LANGKAH-LANGKAH UJI STATISTIK ASUMSI KLASIK DENGAN SPSS ... · LANGKAH-LANGKAH UJI STATISTIK ASUMSI...

of 19 /19
LANGKAH-LANGKAH UJI STATISTIK ASUMSI KLASIK DENGAN SPSS CONTOH : DATA 3 VARIABEL α = 0,05 DATA VIEW VARIABEL VIEW CARA KE 1 : UJI NORMALITAS Analyze, Descriptives Statistics, Explore, Plot, Normality Plots with test, Ok

Embed Size (px)

Transcript of LANGKAH-LANGKAH UJI STATISTIK ASUMSI KLASIK DENGAN SPSS ... · LANGKAH-LANGKAH UJI STATISTIK ASUMSI...

  • LANGKAH-LANGKAH UJI STATISTIK ASUMSI KLASIK DENGAN SPSS

    CONTOH : DATA 3 VARIABEL α = 0,05

    DATA VIEW VARIABEL VIEW

    CARA KE 1 : UJI NORMALITAS Analyze, Descriptives Statistics, Explore, Plot, Normality Plots with test, Ok

  • KEMUDIAN TEKAN “OK” DAN HASILNYA SEPERTI INI :

    Case Processing Summary

    Cases

    Valid Missing Total

    N Percent N Percent N Percent

    Promosi 10 100.0% 0 0.0% 10 100.0%

    Harga 10 100.0% 0 0.0% 10 100.0%

    Minat Beli 10 100.0% 0 0.0% 10 100.0%

    Descriptives

    Statistic Std. Error

    Promosi

    Mean 3.8000 .32660

    95% Confidence Interval for

    Mean

    Lower Bound 3.0612

    Upper Bound 4.5388

    5% Trimmed Mean 3.8333

    Median 4.0000

    Variance 1.067

    Std. Deviation 1.03280

    Minimum 2.00

    Maximum 5.00

    Range 3.00

    Interquartile Range 2.00

    Skewness -.272 .687

    Kurtosis -.896 1.334

    Harga

    Mean 3.4000 .33993

    95% Confidence Interval for

    Mean

    Lower Bound 2.6310

    Upper Bound 4.1690

    5% Trimmed Mean 3.3889

    Median 3.0000

    Variance 1.156

    Std. Deviation 1.07497

    Minimum 2.00

    Maximum 5.00

    Range 3.00

    Interquartile Range 1.50

    Skewness .322 .687

    Kurtosis -.882 1.334

  • Minat Beli

    Mean 7.2000 .48990

    95% Confidence Interval for

    Mean

    Lower Bound 6.0918

    Upper Bound 8.3082

    5% Trimmed Mean 7.1667

    Median 7.0000

    Variance 2.400

    Std. Deviation 1.54919

    Minimum 5.00

    Maximum 10.00

    Range 5.00

    Interquartile Range 1.75

    Skewness .260 .687

    Kurtosis .179 1.334

    Tests of Normality

    Kolmogorov-Smirnova Shapiro-Wilk

    Statistic df Sig. Statistic df Sig.

    Promosi .181 10 .200* .895 10 .191

    Harga .245 10 .090 .892 10 .177

    Minat Beli .251 10 .073 .896 10 .197

    *. This is a lower bound of the true significance.

    a. Lilliefors Significance Correction

    ( Normal bila Sig. > α ) CARA KE 2 : Untuk Uji Kolmogorov-Smirnov Test Atau dengan cara : Analyze, Nonparametric Test, Legacy dialogs, 1-sampel K-S, Ok

  • DATA DIPINDAHKAN SEMUA

    KEMUDIA N TEKAN OPTION, CENTANG DESKRIPTIF, CONTINUE DAN TEKAN “OK” DAN HASILNYA SEPERTI INI :

    Descriptive Statistics

    N Mean Std. Deviation Minimum Maximum

    Promosi 10 3.8000 1.03280 2.00 5.00

    Harga 10 3.4000 1.07497 2.00 5.00

    Minat Beli 10 7.2000 1.54919 5.00 10.00

    One-Sample Kolmogorov-Smirnov Test

    Promosi Harga Minat Beli

    N 10 10 10

    Normal Parametersa,b

    Mean 3.8000 3.4000 7.2000

    Std. Deviation 1.03280 1.07497 1.54919

    Most Extreme Differences

    Absolute .181 .245 .251

    Positive .181 .245 .251

    Negative -.177 -.155 -.249

    Kolmogorov-Smirnov Z .571 .775 .795

    Asymp. Sig. (2-tailed) .900 .585 .553

    a. Test distribution is Normal.

    b. Calculated from data. HASIL SAMA DENGAN HIPOTESIS DIBAWAH

    BANDINGKAN HASIL INI

    DENGAN HASIL DESKRIPTIF

    YG PERTAMA DIATAS,

    HASILNYA AKAN SAMA

  • CARA KE 3 :

    TEKAN OKE, DAN HASILNYA : SAMA DENGAN HASIL CARA KE 2 PADA MEAN & STANDAR DEVIASI

    Estimated Distribution Parameters

    Promosi Harga Minat Beli

    Normal Distribution Location 3.8000 3.4000 7.2000

    Scale 1.03280 1.07497 1.54919

    The cases are unweighted.

    Hipotesisnya :

    Analyze, Nonparametric Test, one sampel, Ok

    HASIL SAMA DENGAN ATAS Asymp. Sig. (2-tailed)

  • UJI HOMOGENITAS Analyze, Compare mean, one-way ANOVA, Options,homogeneity of variance test, continue, Ok LAKUKAN Y DENGAN X1 DULU, SETELAH CONTINUE, DAN “OK” ADA HASILNYA, LAKIUKAN KEMBALI Y DENGAN X2 Y DENGAN X1 ( Homogen bila Sig. > α )

    Test of Homogeneity of Variances

    Pendapatan (Y)

    Levene Statistic df1 df2 Sig.

    .190 2 6 .831

    ANOVA

    Pendapatan (Y)

    Sum of Squares df Mean Square F Sig.

    Between Groups 11.600 3 3.867 2.320 .175

    Within Groups 10.000 6 1.667

    Total 21.600 9

  • Y DENGAN X2

    Test of Homogeneity of Variances

    Pendapatan (Y)

    Levene Statistic df1 df2 Sig.

    1.585 3 6 .288

    ANOVA

    Pendapatan (Y)

    Sum of Squares df Mean Square F Sig.

    Between Groups 14.350 3 4.783 3.959 .071

    Within Groups 7.250 6 1.208

    Total 21.600 9

    UJI LINIERITAS Analyze, Compare means, Means, Option, ANOVA, Test for Linierity, OK ( Linier bila Sig. > α )

  • KEMUDIAN “OK” DAN HASILNYA :

    ANOVA Table

    Sum of

    Squares

    df Mean Square F Sig.

    Pendapatan (Y) *

    Promosi (X1)

    Between

    Groups

    (Combined) 11.600 3 3.867 2.320 .175

    Linearity 11.267 1 11.267 6.760 .041

    Deviation from

    Linearity .333 2 .167 .100 .906

    Within Groups 10.000 6 1.667

    Total 21.600 9

    Measures of Association

    R R Squared Eta Eta Squared

    Pendapatan (Y) * Promosi

    (X1) .722 .522 .733 .537

    ANOVA Table

    Sum of

    Squares

    df Mean

    Square

    F Sig.

    Pendapatan (Y) *

    Harga (X2)

    Between

    Groups

    (Combined) 14.350 3 4.783 3.959 .071

    Linearity 12.062 1 12.062 9.982 .020

    Deviation from

    Linearity 2.288 2 1.144 .947 .439

    Within Groups 7.250 6 1.208

    Total 21.600 9

    Measures of Association

    R R Squared Eta Eta Squared

    Pendapatan (Y) * Harga

    (X2) .747 .558 .815 .664

  • DAN UJI KEDUA SECARA PARSIAL :

  • HASILNYA ADALAH

    Correlations

    Control Variables Promosi (X1) Harga (X2) Pendapatan (Y)

    -none-a

    Promosi (X1)

    Correlation 1.000 .080 .722

    Significance (2-tailed) . .826 .018

    Df 0 8 8

    Harga (X2)

    Correlation .080 1.000 .747

    Significance (2-tailed) .826 . .013

    Df 8 0 8

    Pendapatan (Y)

    Correlation .722 .747 1.000

    Significance (2-tailed) .018 .013 .

    Df 8 8 0

    Pendapatan (Y)

    Promosi (X1)

    Correlation 1.000 -1.000

    Significance (2-tailed) . .000

    Df 0 7

    Harga (X2)

    Correlation -1.000 1.000

    Significance (2-tailed) .000 .

    Df 7 0

    a. Cells contain zero-order (Pearson) correlations.

    UJI MULTIKOLINIERITAS Analyze, Regresi, Linier, Statistic, Colinierity diagnostic, Ok.

  • SETELAH KLIK CONTINUE, TEKAN “OK”, MAKA HASILNYA :

    Coefficientsa

    Model Collinearity Statistics

    Tolerance VIF

    1 Promosi (X1) .994 1.006

    Harga (X2) .994 1.006

    a. Dependent Variable: Pendapatan (Y)

    Collinearity Diagnosticsa

    Model Dimension Eigenvalue Condition Index Variance Proportions

    (Constant) Promosi (X1) Harga (X2)

    1

    1 2.906 1.000 .00 .01 .01

    2 .068 6.555 .01 .37 .70

    3 .026 10.571 .99 .62 .29

    a. Dependent Variable: Pendapatan (Y)

    ( bila nilai Tolerance dan VIF mendekati 1 ) UJI HETEROKEDASTATISTIK Analyze, Regresi, Linier, Plot, SRESID pada Y, ZPRED pada X, Ok.

  • SETELAH KLIK CONTINUE, KLIK “OK” MAKA HASILNYA :

    Residuals Statisticsa

    Minimum Maximum Mean Std. Deviation N

    Predicted Value 5.00 10.00 7.20 1.549 10

    Residual .000 .000 .000 .000 10

    Std. Predicted Value -1.420 1.807 .000 1.000 10

    Std. Residual .000 .000 .000 .000 10

    a. Dependent Variable: Pendapatan (Y)

    UJI AUTOKORELASI (bila ada 2 error) Analyze, Regresi, Linier, Statistic, Durbin-Watson, Ok

  • SETELAH TEKAN CONTINUE, KLIK “OK”, MAKA HASILNYA :

    Model Summaryb

    Model R R Square Adjusted R

    Square

    Std. Error of the

    Estimate

    Durbin-Watson

    1 1.000a 1.000 1.000 .000 .076

    a. Predictors: (Constant), Harga (X2), Promosi (X1)

    b. Dependent Variable: Pendapatan (Y)

    ANOVAa

    Model Sum of Squares df Mean Square F Sig.

    1

    Regression 21.600 2 10.800 . .b

    Residual .000 7 .000

    Total 21.600 9

    a. Dependent Variable: Pendapatan (Y)

    b. Predictors: (Constant), Harga (X2), Promosi (X1)

    Coefficientsa

    Model Unstandardized Coefficients Standardized

    Coefficients

    t Sig.

    B Std. Error Beta

    1

    (Constant) 4.831E-016 .000 .000 1.000

    Promosi (X1) 1.000 .000 .667 224141999.254 .000

    Harga (X2) 1.000 .000 .694 233294389.450 .000

    a. Dependent Variable: Pendapatan (Y)

  • UJI REGRESI LINIER BERGANDA Analyze, regression, Linier, Statistic, Estimate, Model Fit, R Square, Descriptive, Part & Partial Correlation, Ok.

  • SETELAH TEKAN CONTINUE, KLIK “OK”, MAKA HASILNYA :

    Correlations

    Pendapatan (Y) Promosi (X1) Harga (X2)

    Pearson Correlation

    Pendapatan (Y) 1.000 .722 .747

    Promosi (X1) .722 1.000 .080

    Harga (X2) .747 .080 1.000

    Sig. (1-tailed)

    Pendapatan (Y) . .009 .006

    Promosi (X1) .009 . .413

    Harga (X2) .006 .413 .

    N

    Pendapatan (Y) 10 10 10

    Promosi (X1) 10 10 10

    Harga (X2) 10 10 10

    Model Summaryb

    Model R R Square Adjusted R

    Square

    Std. Error of

    the Estimate

    Change Statistics

    R Square

    Change

    F Change df1 df2 Sig. F

    Change

    1 1.000a 1.000 1.000 .000 1.000 . 2 7 .

    a. Predictors: (Constant), Harga (X2), Promosi (X1)

    b. Dependent Variable: Pendapatan (Y)

    ANOVAa

    Model Sum of Squares df Mean Square F Sig.

    1

    Regression 21.600 2 10.800 . .b

    Residual .000 7 .000

    Total 21.600 9

    a. Dependent Variable: Pendapatan (Y)

    b. Predictors: (Constant), Harga (X2), Promosi (X1)

    Coefficientsa

    Model Unstandardized

    Coefficients

    Standardized

    Coefficients

    t Sig. Correlations

    B Std.

    Error

    Beta Zero-

    order

    Partial Part

    1

    (Constant) 4.831E-016 .000 .000 1.000

    Promosi (X1) 1.000 .000 .667 224141999.254 .000 .722 1.000 .665

    Harga (X2) 1.000 .000 .694 233294389.450 .000 .747 1.000 .692

    a. Dependent Variable: Pendapatan (Y)

  • DESKRIPSI DATA (CONTOH 2 VARIABEL ) ANALYZE, DESCRIPTIVE, FREQUENCIES, OK.

    SELURUH NOMOR ITEM ANGKET, KEMUDIAN TEKAN “OK” DAN HASILNYA :

    angket a1

    Frequency Percent Valid Percent Cumulative

    Percent

    Valid

    2 1 10.0 10.0 10.0

    3 3 30.0 30.0 40.0

    4 3 30.0 30.0 70.0

    5 3 30.0 30.0 100.0

    Total 10 100.0 100.0

    DAN SETERUSNYA SEMUA ANGKET

  • UJI VALIDITAS ( DIUJI MASING-MASING VARIABEL )

    ANALYZE, CORRELATE, BIVARIATE, PINDAHKAN SEMUA ITEM ANGKET , PILIH

    SPEARMAN ATAU PEARSON, OK.

    HASILNYA :

    Correlations VARIABEL X

    angket a1 angket a2 Total A

    Spearman's rho

    angket a1

    Correlation Coefficient 1.000 .026 .734*

    Sig. (2-tailed) . .943 .016

    N 10 10 10

    angket a2

    Correlation Coefficient .026 1.000 .683*

    Sig. (2-tailed) .943 . .030

    N 10 10 10

    Total A

    Correlation Coefficient .734* .683

    * 1.000

    Sig. (2-tailed) .016 .030 .

    N 10 10 10

    *. Correlation is significant at the 0.05 level (2-tailed).

    SETELAH MENGUJI VARIABEL X, KEMUDIAN UJI VARIABEL Y

  • UJI RELIABILITAS

    UNTUK UJI RELIABILITAS DENGAN SPLIT HALF, MAKA DIJUMLAHKAN ITEM X

    GANJIL DENGAN ITEM Y GANJIL, DAN ITEM GENAP X DENGAN ITEM GENAP Y,

    ( GANJIL X + GANJIL Y = TOTAL GANJIL ) DAN ( GENAP X + GENAP Y = TOTAL

    GENAP), MAKA KORELASIKAN TOTAL GANJIL DENGAN TOTAL GENAP,

    LANGKAHNYA SAMA DENGAN UJI KORELASI DIATAS, YANG MEMBEDAKAN

    ADALAH DATANYA YANG DIKORELASIKAN.

    UJI KORELASI PRODUCT MOMENT

    UJI REGRESI LINIER SEDERHANA

    PILIH SPEARMAN ATAU PERSON, YANG SESUAI DENGAN HASIL MANUAL

    Correlations

    Total A Total B

    Spearman's rho

    Total A

    Correlation Coefficient 1.000 .386

    Sig. (2-tailed) . .271

    N 10 10

    Total B

    Correlation Coefficient .386 1.000

    Sig. (2-tailed) .271 .

    N 10 10

  • Correlations

    Total A Total B

    Total A

    Pearson Correlation 1 .371

    Sig. (2-tailed) .291

    N 10 10

    Total B

    Pearson Correlation .371 1

    Sig. (2-tailed) .291

    N 10 10

    UJI REGRESI LINIER SEDERHANA

    Model Summaryb

    Model Change Statistics

    R Square

    Change

    F Change df1 df2 Sig. F Change

    1 .138a 1.280 1 8 .291

    a. Predictors: (Constant), Total A

    b. Dependent Variable: Total B

    Coefficientsa

    Model Unstandardized Coefficients Standardized

    Coefficients

    t Sig.

    B Std. Error Beta

    1 (Constant) 5.833 1.864 3.129 .014

    Total A .287 .254 .371 1.131 .291

    a. Dependent Variable: Total B