Laura Greggio and Alvio Renzini: Stellar Populations — 2011/7/12 … · 2011-07-18 · Laura...

5
261 Index symbols 4000 Å break 118, 124 η Carinae 27 a A496 238 accretion 82, 129, 133, 138, 184–191, 223 accretion efficiency 196 accretion induced collapse (AIC) 184, 187 adiabatic gradient 5, 18 AGB manqué 11 age dating 77, 88, 91, 146, 167, 213 age-metallicity anticorrelations 59 age-metallicity degeneracy 58, 91, 146–152 age-metallicity relation 73, 102, 105 AGN 137, 139, 155, 234, 236, 251 α-element 19, 23, 37, 115, 147, 150, 151, 195, 203, 204, 232, 245, 250 asteroseismology 25 asymptotic giant branch (AGB) 2, 11, 15–17, 86, 102, 109 – bump 67, 74 – early (E-AGB) 2, 15, 42, 64 – ejecta 82 – thermally pulsing 16, 42, 64, 118, 120 b Baade’s Window 83, 151 Balmer break 118, 124 baryon to star conversion 252 Big Bang 81, 253 binary population synthesis (BPS) 188, 191, 194 binary systems 19, 31, 35, 64, 105, 128, 133, 140, 176, 184–201, 214 black hole 32, 53, 138, 175, 236, 249 blue cloud 154–157, 231 blue giant 7 blue loops 99 blue stragglers 16, 64, 86, 128, 148 blue supergiant (BSG) 26, 102 bolometric correction 10, 25, 62, 105, 215 BzK criterion 157, 158 c carbon burning 41, 182, 201 carbon deflagration/detonation 29 carbon ignition 42, 94, 184 carbon star 17, 44, 116, 120 cataclysmic binaries 187 Centaurus A 106, 109 Centaurus group 98 Chabrier IMF 210 Chandra explosion 185, 187, 190 Chandrasekhar limit 29, 179, 184, 185 chemical enrichment 91, 171 chemical evolution 55, 117, 182, 236–258 chemical yields 19, 172, 179–205, 215, 237, 254–257 closed box model 117, 254, 257 clusters of galaxies 61, 67, 110, 146, 208, 213–216, 237–258 cold streams 234, 236 color-magnitude diagram (CMD) 10, 15, 75, 98, 109 Coma cluster 146, 147 common envelope (CE) 31, 129, 186–205 composite stellar populations 11, 91, 93, 97, 113, 116, 121 control time 173 convection 5, 7, 21, 116 convective gradient 21 convective overshooting 24–26 cooling flow 241 cosmic acceleration 171 cosmic variance 165 crowding 61–75, 88 Stellar Populations, First Edition. Laura Greggio and Alivio Renzini © 2011 WILEY-VCH Verlag GmbH & Co. KGaA. Published 2011 by WILEY-VCH Verlag GmbH & Co. KGaA.

Transcript of Laura Greggio and Alvio Renzini: Stellar Populations — 2011/7/12 … · 2011-07-18 · Laura...

Page 1: Laura Greggio and Alvio Renzini: Stellar Populations — 2011/7/12 … · 2011-07-18 · Laura Greggio and Alvio Renzini: Stellar Populations — 2011/7/12 — page 261 — le-tex

Laura Greggio and Alvio Renzini: Stellar Populations — 2011/7/12 — page 261 — le-tex

261

Index

symbols4000 Å break 118, 124η Carinae 27

aA496 238accretion 82, 129, 133, 138, 184–191, 223accretion efficiency 196accretion induced collapse (AIC) 184, 187adiabatic gradient 5, 18AGB manqué 11age dating 77, 88, 91, 146, 167, 213age-metallicity anticorrelations 59age-metallicity degeneracy 58, 91, 146–152age-metallicity relation 73, 102, 105AGN 137, 139, 155, 234, 236, 251α-element 19, 23, 37, 115, 147, 150, 151,

195, 203, 204, 232, 245, 250asteroseismology 25asymptotic giant branch (AGB) 2, 11, 15–17,

86, 102, 109– bump 67, 74– early (E-AGB) 2, 15, 42, 64– ejecta 82– thermally pulsing 16, 42, 64, 118, 120

bBaade’s Window 83, 151Balmer break 118, 124baryon to star conversion 252Big Bang 81, 253binary population synthesis (BPS) 188,

191, 194binary systems 19, 31, 35, 64, 105, 128, 133,

140, 176, 184–201, 214black hole 32, 53, 138, 175, 236, 249blue cloud 154–157, 231blue giant 7blue loops 99

blue stragglers 16, 64, 86, 128, 148blue supergiant (BSG) 26, 102bolometric correction 10, 25, 62, 105, 215BzK criterion 157, 158

ccarbon burning 41, 182, 201carbon deflagration/detonation 29carbon ignition 42, 94, 184carbon star 17, 44, 116, 120cataclysmic binaries 187Centaurus A 106, 109Centaurus group 98Chabrier IMF 210Chandra explosion 185, 187, 190Chandrasekhar limit 29, 179, 184, 185chemical enrichment 91, 171chemical evolution 55, 117, 182, 236–258chemical yields 19, 172, 179–205, 215, 237,

254–257closed box model 117, 254, 257clusters of galaxies 61, 67, 110, 146, 208,

213–216, 237–258cold streams 234, 236color-magnitude diagram (CMD) 10, 15, 75,

98, 109Coma cluster 146, 147common envelope (CE) 31, 129, 186–205composite stellar populations 11, 91, 93, 97,

113, 116, 121control time 173convection 5, 7, 21, 116convective gradient 21convective overshooting 24–26cooling flow 241cosmic acceleration 171cosmic variance 165crowding 61–75, 88

Stellar Populations, First Edition. Laura Greggio and Alivio Renzini© 2011 WILEY-VCH Verlag GmbH & Co. KGaA. Published 2011 by WILEY-VCH Verlag GmbH & Co. KGaA.

Page 2: Laura Greggio and Alvio Renzini: Stellar Populations — 2011/7/12 … · 2011-07-18 · Laura Greggio and Alvio Renzini: Stellar Populations — 2011/7/12 — page 261 — le-tex

Laura Greggio and Alvio Renzini: Stellar Populations — 2011/7/12 — page 262 — le-tex

262 Index

ddark matter 212, 219, 245, 252dark matter halos 219death rate 176deflagration 29, 201delay time 172, 176density field 163density parameter 252detonation 29, 185, 201disk instabilities 234, 236double degenerate channel 186, 191–197dry merging 231dust emission 133, 136dust grains 30, 53dust obscuration 135dynamical mass 141, 207, 211, 245dynamical time 163

eelectron capture 175, 184emission lines 133, 137, 238, 245empirical spectral libraries 115energy generation 18, 184energy transfer 18envelope ejection 27, 30, 31, 129, 191envelope inflation/deflation 6envelope pulsation 31environment of galaxies 117, 133, 163, 220environment quenching 163, 227–236,

251, 257equation of state 18evolutionary flux 38, 64, 94, 96, 100, 125, 128evolutionary synthesis of stellar populations

35, 113–131explosive nucleosynthesis 179extinction 62, 78, 133, 136–141, 157, 173, 200

ffar-IR SED 136, 161feedback 224, 234, 251first blue loop 7formation redshift 143, 213fuel consumption 42–45, 114, 128fuel consumption theorem 39, 48, 114, 128fundamental plane 251

ggalactic archeology 92Galactic bulge 61, 83–86, 109, 115, 151,

207, 255galactic fountains 256galactic spheroid 109, 257

galaxies– elliptical 11, 50, 106, 115, 120, 146, 147,

167, 184, 207, 211, 213, 235, 238, 244– merging 92, 109, 162, 221– spiral 122, 154, 199, 251, 256– starburst 163– submillimeter 162

galaxy group 239galaxy photometry 56, 141γ -ray bursts (GRB) 27gasping star formation 92globular clusters 9, 16, 23, 28, 43, 64, 83, 86,

150, 207– ages 77–82

gravitational energy 4, 40gravitational wave radiation (GWR) 191

hHayashi line 1helium burning 1, 94helium flash 3, 10, 28, 42helium ignition 42, 64, 94, 184helium shell flash 16, 42, 185helium star 185–188Hertzsprung–Russel diagram (HRD) 1, 2, 4,

35, 96hierarchical merging 219high-mass stars 8, 208high-mass X-ray binaries (HMXB) 139horizontal branch (HB) 10, 16, 27, 67,

119, 148hot-bottom burning (HBB) 16, 29, 109hydrodynamical simulations 219hydrogen burning 1hypernova 27

iinduced collapse (AIC) 184initial mass–final mass relation 31, 52, 189initial mass function (IMF) 35, 57, 114, 176,

207–216, 236, 256– scale factor 38, 51, 96, 114, 209

intergalactic medium (IGM) 55, 117, 171,252–255

intermediate-mass stars 7, 8, 11, 13, 29,179, 185

internal energy 253interstellar medium (ISM) 52, 171intracluster medium (ICM) 214, 235,

238–258iron core 8, 175iron-K line 238, 239, 246iron-L complex 239, 246

Page 3: Laura Greggio and Alvio Renzini: Stellar Populations — 2011/7/12 … · 2011-07-18 · Laura Greggio and Alvio Renzini: Stellar Populations — 2011/7/12 — page 261 — le-tex

Laura Greggio and Alvio Renzini: Stellar Populations — 2011/7/12 — page 263 — le-tex

Index 263

iron mass-to-light ratio 238–258isochrones 35, 46, 78, 113

lLarge Magellanic Cloud (LMC) 43, 86,

87, 183Lick/IDS system 147Local Group 61, 92, 98long period variables (LPV) 30, 50, 64lookback time 92, 109, 147, 149, 213,

219, 248low-mass stars 8, 11, 49, 208, 247low-mass X-ray binaries (LMXB) 139luminosity evolution 47, 57, 207luminosity function 25, 65–67, 69, 89,

98, 117luminous blue variables (LBV) 27Lyman-α forest 254, 257Lyman break 118

mM/L Ratio 211M31 61, 92, 109

– bulge 61, 88, 109– giant stream 91– halo 61, 90– spheroid 88

M33 93M67 145macrophysics 20–31Magellanic Clouds 29, 43, 44, 61, 63, 86,

93, 207magnetic braking 188magnetic fields 20magnetohydrodynamical waves 30main sequence 64, 114

– of star-forming galaxies 155–163,221, 234

– stellar 4, 97, 189– turnoff 9, 16, 35, 64, 78, 81, 83, 88, 99

mass cut 180mass exchange 128mass function 164, 166, 167, 222, 225, 229mass loss 7, 26–31, 52, 175, 183, 256mass-metallicity relation 238mass quenching 163, 225–236, 251, 257mass reduction factor 54mass return 52–56, 123, 140, 237, 249mass-specific production 93–109mass-to-light ratio 56, 93, 198, 200, 207, 245,

252, 255, 257mass transfer 19, 31, 129

massive stars 7, 25, 42, 133, 175, 176, 179,245, 256– fast rotating 21

merging galaxies 222, 229, 234meridional circulation 25metal abundance 8, 37, 244metal enrichment 84, 152, 179, 207, 252metal mass-to-light ratio 214, 247, 254, 255metallicity 10, 73, 143, 238metallicity gradient 241metallicity of the universe 252meteoritic abundances 240microphysics 19microwave background 207Milky Way 73, 80, 85, 92, 204, 207, 250,

254–257MilkyWay 109mixing 24–26mixing length 21mixing length theory (MLT) 21model atmosphere 107, 115, 240model atmosphere libraries 116molecular bands 10, 118, 121molecular clouds 135, 162molecular opacities 19molecules 19, 30, 116, 137monolithic collapse 238Monte Carlo simulations 104, 107, 187multiple stellar populations 13, 14,

80–82, 116multiwavelength surveys 220

nN-body simulations 219neutrino flux 180neutrino losses 10, 19, 41neutron-capture elements 17neutron star 32, 53, 138, 175, 184, 249NGC 1399 148NGC 1705 99NGC 2808 14, 82NGC 6528 79, 83, 84NGC 6553 79, 83, 84NGC 6752 15, 16nova 129, 187, 188nuclear energy generation 19nuclear statistical equilibrium 201

oω Centauri 80, 109opacity 5, 6, 8, 18, 19, 140outshine effect 144, 153overdensity 156, 163, 220, 228, 241, 251overshooting 13, 43, 140, 180

Page 4: Laura Greggio and Alvio Renzini: Stellar Populations — 2011/7/12 … · 2011-07-18 · Laura Greggio and Alvio Renzini: Stellar Populations — 2011/7/12 — page 261 — le-tex

Laura Greggio and Alvio Renzini: Stellar Populations — 2011/7/12 — page 264 — le-tex

264 Index

oxygen mass-to-light ratio 216, 250, 258oxygen-to-iron mass ratio 247

ppair instability 175photometric redshift 141, 158, 166photospheric abundances 240planetary nebula 26, 29, 64Poisson likelihood ratio (PLR) 105polycyclic aromatic hydrocarbon (PAH) 137post-AGB 64post-main sequence 37, 63, 114preheating 253, 257pressure scale height 22primordial perturbation 219protosolar abundances 240

qquasar 254quenched galaxies 145, 147, 149, 153–168,

213, 223–236, 254

rradiation pressure 30radiative energy flux 5radiative gradient 5, 21radio luminosity 134, 139, 160, 161radioactive decay 182, 184, 249ram pressure 236, 250ram-pressure stripping 235Rayleigh–Taylor instabilities 255red clump 10, 27, 73, 101red giant 5, 7red giant branch (RGB) 9, 25, 42, 64,

102, 184– bump 16, 25, 64–67– phase transition 94– RGB tip 10, 64–67, 86, 88

red sequence 153, 156, 158, 231red supergiant (RSG) 8, 102, 140, 175reddening 79, 105, 118, 134, 141, 158, 200redshift evolution of the M/L ratio 213relativistic electrons 133, 139Roche-lobe 128, 138, 176, 185, 188, 193rotation of stars 19, 20, 180RSOphi 187runaway expansion 6

sSalpeter-diet IMF 38, 48, 95, 136, 165, 177,

199, 208, 249satellite quenching 235Schechter function 165, 166, 220, 226, 229,

231, 235

Schwarzschild criterion 21second blue loop 7SED fitting 141, 145, 155semianalytic models 113, 219semiconvection 24, 180SFR relation 155, 157, 159–163, 221shell burning 4silicon mass-to-light ratio 216, 247, 250, 258simple stellar populations (SSP) 35–38, 113,

118, 181single degenerate channel 186–191SN 1987A 183SN 1992am 183SN 2006X 187specific evolutionary flux 49, 93specific production method 102specific SFR 156spectral energy distribution (SED) 8, 12, 14,

25, 113, 137spectral evolution 118–120spectral libraries 115spheroids 244star counts 66, 89, 102, 133, 207star formation history 1, 56, 92, 109, 116, 237star formation quenching 121, 126, 142,

220–236star formation rate (SFR) 1, 25, 54, 75, 113,

133–140, 172, 207star formation rate density 162, 205, 253star photometry 61–64, 79, 83, 88starburst 66, 97, 122, 156, 162, 173, 177, 195,

202, 207, 221, 222, 236starburst galaxies 234stellar lifetime 8, 10, 12, 35, 119, 142, 176stellar mass of galaxies 140–142stellar mass-to-baryon mass ratio 252stellar remnant 140strangulation 235sub-Chandra explosions 185subdwarfs 23, 79subgiant branch (SGB) 9, 42, 64submillimeter galaxy (SMG) 162, 221, 222superadiabatic convection 20supernova 7, 29, 36, 77, 133, 171–205,

234, 238– core collapse 7, 115, 139, 171, 175–183,

201, 214, 249– distribution of the delay times 172, 187,

201, 205, 258– feedback 236– productivity 172, 197, 250– progenitor 27, 172, 175–177, 188– rate 172–205

Page 5: Laura Greggio and Alvio Renzini: Stellar Populations — 2011/7/12 … · 2011-07-18 · Laura Greggio and Alvio Renzini: Stellar Populations — 2011/7/12 — page 261 — le-tex

Laura Greggio and Alvio Renzini: Stellar Populations — 2011/7/12 — page 265 — le-tex

Index 265

– thermonuclear 115, 171, 184–205,246, 250

– Type Ia 29, 115, 129, 171, 174, 184–205,214, 240, 248

– Type Ib/c 27, 171, 174, 175, 183– Type II 27, 171, 174–176– Type IIP 183– units (SNu) 174, 197

supersoft X-ray sources 129, 187superwind 29, 64symbiotic systems 187synchrotron radiation 133synthetic CMD 92synthetic CMD method 104–109

tthermal energy 4, 20, 193, 205thermal equilibrium 3, 7, 16, 40thermal instability 5, 6thermal runaway 5, 13, 42, 140thermonuclear runaway 129TP-AGB 42, 64, 118, 12047 Tuc 23, 50, 64, 66, 67, 84turnoff mass 32, 36, 213turnoff temperature 58

uultraviolet continuum 118, 134, 136, 153UV rising branch 120, 123

vvelocity dispersion 146, 211, 251Virgo cluster 146, 147virial radius 243virial theorem 4

wwarm-hot intergalactic medium (WHIM)

253, 257white dwarf 7, 36, 64, 79, 128, 179–205

– merging 187wind

– galactic 117, 171, 224, 238– radiatively driven 26, 187– red giant 30– red supergiant 27– solar 30– stellar 7, 26– thermal 30

Wolf–Rayet (WR) stars 26, 140, 175

xX-ray luminosity 129, 134, 138, 139, 251X-ray radiation 133X-ray spectrum 238

zzero age main sequence (ZAMS) 1, 40