La resistencia eléctrica de un objeto es una medida de su oposición al paso de corriente

29
La resistencia eléctrica de un objeto es una medida de su oposición al paso de corriente . Descubierta por Georg Ohm en 1827, la resistencia eléctrica tiene un parecido conceptual a la fricción en la física mecánica. La unidad de la resistencia en el Sistema Internacional de Unidades es el ohmio (Ω ). Para su medición en la práctica existen diversos métodos, entre los que se encuentra el uso de un ohmímetro . Además, su cantidad recíproca es la conductancia , medida en Siemens . Para una gran cantidad de materiales y condiciones, la resistencia eléctrica depende de la corriente eléctrica que pasa a través de un objeto y de la tensión en los terminales de este. Esto significa que, dada una temperatura y un material, la resistencia es un valor que se mantendrá constante . Además, de acuerdo con la ley de Ohm la resistencia de un material puede definirse como la razón de la tensión y la corriente, así : 1 Según sea la magnitud de esta medida, los materiales se pueden clasificar en conductores , aislantes y semiconductor . Existen además ciertos materiales en los que, en determinadas condiciones de temperatura, aparece un fenómeno denominado superconductividad , en el que el valor de la resistencia es prácticamente nulo. Contenido [ocultar ] 1 Comportamientos ideales y reales o 1.1 Comportamiento en corriente continua o 1.2 Comportamiento en corriente alterna 2 Asociación de resistencias o 2.1 Resistencia equivalente o 2.2 Asociación en serie o 2.3 Asociación en paralelo

Transcript of La resistencia eléctrica de un objeto es una medida de su oposición al paso de corriente

Page 1: La resistencia eléctrica de un objeto es una medida de su oposición al paso de corriente

La resistencia eléctrica de un objeto es una medida de su oposición al paso de corriente.

Descubierta por Georg Ohm en 1827, la resistencia eléctrica tiene un parecido conceptual a la fricción en la física mecánica. La unidad de la resistencia en el Sistema Internacional de Unidades es el ohmio (Ω). Para su medición en la práctica existen diversos métodos, entre los que se encuentra el uso de un ohmímetro. Además, su cantidad recíproca es la conductancia, medida en Siemens.

Para una gran cantidad de materiales y condiciones, la resistencia eléctrica depende de la corriente eléctrica que pasa a través de un objeto y de la tensión en los terminales de este. Esto significa que, dada una temperatura y un material, la resistencia es un valor que se mantendrá constante. Además, de acuerdo con la ley de Ohm la resistencia de un material puede definirse como la razón de la tensión y la corriente, así :1

Según sea la magnitud de esta medida, los materiales se pueden clasificar en conductores, aislantes y semiconductor. Existen además ciertos materiales en los que, en determinadas condiciones de temperatura, aparece un fenómeno denominado superconductividad, en el que el valor de la resistencia es prácticamente nulo.

Contenido

[ocultar]

1 Comportamientos ideales y reales o 1.1 Comportamiento en corriente continua o 1.2 Comportamiento en corriente alterna

2 Asociación de resistencias o 2.1 Resistencia equivalente o 2.2 Asociación en serie o 2.3 Asociación en paralelo o 2.4 Asociación mixta o 2.5 Asociaciones estrella y triángulo o 2.6 Asociación puente

3 Resistencia de un conductor o 3.1 Influencia de la temperatura

4 Potencia que disipa una resistencia 5 Véase también 6 Referencias 7 Enlaces externos

[editar] Comportamientos ideales y reales

Page 2: La resistencia eléctrica de un objeto es una medida de su oposición al paso de corriente

Figura 2. Circuito con resistencia.

Una resistencia ideal es un elemento pasivo que disipa energía en forma de calor según la ley de Joule. También establece una relación de proporcionalidad entre la intensidad de corriente que la atraviesa y la tensión medible entre sus extremos, relación conocida como ley de Ohm:

donde i(t) es la corriente eléctrica que atraviesa la resistencia de valor R y u(t) es la diferencia de potencial que se origina. En general, una resistencia real podrá tener diferente comportamiento en función del tipo de corriente que circule por ella.

[editar] Comportamiento en corriente continua

Una resistencia real en corriente continua (CC) se comporta prácticamente de la misma forma que si fuera ideal, esto es, transformando la energía eléctrica en calor por efecto Joule. La ley de Ohm para corriente continua establece que:

donde R es la resistencia en ohmios, V es la diferencia de potencial en voltios e I es la intensidad de corriente en amperios.

[editar] Comportamiento en corriente alterna

Figura 3. Diagrama fasorial.

Page 3: La resistencia eléctrica de un objeto es una medida de su oposición al paso de corriente

Como se ha comentado anteriormente, una resistencia real muestra un comportamiento diferente del que se observaría en una resistencia ideal si la intensidad que la atraviesa no es continua. En el caso de que la señal aplicada sea senoidal, corriente alterna (CA), a bajas frecuencias se observa que una resistencia real se comportará de forma muy similar a como lo haría en CC, siendo despreciables las diferencias. En altas frecuencias el comportamiento es diferente, aumentando en la medida en la que aumenta la frecuencia aplicada, lo que se explica fundamentalmente por los efectos inductivos que producen los materiales que conforman la resistencia real.

Por ejemplo, en una resistencia de carbón los efectos inductivos solo provienen de los propios terminales de conexión del dispositivo mientras que en una resistencia de tipo bobinado estos efectos se incrementan por el devanado de hilo resistivo alrededor del soporte cerámico, además de aparecer una cierta componente capacitiva si la frecuencia es especialmente elevada. En estos casos, para analizar los circuitos, la resistencia real se sustituye por una asociación serie formada por una resistencia ideal y por una bobina también ideal, aunque a veces también se les puede añadir un pequeño condensador ideal en paralelo con dicha asociación serie. En los conductores, además, aparecen otros efectos entre los que cabe destacar el efecto películar.

Consideremos una resistencia R, como la de la figura 2, a la que se aplica una tensión alterna de valor:

De acuerdo con la ley de Ohm circulará una corriente alterna de valor:

donde . Se obtiene así, para la corriente, una función senoidal que está en fase con la tensión aplicada (figura 3).

Si se representa el valor eficaz de la corriente obtenida en forma polar:

Y operando matemáticamente:

De donde se deduce que en los circuitos de CA la resistencia puede considerarse como una magnitud compleja con parte real y sin parte imaginaria o, lo que es lo mismo con argumento nulo, cuya representación binómica y polar serán:

Page 4: La resistencia eléctrica de un objeto es una medida de su oposición al paso de corriente

[editar] Asociación de resistencias

[editar] Resistencia equivalente

Figura 4. Asociaciones generales de resistencias: a) Serie y b) Paralelo. c) Resistencia equivalente.

Se denomina resistencia equivalente de una asociación respecto de dos puntos A y B, a aquella que conectada la misma diferencia de potencial, UAB, demanda la misma intensidad, I (ver figura 4). Esto significa que ante las mismas condiciones, la asociación y su resistencia equivalente disipan la misma potencia.

[editar] Asociación en serie

Dos o más resistencias se encuentran conectadas en serie cuando al aplicar al conjunto una diferencia de potencial, todas ellas son recorridas por la misma corriente.

Para determinar la resistencia equivalente de una asociación serie imaginaremos que ambas, figuras 4a) y 4c), están conectadas a la misma diferencia de potencial, UAB. Si aplicamos la segunda ley de Kirchhoff a la asociación en serie tendremos:

Aplicando la ley de Ohm:

En la resistencia equivalente:

Finalmente, igualando ambas ecuaciones se obtiene que:

Page 5: La resistencia eléctrica de un objeto es una medida de su oposición al paso de corriente

Y eliminando la intensidad:

Por lo tanto, la resistencia equivalente a n resistencias montadas en serie es igual a la sumatoria de dichas resistencias.

[editar] Asociación en paralelo

Dos o más resistencias se encuentran en paralelo cuando tienen dos terminales comunes de modo que al aplicar al conjunto una diferencia de potencial, UAB, todas las resistencias tienen la misma caída de tensión, UAB.

Para determinar la resistencia equivalente de una asociación en paralelo imaginaremos que ambas, figuras 4b) y 4c), están conectadas a la misma diferencia de potencial mencionada, UAB, lo que originará una misma demanda de corriente eléctrica, I. Esta corriente se repartirá en la asociación por cada una de sus resistencias de acuerdo con la primera ley de Kirchhoff:

Aplicando la ley de Ohm:

En la resistencia equivalente se cumple:

Igualando ambas ecuaciones y eliminando la tensión UAB:

De donde:

Por lo que la resistencia equivalente de una asociación en paralelo es igual a la inversa de la suma de las inversas de cada una de las resistencias.

Existen dos casos particulares que suelen darse en una asociación en paralelo:

Page 6: La resistencia eléctrica de un objeto es una medida de su oposición al paso de corriente

1. Dos resistencias: en este caso se puede comprobar que la resistencia equivalente es igual al producto dividido por la suma de sus valores, esto es:

2. k resistencias iguales: su equivalente resulta ser:

[editar] Asociación mixta

Figura 5. Asociaciones mixtas de cuatro resistencias: a) Serie de paralelos, b) Paralelo de series y c) Ejemplo de una de las otras posibles conexiones.

En una asociación mixta podemos encontrarnos conjuntos de resistencias en serie con conjuntos de resistencias en paralelo. En la figura 5 pueden observarse tres ejemplos de asociaciones mixtas con cuatro resistencias.

A veces una asociación mixta es necesaria ponerla en modo texto. Para ello se utilizan los símbolos "+" y "//" para designar las asociaciones serie y paralelo respectivamente. Así con (R1 + R2) se indica que R1 y R2 están en serie mientras que con (R1//R2) que están en paralelo. De acuerdo con ello, las asociaciones de la figura 5 se pondrían del siguiente modo:

a) (R1//R2)+(R3//R4)

Page 7: La resistencia eléctrica de un objeto es una medida de su oposición al paso de corriente

b) (R1+R3)//(R2+R4)c) ((R1+R2)//R3)+R4

Para determinar la resistencia equivalente de una asociación mixta se van simplificando las resistencias que están en serie y las que están en paralelo de modo que el conjunto vaya resultando cada vez más sencillo, hasta terminar con un conjunto en serie o en paralelo. Como ejemplo se determinarán las resistencias equivalentes de cada una de las asociaciones de la figura 5:

a) R1//R2 = R1//2

R3//R4 = R3//4

RAB = R1//2 + R3//4

b) R1+R3 = R1+3

R2+R4 = R2+4

RAB = R1+3//R2+4

c) R1+R2 = R1+2

R1+2//R3 = R1+2//3

RAB = R1+2//3 + R4

Desarrollando se obtiene:

a)

b)

c)

[editar] Asociaciones estrella y triángulo

Artículo principal: Teorema de Kennelly

Figura 6.a) Asociación en estrella.b) Asociación en triángulo.

Page 8: La resistencia eléctrica de un objeto es una medida de su oposición al paso de corriente

En la figura a) y b) pueden observarse respectivamente las asociaciones estrella y triángulo, también llamadas T y π o delta respectivamente. Este tipo de asociaciones son comunes en las cargas trifásicas. Las ecuaciones de equivalencia entre ambas asociaciones vienen dadas por el teorema de Kennelly:

Resistencias en estrella en función de las resistencias en triángulo (transformación de triángulo a estrella)

El valor de cada una de las resistencias en estrella es igual al cociente del producto de las dos resistencias en triángulo adyacentes al mismo terminal entre la suma de las tres resistencias en triángulo.

Resistencias en triángulo en función de las resistencias en estrella (transformación de estrella a triángulo)

El valor de cada una de las resistencias en triángulo es igual la suma de las dos resistencias en estrella adyacentes a los mismos terminales más el cociente del producto de esas dos resistencias entre la otra resistencia.

[editar] Asociación puente

Figura 7. Asociación puente.

Page 9: La resistencia eléctrica de un objeto es una medida de su oposición al paso de corriente

Si en una asociación paralelo de series como la mostrada en la figura 5b se conecta una resistencia que una las dos ramas en paralelo, se obtiene una asociación puente como la mostrada en la figura 7.

La determinación de la resistencia equivalente de este tipo de asociación tiene sólo interés pedagógico. Para ello se sustituye bien una de las configuraciones en triángulo de la asociación, la R1-R2-R5 o la R3-R4-R5 por su equivalente en estrella, bien una de las configuraciones en estrella, la R1-R3-R5 o la R2-R4-R5 por su equivalente en triángulo. En ambos casos se consigue transformar el conjunto en una asociación mixta de cálculo sencillo. Otro método consiste en aplicar una fem (E) a la asociación y obtener su resistencia equivalente como relación de dicha fem y la corriente total demandada (E/I).

El interés de este tipo de asociación está en el caso en el que por la resistencia central, R5, no circula corriente, pues permite calcular los valores de una de las resistencias, R1, R2, R3 o R4, en función de las otras tres. En ello se basan los puentes de Wheatstone y de hilo para la medida de resistencias con precisión.

[editar] Resistencia de un conductor

El conductor es el encargado de unir eléctricamente cada uno de los componentes de un circuito. Dado que tiene resistencia óhmica, puede ser considerado como otro componente más con características similares a las de la resistencia eléctrica.

De este modo, la resistencia de un conductor eléctrico es la medida de la oposición que presenta al movimiento de los electrones en su seno, o sea la oposición que presenta al paso de la corriente eléctrica. Generalmente su valor es muy pequeño y por ello se suele despreciar, esto es, se considera que su resistencia es nula (conductor ideal), pero habrá casos particulares en los que se deberá tener en cuenta su resistencia (conductor real).

La resistencia de un conductor depende de la longitud del mismo ( ) en m, de su sección ( ) en m², del tipo de material y de la temperatura. Si consideramos la temperatura constante (20 ºC), la resistencia viene dada por la siguiente expresión:

en la que es la resistividad (una característica propia de cada material).

[editar] Influencia de la temperatura

Resistividad de algunos materiales a 20 °C

Material Resistividad (Ω·m)

Plata 2 1,55 × 10–8

Cobre 3 1,70 × 10–8

Oro 4 2,22 × 10–8

Aluminio 5 2,82 × 10–8

Wolframio 6 5,65 × 10–8

Níquel 7 6,40 × 10–8

Hierro 8 8,90 × 10–8

Platino 9 10,60 × 10–8

Estaño 10 11,50 × 10–8

Acero inoxidable 301 11 72,00 × 10–8

Grafito 12 60,00 × 10–8

Page 10: La resistencia eléctrica de un objeto es una medida de su oposición al paso de corriente

La variación de la temperatura produce una variación en la resistencia. En la mayoría de los metales aumenta su resistencia al aumentar la temperatura, por el contrario, en otros elementos, como el carbono o el germanio la resistencia disminuye.

Como ya se comentó, en algunos materiales la resistencia llega a desaparecer cuando la temperatura baja lo suficiente. En este caso se habla de superconductores.

Experimentalmente se comprueba que para temperaturas no muy elevadas, la resistencia

a un determinado valor de t ( ), viene dada por la expresión:

donde

= Resistencia de referencia a 20 °C. = Coeficiente Olveriano de temperatura. = Diferencia de temperatura respecto a los 20 °C (t-20).

[editar] Potencia que disipa una resistencia

Una resistencia disipa en calor una cantidad de potencia cuadráticamente proporcional a la intensidad que la atraviesa y a la caída de tensión que aparece en sus bornes.

Comúnmente, la potencia disipada por una resistencia, así como la potencia disipada por cualquier otro dispositivo resistivo, se puede hallar mediante:

A veces es más cómodo usar la ley de Joule para el cálculo de la potencia disipada, que es:

o también

Observando las dimensiones del cuerpo de la resistencia, las características de conductividad de calor del material que la forma y que la recubre, y el ambiente en el cual está pensado que opere, el fabricante calcula la potencia que es capaz de disipar cada resistencia como componente discreto, sin que el aumento de temperatura provoque su destrucción. Esta temperatura de fallo puede ser muy distinta según los materiales que se estén usando. Esto es, una resistencia de 2 W formada por un material que no soporte mucha temperatura, estará casi fría (y será grande); pero formada por un material metálico, con recubrimiento cerámico, podría alcanzar altas temperaturas (y podrá ser mucho más pequeña).

El fabricante dará como dato el valor en vatios que puede disipar cada resistencia en cuestión. Este valor puede estar escrito en el cuerpo del componente o se tiene que deducir de comparar su tamaño con los tamaños estándar y su respectivas potencias. El tamaño de las resistencias comunes, cuerpo cilíndrico con 2 terminales, que aparecen en

Page 11: La resistencia eléctrica de un objeto es una medida de su oposición al paso de corriente

los aparatos eléctricos domésticos suelen ser de 1/4 W, existiendo otros valores de potencias de comerciales de ½ W, 1 W, 2 W, etc.

[editar] Véase también

QUÉ ES LA RESISTENCIA ELÉCTRICA

Resistencia eléctrica es toda oposición que encuentra la corriente a su paso por un circuito eléctrico cerrado, atenuando o frenando el libre flujo de circulación de las cargas eléctricas o electrones. Cualquier dispositivo o consumidor conectado a un circuito eléctrico representa en sí una carga, resistencia u obstáculo para la circulación de la corriente eléctrica.

A.- Electrones fluyendo por un buen conductor eléctrico, que ofrece baja resistencia. B.- Electrones fluyendo por un mal conductor. eléctrico, que ofrece alta resistencia a su paso. En ese caso los electrones chocan unos contra otros al no poder circular libremente y, como consecuencia, generan calor.

Normalmente los electrones tratan de circular por el circuito eléctrico de una forma más o menos organizada, de acuerdo con la resistencia que encuentren a su paso. Mientras menor sea esa resistencia, mayor será el orden existente en el micromundo de los electrones; pero cuando la resistencia es elevada, comienzan a chocar unos con otros y a liberar energía en forma de calor. Esa situación hace que siempre se eleve algo la temperatura del conductor y que, además, adquiera valores más altos en el punto donde los electrones encuentren una mayor resistencia a su paso.http://es.wikipedia.org/wiki/Resistencia_el%C3%A9ctrica

http://www.asifunciona.com/electrotecnia/ke_resistencia/ke_resistencia_1.htm

CÁLCULO DE LA RESISTENCIA ELÉCTRICA DE UN MATERIAL AL PASO DE LA CORRIENTE (I)

Para calcular la resistencia ( R ) que ofrece un material al paso de la corriente eléctrica, es necesario conocer primero cuál es el coeficiente de resistividad o resistencia específica “ ” (rho) de dicho material, la longitud que posee y el área de su sección transversal.

A continuación se muestra una tabla donde se puede conocer la resistencia específica en ·

Page 12: La resistencia eléctrica de un objeto es una medida de su oposición al paso de corriente

mm2 / m, de algunos materiales, a una temperatura de 20° Celsius.

Material Resistividad ( · mm2 / m ) a 20º C

Aluminio 0,028

Carbón 40,0

Cobre 0,0172

Constatan 0,489

Nicromo 1,5

Plata 0,0159

Platino 0,111

Plomo 0,205

Tungsteno 0,0549

Para realizar el cálculo de la resistencia que ofrece un material al paso de la corriente eléctrica, se utiliza la siguiente fórmula:

FÓRMULA 1

 

De donde:

R = Resistencia del material en ohm ( ).

= Coeficiente de resistividad o resistencia específica del material en 

     , a una temperatura dada.

l = Longitud del material en metros.

s = Superficie o área transversal del material en mm2.

Page 13: La resistencia eléctrica de un objeto es una medida de su oposición al paso de corriente

Veamos ahora un ejemplo práctico para hallar la resistencia que ofrece al paso de la corriente eléctrica un conductor de cobre de 500 metros de longitud. Como la “fórmula 1” exige utilizar el valor del área del alambre del conductor, si no tenemos ese dato a mano, habrá que medir primero el diámetro del alambre de cobre con un “pie de rey” o vernier, teniendo cuidado de no incluir en la medida el forro aislante, porque de lo contrario se obtendría un dato falseado. En el caso de este ejemplo, el supuesto diámetro de la parte metálica del conductor, una vez medido con el pie de rey, será de 1,6 mm.

http://www.asifunciona.com/electrotecnia/ke_resistencia/ke_resistencia_4.htm

Códigos y series de las Resistencias

Código de colores Resistencias SMD Series   normalizadas Simbología

Código de colores

Colores 1ª Cifra 2ª Cifra Multiplicador Tolerancia

Negro 0 0

Marrón 1 1 x 10 1%

Rojo 2 2 x 102 2%

Naranja 3 3 x 103

Amarillo 4 4 x 104

Verde 5 5 x 105 0.5%

Azul 6 6 x 106

Violeta 7 7 x 107

Gris 8 8 x 108

Blanco 9 9 x 109

Oro x 10-1 5%

Page 14: La resistencia eléctrica de un objeto es una medida de su oposición al paso de corriente

Plata x 10-2 10%

Sin color 20%

Ejemplo:Si los colores son: ( Marrón - Negro - Rojo - Oro ) su valor en ohmios es:

10x 1005 %  = 1000   = 1K

Tolerancia de 5%

5 bandas de colores

También hay resistencias con 5 bandas de colores, la única diferencia

respecto a la tabla anterior, es qué la tercera banda es la 3ª Cifra, el

resto sigue igual.

Descargue (CodRes.exe) Programa freeware para el cálculo de las resistencias, cortesía de Cesar Pérez.

Codificación en Resistencias SMDEn las resistencias SMD ó de montaje en superficie su codificación más

usual es:

1ª Cifra = 1º número2ª Cifra = 2º número3ª Cifra = Multiplicador

En este ejemplo la resistencia tiene

un valor de:1200 ohmios = 1K2

1ª Cifra = 1º númeroLa " R " indica coma decimal3ª Cifra = 2º número

En este ejemplo la resistencia tiene

un valor de:1,6 ohmios

La " R " indica "  0. "2ª Cifra = 2º número3ª Cifra = 3º número

En este ejemplo la resistencia tiene

un valor de:0.22 ohmios

Series de resistencias  E6 - E12 - E24 - E48, norma IECSeries de resistencias normalizadas y comercializadas mas habituales para

potencias pequeñas. Hay otras series como las  E96, E192  para usos más especiales.

E6 1.0 1.5 2.2 3.3 4.7 6.8

E12 1.0 1.2 1.5 1.8 2.2 2.7 3.3 3.9 4.7 5.6 6.8 8.2

E24 1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1

E48

1.0 1.05 1.10 1.15 1.21 1.27 1.33 1.40 1.47 1.54 1.62 1.69

1.78 1.87 1.96 2.05 2.15 2.26 2.37 2.49 2.61 2.74 2.87 3.01

3.16 3.32 3.48 3.65 3.83 4.02 4.22 4.42 4.64 4.87 5.11 5.36

5.62 5.90 6.19 6.49 6.81 7.15 7.50 7.87 8.25 8.66 9.09 9.53

Tolerancias de las series :E6 20%  -  E12 10%  -  E24 5%  -  E48 2%

Page 15: La resistencia eléctrica de un objeto es una medida de su oposición al paso de corriente

Valores de las resistencias en  , K  , M IEC = Comisión eléctrica Internacional

http://www.arrakis.es/~fon/simbologia/_private/colores.htm

Características y aplicaciones de las resistencias

Resistencias de cartucho de alta y baja densidad-Resistencias de banda aislada con mica-Resistencias tubulares

Tema: Características y aplicaciones de las resistencias

Fecha:13-Abr-2009Fuente:QuimiNetSectores relacionados:Metal Mecánica, Plásticos, Maquinaria y equipo periférico

Foto por: © Getty Images

Reparación de maquinaria

Agregar a Mi archivero de negocios

Enviar por e-mail

Aumentar tamaño

Disminuir tamaño

Imprimir

Page 16: La resistencia eléctrica de un objeto es una medida de su oposición al paso de corriente

Una resistencia o resistor es un elemento que causa oposición al paso de la corriente, causando que en sus terminales aparezca una diferencia de tensión (un voltaje).

Existen diversos tipos de resistencias eléctricas industriales que cuentan con una amplia aplicación, entre las que se encuentran

http://www.quiminet.com/articulos/caracteristicas-y-aplicaciones-de-las-resistencias-34467.htm

Ley de OhmDe Wikipedia, la enciclopedia libreSaltar a: navegación, búsqueda

Georg Ohm, Creador de la ley de Ohm.

La Ley de Ohm establece que la intensidad que circula por un conductor, circuito o resistencia, es inversamente proporcional a la resistencia (R) y directamente proporcional a la tensión (E).

La ecuación matemática que describe esta relación es:

Donde, I es la corriente que pasa a través del objeto en amperios, V es la diferencia de potencial de las terminales del objeto en voltios, y R es la resistencia en ohmios (Ω). Específicamente, la ley de Ohm dice que la R en esta relación es constante, independientemente de la corriente.1

Esta ley tiene el nombre del físico alemán Georg Ohm, que en un tratado publicado en 1827, halló valores de tensión y corriente que pasaba a través de unos circuitos eléctricos simples que contenían una gran cantidad de cables. Él presentó una ecuación un poco más compleja que la mencionada anteriormente para explicar sus resultados experimentales. La ecuación de arriba es la forma moderna de la ley de Ohm.

Contenido

Page 17: La resistencia eléctrica de un objeto es una medida de su oposición al paso de corriente

[ocultar]

1 Historia 2 Símil hidráulico 3 Véase también 4 Notas 5 Enlaces externos

[editar] Historia

En enero de 1781, antes del trabajo de Georg Ohm, Henry Cavendish experimentó con botellas de Leyden y tubos de vidrio de diferente diámetro y longitud llenados con una solución salina. Como no contaba con los instrumentos adecuados, Cavendish calculaba la corriente de forma directa: se sometía a ella y calculaba su intensidad por el dolor. Cavendish escribió que la "velocidad" (corriente) variaba directamente por el "grado de electrificación" (tensión). Él no publicó sus resultados a otros científicos a tiempo, y sus resultados fueron desconocidas hasta que Maxwell los publicó en 1879.

En 1825 y 1826, Ohm hizo su trabajo sobre las resistencias, y publicó sus resultados en 1827 en el libro Die galvanische Kette, mathematisch bearbeitet (Trabajos matemáticos sobre los circuitos eléctricos). Su inspiración la obtuvo del trabajo de la explicación teórica de Fourier sobre la conducción del calor.

En sus experimentos, inicialmente uso pilas voltaicas, pero posteriormente usó un termopar ya que este proveía una fuente de tensión con una resistencia interna y diferencia de potencial casi constante. Usó un galvanómetro para medir la corriente, y se dio cuenta que la tensión de las terminales del termopar era proporcional a su temperatura. Entonces agregó cables de prueba de diferente largo, diámetro y material para completar el circuito. El encontró que los resultados obtenidos podían modelarse a través de la ecuación:

Donde x era la lectura obtenida del galvanómetro, l era el largo del conductor a prueba, a dependía solamente de la temperatura del termopar, y b era una constante de cada material. A partir de esto, Ohm determinó su ley de proporcionalidad y publicó sus resultados.

La ley de Ohm todavía se sigue considerando como una de las descripciones cuantitativas más importante de la física de la electricidad, aunque cuando Ohm publicó por primera vez su trabajo las críticas lo rechazaron. Fue denominado "una red de fantasías desnudas", y el ministro alemán de educación afirmó que un profesor que predicaba tales herejías no era digno de enseñar ciencia. El rechazo al trabajo de Ohm se debía a la filosofía científica que prevalecía en Alemania en esa época, la cual era liderada por Hegel, que afirmaba que no era necesario que los experimentos se

Page 18: La resistencia eléctrica de un objeto es una medida de su oposición al paso de corriente

adecuaran a la comprensión de la naturaleza, porque la naturaleza esta tan bien ordenada, y que además la veracidad científica puede deducirse al razonar solamente. También, el hermano de Ohm, Martín Ohm, estaba luchando en contra del sistema de educación alemán. Todos estos factores dificultaron la aceptación del trabajo de Ohm, el cual no fue completamente aceptado hasta la década de los años 1840. Afortunadamente, Ohm recibió el reconocimiento de sus contribuciones a la ciencia antes de que muriera.

En los años 1850, la ley de Ohm fue conocida como tal, y fue ampliamente probada, y leyes alternativas desacreditadas, para las aplicaciones reales para el diseño del sistema del telégrafo, discutido por Morse en 1855.

En los años 1920, se descubrió que la corriente que fluye a través de un resistor ideal tiene fluctuaciones estadísticas, que dependen de la temperatura, incluso cuando la tensión y la resistencia son exactamente constantes. Esta fluctuación, conocida como ruido de Johnson-Nyquist, es debida a la naturaleza discreta de la carga. Este efecto térmico implica que las medidas de la corriente y la tensión que son tomadas por pequeños períodos de tiempo tendrá una relacion V/I que fluirá del valor de R implicado por el tiempo promedio de la corriente medida. La ley de Ohm se mantiene correcta para la corriente promedio, para materiales resistivos.

El trabajo de Ohm precedió a las ecuaciones de Maxwell y también a cualquier comprensión de los circuitos de corriente alterna. El desarrollo moderno en la teoría electromagnética y el análisis de circuitos no contradicen la ley de Ohm cuando estás son evaluadas dentro de los límites apropiados.

http://es.wikipedia.org/wiki/Ley_de_Ohm

LA LEY DE OHM

La Ley de Ohm, postulada por el físico y matemático alemán Georg Simon Ohm, es una de las leyes fundamentales de la electrodinámica, estrechamente vinculada a los valores de las unidades básicas presentes en cualquier circuito eléctrico como son:

1. Tensión o voltaje "E", en volt (V).2. Intensidad de la corriente "  I ", en ampere (A).3. Resistencia "R" en ohm ( ) de la carga o consumidor conectado al circuito.

Page 19: La resistencia eléctrica de un objeto es una medida de su oposición al paso de corriente

Circuito eléctrico cerrado compuesto por una pila de 1,5 volt, una resistencia o carga eléctrica "R" y la. circulación de una intensidad  o flujo de corriente eléctrica " I " suministrado por la propia pila.

Debido a la existencia de materiales que dificultan más que otros el paso de la corriente eléctrica a través de los mismos, cuando el valor de su resistencia varía, el valor de la intensidad de corriente en ampere también varía de forma inversamente proporcional. Es decir, a medida que la resistencia aumenta la corriente disminuye y, viceversa, cuando la resistencia al paso de la corriente disminuye la corriente aumenta, siempre que para ambos casos el valor de la tensión o voltaje se mantenga constante.

Por otro lado y de acuerdo con la propia Ley, el valor de la tensión o voltaje es directamente proporcional a la intensidad de la corriente; por tanto, si el voltaje aumenta o disminuye, el amperaje de la corriente que circula por el circuito aumentará o disminuirá en la misma proporción, siempre y cuando el valor de la resistencia conectada al circuito se mantenga constante.

Postulado general de la Ley de Ohm

El flujo de corriente en ampere que circula por un circuito eléctrico cerrado, es directamente proporcional a la tensión o voltaje aplicado, e inversamente proporcional a la resistencia en ohm de la carga que tiene conectada.

FÓRMULA MATEMÁTICA GENERAL DE REPRESENTACIÓN DE LA LEY DE OHM

Desde el punto de vista matemático el postulado anterior se puede representar por medio de la siguiente Fórmula General de la Ley de Ohm:

VARIANTE PRÁCTICA:

Aquellas personas menos relacionadas con el despeje de fórmulas matemáticas pueden realizar también los cálculos de tensión, corriente y resistencia correspondientes a la Ley de Ohm, de una forma más fácil utilizando el siguiente recurso práctico:

Page 20: La resistencia eléctrica de un objeto es una medida de su oposición al paso de corriente

Con esta variante sólo será necesario tapar con un dedo la letra que representa el valor de la incógnita que queremos conocer y de inmediato quedará indicada con las otras dos letras cuál es la operación matemática que será necesario realizar.

http://www.asifunciona.com/electrotecnia/ke_ley_ohm/ke_ley_ohm_1.htm

LEY de OHM

La corriente continua es un movimiento de electrones. Cuando los electrones circulan por un conductor, encuentran una cierta dificultad al moverse. A esta "dificultad" la llamamos Resistencia eléctrica.La resistencia eléctrica de un conductor depende de tres factores que quedan recogidos en la ecuación que sigue:

La resistividad depende de las características del material del que está hecho el conductor.

La ley de Ohm relaciona el valor de la resistencia de un conductor con la intensidad de corriente que lo atraviesa y con la diferencia de potencial entre sus extremos. En el gráfico vemos un circuito con una resistencia y una pila. Observamos un amperímetro que nos medirá la intensidad de corriente, I. El voltaje que proporciona la pila V, expresado en voltios,  esta intensidad de corriente, medido en amperios, y el valor de la resistencia en ohmios, se relacionan por la ley de Ohm, que aparece en el centro del circuito.

APLICACIÓN PRÁCTICA

Vamos a realizar dos aplicaciones prácticas. En la primera, comprobaremos la ley de Ohm en un applet en el cual iremos modificando el valor del potencial para una resistencia concreta y observaremos que se modifica el valor de la intensidad. Tomados una serie de valores de potencial y de intensidad, el cociente de V / I debe darnos siempre el mismo valor de R que habíamos predeterminado.La segunda aplicación tendrá el mismo fin, sólo que el cálculo de R lo haremos gráficamente.

Page 21: La resistencia eléctrica de un objeto es una medida de su oposición al paso de corriente

La ley de Ohm, V = I R, responde a la ecuación de una recta, donde, al representar V frente a

I, obtenemos una línea recta, donde la pendiente es el valor de R. Usaremos dos applets, uno para tomar los datos y otro para la representación y el cálculo de la pendiente.

http://usuarios.multimania.es/pefeco/leyohm/leyohm.htm

Page 22: La resistencia eléctrica de un objeto es una medida de su oposición al paso de corriente