Isomer Spectroscopy of the Heaviest Elements
Embed Size (px)
description
Transcript of Isomer Spectroscopy of the Heaviest Elements

Isomer Spectroscopy of the Heaviest Elements
Rod Clark(Lawrence Berkeley National Laboratory)

Outline
• Motivation for studying structure of heaviest nuclei
• K-isomers in Z≥100 region
• The Berkeley Gas-Filled Separator (BGS)
• Recent results:• 50Ti+208Pb→256Rf+2n (σ≈20nb)• 48Ca+209Bi→255Lr+2n (σ≈300nb)
• Heavy element spectroscopy with GRETINA+BGS
• Summary

Motivation
• Single-particle levels → shell structure• Next major spherical gaps• Deformed gaps
• Deformation and collectivity• K-isomerism• Rotational structures• Low-lying vibrations
• Pairing properties• Multi-quasiparticle states• Effects on rotation• Effects on alpha decay• Effects fission decay

K-Isomers in Z≥100 Nuclei
Nature 422 896 (2006)
FMA at ANL
RITU at JYFL

S.K.Tandel et al., PRL 97 082502 (2006)
Conversion Electron and Gamma Spectroscopy

M W AC
F ocal P lan eD etector
P u n ch th rou ghD etector
R u th er fordD etectors
Q u adru poleM agn et
G radien t-F ield
M agn et
F lat-F ieldD ipoleM agn et
T arget
E V RT rajectory
B eamT rajectoryB eam G as-F il led
C h am ber
Large acceptance: 45 msr (± 9° vertical, ±4.5° horizontal) Highest transmission ( Ni+Pb: 70% Ca+Pb: 60% Mg+U:
18% ) Large bend angle: 70°
Lowest background rates ( 40Hz/pA 20Hz/pA100Hz/pA )
Berkeley Gas-filled Separator

Focal Plane Detectors
16×16 strip DSSD1mm thick, 5cm by 5cm
1) Recoil implanted in pixel of DSSD2) Burst of conversion electrons in same pixel from isomer decay3) Gamma-rays in coincidence with electron burst4) Recoil decays in same pixel by alpha/fission
Key idea was to tag on isomer by searching for burst of conversionelectrons and using a single pixel as a calorimeter.
G.D. Jones (Liverpool), NIM A 488 471 (2002).

256Rf: Z=104, N=15250Ti+208Pb→256Rf+2n at 243 MeV (σ≈20nb), 200pnA, 6 days
Electrons Gamma Rays
r-e-e-f
r-e-e-f

0+2+4+
K=(2-)3-4-5-6-
≈946
≈46
256Rf104 152
K=(5-) ≈112025(2)s
≈140017(2)s
K=(7-,8-)
t1/2=27(6)s>2200
900
H. B. Jeppesen et al.,Submitted to PRL

255Lr: Z=103, N=15248Ca+209Bi→255Lr+2n at 222 MeV (σ≈300nb), 300pnA, 4 days
7/2
19/2
~x+800
~x+1400
x

247Es: Z=99, N=148-spectroscopy following -decay of 255Lr→251Md→247Es

243 =294
251Md
247Es
243 =294
251Md
247Es
F.P.Hessberger et al., EPJ A 26 233 (2005)A. Chatillon et al., EPJ A 30 397 (2006)
Eisteinium (Z=99) Systematics Re-examined
0+x

243 =294
251Md
247Es
243 =294
251Md
247Es
F.P.Hessberger et al., EPJ A 26 233 (2005)A. Chatillon et al., EPJ A 30 397 (2006)
Eisteinium (Z=99) Systematics Re-examined
0+x
?

Transfermium Spectroscopy with GRETINA+BGS The best heavy element separatorwith the best -ray detector system
Assumptions for simulation:TOT = 1 barnTarget = 0.5 mg/cm2
Beam Current = 50 pnA/ crystal = 0.0067M = 10→ 30.3 kHz/crystal
48Ca+208Pb→254No+2nσ~2 μb
2000
Cou
nts
Energy (keV)
50Ti+208Pb→256Rf+2nσ~20 nb25
Cou
nts 6+→4+
Energy (keV)

Summary• New generation of spectroscopy experiments on heaviest elements
RITU at JYFL, FMA at ANL, BGS at LBNL,GABRIELLA at Dubna, SHIP at GSI, VAMOS at GANIL+…
• Decay spectroscopy at BGS able to reach Sg (Z=106)- single-particle states- K-isomerism- low-lying rotational and vibrational modes
• Prompt spectroscopy with GRETINA at BGS able to reach Rf (Z=104)- rotation versus fission- moments of inertia, alignments- configuration assignments
• Can modern microscopic theories reproduce experiment?
