L22 Ionized Impurity Scattering - nanoHUB

21
ECE-656: Fall 2011 Lecture 22: Ionized Impurity Scattering Mark Lundstrom Purdue University West Lafayette, IN USA 1 10/19/11 Lundstrom ECE-656 F11 2 scattering of plane waves S p, p ( ) = 2π H p , p 2 δ E E −ΔE ( ) U S ( r , t ) H p , p = ψ f * −∞ +U S ( r )ψ i d r ψ i = 1 Ω e i p r ψ f = 1 Ω e i p r H p , p = 1 Ω e i p r −∞ +U S ( r ) e i p r d r incident plane wave weak scattering infrequent scattering

Transcript of L22 Ionized Impurity Scattering - nanoHUB

Page 1: L22 Ionized Impurity Scattering - nanoHUB

ECE-656: Fall 2011

Lecture 22:

Ionized Impurity Scattering

Mark Lundstrom Purdue University

West Lafayette, IN USA

1 10/19/11

Lundstrom ECE-656 F11 2

scattering of plane waves

S p, ′p( ) = 2π

H ′p , p

2δ ′E − E − ΔE( )

US (r ,t)

H ′p , p = ψ f

*

−∞

+∞

∫ US (r )ψ idr

ψ i =

ei p• r ψ f =

ei ′p • r

H ′p , p =

e− i ′p •r

−∞

+∞

∫ US (r )ei p• r dr

incident plane wave

weak scattering

infrequent scattering

Page 2: L22 Ionized Impurity Scattering - nanoHUB

Lundstrom ECE-656 F11 3

examples

1τ E( ) =

1τm E( ) ∝ Df E( )

“short range potential” “oscillating, propagating potential”

USr ,t( ) = Uβ

a,e

Ωe± i

β • r −ω t( )

S p, ′p( ) = 2π

Uβa,e 2

Ωδ ′E − E ω( )δ ′p , p±

β

1τ E( ) =

1τm E( ) ∝ Df E ± ω( )

1τ Ep( ) =

ωE

⎛⎝⎜

⎞⎠⎟

1τ p( )

Lundstrom ECE-656 F11 4

static potential summary

(isotropic)

(elastic)

Page 3: L22 Ionized Impurity Scattering - nanoHUB

Lundstrom ECE-656 F11 5

oscillating potential summary

1τ p( ) ~

Df E ± ω( )2

1τmp( ) =

1τ p( ) (isotropic)

1τ Ep( ) =

ωE

1τ p( ) (inelastic)

ψ i =

ei p• r

ψ f =

ei ′p • r

USr ,t( ) = Uβ

a,e

Ωe± i

β • r −ω t( )

Lundstrom ECE-656 F11 6

acoustic vs. optical phonon scattering

LO (ABS)

1τ p( ) ~ nω Df E + ω0( )

LA (ABS + EMS)

1τ p( ) ~ Df E( )

LO (EMS)

1τ p( ) ~ nω +1( )Df E − ω0( )

Page 4: L22 Ionized Impurity Scattering - nanoHUB

Lundstrom ECE-656 F11 7

summary

1)  Characteristic times are derived from the transition rate, S(p,p’)

2)  S(p,p’) is obtained from Fermi’s Golden Rule

3)  The scattering rate is proportional to the final DOS

4)  Static potentials lead to elastic scattering

5)  Time varying potentials lead to inelastic scattering

6)  General features of scattering in common semiconductors can now be understood (almost)

8

covalent vs. polar semiconductors covalent polar

Page 5: L22 Ionized Impurity Scattering - nanoHUB

Lundstrom ECE-656 F11 9

II scattering potential

“impact parameter”

i) electrons in P-type material

According to FGR, the transition rate is independent of the sign of the scattering potential.

ii) electrons in N-type material

10

outline

Lundstrom ECE-656 F11

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 United States License. http://creativecommons.org/licenses/by-nc-sa/3.0/us/

(Reference: Chapter 2, Lundstrom, FCT)

1) Review 2) Screening 3) Brooks-Herring approach 4) Conwell-Weisskopf approach 5) Discussion 6) Summary / Questions

Page 6: L22 Ionized Impurity Scattering - nanoHUB

Lundstrom ECE-656 F11 11

screening

Bare Coulomb potential.

Mobile charges attracted to fixed charges “screen” out the fixed charge.

Screened Coulomb potential: ??

12

screening in 3D

Page 7: L22 Ionized Impurity Scattering - nanoHUB

13

screening in 3D

US (r) = −qδV (r) =

q2

4πκ Sε0re−r LD

Lundstrom ECE-656 F11

14

Debye length in 3D

Lundstrom ECE-656 F11

n0 = N3DF 1/ 2 ηF( )

∂n0

∂ηF

= N3DF −1/ 2 ηF( ) = n0

F −1/ 2 ηF( )F 1/ 2 ηF( ) = n0 (non-degenerate)

(non-degenerate)

Debye length

Page 8: L22 Ionized Impurity Scattering - nanoHUB

15

comments on screening

Lundstrom ECE-656 F11

1) Our semi-classical approach assumes that the potential is slowly varying on the scale of the electron’s wavelength. For rapidly varying potentials, a more sophisticated approach is needed. (See Ashcroft and Mermin, pp. 340-343 for a discussion of the Lindhard theory.)

2) Our semi-classical approach also assumes that the potential is slowly in time. (See Ashcroft and Mermin, p. 344 for a brief discussion.)

3) For potentials that vary rapidly in space and time, a “dynamic screening” treatment is needed. (See chapter 9 in Ridley, Quantum Processes in Semiconductors, 4th Ed. and Chapter 10 in Ridley, Electrons and Phonons in Semiconductor Multilayers.)

4) Screening is generally less effective in 2D and in 1D. (See J.H. Davies, The Physics of Low-Dimensional Structures, pp. 350-356

16

outline

Lundstrom ECE-656 F11

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 United States License. http://creativecommons.org/licenses/by-nc-sa/3.0/us/

(Reference: Chapter 2, Lundstrom, FCT)

1) Review 2) Screening 3) Brooks-Herring approach 4) Conwell-Weisskopf approach 5) Discussion 6) Summary / Questions

Page 9: L22 Ionized Impurity Scattering - nanoHUB

Lundstrom ECE-656 F11 17

transition rate and scattering potential

Lundstrom ECE-656 F11 18

II scattering (Brooks-Herring)

Page 10: L22 Ionized Impurity Scattering - nanoHUB

Lundstrom ECE-656 F11 19

Fourier transform of the screened Coulomb potential

choose z-axis along β: r

θ

small angle scattering preferred!! Lundstrom ECE-656 F11 20

Fourier transform (ii)

US β( ) = q2

κ Sε0

1β 2 +1 LD

2

⎝⎜

⎠⎟

US β( ) = q2

κ Sε0

1

4 p ( )2sin2 α 2( ) +1 LD

2

⎝⎜⎜

⎠⎟⎟

Page 11: L22 Ionized Impurity Scattering - nanoHUB

Lundstrom ECE-656 F11 21

small angle scattering

impact parameter

Lundstrom ECE-656 F11 22

II scattering of high energy carriers For a given deflection angle, higher energies scatter less.

High energy electrons don’t “see” these fluctuations and are not scattered as strongly.

Random charges introduce random fluctuations in EC, which act a scattering centers.

Page 12: L22 Ionized Impurity Scattering - nanoHUB

Lundstrom ECE-656 F11 23

II scattering: recap

S p, ′p( ) = 2πq4 N I

κ S2ε0

2 Ω

δ ′E − E( )β 2 +1 LD

2( )2

S p, ′p( ) = 2πq4 N I

κ S2εS

δ ′E − E( )4 p2

2 sin2α 2 +1 LD

2⎛⎝⎜

⎞⎠⎟

2

US β( ) = q2

κ Sε0

1β 2 +1 LD

2( ) H p, ′p =

1ΩUS β( )

Need to multiple by the total number of ionized impurities in the volume, Ω.

Lundstrom ECE-656 F11 24

examine result

1) S p, ′p( ) ~ N I

2) S p, ′p( ) ~ q4

S p, ′p( ) ~ 1 E23)

4) favors small angle scattering

Page 13: L22 Ionized Impurity Scattering - nanoHUB

Lundstrom ECE-656 F11 25

examine result 4) angular dependence

Lundstrom ECE-656 F11 26

momentum relaxation time

favors small angles

expect:

Page 14: L22 Ionized Impurity Scattering - nanoHUB

Lundstrom ECE-656 F11 27

momentum relaxation time

τm(E) ~ E3/ 2

τm(E) ≈ τ 0 E kBTL( )3/ 2

s = 3 / 2 τ 0 ~ TL3/ 2

1τm

= S p, ′p( ) 1− cosα( )′p∑

τm(E) =

16 2m*πκ S2ε0

2

N Iq4 ln 1+ γ 2( ) − γ 2

1+ γ 2

⎣⎢

⎦⎥E3/ 2

γ2 = 8m* ELD

2

2 See Lundstrom, pp. 69-70

28

outline

Lundstrom ECE-656 F11

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 United States License. http://creativecommons.org/licenses/by-nc-sa/3.0/us/

(Reference: Chapter 2, Lundstrom, FCT)

1) Review 2) Screening 3) Brooks-Herring approach 4) Conwell-Weisskopf approach 5) Discussion 6) Summary / Questions

Page 15: L22 Ionized Impurity Scattering - nanoHUB

Lundstrom ECE-656 F11 29

BH vs.CW

Brook-Herring means “screened Coulomb scattering.”

Conwell-Weisskopf means “unscreened Coulomb scattering.”

Lundstrom ECE-656 F11 30

Conwell-Weiskopf approach

unscreened Coulomb potential

Can we specify a minimum angle, so that the integral does not blow up?

Page 16: L22 Ionized Impurity Scattering - nanoHUB

Lundstrom ECE-656 F11 31

Conwell-Weiskopf approach

As the impact parameter increases, the deflection angle decreases.

But there is a maximum impact parameter?

Lundstrom ECE-656 F11 32

Conwell-Weisskopf approach

(Rutherford)

Page 17: L22 Ionized Impurity Scattering - nanoHUB

Lundstrom ECE-656 F11 33

Conwell-Weisskopf approach

τm(E) ≈ τ 0 E kBTL( )3/ 2

τ 0 ~ TL3/ 2

Much like the Brooks-Herring result.

Lundstrom ECE-656 F11 34

CW vs. BH

bmax =

12

N I−1/3

LD =

κ Sε0kBTq2n0

Compare bMAX to LD

Use BH if:

bmax > LD

B. K. Ridley, “Reconciliation of the Conwell-Weisskopf and Brooks-Herring formulae for charged-impurity scattering in semiconductors: Third-body interference,” J. Phys. C: Solid State Phys. 10, p. 1589 doi:10.1088/0022-3719/10/10/003, 1977.

Page 18: L22 Ionized Impurity Scattering - nanoHUB

35

outline

Lundstrom ECE-656 F11

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 United States License. http://creativecommons.org/licenses/by-nc-sa/3.0/us/

(Reference: Chapter 2, Lundstrom, FCT)

1) Review 2) Screening 3) Brooks-Herring approach 4) Conwell-Weisskopf approach 5) Discussion 6) Summary / Questions

Lundstrom ECE-656 F11 36

mobility

s = 3 / 2

µn =

qτ 0

m*

3 π4

~ TL3/ 2

~ TL3/ 2

T3/2 temperature dependence is the “signature” of charged impurity scattering.

Page 19: L22 Ionized Impurity Scattering - nanoHUB

Lundstrom ECE-656 F11 37

PN junction

screened screened

unscreened

Lundstrom ECE-656 F11 38

screening 2D modulation-doped layers

+ delta doped layer + + + + + + + + + + + + + + + + + + + + +

GaAs

AlGaAs

centroid of electron wavefunction

The heterojunction interface can be atomically smooth and at low temperatures, phonon scattering is absent, so scattering by remote impurities dominates. Extraordinarily high mobilities (e.g. > 106 cm2/V-s) can be achieved at about T = 1K.

Page 20: L22 Ionized Impurity Scattering - nanoHUB

Lundstrom ECE-656 F11 39

modulation-doped structures

For a discussion of modulation doping, screening in 2D, and remote impurity scattering in 2D, see:

J.H. Davies, The Physics of Low-Dimensional Semiconductors, Chapter 8, Cambridge Univ. Press, 1998.

40

outline

Lundstrom ECE-656 F11

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 United States License. http://creativecommons.org/licenses/by-nc-sa/3.0/us/

(Reference: Chapter 2, Lundstrom, FCT)

1) Review 2) Screening 3) Brooks-Herring approach 4) Conwell-Weisskopf approach 5) Discussion 6) Summary / Questions

Page 21: L22 Ionized Impurity Scattering - nanoHUB

41

summary

Lundstrom ECE-656 F11

1) The two classic treatments of II scattering are Brooks-Herring and Conwell-Weiskopf

2) II scattering is actually difficult to treat properly because:

FGR does not account for the difference in sign of the scattering potential

“multiple scattering” occurs at heavy doping.

Lundstrom ECE-656 F11 42

questions

1) Review 2) Screening 3) Brooks-Herring approach 4) Conwell-Weisskopf approach 5) Discussion 6) Summary / Questions