agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0...

79
Beyond-Standard-Model: the 331 case and its signatures at the LHC Antonio Costantini Laboratori Nazionali di Frascati 13 September 2018

Transcript of agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0...

Page 1: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Beyond-Standard-Model: the 331 case and itssignatures at the LHC

Antonio Costantini

Laboratori Nazionali di Frascati

13 September 2018

Page 2: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Contents

The Standard Model of Elementary ParticlesBasicsIssuesA Popular Solution

331 ModelMinimal Formulation331 Model for Generic βSame-Sign Leptons Phenomenology

Conclusions

Page 3: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Contents

The Standard Model of Elementary ParticlesBasicsIssuesA Popular Solution

331 ModelMinimal Formulation331 Model for Generic βSame-Sign Leptons Phenomenology

Conclusions

Page 4: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Elementary Particles

Brout-Englert-Higgs Mechanism - 1964

Page 5: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Elementary Particles

Brout-Englert-Higgs Mechanism - 1964

Page 6: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Brout-Englert-Higgs Mechanism in a Nutshell

V (Φ) = µ2Φ†Φ + λ(Φ†Φ)2 Φ =(φ+

φ

)

Djouadi, Phys.Rept. 457 (2008) 1-216

〈Φ〉0 =(

0v/√2

)

Page 7: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Contents

The Standard Model of Elementary ParticlesBasicsIssuesA Popular Solution

331 ModelMinimal Formulation331 Model for Generic βSame-Sign Leptons Phenomenology

Conclusions

Page 8: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Some Issues of the SM

♦ evidence of dark matter from e.g. the rotation curve ofgalaxies

♦ evidence of (very tiny) mass of neutrinos from neutrinooscillation

♦ lack of explanation of the hierarchy v � MPlanck

♦ lack of explanation of nQf = nLf = 3

♦ ...

Page 9: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Some Issues of the SM

♦ evidence of dark matter from e.g. the rotation curve ofgalaxies

♦ evidence of (very tiny) mass of neutrinos from neutrinooscillation

♦ lack of explanation of the hierarchy v � MPlanck

♦ lack of explanation of nQf = nLf = 3

♦ ...

Page 10: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Some Issues of the SM

♦ evidence of dark matter from e.g. the rotation curve ofgalaxies

♦ evidence of (very tiny) mass of neutrinos from neutrinooscillation

♦ lack of explanation of the hierarchy v � MPlanck

♦ lack of explanation of nQf = nLf = 3

♦ ...

Page 11: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Some Issues of the SM

♦ evidence of dark matter from e.g. the rotation curve ofgalaxies

♦ evidence of (very tiny) mass of neutrinos from neutrinooscillation

♦ lack of explanation of the hierarchy v � MPlanck

♦ lack of explanation of nQf = nLf = 3

♦ ...

Page 12: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Contents

The Standard Model of Elementary ParticlesBasicsIssuesA Popular Solution

331 ModelMinimal Formulation331 Model for Generic βSame-Sign Leptons Phenomenology

Conclusions

Page 13: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Supersymmetry!

WMSSM = yuUHuQ − yd DHd Q − yeE Hd L + µHuHd

Page 14: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Higgs in the MSSM

♦ At tree-levelmH ≤ mZ

♦ In tension withdiscovered Higgsmex

H ∼ 125 GeV

♦ Need of largequantumcorrection∆mH ∼ 30 GeV

♦ Large splitting∆t12 -4 -3 -2 -1 0 1 2 3 4

Xt (TeV)

80

90

100

110

120

130

140

Mh (

GeV

)

1-loop

2-loop

FeynHiggs

Djouadi, Phys.Rept. 459 (2008) 1-241

Page 15: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Higgs in the MSSM

♦ At tree-levelmH ≤ mZ

♦ In tension withdiscovered Higgsmex

H ∼ 125 GeV

♦ Need of largequantumcorrection∆mH ∼ 30 GeV

♦ Large splitting∆t12 -4 -3 -2 -1 0 1 2 3 4

Xt (TeV)

80

90

100

110

120

130

140

Mh (

GeV

)

1-loop

2-loop

FeynHiggs

Djouadi, Phys.Rept. 459 (2008) 1-241

Page 16: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Issues of the MSSM

) [GeV]1t~m(

200 300 400 500 600 700 800 900 1000

) [G

eV]

10 χ∼m

(

0

100

200

300

400

500

600

700

800

1

0χ∼ W b →1t~

/ 1

0χ∼ t →1t~

1

0χ∼ b f f' →1t~

/ 1

0χ∼ W b →1t~

/ 1

0χ∼ t →1t~

1

0χ∼ b f f' →1t~

/ 1

0χ∼ W b →1t~

/ 1

0χ∼ t →1t~

1

0χ∼ b f f' →1t~

/ 1

0χ∼ c →1t~

1

0χ∼ c →1t~

-1=8 TeV, 20 fbs

t

) < m

10

χ∼,1t~

m(

∆W

+ m

b

) < m

10

χ∼,1t~

m(

∆) <

01

0χ∼,

1t~ m

(∆

1

0χ∼ t →1t~

/ 1

0χ∼ W b →1t~

/ 1

0χ∼ c →1t~

/ 1

0χ∼ b f f' →1t~

production, 1t~1t

~ May 2018

ATLAS Preliminary

1

0χ∼W b

1

0χ∼c

1

0χ∼b f f'

Observed limits Expected limits All limits at 95% CL

-1=13 TeV, 36.1 fbs

0L [1709.04183]1L [1711.11520]2L [1708.03247]Monojet [1711.03301]

c0L [1805.01649]

Run 1 [1506.08616]

Page 17: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Contents

The Standard Model of Elementary ParticlesBasicsIssuesA Popular Solution

331 ModelMinimal Formulation331 Model for Generic βSame-Sign Leptons Phenomenology

Conclusions

Page 18: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Contents

The Standard Model of Elementary ParticlesBasicsIssuesA Popular Solution

331 ModelMinimal Formulation331 Model for Generic βSame-Sign Leptons Phenomenology

Conclusions

Page 19: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Field Content

G ≡ SU(3)c × SU(3)L × U(1)X

Q1 =

(uLdLDL

), Q2 =

(cLsLSL

), Q1,2 ∈ (3, 3,−1/3)

Q3 =

(bLtLTL

), Q3 ∈ (3, 3, 2/3)

l =

(lLνll cR

), l ∈ (1, 3, 0), l = e, µ, τ

ρ =

(ρ++

ρ+

ρ0

)∈ (1, 3, 1), η =

(η+

η0

η−

)∈ (1, 3, 0), χ =

(χ0

χ−

χ−−

)∈ (1, 3,−1)

Page 20: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Field Content

G ≡ SU(3)c × SU(3)L × U(1)X

Q1 =

(uLdLDL

), Q2 =

(cLsLSL

), Q1,2 ∈ (3, 3,−1/3)

Q3 =

(bLtLTL

), Q3 ∈ (3, 3, 2/3)

l =

(lLνll cR

), l ∈ (1, 3, 0), l = e, µ, τ

ρ =

(ρ++

ρ+

ρ0

)∈ (1, 3, 1), η =

(η+

η0

η−

)∈ (1, 3, 0), χ =

(χ0

χ−

χ−−

)∈ (1, 3,−1)

Page 21: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Field Content

G ≡ SU(3)c × SU(3)L × U(1)X

Q1 =

(uLdLDL

), Q2 =

(cLsLSL

), Q1,2 ∈ (3, 3,−1/3)

Q3 =

(bLtLTL

), Q3 ∈ (3, 3, 2/3)

l =

(lLνll cR

), l ∈ (1, 3, 0), l = e, µ, τ

ρ =

(ρ++

ρ+

ρ0

)∈ (1, 3, 1), η =

(η+

η0

η−

)∈ (1, 3, 0), χ =

(χ0

χ−

χ−−

)∈ (1, 3,−1)

Page 22: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Field Content

G ≡ SU(3)c × SU(3)L × U(1)X

Q1 =

(uLdLDL

), Q2 =

(cLsLSL

), Q1,2 ∈ (3, 3,−1/3)

Q3 =

(bLtLTL

), Q3 ∈ (3, 3, 2/3)

l =

(lLνll cR

), l ∈ (1, 3, 0), l = e, µ, τ

ρ =

(ρ++

ρ+

ρ0

)∈ (1, 3, 1), η =

(η+

η0

η−

)∈ (1, 3, 0), χ =

(χ0

χ−

χ−−

)∈ (1, 3,−1)

Page 23: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Embedding of the Hypercharge Y

Electromagnetic charge in the 331 model is given by

Qem3 = Y3 + T3 Qem

3 = Y3 − T3

Y3 =√3T8 + X1 Y—3 = −

√3T8 + X1

Ti = λi/2 , i = 1, . . . 8

λi Gell-Mann matrices

T8 = diag[ 12√3

(1, 1,−2)]

Page 24: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Embedding of the Hypercharge Y

Electromagnetic charge in the 331 model is given by

Qem3 = Y3 + T3 Qem

3 = Y3 − T3

Y3 =√3T8 + X1 Y—3 = −

√3T8 + X1

Ti = λi/2 , i = 1, . . . 8

λi Gell-Mann matrices

T8 = diag[ 12√3

(1, 1,−2)]

Page 25: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Embedding of the Hypercharge Y

Electromagnetic charge in the 331 model is given by

Qem3 = Y3 + T3 Qem

3 = Y3 − T3

Y3 =√3T8 + X1 Y—3 = −

√3T8 + X1

Ti = λi/2 , i = 1, . . . 8

λi Gell-Mann matrices

T8 = diag[ 12√3

(1, 1,−2)]

Page 26: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

SU(3)× SU(3)× U(1): an exotic possibility

Q1 =

(uLdLDL

), Q2 =

(cLsLSL

), Q1,2 ∈ (3, 3,−1/3)

Q3 =

(bLtLTL

), Q3 ∈ (3, 3, 2/3)

QemD = Qem

S = −4/3

QemT = 5/3

Exotic Quarks!

Page 27: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

From SU(3)L × U(1)X to U(1)em

SU(3)L × U(1)X

‖〈ρ〉⇓

SU(2)L × U(1)Y

‖〈η〉 , 〈χ〉⇓

U(1)em

W1, · · · ,W8 , BX

‖〈ρ〉⇓

W1,W2,W3,BY ,Y ±,Y ±±,Z ′

‖〈η〉 , 〈χ〉⇓

γ,Z ,Z ′,W±,Y ±,Y ±±

Page 28: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

From SU(3)L × U(1)X to U(1)em

SU(3)L × U(1)X

‖〈ρ〉⇓

SU(2)L × U(1)Y

‖〈η〉 , 〈χ〉⇓

U(1)em

W1, · · · ,W8 , BX

‖〈ρ〉⇓

W1,W2,W3,BY ,Y ±,Y ±±,Z ′

‖〈η〉 , 〈χ〉⇓

γ,Z ,Z ′,W±,Y ±,Y ±±

Page 29: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

From SU(3)L × U(1)X to U(1)em

SU(3)L × U(1)X

‖〈ρ〉⇓

SU(2)L × U(1)Y

‖〈η〉 , 〈χ〉⇓

U(1)em

W1, · · · ,W8 , BX

‖〈ρ〉⇓

W1,W2,W3,BY ,Y ±,Y ±±,Z ′

‖〈η〉 , 〈χ〉⇓

γ,Z ,Z ′,W±,Y ±,Y ±±

Page 30: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

From SU(3)L × U(1)X to U(1)em

SU(3)L × U(1)X

‖〈ρ〉⇓

SU(2)L × U(1)Y

‖〈η〉 , 〈χ〉⇓

U(1)em

W1, · · · ,W8 , BX

‖〈ρ〉⇓

W1,W2,W3,BY ,Y ±,Y ±±,Z ′

‖〈η〉 , 〈χ〉⇓

γ,Z ,Z ′,W±,Y ±,Y ±±

Page 31: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

From SU(3)L × U(1)X to U(1)em

SU(3)L × U(1)X

‖〈ρ〉⇓

SU(2)L × U(1)Y

‖〈η〉 , 〈χ〉⇓

U(1)em

W1, · · · ,W8 , BX

‖〈ρ〉⇓

W1,W2,W3,BY ,Y ±,Y ±±,Z ′

‖〈η〉 , 〈χ〉⇓

γ,Z ,Z ′,W±,Y ±,Y ±±

Page 32: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

From SU(3)L × U(1)X to U(1)em

SU(3)L × U(1)X

‖〈ρ〉⇓

SU(2)L × U(1)Y

‖〈η〉 , 〈χ〉⇓

U(1)em

W1, · · · ,W8 , BX

‖〈ρ〉⇓

W1,W2,W3,BY ,Y ±,Y ±±,Z ′

‖〈η〉 , 〈χ〉⇓

γ,Z ,Z ′,W±,Y ±,Y ±±

Page 33: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Yukawa Interactions: Quark Sector

LYuk.q,triplet =

(y1

d Q1η∗dR + y2

d Q2η∗sR + y3

d Q3χ b∗R+ y1

u Q1χ∗u∗R + y2

u Q2χ∗c∗R + y3

u Q3η t∗R+ y1

E Q1 ρ∗D∗R + y2

E Q2 ρ∗S∗R + y3

E Q3 ρT ∗R)

+ h.c.

vρ � vη,χ⇓

mD,S,T = O(TeV ) if y iE ∼ 1

Page 34: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Yukawa Interactions: Quark Sector

LYuk.q,triplet =

(y1

d Q1η∗dR + y2

d Q2η∗sR + y3

d Q3χ b∗R+ y1

u Q1χ∗u∗R + y2

u Q2χ∗c∗R + y3

u Q3η t∗R+ y1

E Q1 ρ∗D∗R + y2

E Q2 ρ∗S∗R + y3

E Q3 ρT ∗R)

+ h.c.

vρ � vη,χ⇓

mD,S,T = O(TeV ) if y iE ∼ 1

Page 35: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Yukawa Interactions: Quark Sector

LYuk.q,triplet =

(y1

d Q1η∗dR + y2

d Q2η∗sR + y3

d Q3χ b∗R+ y1

u Q1χ∗u∗R + y2

u Q2χ∗c∗R + y3

u Q3η t∗R+ y1

E Q1 ρ∗D∗R + y2

E Q2 ρ∗S∗R + y3

E Q3 ρT ∗R)

+ h.c.

vρ � vη,χ⇓

mD,S,T = O(TeV ) if y iE ∼ 1

Page 36: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Yukawa Interactions: Lepton Sector

LYukl , triplet = Gη

ab(l iaαε

αβ l jbβ)η∗kεijk + h.c.

= Gηab l i

a · ljb η∗kεijk + h.c.

a and b are flavour indicesα and β are Weyl indices (l i

a · ljb ≡ l i

aαεαβ l j

bβ)i , j , k = 1, 2, 3, are SU(3)L indices

l ia · l

jb η∗kεijk is antisymmetric

⇓Gη

ab has to be antisymmetric

Page 37: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Yukawa Interactions: Lepton Sector

LYukl , triplet = Gη

ab(l iaαε

αβ l jbβ)η∗kεijk + h.c.

= Gηab l i

a · ljb η∗kεijk + h.c.

a and b are flavour indicesα and β are Weyl indices (l i

a · ljb ≡ l i

aαεαβ l j

bβ)i , j , k = 1, 2, 3, are SU(3)L indices

l ia · l

jb η∗kεijk is antisymmetric

⇓Gη

ab has to be antisymmetric

Page 38: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Yukawa Interactions: Lepton Sector

LYuk.l ,sextet = Gσ

ab l ia · l

jbσ∗i ,j

with

σ =

σ++

1 σ+1 /√2 σ0/

√2

σ+1 /√2 σ0

1 σ−2 /√2

σ0/√2 σ−2 /

√2 σ−−2

∈ (1, 6, 0)

Gσab is symmetric

H±± → l±l± allowed (η 6⊃ η±±)

Page 39: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Yukawa Interactions: Lepton Sector

LYuk.l ,sextet = Gσ

ab l ia · l

jbσ∗i ,j

with

σ =

σ++

1 σ+1 /√2 σ0/

√2

σ+1 /√2 σ0

1 σ−2 /√2

σ0/√2 σ−2 /

√2 σ−−2

∈ (1, 6, 0)

Gσab is symmetric

H±± → l±l± allowed (η 6⊃ η±±)

Page 40: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Contents

The Standard Model of Elementary ParticlesBasicsIssuesA Popular Solution

331 ModelMinimal Formulation331 Model for Generic βSame-Sign Leptons Phenomenology

Conclusions

Page 41: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Embedding of the Hypercharge Y : Qem(β)

Electromagnetic charge in the 331 model is given by

Qem3 = Y3 + T3 Qem

3 = Y3 − T3

Y3 = βT8 + X1 Y3 = −βT8 + X1

Page 42: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Embedding of the Hypercharge Y : Qem(β)

Electromagnetic charge in the 331 model is given by

Qem3 = Y3 + T3 Qem

3 = Y3 − T3

Y3 = βT8 + X1 Y3 = −βT8 + X1

Page 43: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Field Content for Generic β

particles Q(β) β = − 1√3 β = 1√

3 β = −√3 β =

√3

D, S 16 −

√3β2

23 − 1

353 − 4

3T 1

6 +√

3β2 − 1

323 − 4

353

E − 12 +

√3β2 −1 0 −2 1

V − 12 +

√3β2 −1 0 −2 1

Y 12 +

√3β2 0 1 −1 2

HV − 12 +

√3β2 −1 0 −2 1

HY12 +

√3β2 0 1 −1 2

HW 1 1 1 1 1

Cao, Liu, Xie, Yan, Zhang, Phys.Rev. D93 (2016) no.7, 075030

Page 44: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

β Parameter: Possible Values in the 331

The β parameter is constrained from the Z ′ mass expression. Hasto satisfy

1− (1 + β2)s2W > 0

|β| <√3

β = n√3 , n = 1, 2, 3 gives fractional electric charge for various

particle. n = 2 imply ±5/6 and ±7/6 for the electric charge ofheavy fermions and ±1/2 and ±3/2 for heavy leptons.

Buras, De Fazio, Girrbach, JHEP 1402 (2014) 112

Page 45: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

β Parameter: Possible Values in the 331

The β parameter is constrained from the Z ′ mass expression. Hasto satisfy

1− (1 + β2)s2W > 0

|β| <√3

β = n√3 , n = 1, 2, 3 gives fractional electric charge for various

particle. n = 2 imply ±5/6 and ±7/6 for the electric charge ofheavy fermions and ±1/2 and ±3/2 for heavy leptons.

Buras, De Fazio, Girrbach, JHEP 1402 (2014) 112

Page 46: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

331 Model: A Flipped Version

Name 331 rep. SM group decomposition Components

Le(1, 6,− 1

3

) (1, 3, 0

)+(1, 2,− 1

2

)+(1, 1,−1

) (Σ+ 1√

2Σ0 1√

2νe

1√2

Σ0 Σ− 1√2`e

1√2νe 1√

2`e Ee

)Lα=µ,τ

(1, 3,− 2

3

) (1, 2,− 1

2

)+(1, 1,−1

)(να, `α, Eα)T

`cα (1, 1, 1)

(1, 1, 1

)`cα

Qα(3, 3, 1

3

) (3, 2, 1

6

)+(3, 1, 2

3

)(dα,−uα,Uα)T

ucα

(3, 1,− 2

3

) (3, 1,− 2

3

)ucα

dcα

(3, 1, 1

3

) (3, 1, 1

3

)dcα

φi=1,2(1, 3, 1

3

) (1, 2, 1

2

)+(1, 1, 0

) (H+

i ,H0i , σ

0i

)T

φ3(1, 3,− 2

3

) (1, 2,− 1

2

)+(1, 1,−1

) (H0

3 ,H−3 , σ−3

)T

S(1, 6, 2

3

) (1, 3, 1

)+(1, 2, 1

2

)+(1, 1, 0

) (∆++ 1√

2∆+ 1√

2H+

S1√2

∆+ ∆0 1√2

H0S

1√2

H+S

1√2

H0S σ0

S

)

Fonseca, Hirsch, JHEP 1608 (2016) 003

Page 47: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

331 Model: A Flipped Version

Name 331 rep. SM group decomposition Components

Le(1, 6,− 1

3

) (1, 3, 0

)+(1, 2,− 1

2

)+(1, 1,−1

) (Σ+ 1√

2Σ0 1√

2νe

1√2

Σ0 Σ− 1√2`e

1√2νe 1√

2`e Ee

)Lα=µ,τ

(1, 3,− 2

3

) (1, 2,− 1

2

)+(1, 1,−1

)(να, `α, Eα)T

`cα (1, 1, 1)

(1, 1, 1

)`cα

Qα(3, 3, 1

3

) (3, 2, 1

6

)+(3, 1, 2

3

)(dα,−uα,Uα)T

ucα

(3, 1,− 2

3

) (3, 1,− 2

3

)ucα

dcα

(3, 1, 1

3

) (3, 1, 1

3

)dcα

φi=1,2(1, 3, 1

3

) (1, 2, 1

2

)+(1, 1, 0

) (H+

i ,H0i , σ

0i

)T

φ3(1, 3,− 2

3

) (1, 2,− 1

2

)+(1, 1,−1

) (H0

3 ,H−3 , σ−3

)T

S(1, 6, 2

3

) (1, 3, 1

)+(1, 2, 1

2

)+(1, 1, 0

) (∆++ 1√

2∆+ 1√

2H+

S1√2

∆+ ∆0 1√2

H0S

1√2

H+S

1√2

H0S σ0

S

)

Fonseca, Hirsch, JHEP 1608 (2016) 003

Page 48: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

331 Model: A Flipped Version

Name 331 rep. SM group decomposition Components

Le(1, 6,− 1

3

) (1, 3, 0

)+(1, 2,− 1

2

)+(1, 1,−1

) (Σ+ 1√

2Σ0 1√

2νe

1√2

Σ0 Σ− 1√2`e

1√2νe 1√

2`e Ee

)Lα=µ,τ

(1, 3,− 2

3

) (1, 2,− 1

2

)+(1, 1,−1

)(να, `α, Eα)T

`cα (1, 1, 1)

(1, 1, 1

)`cα

Qα(3, 3, 1

3

) (3, 2, 1

6

)+(3, 1, 2

3

)(dα,−uα,Uα)T

ucα

(3, 1,− 2

3

) (3, 1,− 2

3

)ucα

dcα

(3, 1, 1

3

) (3, 1, 1

3

)dcα

φi=1,2(1, 3, 1

3

) (1, 2, 1

2

)+(1, 1, 0

) (H+

i ,H0i , σ

0i

)T

φ3(1, 3,− 2

3

) (1, 2,− 1

2

)+(1, 1,−1

) (H0

3 ,H−3 , σ−3

)T

S(1, 6, 2

3

) (1, 3, 1

)+(1, 2, 1

2

)+(1, 1, 0

) (∆++ 1√

2∆+ 1√

2H+

S1√2

∆+ ∆0 1√2

H0S

1√2

H+S

1√2

H0S σ0

S

)

Fonseca, Hirsch, JHEP 1608 (2016) 003

Page 49: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Contents

The Standard Model of Elementary ParticlesBasicsIssuesA Popular Solution

331 ModelMinimal Formulation331 Model for Generic βSame-Sign Leptons Phenomenology

Conclusions

Page 50: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Y ±± + j j @ the LHC

p

p j

j

Y −−

Y ++

Page 51: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Y ±± + j j @ the LHC

q

Q

Y ++

q Y −−

g

Q

g

g

qQ

Y ++

q Y −−

Q

g

g

Q

q

q

V 0

q g

q

g

Y ++

Y −−

q

g

q

g

q

Q

Y ++

Y −−

q

g

g

qg

Q

Q

Y ++

Y −−

q

arXiv:1707.01381 [hep-ph]

Page 52: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Benchmark point

Benchmark Point

mh1 = 125.1 GeV mh2 = 3172 GeV mh3 = 3610 GeVma1 = 3595 GeVmh±1

= 1857 GeV mh±2= 3590 GeV

mh±±1= 3734 GeV

mY±± = 873.3 GeV mY± = 875.7 GeVmZ ′ = 3229 GeVmD = 1650 GeV mS = 1660 GeV mT = 1700 GeV

∣∣∣∣gh1ZZ

gSMhZZ

∣∣∣∣ = 1.0± 0.1∣∣∣∣gh1WW

gSMhWW

∣∣∣∣ = 1.0± 0.1

mY±± consistent with bound frommuonium-antimuonium conversion

mZ ′ < 2mQ ⇒ Z ′ → QQ blocked

Page 53: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Benchmark point

Benchmark Point

mh1 = 125.1 GeV mh2 = 3172 GeV mh3 = 3610 GeVma1 = 3595 GeVmh±1

= 1857 GeV mh±2= 3590 GeV

mh±±1= 3734 GeV

mY±± = 873.3 GeV mY± = 875.7 GeVmZ ′ = 3229 GeVmD = 1650 GeV mS = 1660 GeV mT = 1700 GeV

∣∣∣∣gh1ZZ

gSMhZZ

∣∣∣∣ = 1.0± 0.1∣∣∣∣gh1WW

gSMhWW

∣∣∣∣ = 1.0± 0.1

mY±± consistent with bound frommuonium-antimuonium conversion

mZ ′ < 2mQ ⇒ Z ′ → QQ blocked

Page 54: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Signal and Background Cross Section

SIGNAL

pp → Y ++Y−−jj → (`+`+)(`−`−)jj ` = e, µ√

s = 13 TeV and NNPDFLO1 parton distributions (MadGraphdefault)

σ(pp → YYjj → 4`jj) ' 3.7 fb

BACKGROUNDS

pp → ZZ jj → (`+`−)(`+`−)jjpp → ttZ → (j`+ν`)(j`−ν`)(`+`−)

σ(pp → ZZ jj → 4`jj) ' 6.4 fb , σ(pp → ttZ jj → 4` 2ν jj) ' 8.6 fb

Page 55: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Signal and Background Cross Section

SIGNAL

pp → Y ++Y−−jj → (`+`+)(`−`−)jj ` = e, µ√

s = 13 TeV and NNPDFLO1 parton distributions (MadGraphdefault)

σ(pp → YYjj → 4`jj) ' 3.7 fb

BACKGROUNDS

pp → ZZ jj → (`+`−)(`+`−)jjpp → ttZ → (j`+ν`)(j`−ν`)(`+`−)

σ(pp → ZZ jj → 4`jj) ' 6.4 fb , σ(pp → ttZ jj → 4` 2ν jj) ' 8.6 fb

Page 56: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Bileptons Distributions

arXiv:1707.01381 [hep-ph]

Page 57: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Y ±± @ the LHC

q

B−−

q

hi

B++

q

B−−

q

V 0

B++

q

B−−

Q

q

B++

arXiv:1806.04536 [hep-ph]

Page 58: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Signal & Backgrounds at 13 TeV

Benchmark Point

mY±± ' mH±± ∼ 870 GeV

Br(Y±± → l±l±) = Br(H±± → l±l±) = 13

SIGNAL

pp → Y ++Y−−(H++H−−)→ (l+l+)(l−l−) l = e, µ

σ(pp → YY → 4l) ' 4.3 fb σ(pp → HH → 4l) ' 0.3 fb

BACKGROUNDS

pp → ZZ → (l+l−)(l+l−)

σ(pp → ZZ → 4l) ' 6.1 fb

arXiv:1806.04536 [hep-ph]

Page 59: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Number of Events (13 TeV and L=300 fb−1)

Defining the significance s to discriminate a signal S from abackground B as

σS = S√B + σ2

B

,

σB systematic error on B (σB ' 0.1B)

N(YY ) ' 1302, N(HH) ' 120, N(ZZ ) ' 1836

σYY ' 6.9, σBSMHH = 0.6, σBYY

HH = 0.9

arXiv:1806.04536 [hep-ph]

Page 60: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Number of Events (13 TeV and L=300 fb−1)

Defining the significance s to discriminate a signal S from abackground B as

σS = S√B + σ2

B

,

σB systematic error on B (σB ' 0.1B)

N(YY ) ' 1302, N(HH) ' 120, N(ZZ ) ' 1836

σYY ' 6.9, σBSMHH = 0.6, σBYY

HH = 0.9

arXiv:1806.04536 [hep-ph]

Page 61: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Distributions

arXiv:1806.04536 [hep-ph]

Page 62: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Contents

The Standard Model of Elementary ParticlesBasicsIssuesA Popular Solution

331 ModelMinimal Formulation331 Model for Generic βSame-Sign Leptons Phenomenology

Conclusions

Page 63: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

♦ SM issues: dark matter, neutrino masses ... → needs to beimproved

♦ supersymmetry provides possible answer to DM, hierarchyproblem ... but (the minimal version!) is in tension withexperimental data

♦ models with larger gauge symmetry have rich phenomenology

♦ 331 model(s) explain the observed number of fermion families(nQf = nLf = 3κ)

♦ minimal version of 331 has the almost unique feature ofdoubly-charged gauge boson

♦ models with larger gauge group appear in GUT theories

Page 64: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

� SM issues: dark matter, neutrino masses ... → needs to beimproved

♦ supersymmetry provides possible answer to DM, hierarchyproblem ... but (the minimal version!) is in tension withexperimental data

♦ models with larger gauge symmetry have rich phenomenology

♦ 331 model(s) explain the observed number of fermion families(nQf = nLf = 3κ)

♦ minimal version of 331 has the almost unique feature ofdoubly-charged gauge boson

♦ models with larger gauge group appear in GUT theories

Page 65: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

� SM issues: dark matter, neutrino masses ... → needs to beimproved

� supersymmetry provides possible answer to DM, hierarchyproblem ... but (the minimal version!) is in tension withexperimental data

♦ models with larger gauge symmetry have rich phenomenology

♦ 331 model(s) explain the observed number of fermion families(nQf = nLf = 3κ)

♦ minimal version of 331 has the almost unique feature ofdoubly-charged gauge boson

♦ models with larger gauge group appear in GUT theories

Page 66: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

� SM issues: dark matter, neutrino masses ... → needs to beimproved

� supersymmetry provides possible answer to DM, hierarchyproblem ... but (the minimal version!) is in tension withexperimental data

� models with larger gauge symmetry have rich phenomenology

♦ 331 model(s) explain the observed number of fermion families(nQf = nLf = 3κ)

♦ minimal version of 331 has the almost unique feature ofdoubly-charged gauge boson

♦ models with larger gauge group appear in GUT theories

Page 67: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

� SM issues: dark matter, neutrino masses ... → needs to beimproved

� supersymmetry provides possible answer to DM, hierarchyproblem ... but (the minimal version!) is in tension withexperimental data

� models with larger gauge symmetry have rich phenomenology

� 331 model(s) explain the observed number of fermion families(nQf = nLf = 3κ)

♦ minimal version of 331 has the almost unique feature ofdoubly-charged gauge boson

♦ models with larger gauge group appear in GUT theories

Page 68: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

� SM issues: dark matter, neutrino masses ... → needs to beimproved

� supersymmetry provides possible answer to DM, hierarchyproblem ... but (the minimal version!) is in tension withexperimental data

� models with larger gauge symmetry have rich phenomenology

� 331 model(s) explain the observed number of fermion families(nQf = nLf = 3κ)

� minimal version of 331 has the almost unique feature ofdoubly-charged gauge boson

♦ models with larger gauge group appear in GUT theories

Page 69: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

� SM issues: dark matter, neutrino masses ... → needs to beimproved

� supersymmetry provides possible answer to DM, hierarchyproblem ... but (the minimal version!) is in tension withexperimental data

� models with larger gauge symmetry have rich phenomenology

� 331 model(s) explain the observed number of fermion families(nQf = nLf = 3κ)

� minimal version of 331 has the almost unique feature ofdoubly-charged gauge boson

� models with larger gauge group appear in GUT theories

Page 70: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Thanks

Page 71: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Back-up

Slides

Page 72: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

EWSB Details: the Potential

The (lepton-number conserving) potential of the model is given by

V = m1 ρ†ρ+ m2 η

†η + m3 χ†χ+ λ1(ρ†ρ)2 + λ2(η†η)2 + λ3(χ†χ)2

+ λ12ρ†ρ η†η + λ13ρ

†ρχ†χ+ λ23η†η χ†χ

+ ζ12ρ†η η†ρ+ ζ13ρ

†χχ†ρ+ ζ23η†χχ†η

+ m4 Tr(σ†σ) + λ4(Tr(σ†σ))2 + λ14ρ†ρTr(σ†σ) + λ24η

†ηTr(σ†σ)+ λ34χ

†χTr(σ†σ)+ λ44Tr(σ†σ σ†σ) + ζ14ρ

†σ σ†ρ+ ζ24η†σ σ†η + ζ34χ

†σ σ†χ

+ (√2fρηχεijkρi ηj χk +

√2fρσχρT σ† χ+ ξ14ε

ijk ρ∗lσliρjηk

+ ξ24εijkεlmn ηiηlσjmσkn + ξ34ε

ijk χ∗lσliχjηk) + h.c.

Page 73: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

EWSB Details: Minimization ConditionsIn the broken Higgs phase, the minimization conditions

∂V∂vφ

= 0, 〈φ0〉 = vφ, φ = ρ, η, χ, σ

will define the tree-level vacuum. We remind that we areconsidering massless neutrinos choosing the neutral field σ0

1 to beinert. The explicit expressions of the minimization conditions arethen given by

m1vρ + λ1v3ρ +

12λ12vρv2

η − fρηχvηvχ +12λ13vρv2

χ −1√

2ξ14vρvηvσ + fρσχvχvσ

+12λ14vρv2

σ +14ζ14vρv2

σ = 0

m2vη +12λ12v2

ρvη + λ2v3η − fρηχvρvχ +

12λ23vηv2

χ −1

2√

2ξ14v2

ρvσ +1

2√

2v2χvσ

+12λ24vηv2

σ − ξ24vηv2σ = 0

m3vχ + λ3v3χ +

12λ13v2

ρvχ − fρηχvρvη +12λ23v2

ηvχ +1√

2ξ34vηvχvσ + fρσχvρvσ

+12λ34vχv2

σ +14ζ34vχv2

σ = 0

m4vσ +12λ14v2

ρvσ + λ44v3σ +

12λ4v3

σ + fρσχvρvχ −1

2√

2ξ14v2

ρvη +1

2√

2ξ34vηv2

χ

+12λ14v2

ρvσ +14ζ14v2

ρvσ +12λ24v2

ηvσ − ξ24v2ηvσ +

12λ34v2

χvσ +14ζ34v2

χvσ = 0

Page 74: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

EWSB Details: Neutral Scalars

For the CP-even Higgs bosons we have

Hi = RSi1Re ρ0 + RS

i2Re η0 + RSi3Reχ0 + RS

i4Reσ0 + RSi5Reσ0

1,

There are similar expressions for the pseudoscalars

Ai = RPi1Im ρ0 + RP

i2Im η0 + RPi3Imχ0 + RP

i4Im σ0 + RPi5Im σ0

1.

Here, however, we have two Goldstone bosons responsible for thegeneration of the masses of the neutral gauge bosons Z and Z ′given by

A10 = 1

N1

(vρIm ρ0 − vηIm η0 + vσIm σ0

), N1 =

√v2ρ + v2

η + v2σ ;

A20 = 1

N2

(−vρIm ρ0 + vχImχ0

), N2 =

√v2ρ + v2

χ.

Page 75: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

EWSB Details: Charged ScalarsFor the charged Higgs bosons the interaction eigenstates are

H+i = RC

i1ρ+ + RC

i2(η−)∗ + RCi3η

+ + RCi4(χ−)∗ + RC

i5σ+1 + RC

i6(σ−2 )∗

Here we have two Goldstones because in the 331 model there arethe W± and the Y± gauge bosons,

H+W = 1

NW

(−vηη+ + vχ(χ−)∗ + vσ(σ−2 )∗

), NW =

√v2η + v2

χ + v2σ ;

H+Y = 1

NY

(vρρ+ − vη(η−)∗ + vσσ+

1

), NY =

√v2ρ + v2

η + v2σ .

For the doubly-charged Higgs states we have

H++i = R2C

i1 ρ++ + R2C

i2 (χ−−)∗ + R2Ci3 σ

++1 + R2C

i4 (σ−−2 )∗.

The structure of the corresponding Goldstone boson is

H++0 = 1

N(−vρρ++ + vχ(χ−−)∗ −

√2vσσ++

1 +√2vσ(σ−−2 )∗

).

Page 76: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Relevant Couplings: V 0 − Y ±± − Y ∓∓

V 0(p1)Y ++(p2)Y−−(p3) vertex is given in terms of the momentaby

V (p1µ, p2

ν , p3ρ) = gµν(p2

ρ − p1ρ) + gνρ(p3

µ − p2µ) + gµρ(p1

ν − p3ν).

Characterizing the vector boson V as photon, Z or Z ′, we obtain:

γα Y ++µ Y−−ν = −2ig2 sin θW V (pγα, pY ++

µ , pY−−ν )

Zα Y ++µ Y−−ν = i

2g2(1− 2 cos 2θW ) sin θW V (pZα , pY ++

µ , pY−−ν )

Z ′α Y ++µ Y−−ν = − i

2g2

√12− 9 sec2 θW V (pZ ′

α , pY ++µ , pY−−

ν ),

where θW is the Weinberg angle.

Page 77: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Relevant Couplings: V 0 − H±± − H∓∓Defining S

(p1µ, p2

µ

)= p1

µ − p2µ, we have

γα H++i H−−j = −i sin θW

[(g2 + g1

√cot2 θW − 3

)(R2C

i1 R2Cj1 + R2C

i2 R2Cj2

)+ 2g2

(R2C

i3 R2Cj3 + R2C

i4 R2Cj4

)]S

(p

H++iα , p

H−−jα

)= −2ieδij S

(p

H++iα , p

H−−jα

)Zα H++

i H−−j =i2

sec θW{

cos 2θW

(g2 + g1

√cot2 θW − 3

)− g1

√cot2 θW − 3)R2C

i1 R2Cj1

− 2[(

g2 + g1

√cot2 θW − 3

)sin2

θW R2Ci2 R2C

j2 − g2 cos 2θW R2Ci3 R2C

j3

+ 2g2 sin2θW R2C

i4 R2Cj4

]}S

(p

H++iα , p

H−−jα

)Z ′α H++

i H−−j =i2

sec2 θW√12− 9 sec2 θW

{[3g1

√cot2 θW − 3(cos 2θW − 1) + g2(2 cos 2θW − 1)

]R2C

i1 R2Cj1

+[

3g1

√cot2 θW − 3(cos 2θW − 1) + 2g2(2 cos 2θW − 1)

]R2C

i2 R2Cj2

+ 2g2(2 cos 2θW − 1)(

R2Ci3 R2C

j3 + 2R2Ci4 R2C

j4

)}S

(p

H++iα , p

H−−jα

).

Page 78: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Vector Bilepton Couplings

The relevant vertices for vector bileptons are

` ` Y ++ ={− i√

2g2γµ PL

i√2g2γ

µ PR

d T Y−− ={− i√

2g2γµ PL

0 PR

D u Y−− ={ i√

2g2γµ PL

0 PR

hi Y ++Y−− = i2g2

2

(vρRS

i1 + vχRSi3

)

Page 79: agenda.infn.it · Issues of the MSSM) [GeV] 1 t ~ m(200 300 400 500 600 700 800 900 1000) [GeV] 1 0 c ~ m(0 100 200 300 400 500 600 700 800 1 0 c W b ~ ® 1 t ~ / 1 0 c ~ ® t 1 t

Bileptones: Simulation Details

♦ kT algorithm with R = 1 for jets cluster

♦ pT ,j > 30 GeV, pT ,` > 20 GeV

♦ |ηj | < 4.5, |η`| < 2.5

♦ ∆Rjj > 0.4,∆R`` > 0.1,∆Rj` > 0.4