Layered media and photonic crystals - Atomic Physics · Off‐axis waves in layered media •...

of 40 /40
Layered media and photonic crystals Cord Arnold / Anne L’Huillier

Embed Size (px)

Transcript of Layered media and photonic crystals - Atomic Physics · Off‐axis waves in layered media •...

  • Layered media and photonic crystals

    Cord Arnold / Anne L’Huillier

  • A photonic crystal is a periodic arrangementof a dielectric material that exhibits strong interaction with light

    Variation of  refractive index on the scale of the wavelength λ

    Photonic Crystals; J.D. Joannopoulos

    Definition

  • Artificial photonic crystals

    1D: Bragg Reflector

    J. Serbin LZH

    2D: Si pillar crystal

    3D: Colloidal crystal

    3D: Wood pilediameter of the rods 200 nm,spacing in-between 250 nm

  • Examples of natural photonic crystals 

    Natural opalsNatural opals

    http://www.viewsfromscience.com/documents/webpages/natural_photonics_p1.html

  • Multilayer optics

  • How to analyze a multilayer system

    Scattering MatrixWave‐Transfer Matrix

    SiMi MΣ S Σ

    Analysis of multilayer optical system

    Conversion

  • Cascaded system ‐ Airy formulas

  • Examples: Homogeneous medium

  • Examples: Partially reflective mirror (beamsplitter)

  • Examples: Single dielectric boundary

  • Off‐axis waves in layered media

    • Reflections become angle-dependent• Reflections become polarisation dependent• The phase is obtained from a projection on the optical axis• The angle is different in different refractive index media

  • Off‐axis waves in layered media 

    Single boundary

  • Fabry‐Perot etalon

    Free spectral range

  • Fabry‐Perot example

    Parameters: |r1|=|r2|=0.5, d=0.5µm

  • Dielectric slab as a Fabry‐Perot etalon Parameters: n1=1.5, n2=3.5

    Parameters: n1=1, n2=3.5, n3=1.5, dn2=0.5µm

  • Off‐axis transmittance of Fabry‐Perot etalon

  • Bragg grating

  • Dielectric Bragg gratings

    mdndnk 2211021Resonance condition:

    The accumulated phase shift must add to i.e. 

    bb

    c

    02/

    2 0b

    bc

    3/3 0

    bb

    c

    4.2,45.12.0,3.0 :plotLower

    4/ :plotUpper

    21

    2211

    2211

    nnndnd

    ndnd

    bb

    b

    n1 n1 n1n2 n2 n2 n1

  • Dielectric Bragg grating

    mdndnk 2211021Condition

    The accumulated phase shift must add to

  • Dielectric mirror – reflectivity vs. number of layer pairs

    From medium n1 From air

    n1 n1 n1n2 n2 n2n=1

    n1=1.45n2=2.4

    n1 n1 n1n2 n2 n2 n1 n1

  • Off‐axis high‐reflection mirrors

  • Examples for 1‐dimensional multilayer structures

    Dielectric multi‐layer mirror:‐ Alternating stack of high and low refractive index materials (n1>n2) with 

    optical thickness of lambda/4 in each layer.‐ Reflectivity >99.999% for narrow bands, >99% for very broad bands

    Typical coating materials:- Magnesium fluoride n~1.38- Silicone dioxide n~1.49- Tantalum pentoxide n~2- Zinc sulfide n~2.32- Titanium dioxide n~2.4

    Image source: Wikipedia

    n1 n2

  • Examples for 1‐dimensional multilayer structures

    Chirped dielectric mirror:‐ The layer thickness changes as function of depth into the mirror. Blue 

    wave lengths are reflected at the surface, red in the depth.‐ Chirped mirrors are used to cancel dispersion in ultrashort pulse 

    oscillators.‐ They form the basis of today’s femtosecond laser technology.‐ Reflectivity >99% for 500‐1000nm.

  • Examples for 1‐dimensional multilayer structures

    Fiber Bragg grating (FBG):‐ Wavelength filtering and multiplexing‐ Single frequency fiber lasers‐ Stretching, compression, dispersion compensation with chirped FBGs‐ Sensing, e.g. temperature and pressure

    Image source: Wikipedia

  • A short introduction into photonic crystals

  • More examples from nature

    McPhedran and Parker, Physics Today, 68:32 (2015).

  • Dispersion relation K() and wave localization for a 1d photonic crystal made from alternating dielectric layers

    Correspondsto Λ=λ/2

    First resonance

    Correspondsto Λ=λ

    Second resonance

    In the theory of photonic crystals, a periodic structure is analized in a way to find solutions to the Maxwell equations making use of the periodicity of the structure, very much alike the analisys of travelling electron waves in a solid state material.

    22

    2

    2

    kg

    g

  • Dispersion relation K(w) for a 1d photonic crystal made from alternating dielectric layers

    Correspondsto Λ=λ/2

    First resonance

    Correspondsto Λ=λ

    Second resonance

    Matrix analysis as layer stack

    Analysis as 1d photonic crystal

  • Phase and group velocity for a 1d photonic crystal made from alternating dielectric layers

    effp n

    cv 0Phase velocity:

    Group velocity:eff

    g Nc

    dKdv 0

    Slo

    w re

    gion

  • Photonic band gaps at off‐axis propagation for a 1d photonic crystal made from alternating dielectric layers 

    Internal off-axis waves External off-axis propagation coupled into the structure

    The refractive index difference was chosen extreme in this example, i.e. n1=1.5 and n2=3.5.

  • Examples for 2d photonic crystals

    Rectangular lattice

    Triangular lattice

  • Rectangular lattice 2d photonic crystal

    Band Gap for TM modes

    Photonic Crystals; J.D. Joannopoulos

    Rectangular lattice of pillars.

  • Triangular lattice 2d photonic crystal

    Triangular lattice of holes! , a , r ~λPhotonic Crystals; J.D. Joannopoulos

  • Example for a 3D photonic crystals: Yablonovite 

    Historically first 3D Band Gap Crystal

    Photonic Crystals; J.D. Joannopoulos

  • 3D woodpile structure photonic crystal 

    Photonic Crystals; J.D. Joannopoulos

  • Defect modes

    Photonic Crystals; J.D. Joannopoulos

  • Defect modes 

    By introducing a “defect” in the highly periodic environment as for example removing one rod or simply changing the radius of one or a few  roods, the periodicity is broken and “defect modes” can exist in the forbidden gap!

    This e.g. allows for laser cavities with dimensions of the order of one wave length! 

    Photonic Crystals; J.D. Joannopoulos

  • Bending light in 2d photonic crystals

    Source: http://emt-photoniccrystal.blogspot.se/

  • Photonic crystal add‐drop splitter 

    λ1 >λ2 >λ3 λ1 >λ3

    λ2

    NB: Add‐drop filter with wavelength selectivity of ca 1%  having dimensions of ca. one wavelength 

    S. Fan et al., Phys. Rev. Lett., 80:960 1998.

  • End of lecture