June 15-19, 2014, Larnaca, Cyprus JWorkshop in Honor of...

17
JWorkshop in Honor of Michail Ivanov ’ 70 th Birthday

Transcript of June 15-19, 2014, Larnaca, Cyprus JWorkshop in Honor of...

Page 1: June 15-19, 2014, Larnaca, Cyprus JWorkshop in Honor of ...lnf.nsu.ru/en/pdf/present/3_Grigoriev.pdf · v sin(kv)f(v;t)dv: where f(v;t) is the distribution function of isotropic in

June 15-19, 2014, Larnaca, Cyprus

JWorkshop in Honor of Michail Ivanov ’ 70 th Birthday

Page 2: June 15-19, 2014, Larnaca, Cyprus JWorkshop in Honor of ...lnf.nsu.ru/en/pdf/present/3_Grigoriev.pdf · v sin(kv)f(v;t)dv: where f(v;t) is the distribution function of isotropic in

The equation studiedThe Fourier image of the spatially homogeneous and isotropicBoltzmann equation with a source term has the form:

ϕt (x , t) + ϕ(x , t)ϕ(0, t) =

∫ 1

0ϕ(xs, t)ϕ(x(1− s), t) ds + q̂(x , t).

Here the function ϕ(x , t) is

ϕ(x , t) ≡ ϕ(k2/2, t) = ϕ̃(k , t) =4πk

∫ ∞0

v sin(kv)f (v , t) dv .

where f (v , t) is the distribution function of isotropic in the3D-space of molecular velocitiesSimilarly, the transform of the isotropic source function q(v , t) is

˜̂q(k , t) =4πk

∫ ∞0

v sin(kv)q(v , t) dv ,

Page 3: June 15-19, 2014, Larnaca, Cyprus JWorkshop in Honor of ...lnf.nsu.ru/en/pdf/present/3_Grigoriev.pdf · v sin(kv)f(v;t)dv: where f(v;t) is the distribution function of isotropic in

Determining equation

A generator of the admitted Lie group is sought in the form

X = ξ(x , t , ϕ)∂x + η(x , t , ϕ)∂t + ζ(x , t , ϕ)∂ϕ.

The determining equation for the considered equation is

Dtψ(x , t)+ψ(0, t)ϕ(x , t)+ψ(x , t)ϕ(0, t)−2∫ 1

0ϕ(x(1−s), t)ψ(xs, t)ds = 0,

where Dt is the total derivative with respect to t , and thefunction ψ(x , t) is

ψ(x , t) = ζ(x , t , ϕ(x , t))−ξ(x , t , ϕ(x , t))ϕx (x , t)−η(x , t , ϕ(x , t))ϕt (x , t).

Page 4: June 15-19, 2014, Larnaca, Cyprus JWorkshop in Honor of ...lnf.nsu.ru/en/pdf/present/3_Grigoriev.pdf · v sin(kv)f(v;t)dv: where f(v;t) is the distribution function of isotropic in

Assume that the coefficients of the infinitesimal generator X arerepresented by the formal Taylor series with respect to ϕ:

ξ(x , t , ϕ) =∑l≥0

ql(x , t)ϕl(x , t),

η(x , t , ϕ) =∑l≥0

rl(x , t)ϕl(x , t),

ζ(x , t , ϕ) =∑l≥0

pl(x , t)ϕl(x , t).

A particular class of solutions is considered. This class isdefined by the initial conditions

ϕ0(x , t) = bxn

at a given (arbitrary) time t = t0. Here, n = 0,1,2, ....

Page 5: June 15-19, 2014, Larnaca, Cyprus JWorkshop in Honor of ...lnf.nsu.ru/en/pdf/present/3_Grigoriev.pdf · v sin(kv)f(v;t)dv: where f(v;t) is the distribution function of isotropic in

The coefficients of the generator X are

ξ(x , t , ϕ) = c0x , η(x , t , ϕ) = −c2t+c3, ζ(x , t , ϕ) = (c2+c1x)ϕ

where c0, c1, c2and c3 are arbitrary constant.Thus, each admitted generator has the form

X = c0X0 + c1X1 + c2X2 + c3X3,

where

X0 = x∂x , X1 = xϕ∂ϕ, X2 = ϕ∂ϕ − t∂t , X3 = ∂t .

The remaining part of the determining equation becomes

(c2t − c3)q̂t − c0xq̂x + (c1x + 2c2)q̂ = 0.

Page 6: June 15-19, 2014, Larnaca, Cyprus JWorkshop in Honor of ...lnf.nsu.ru/en/pdf/present/3_Grigoriev.pdf · v sin(kv)f(v;t)dv: where f(v;t) is the distribution function of isotropic in

Equivalence TransformationsLet us introduce the operator L:

Lϕ = ϕt (x , t) + ϕ(x , t)ϕ(0, t)−∫ 1

0ϕ(xs, t)ϕ(x(1− s), t) ds.

Equivalence transformations corresponding to the generatorsX0, X1, X2 and X3, are obtained as follows.For example, the transformations corresponding to thegenerator X0 = x∂x map a function ϕ(x , t) into the functionϕ̄(x̄ , t̄) = ϕ(x̄e−a, t̄), where a is the group parameter. Thetransformed expression becomes

L̄ϕ̄ = ϕ̄t̄ (x̄ , t̄) + ϕ̄(x̄ , t̄)ϕ̄(0, t̄)−∫ 1

0 ϕ̄(x̄s, t̄)ϕ̄(x̄(1− s), t̄) ds= ϕt̄ (x̄e−a, t̄) + ϕ(x̄e−a, t̄)ϕ(0, t̄)−

∫ 10 ϕ(x̄e−as, t̄)ϕ(x̄e−a(1− s), t̄) ds

= ϕt (x , t) + ϕ(x , t)ϕ(0, t)−∫ 1

0 ϕ(xs, t)ϕ(x(1− s), t) ds= Lϕ.

This defines the Lie group of equivalence transformations ofthe equation

x̄ = xea, t̄ = t , ϕ̄ = ϕ, ¯̂q = q̂.

Page 7: June 15-19, 2014, Larnaca, Cyprus JWorkshop in Honor of ...lnf.nsu.ru/en/pdf/present/3_Grigoriev.pdf · v sin(kv)f(v;t)dv: where f(v;t) is the distribution function of isotropic in

Similarly, the transformations corresponding:to the generator X3 = ∂t

x̄ = x , t̄ = t + a, ϕ̄ = ϕ, ¯̂q = q̂.

to the generator X2 = ϕ∂ϕ − t∂t

x̄ = x , t̄ = te−a, ϕ̄ = ϕea, ¯̂q = q̂e2a

to the generator X1 = xϕ∂ϕ

x̄ = x , t̄ = t , ϕ̄ = ϕexa, ¯̂q = q̂exa.

Thus the generators defining an equivalence Lie group of theconsidered equation are

X e0 = x∂x , X e

1 = xϕ∂ϕ+xq̂∂q̂, X e2 = ϕ∂ϕ−t∂t +xq̂∂q̂, X e

3 = ∂t .

Page 8: June 15-19, 2014, Larnaca, Cyprus JWorkshop in Honor of ...lnf.nsu.ru/en/pdf/present/3_Grigoriev.pdf · v sin(kv)f(v;t)dv: where f(v;t) is the distribution function of isotropic in

Let us study the change of a generator

X = x0X0 + x1X1 + x2X2 + x3X3

under these equivalence transformations. After the change onegets the generator

X = x̂0X̂0 + x̂1X̂1 + x̂2X̂2 + x̂3X̂3,

where

X̂0 = x̄∂x̄ , X̂1 = x̄ϕ̄∂ϕ̄, X̂2 = ϕ̄∂ϕ̄ − t̄∂t̄ , X̂3 = ∂t̄ .

The corresponding transformations of the basis generators are

X e0 : X0 = X̂0,X1 = e−aX̂1,X2 = X̂2,X3 = X̂3;

X e1 : X0 = X̂0 + aX̂1,X1 = X̂1,X2 = X̂2,X3 = X̂3;

X e2 : X0 = X̂0,X1 = X̂1,X2 = X̂2,X3 = e−aX̂3;

X e3 : X0 = X̂0,X1 = X̂1,X2 = X̂2 + aX̂3,X3 = X̂3.

Page 9: June 15-19, 2014, Larnaca, Cyprus JWorkshop in Honor of ...lnf.nsu.ru/en/pdf/present/3_Grigoriev.pdf · v sin(kv)f(v;t)dv: where f(v;t) is the distribution function of isotropic in

Any generator X can be expressed as a linear combination ofthe basis generators:

X = x̂0X̂0 + x̂1X̂1 + x̂2X̂2 + x̂3X̂3 = x0X0 + x1X1 + x2X2 + x3X3

Using the invariance of a generator with respect to a change ofthe variables, the basis generators Xi (i = 0,1,2,3) and X̂j(j = 0,1,2,3) in corresponding equivalence transformations arerelated as follows:

X e0 : x̂1 = x1e−a,

X e1 : x̂1 = x1 + ax0,

X e2 : x̂3 = x3ea,

X e3 : x̂3 = x3 + ax2.

Page 10: June 15-19, 2014, Larnaca, Cyprus JWorkshop in Honor of ...lnf.nsu.ru/en/pdf/present/3_Grigoriev.pdf · v sin(kv)f(v;t)dv: where f(v;t) is the distribution function of isotropic in

For classification an algebraic algorithm was applied,

I first we study the Lie algebra L4 composed by thegenerators X0,X1,X2,X3. The commutator table is

X0 X1 X2 X3X0 0 X1 0 0X1 −X1 0 0 0X2 0 0 0 −X3X3 0 0 X3 0

The inner automorphisms are

A0 : x̂1 = x1ea,A1 : x̂1 = x1 + ax0,A2 : x̂3 = x3ea,A3 : x̂3 = x3 + ax2,

Page 11: June 15-19, 2014, Larnaca, Cyprus JWorkshop in Honor of ...lnf.nsu.ru/en/pdf/present/3_Grigoriev.pdf · v sin(kv)f(v;t)dv: where f(v;t) is the distribution function of isotropic in

I Second, one can notice that the results of using theequivalence transformations corresponding to thegenerators X e

0 ,Xe1 ,X

e2 ,X

e3 are similar to changing

coordinates of a generator X with regards to the basischange.These changes are similar to the inner automorphisms.

Really

A0 : x̂1 = x1ea, X e0 : x̂1 = x1e−a,

A1 : x̂1 = x1 + ax0, X e1 : x̂1 = x1 + ax0,

A2 : x̂3 = x3ea, X e2 : x̂3 = x3ea,

A3 : x̂3 = x3 + ax2, X e3 : x̂3 = x3 + ax2.

Page 12: June 15-19, 2014, Larnaca, Cyprus JWorkshop in Honor of ...lnf.nsu.ru/en/pdf/present/3_Grigoriev.pdf · v sin(kv)f(v;t)dv: where f(v;t) is the distribution function of isotropic in

Optimal system of subalgebras

Construction of an optimal system of subalgebras of the Liealgebra L4

I It is simplified if one notices that L4 = F1 ⊕ F2,where F1 = {X0,X1} and F2 = {X2,X3} are ideals of theLie algebra L4.

I This decomposition gives a possibility to apply a two-stepalgorithm (Ovsiannikov, 1993 and 1994).

The result of construction of an optimal system of subalgebrasis presented in Table 1.

Page 13: June 15-19, 2014, Larnaca, Cyprus JWorkshop in Honor of ...lnf.nsu.ru/en/pdf/present/3_Grigoriev.pdf · v sin(kv)f(v;t)dv: where f(v;t) is the distribution function of isotropic in

Optimal system of subalgebras

No. Basis No. Basis1. X0, X1, X2, X3 13. X0 + X3, X12. γX0 + X2, X1, X3 14. X1, X33. X0, X1, X3 15. X0, X34. X0, X1, X2 16. X0, X15. X0, X2, X3 17. γX0 + X26. X2, X3 18. X1 + X27. X2 + X0, X1 + X3 19. X1 − X28. X2 + γX0, X3 20. X0 + X39. X1 + X2, X3 21. X1 + X3

10. X1 − X2, X3 22. X011. X0, X2 23. X112. γX0 + X2, X1 24. X3

Page 14: June 15-19, 2014, Larnaca, Cyprus JWorkshop in Honor of ...lnf.nsu.ru/en/pdf/present/3_Grigoriev.pdf · v sin(kv)f(v;t)dv: where f(v;t) is the distribution function of isotropic in

Obtaining the Function q̂

Example: Lie algebra {γX2 + 2X0, X3}For this Lie algebra there are two sets of the coefficients ci ,(i = 0,1,2,3):

γX2 + 2X0 : c0 = 2 c1 = 0 c2 = γ c3 = 0;X3 : c0 = 0 c1 = 0 c2 = 0 c3 = 1.

These sets define the system of equations by substituting thecoefficients ci into the remaining equation:

γ(12

t q̂t + q̂)− xq̂x = 0, q̂t = 0.

The general solution of these equations is q̂ = βxγ , where β isconstant.

Page 15: June 15-19, 2014, Larnaca, Cyprus JWorkshop in Honor of ...lnf.nsu.ru/en/pdf/present/3_Grigoriev.pdf · v sin(kv)f(v;t)dv: where f(v;t) is the distribution function of isotropic in

Group Classification

No. q̂(t , x) Generators1. 0 X0, X1, X2 X32. kx2etx X2 + X0, X1 + X33. kxγ γX2 + 2X0, X34. kt−2 X0, X25. t−2Φ(xtα) αX0 + X26. t−(x+2)Φ(x) X1 + X27. tx−2Φ(x) X1 − X28. Φ(xe−t ) X0 + X39. ext Φ(x) X1 + X310. Φ(t) X011. Φ(x) X3

where α, β, γ and k are constant

Page 16: June 15-19, 2014, Larnaca, Cyprus JWorkshop in Honor of ...lnf.nsu.ru/en/pdf/present/3_Grigoriev.pdf · v sin(kv)f(v;t)dv: where f(v;t) is the distribution function of isotropic in

Representation of invariant solution for q̂ = kx2ext

Equation

ϕt (x , t) + ϕ(x , t)ϕ(0, t) =

∫ 1

0ϕ(xs, t)ϕ(x(1− s), t) ds + kx2ext .

The corresponding admitted Lie algebra of the equation is{X2 + X0, X1 + X3}.An optimal system of subalgebras of this Lie algebra is:

{X2 + X0}, {X1 + X3}, {X2 + X0, X1 + X3}

For the subalgebra {X2 + X0} corresponding invariant solutionhas a representation

ϕ = t−1r(z), z = xt

Substituting this representation of invariant solution, we obtainthe reduced equation:

zr ′(z)− r(z) + r(z)r(0)−∫ 1

0r(zs)r(z(1− s)) ds = kz2ez .

Page 17: June 15-19, 2014, Larnaca, Cyprus JWorkshop in Honor of ...lnf.nsu.ru/en/pdf/present/3_Grigoriev.pdf · v sin(kv)f(v;t)dv: where f(v;t) is the distribution function of isotropic in

THANK YOUFOR YOURATTENTION