Karl Rumbold and Rosemary Dobson

12
The Exploration of the Glycerol Metabolic Pathway for ε-poly-L-lysine Production, by Streptomyces albulus Karl Rumbold and Rosemary Dobson

description

The Exploration of the Glycerol Metabolic Pathway for ε-poly-L-lysine Production, by Streptomyces albulus. Karl Rumbold and Rosemary Dobson. Introduction. ε-poly-L-lysine (ε-PL ). Glycerol. ε-poly-L-lysine (ε-PL ). Introduction. Introduction. Glycerol ε -poly-L-lysine. - PowerPoint PPT Presentation

Transcript of Karl Rumbold and Rosemary Dobson

Page 1: Karl Rumbold and  Rosemary Dobson

The Exploration of the Glycerol Metabolic Pathway for ε-poly-L-lysine Production,

by Streptomyces albulus

Karl Rumbold and Rosemary Dobson

Page 2: Karl Rumbold and  Rosemary Dobson

ε-PL

Homopolymer• (discovered by Shima

and Sakai in 1977)

Anti – microbial activity

Aerobic Fermentation

• S. albulus mutant

Degradable + Edible

Introduction

Glycerol

Non-Biodegradable

BiodieselBy-

product

Many Applications

Carbon Source

ε-poly-L-lysine (ε-PL ) Glycerol

ε-PL

Homopolymer

Anti-microbial activity

Aerobic Fermentation

Degradable + Edible

ε-poly-L-lysine (ε-PL )

Page 3: Karl Rumbold and  Rosemary Dobson

• Glycerol ε-poly-L-lysine

IntroductionIntroduction

Figure 1: Metabolism of Glycerol (Adapted from Horton et al., 2006 and … Wang et al., 2001)

Page 4: Karl Rumbold and  Rosemary Dobson

• Aim: • Does the metabolic engineering of the glycerol uptake system lead to

improved polylysine production by S.albulus

• Objectives:• Grow S. albulus - different glycerol concentrations

• Estimate ε-PL produced

• Clone glycerol operon into shuttle vectors

• Transform S. albulus with glycerol operons from E.coli and S. coelicolor

• Grow S. albulus transformants - different glycerol concentrations

Aim & Objectives

Page 5: Karl Rumbold and  Rosemary Dobson

MethodologyMethodology

Seed Culture• S. albulus CCRC

11814

Shake Flask Fermentation• 30°C, 220rpm• Cell density:660nm

Qualitative Analysis of ε-PL• TLC

Quantitative Analysis• Colormetric method

(Itzahaki, 1972)

Construct Gene Delivery System• Glycerol operon• S. coelicolor + E.

coli

Transform S.albulus• Vectors:

pLAE001 + pLAE003

Page 6: Karl Rumbold and  Rosemary Dobson

MethodologyMethodology

Figure 2: pNO33-based shuttle vectors constructed in a study by Hamano et al (2005): pLAE001 and pLAE003 were used for the PEG-mediated protoplast transformation and intergenic conjugation from E. coli to S. albulus (Hamano et al., 2005).

Cloning sites for restriction enzymes

Overcome incompatibility

Antibiotic resistance genes

Page 7: Karl Rumbold and  Rosemary Dobson

MethodologyMethodology

Seed Culture• S. albulus CCRC

11814

Shake Flask Fermentation• 30°C, 220rpm• Cell density:660nm

Qualitative Analysis of ε-PL• TLC

Quantitative Analysis• Colormetric method

(Itzahaki, 1972)

Construct Gene Delivery System• Glycerol operon• S. coelicolor + E.

coli

Transform S.albulus• Vectors:

pLAE001 + pLAE003

Page 8: Karl Rumbold and  Rosemary Dobson

MethodologyResults

Carbon Source

ɛ-PL Concentration

(mg/L)

Dry Cell Weight (g/L)

Glucose 2.5% 38.91 ± 2.74 3.07 ± 0.69

Glycerol 1% 34.58 ± 7.09 4.48 ± 0.79**

Glycerol 2.5% 31.89 ± 3.33 3.84 ± 1.03**

Glycerol 5% 32.20 ± 0.62* 7.95 ± 5.01**

Glycerol 10% 35.39 ± 5.59 7.08 ± 2.55*

Table 1: ɛ-PL concentrations and biomass accumulation from baffled flask fermentations.

Fig 2: The percentage of carbon utilised during 3 day fermentations with S. albulus in minimal media. Glucose was the control carbon source. There is sufficient evidence to suggest that the percentage carbon used is higher from at least one carbon source (Kruskal-Wallis test; H=12.1, d.f.=1, P=11.14).

Glucose 2.5%Glycerol 1%

Glycerol 2.5%Glycerol 5%

Glycerol 10%0

10

20

30

40

50

60

70

80

90

100

Carbon source

% C

arbo

n us

ed

Page 9: Karl Rumbold and  Rosemary Dobson

MethodologyResults

Fig 3: Gene products and transformations with pLAE001::glpD. A) 1% agarose gel where M: 1Kb Plus molecular marker (Fermentas), 1506bp glpD gene from E. coli (a) and linearised (AscI) 7875bp pLAE001 (b). Confirmation of cloning by restriction digest using AscI and SacI on recombinant plasmid: pLAE001 (c) containing glpD (d); linearised pLAE001::glpD (e); colony PCR of transformed S. albulus with pLAE001::glpD. B) Rhodococus regeneration media showing black colonies (orange arrow) which are S. albulus transformants, white growth represents overgrowth.

Page 10: Karl Rumbold and  Rosemary Dobson

• Genome Sequencing• Poly lysine synthase• Meta – transcriptomics

Future tasks

Page 11: Karl Rumbold and  Rosemary Dobson

MethodologyReferences

1. Hamano, Y., Nicchu, I., Shimizu, T. Hoshino, Y., Kawai, T., Nakamori, S., Takagi, H. (2005). Development of Gene Delivery Systems for the ε-Poly-L-Lysine Producer, Streptomyces albulus. Journal of Bioscience and Bioengineering. 99(6):636-641.

2. Horton,R.H., Moran, L.A., Scrimgeour, K,G., Perry, M.D., Rawn, J.D. (2006). Principles of Biochemistry, 4th edition. Pearson Education Iternational. USA. 526

3. Itzhaki, R.F. (1972). Colorimetric method for estimating polylysine and polyarginine. Analytical Biochemistry. 50:569–574.

4. Wang, J., Gilles, E.D., Lengeler, J.W., Jahreis, K. (2001). Modelling of inducer exclusion and catabolite repression based on a PTS-dependent sucrose and non-PTS-dependent glycerol transport systems in Escherichia coli K-12 and its experimental verification. Journal of Biotechnology. 92:133-158.