i.e., werecover X exactly

ω

Y (ω)H(ω)

1/T

2π/T 4π/TW−W

Y (ω)H(ω)

1/T

W−W

Modulation and Sampling 12–19

Page 20: Lecture 12 - Stanford Universityweb.stanford.edu/class/ee102/lectures/samp_mod.pdf · 2003. 3. 24. · Lecture 12 Modulation and Sampling • The Fourier transform of the product

same signal, sampled with T = π/W

ω

Y (ω)

2π/T 4π/T

we can still recover X(ω) perfectly by lowpass filtering with ωc = W

sample with T > π/W

ω

Y (ω)

2π/T 4π/T

X(ω) cannot be recovered from Y (ω) by lowpass filtering

Modulation and Sampling 12–20

Page 21: Lecture 12 - Stanford Universityweb.stanford.edu/class/ee102/lectures/samp_mod.pdf · 2003. 3. 24. · Lecture 12 Modulation and Sampling • The Fourier transform of the product

the sampling theorem

suppose x is a band-limited signal with bandwidth W , i.e.,

X(ω) = 0 for |ω| > W

and we sample at a rate 1/T

y(t) =∞∑

k=−∞x(kT )δ(t − kT )

then we can recover x from y if T ≤ π/W

• the sampling rate must be at least 1/T = W/π samples per second(W/π is called the Nyquist rate)

• the distortion introduced by sampling below the Nyquist rate is calledaliasing

Modulation and Sampling 12–21