LANGKAH-LANGKAH UJI STATISTIK ASUMSI KLASIK DENGAN SPSS ... · LANGKAH-LANGKAH UJI STATISTIK ASUMSI...
Embed Size (px)
Transcript of LANGKAH-LANGKAH UJI STATISTIK ASUMSI KLASIK DENGAN SPSS ... · LANGKAH-LANGKAH UJI STATISTIK ASUMSI...
-
LANGKAH-LANGKAH UJI STATISTIK ASUMSI KLASIK DENGAN SPSS
CONTOH : DATA 3 VARIABEL α = 0,05
DATA VIEW VARIABEL VIEW
CARA KE 1 : UJI NORMALITAS Analyze, Descriptives Statistics, Explore, Plot, Normality Plots with test, Ok
-
KEMUDIAN TEKAN “OK” DAN HASILNYA SEPERTI INI :
Case Processing Summary
Cases
Valid Missing Total
N Percent N Percent N Percent
Promosi 10 100.0% 0 0.0% 10 100.0%
Harga 10 100.0% 0 0.0% 10 100.0%
Minat Beli 10 100.0% 0 0.0% 10 100.0%
Descriptives
Statistic Std. Error
Promosi
Mean 3.8000 .32660
95% Confidence Interval for
Mean
Lower Bound 3.0612
Upper Bound 4.5388
5% Trimmed Mean 3.8333
Median 4.0000
Variance 1.067
Std. Deviation 1.03280
Minimum 2.00
Maximum 5.00
Range 3.00
Interquartile Range 2.00
Skewness -.272 .687
Kurtosis -.896 1.334
Harga
Mean 3.4000 .33993
95% Confidence Interval for
Mean
Lower Bound 2.6310
Upper Bound 4.1690
5% Trimmed Mean 3.3889
Median 3.0000
Variance 1.156
Std. Deviation 1.07497
Minimum 2.00
Maximum 5.00
Range 3.00
Interquartile Range 1.50
Skewness .322 .687
Kurtosis -.882 1.334
-
Minat Beli
Mean 7.2000 .48990
95% Confidence Interval for
Mean
Lower Bound 6.0918
Upper Bound 8.3082
5% Trimmed Mean 7.1667
Median 7.0000
Variance 2.400
Std. Deviation 1.54919
Minimum 5.00
Maximum 10.00
Range 5.00
Interquartile Range 1.75
Skewness .260 .687
Kurtosis .179 1.334
Tests of Normality
Kolmogorov-Smirnova Shapiro-Wilk
Statistic df Sig. Statistic df Sig.
Promosi .181 10 .200* .895 10 .191
Harga .245 10 .090 .892 10 .177
Minat Beli .251 10 .073 .896 10 .197
*. This is a lower bound of the true significance.
a. Lilliefors Significance Correction
( Normal bila Sig. > α ) CARA KE 2 : Untuk Uji Kolmogorov-Smirnov Test Atau dengan cara : Analyze, Nonparametric Test, Legacy dialogs, 1-sampel K-S, Ok
-
DATA DIPINDAHKAN SEMUA
KEMUDIA N TEKAN OPTION, CENTANG DESKRIPTIF, CONTINUE DAN TEKAN “OK” DAN HASILNYA SEPERTI INI :
Descriptive Statistics
N Mean Std. Deviation Minimum Maximum
Promosi 10 3.8000 1.03280 2.00 5.00
Harga 10 3.4000 1.07497 2.00 5.00
Minat Beli 10 7.2000 1.54919 5.00 10.00
One-Sample Kolmogorov-Smirnov Test
Promosi Harga Minat Beli
N 10 10 10
Normal Parametersa,b
Mean 3.8000 3.4000 7.2000
Std. Deviation 1.03280 1.07497 1.54919
Most Extreme Differences
Absolute .181 .245 .251
Positive .181 .245 .251
Negative -.177 -.155 -.249
Kolmogorov-Smirnov Z .571 .775 .795
Asymp. Sig. (2-tailed) .900 .585 .553
a. Test distribution is Normal.
b. Calculated from data. HASIL SAMA DENGAN HIPOTESIS DIBAWAH
BANDINGKAN HASIL INI
DENGAN HASIL DESKRIPTIF
YG PERTAMA DIATAS,
HASILNYA AKAN SAMA
-
CARA KE 3 :
TEKAN OKE, DAN HASILNYA : SAMA DENGAN HASIL CARA KE 2 PADA MEAN & STANDAR DEVIASI
Estimated Distribution Parameters
Promosi Harga Minat Beli
Normal Distribution Location 3.8000 3.4000 7.2000
Scale 1.03280 1.07497 1.54919
The cases are unweighted.
Hipotesisnya :
Analyze, Nonparametric Test, one sampel, Ok
HASIL SAMA DENGAN ATAS Asymp. Sig. (2-tailed)
-
UJI HOMOGENITAS Analyze, Compare mean, one-way ANOVA, Options,homogeneity of variance test, continue, Ok LAKUKAN Y DENGAN X1 DULU, SETELAH CONTINUE, DAN “OK” ADA HASILNYA, LAKIUKAN KEMBALI Y DENGAN X2 Y DENGAN X1 ( Homogen bila Sig. > α )
Test of Homogeneity of Variances
Pendapatan (Y)
Levene Statistic df1 df2 Sig.
.190 2 6 .831
ANOVA
Pendapatan (Y)
Sum of Squares df Mean Square F Sig.
Between Groups 11.600 3 3.867 2.320 .175
Within Groups 10.000 6 1.667
Total 21.600 9
-
Y DENGAN X2
Test of Homogeneity of Variances
Pendapatan (Y)
Levene Statistic df1 df2 Sig.
1.585 3 6 .288
ANOVA
Pendapatan (Y)
Sum of Squares df Mean Square F Sig.
Between Groups 14.350 3 4.783 3.959 .071
Within Groups 7.250 6 1.208
Total 21.600 9
UJI LINIERITAS Analyze, Compare means, Means, Option, ANOVA, Test for Linierity, OK ( Linier bila Sig. > α )
-
KEMUDIAN “OK” DAN HASILNYA :
ANOVA Table
Sum of
Squares
df Mean Square F Sig.
Pendapatan (Y) *
Promosi (X1)
Between
Groups
(Combined) 11.600 3 3.867 2.320 .175
Linearity 11.267 1 11.267 6.760 .041
Deviation from
Linearity .333 2 .167 .100 .906
Within Groups 10.000 6 1.667
Total 21.600 9
Measures of Association
R R Squared Eta Eta Squared
Pendapatan (Y) * Promosi
(X1) .722 .522 .733 .537
ANOVA Table
Sum of
Squares
df Mean
Square
F Sig.
Pendapatan (Y) *
Harga (X2)
Between
Groups
(Combined) 14.350 3 4.783 3.959 .071
Linearity 12.062 1 12.062 9.982 .020
Deviation from
Linearity 2.288 2 1.144 .947 .439
Within Groups 7.250 6 1.208
Total 21.600 9
Measures of Association
R R Squared Eta Eta Squared
Pendapatan (Y) * Harga
(X2) .747 .558 .815 .664
-
DAN UJI KEDUA SECARA PARSIAL :
-
HASILNYA ADALAH
Correlations
Control Variables Promosi (X1) Harga (X2) Pendapatan (Y)
-none-a
Promosi (X1)
Correlation 1.000 .080 .722
Significance (2-tailed) . .826 .018
Df 0 8 8
Harga (X2)
Correlation .080 1.000 .747
Significance (2-tailed) .826 . .013
Df 8 0 8
Pendapatan (Y)
Correlation .722 .747 1.000
Significance (2-tailed) .018 .013 .
Df 8 8 0
Pendapatan (Y)
Promosi (X1)
Correlation 1.000 -1.000
Significance (2-tailed) . .000
Df 0 7
Harga (X2)
Correlation -1.000 1.000
Significance (2-tailed) .000 .
Df 7 0
a. Cells contain zero-order (Pearson) correlations.
UJI MULTIKOLINIERITAS Analyze, Regresi, Linier, Statistic, Colinierity diagnostic, Ok.
-
SETELAH KLIK CONTINUE, TEKAN “OK”, MAKA HASILNYA :
Coefficientsa
Model Collinearity Statistics
Tolerance VIF
1 Promosi (X1) .994 1.006
Harga (X2) .994 1.006
a. Dependent Variable: Pendapatan (Y)
Collinearity Diagnosticsa
Model Dimension Eigenvalue Condition Index Variance Proportions
(Constant) Promosi (X1) Harga (X2)
1
1 2.906 1.000 .00 .01 .01
2 .068 6.555 .01 .37 .70
3 .026 10.571 .99 .62 .29
a. Dependent Variable: Pendapatan (Y)
( bila nilai Tolerance dan VIF mendekati 1 ) UJI HETEROKEDASTATISTIK Analyze, Regresi, Linier, Plot, SRESID pada Y, ZPRED pada X, Ok.
-
SETELAH KLIK CONTINUE, KLIK “OK” MAKA HASILNYA :
Residuals Statisticsa
Minimum Maximum Mean Std. Deviation N
Predicted Value 5.00 10.00 7.20 1.549 10
Residual .000 .000 .000 .000 10
Std. Predicted Value -1.420 1.807 .000 1.000 10
Std. Residual .000 .000 .000 .000 10
a. Dependent Variable: Pendapatan (Y)
UJI AUTOKORELASI (bila ada 2 error) Analyze, Regresi, Linier, Statistic, Durbin-Watson, Ok
-
SETELAH TEKAN CONTINUE, KLIK “OK”, MAKA HASILNYA :
Model Summaryb
Model R R Square Adjusted R
Square
Std. Error of the
Estimate
Durbin-Watson
1 1.000a 1.000 1.000 .000 .076
a. Predictors: (Constant), Harga (X2), Promosi (X1)
b. Dependent Variable: Pendapatan (Y)
ANOVAa
Model Sum of Squares df Mean Square F Sig.
1
Regression 21.600 2 10.800 . .b
Residual .000 7 .000
Total 21.600 9
a. Dependent Variable: Pendapatan (Y)
b. Predictors: (Constant), Harga (X2), Promosi (X1)
Coefficientsa
Model Unstandardized Coefficients Standardized
Coefficients
t Sig.
B Std. Error Beta
1
(Constant) 4.831E-016 .000 .000 1.000
Promosi (X1) 1.000 .000 .667 224141999.254 .000
Harga (X2) 1.000 .000 .694 233294389.450 .000
a. Dependent Variable: Pendapatan (Y)
-
UJI REGRESI LINIER BERGANDA Analyze, regression, Linier, Statistic, Estimate, Model Fit, R Square, Descriptive, Part & Partial Correlation, Ok.
-
SETELAH TEKAN CONTINUE, KLIK “OK”, MAKA HASILNYA :
Correlations
Pendapatan (Y) Promosi (X1) Harga (X2)
Pearson Correlation
Pendapatan (Y) 1.000 .722 .747
Promosi (X1) .722 1.000 .080
Harga (X2) .747 .080 1.000
Sig. (1-tailed)
Pendapatan (Y) . .009 .006
Promosi (X1) .009 . .413
Harga (X2) .006 .413 .
N
Pendapatan (Y) 10 10 10
Promosi (X1) 10 10 10
Harga (X2) 10 10 10
Model Summaryb
Model R R Square Adjusted R
Square
Std. Error of
the Estimate
Change Statistics
R Square
Change
F Change df1 df2 Sig. F
Change
1 1.000a 1.000 1.000 .000 1.000 . 2 7 .
a. Predictors: (Constant), Harga (X2), Promosi (X1)
b. Dependent Variable: Pendapatan (Y)
ANOVAa
Model Sum of Squares df Mean Square F Sig.
1
Regression 21.600 2 10.800 . .b
Residual .000 7 .000
Total 21.600 9
a. Dependent Variable: Pendapatan (Y)
b. Predictors: (Constant), Harga (X2), Promosi (X1)
Coefficientsa
Model Unstandardized
Coefficients
Standardized
Coefficients
t Sig. Correlations
B Std.
Error
Beta Zero-
order
Partial Part
1
(Constant) 4.831E-016 .000 .000 1.000
Promosi (X1) 1.000 .000 .667 224141999.254 .000 .722 1.000 .665
Harga (X2) 1.000 .000 .694 233294389.450 .000 .747 1.000 .692
a. Dependent Variable: Pendapatan (Y)
-
DESKRIPSI DATA (CONTOH 2 VARIABEL ) ANALYZE, DESCRIPTIVE, FREQUENCIES, OK.
SELURUH NOMOR ITEM ANGKET, KEMUDIAN TEKAN “OK” DAN HASILNYA :
angket a1
Frequency Percent Valid Percent Cumulative
Percent
Valid
2 1 10.0 10.0 10.0
3 3 30.0 30.0 40.0
4 3 30.0 30.0 70.0
5 3 30.0 30.0 100.0
Total 10 100.0 100.0
DAN SETERUSNYA SEMUA ANGKET
-
UJI VALIDITAS ( DIUJI MASING-MASING VARIABEL )
ANALYZE, CORRELATE, BIVARIATE, PINDAHKAN SEMUA ITEM ANGKET , PILIH
SPEARMAN ATAU PEARSON, OK.
HASILNYA :
Correlations VARIABEL X
angket a1 angket a2 Total A
Spearman's rho
angket a1
Correlation Coefficient 1.000 .026 .734*
Sig. (2-tailed) . .943 .016
N 10 10 10
angket a2
Correlation Coefficient .026 1.000 .683*
Sig. (2-tailed) .943 . .030
N 10 10 10
Total A
Correlation Coefficient .734* .683
* 1.000
Sig. (2-tailed) .016 .030 .
N 10 10 10
*. Correlation is significant at the 0.05 level (2-tailed).
SETELAH MENGUJI VARIABEL X, KEMUDIAN UJI VARIABEL Y
-
UJI RELIABILITAS
UNTUK UJI RELIABILITAS DENGAN SPLIT HALF, MAKA DIJUMLAHKAN ITEM X
GANJIL DENGAN ITEM Y GANJIL, DAN ITEM GENAP X DENGAN ITEM GENAP Y,
( GANJIL X + GANJIL Y = TOTAL GANJIL ) DAN ( GENAP X + GENAP Y = TOTAL
GENAP), MAKA KORELASIKAN TOTAL GANJIL DENGAN TOTAL GENAP,
LANGKAHNYA SAMA DENGAN UJI KORELASI DIATAS, YANG MEMBEDAKAN
ADALAH DATANYA YANG DIKORELASIKAN.
UJI KORELASI PRODUCT MOMENT
UJI REGRESI LINIER SEDERHANA
PILIH SPEARMAN ATAU PERSON, YANG SESUAI DENGAN HASIL MANUAL
Correlations
Total A Total B
Spearman's rho
Total A
Correlation Coefficient 1.000 .386
Sig. (2-tailed) . .271
N 10 10
Total B
Correlation Coefficient .386 1.000
Sig. (2-tailed) .271 .
N 10 10
-
Correlations
Total A Total B
Total A
Pearson Correlation 1 .371
Sig. (2-tailed) .291
N 10 10
Total B
Pearson Correlation .371 1
Sig. (2-tailed) .291
N 10 10
UJI REGRESI LINIER SEDERHANA
Model Summaryb
Model Change Statistics
R Square
Change
F Change df1 df2 Sig. F Change
1 .138a 1.280 1 8 .291
a. Predictors: (Constant), Total A
b. Dependent Variable: Total B
Coefficientsa
Model Unstandardized Coefficients Standardized
Coefficients
t Sig.
B Std. Error Beta
1 (Constant) 5.833 1.864 3.129 .014
Total A .287 .254 .371 1.131 .291
a. Dependent Variable: Total B