Isolating wetland methane emissions using the additional ......Isolating wetland methane emissions...

22
Max Planck Institute for Biogeochemistry Isolating wetland methane emissions using the additional constraints of δ 13 CH 4 , and ethane in a inverse modelling framework Tonatiuh Guillermo Nuñez Ramirez et al. European Geosciences Union General Assembly 2015 Session BG2.3: Understanding CO 2 and CH 4 fluxes from WETLANDS: Reducing the gaps between experimentalists and modellers Vienna 2015

Transcript of Isolating wetland methane emissions using the additional ......Isolating wetland methane emissions...

Page 1: Isolating wetland methane emissions using the additional ......Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework

Max Planck Institutefor Biogeochemistry

Isolating wetland methane emissions using the

additional constraints of δ13CH4, and ethane in a

inverse modelling framework

Tonatiuh Guillermo Nuñez Ramirez et al. !

European Geosciences Union General Assembly 2015 Session BG2.3: Understanding CO2 and CH4 fluxes from

WETLANDS: Reducing the gaps between experimentalists and modellers

Vienna 2015

Page 2: Isolating wetland methane emissions using the additional ......Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework

Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework ‘Chapter’ - type here

Acknowledgements

2

Full author list:

Tonatiuh Guillermo Nuñez Ramirez, Julia Marshall, Sander Houweling, Edward J. Dlugokencky, Douglas E. J. Worthy, Bruce Vaughn, Isobel Simpson, James White, Willi A. Brand, Motoki Sasakawa, Silvia Nichol, Michel Ramonet, Stanley C. Tyler, Jacques Hueber, Detlev Helmig, Katie Read, Schalini Punjabi, Luciana Vanni Gatti, Paul Krummel, Joe Melton, Marc Delmotte, Yukio Fukuyama, Yasunori Tohjima, Karin Uhse, Gordon Brailsford, Ernst Brunke, Toshinobu Machida and Martin Heimann

Additional acknowledgements:

Catherine Prigent, Fabrice Papa, Thomas Rockmann, Christoph Gerbig, Veronika Beck, William Riley, Hanquin Tian, Xiaofeng Xu, Renato Spahni, Rita Wania, E. Hodson, Bruno Ringeval, Peter Hopcroft, Christoph Brühl, Christian Plaß-Dülmer, Armin Jordan, Jos Olivier, Stefan Schwietzke and Patrick Jöckel, Donald Blake

Page 3: Isolating wetland methane emissions using the additional ......Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework

Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework ‘Chapter’ - type here

Transport modelling

3

CH4 mixing ratio surface layerCH4 latitudinal profile

AdvectionConvection

Turbulent mixing

Advection

Photochemistry

CH4+OH →CH3º + H2O

Horizontal resolution ~4º latitude x 5º longitude

Vertical resolution 26 hybrid sigma pressure levels

Meteorology ERA-Interim re-analysis 3-hourly

Chemistry Fixed OH, Cl and O(1D) concentrations

Page 4: Isolating wetland methane emissions using the additional ......Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework

Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework ‘Chapter’ - type here 4

Transport modelling

Transport model TM3A-priori fluxes CH4 mixing ratio

at stations

Page 5: Isolating wetland methane emissions using the additional ......Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework

−90−63

−45

−23

0

23

45

6390

0 5 10 15 20 25 30 35 40 45CH4 Emissions [Tg/yr]

Latit

ude

Process

WetlandsRiceSoil OxidationOceansBiomass BurningFossil

BiofuelsAnimal husbandry & manureLandfills and waste waterWild ruminants & insectsMinor anthropogenicTotal flux

Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework ‘Chapter’ - type here

A-priori flux estimates

5

ALT BRW

MLO ASC

SMO CGO

170017501800185019001950

170017501800185019001950

170017501800185019001950

170017501800185019001950

170017501800185019001950

170017501800185019001950

2010 2010.3 2010.7 2011 2010 2010.3 2010.7 2011

2010 2010.3 2010.7 2011 2010 2010.3 2010.7 2011

2010 2010.3 2010.7 2011 2010 2010.3 2010.7 2011Time/Date

CH

4 mix

ing

ratio

[ppb

]

Observations Prior

Alert, Canada Barrow, Alaska

Mauna Loa, HI Ascension Island

American Samoa Cape Grim, Aus.

Page 6: Isolating wetland methane emissions using the additional ......Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework

Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework ‘Chapter’ - type here 6

Flux optimization

Transport model TM3

A-priori fluxes

Modelled CH4 mixing ratio

Observed CH4 mixing ratio

Adjoint model TM3

SensitivitiesCost function!!

J = mismatch + adjustment

Adjusted fluxes

Page 7: Isolating wetland methane emissions using the additional ......Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework

Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework ‘Chapter’ - type here 7

f = ffix

+ Fp

Prior Flux

A

B

Possible area of perturbation

Gradient between stations A and B

−90

−60

−30

0

30

60

90

−180 −120 −60 0 60 120 180Longitude

Latit

ude

[g m−2a−1]

0.0005.62511.25016.87522.50028.12533.75039.37545.000

A-priori flux estimate

shape function

● ●●●●

●●

● ●

●●

●●

●●

●●●●●

●●●●●

ABP

ALT

AMS

ARH

ASC

ASK

AZR

BAL

BGU

BHD

BIK

BKT

BMW

BRW

BSC

CBA

CFA

CGO

CHL

CHR

CPT

CRI

CRZ

CVR

CYA

DEMDEM

EGB

EIC

ESPETL

FSD

GMI

HBA

GSNHAT

HUN

ICE IGRIGR

IZO

JFJ

KEY

KRSKRS

KUM

KZD KZM

LAU

LEFLLB

LLN

LMP

LPO

MAA

MEX

MHD

MID

MKN

MLOMNM

MQA

NGL

NWROXK

PAL

PDM PRS

PSA

PTAPUY

RPB

RYOSDZ

SEY

SGP

SHMSHT

SMO

SPO

SSL

STMSUM

SYO

TAP

TDF

TER

THD

TT34

UTA UUMVGNVGN

WISWKTWLG

WSA

YAKYAK

YON

ZEP

ZOTZOTZOTZOTZOT

ZSF

DRP

PIP

POC SAN

TDA

UCI

−90

−60

−30

0

30

60

90

−180 −150 −120 −90 −60 −30 0 30 60 90 120 150 180

wind direction

Ground stations Mobile stations UCI stations

Flux optimization

Page 8: Isolating wetland methane emissions using the additional ......Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework

−90−63

−45

−23

0

23

45

6390

−8 −6 −4 −2 0 2 4 6 8CH4 Emissions [Tg/yr]

Latit

ude

Process

WetlandsRiceSoil OxidationOceansBiomass Burning

FossilBiofuelsAnimal husbandry & manureLandfills and waste waterTotal flux

Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework ‘Chapter’ - type here

CH4 mixing ratio only inversion

8

ALT BRW

MLO ASC

SMO CGO

170017501800185019001950

170017501800185019001950

170017501800185019001950

170017501800185019001950

170017501800185019001950

170017501800185019001950

2010 2010.3 2010.7 2011 2010 2010.3 2010.7 2011

2010 2010.3 2010.7 2011 2010 2010.3 2010.7 2011

2010 2010.3 2010.7 2011 2010 2010.3 2010.7 2011Time/Date

CH

4 mix

ing

ratio

[ppb

]

Observations CH4 only Prior

Alert, Canada Barrow, Alaska

Mauna Loa, HI Ascension Island

American Samoa Cape Grim, Aus.

Posterior - Prior

Page 9: Isolating wetland methane emissions using the additional ......Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework

Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework ‘Chapter’ - type here 9

Validation with δ13CH4 and C2H6

Transport model TM3

Optimized CH4 fluxes

δ13CH4 at stations

13CH4CH4

C2H6CH4

CH4 mixing ratio at stations

C2H6 mixing ratio at stations

Page 10: Isolating wetland methane emissions using the additional ......Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework

ALT

ARH

ASC

AZR

BHD

BRW

CBA

CGO

CVRKUM

MHD

MLO

NWR

SHT

SMO

SPO

TAPWLG

ZEP

ZOT

−90

−60

−30

0

30

60

90

−180 −150 −120 −90 −60 −30 0 30 60 90 120 150 180

δ13CH4 Isotopic ratio

Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework ‘Chapter’ - type here

Atmospheric Measurement Station Networks

10

● ●●●●

●●

● ●

●●

●●

●●

●●●●●

●●●●●

ABP

ALT

AMS

ARH

ASC

ASK

AZR

BAL

BGU

BHD

BIK

BKT

BMW

BRW

BSC

CBA

CFA

CGO

CHL

CHR

CPT

CRI

CRZ

CVR

CYA

DEMDEM

EGB

EIC

ESPETL

FSD

GMI

HBA

GSNHAT

HUN

ICE IGRIGR

IZO

JFJ

KEY

KRSKRS

KUM

KZD KZM

LAU

LEFLLB

LLN

LMP

LPO

MAA

MEX

MHD

MID

MKN

MLOMNM

MQA

NGL

NWROXK

PAL

PDM PRS

PSA

PTAPUY

RPB

RYOSDZ

SEY

SGP

SHMSHT

SMO

SPO

SSL

STMSUM

SYO

TAP

TDF

TER

THD

TT34

UTA UUMVGNVGN

WISWKTWLG

WSA

YAKYAK

YON

ZEP

ZOTZOTZOTZOTZOT

ZSF

DRP

PIP

POC SAN

TDA

UCI

−90

−60

−30

0

30

60

90

−180 −150 −120 −90 −60 −30 0 30 60 90 120 150 180

CH4 mixing ratio

ABP

ALT

ASC

ASK

AZR

BAL

BKT

BRW

BSC

CBA

CGOCRZ

CVR

EGB

EIC

GMI

HBA

HPB

ICE

IZOKUM

LEFLLB

MEX

MHD

MID

MKN

MLO

NAT

OXK

PAL

PSA

RIG

SEY

SGP

SHM

SMO

SPO

SUM

SYO

TAP

TDF

THD UTA

ZEP

UCI

−90

−60

−30

0

30

60

90

−180 −150 −120 −90 −60 −30 0 30 60 90 120 150 180

C2H6 mixing ratio

Ground station (flask or continuous)Mobile station (ship or airplane)UCI station (canister sampling 1 x season)

Legend

Page 11: Isolating wetland methane emissions using the additional ......Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework

●●

●●

1e−01

1e−02

1e−03

1e−04

1e−05

−90 −80 −70 −60 −50 −40 −30 −20 −10δ13CH4 [permil]

Etha

ne to

met

hane

Rat

io

Origin●

BiogenicPyrogenicThermogenic

Coal

Natural gas

Oil

Geologic Biomass burning

Fuelwood

Rice

WetlandsLandfills

Ruminant

Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework ‘Chapter’ - type here

Isotopic and ethane-to-methane signature ratios

11

−90

−60

−30

0

30

60

90

−180 −120 −60 0 60 120Longitude

Latit

ude

CH4 Flux [mg m−2d−1]

−72.0−69.8−67.6−65.4−63.2−61.0−58.8−56.6−54.4−52.2−50.0

fwetland,CH4 = fPRI,wetland,CH4 + Fwetland,CH4p

fwetland,13CH4= fPRI,wetland,13CH4

+13CH4CH4

Fwetland,CH4p

fixed ratio

Wetland 13CH4 signal

δ13CH4 [‰]

Page 12: Isolating wetland methane emissions using the additional ......Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework

−90−63

−45

−23

0

23

45

6390

0 5 10 15 20 25 30 35 40 45CH4 Emissions [Tg/yr]

Latit

ude

Process

WetlandsRiceSoil OxidationOceansBiomass BurningFossil

BiofuelsAnimal husbandry & manureLandfills and waste waterWild ruminants & insectsMinor anthropogenicTotal flux

Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework ‘Chapter’ - type here 12

ALT BRW

MLO ASC

SMO CGO

−48.0

−47.6

−47.2

−46.8

−48.0

−47.6

−47.2

−46.8

−48.0

−47.6

−47.2

−46.8

2010 2010.3 2010.7 20112010 2010.3 2010.7 2011

2010 2010.3 2010.7 20112010 2010.3 2010.7 2011

2010 2010.3 2010.7 20112010 2010.3 2010.7 2011Time/Date

δ13C

H4 [

perm

ill]

ObservationsPrior

Alert, Canada Barrow, Alaska

Mauna Loa, HI Ascension Island

American Samoa Cape Grim, Aus.

δ13CH4 - CH4 mixing ratio only inversion

Page 13: Isolating wetland methane emissions using the additional ......Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework

−90−63

−45

−23

0

23

45

6390

−8 −6 −4 −2 0 2 4 6 8CH4 Emissions [Tg/yr]

Latit

ude

Process

WetlandsRiceSoil OxidationOceansBiomass Burning

FossilBiofuelsAnimal husbandry & manureLandfills and waste waterTotal flux

Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework ‘Chapter’ - type here 13

ALT BRW

MLO ASC

SMO CGO

−48.0

−47.6

−47.2

−46.8

−48.0

−47.6

−47.2

−46.8

−48.0

−47.6

−47.2

−46.8

2010 2010.3 2010.7 20112010 2010.3 2010.7 2011

2010 2010.3 2010.7 20112010 2010.3 2010.7 2011

2010 2010.3 2010.7 20112010 2010.3 2010.7 2011Time/Date

δ13C

H4 [

perm

ill]

ObservationsCH4 only

Prior

Alert, Canada Barrow, Alaska

Mauna Loa, HI Ascension Island

American Samoa Cape Grim, Aus.

δ13CH4 - CH4 mixing ratio only inversion

Posterior - Prior

Page 14: Isolating wetland methane emissions using the additional ......Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework

−90−63

−45

−23

0

23

45

6390

0.0 0.2 0.4 0.6 0.8 1.0C2H6 Emissions [Tg/yr]

Latit

ude

Process

WetlandsRiceSoil OxidationOceansBiomass BurningFossil

BiofuelsAnimal husbandry & manureLandfills and waste waterWild ruminants & insectsMinor anthropogenicTotal flux

Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework ‘Chapter’ - type here 14

ALT BRW

MLO ASC

SMO CGO

0

1000

2000

3000

4000

0

1000

2000

3000

4000

0

1000

2000

3000

4000

0

1000

2000

3000

4000

0

1000

2000

3000

4000

0

1000

2000

3000

4000

2010 2010.3 2010.7 2011 2010 2010.3 2010.7 2011

2010 2010.3 2010.7 2011 2010 2010.3 2010.7 2011

2010 2010.3 2010.7 2011 2010 2010.3 2010.7 2011Time/Date

C2H

6 mix

ing

ratio

[ppt

]

ObservationsPrior

Alert, Canada Barrow, Alaska

Mauna Loa, HI Ascension Island

American Samoa Cape Grim, Aus.

C2H6 - CH4 mixing ratio only inversion

Page 15: Isolating wetland methane emissions using the additional ......Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework

−90−63

−45

−23

0

23

45

6390

−8 −6 −4 −2 0 2 4 6 8CH4 Emissions [Tg/yr]

Latit

ude

Process

WetlandsRiceSoil OxidationOceansBiomass Burning

FossilBiofuelsAnimal husbandry & manureLandfills and waste waterTotal flux

Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework ‘Chapter’ - type here 15

ALT BRW

MLO ASC

SMO CGO

0

1000

2000

3000

4000

0

1000

2000

3000

4000

0

1000

2000

3000

4000

0

1000

2000

3000

4000

0

1000

2000

3000

4000

0

1000

2000

3000

4000

2010 2010.3 2010.7 2011 2010 2010.3 2010.7 2011

2010 2010.3 2010.7 2011 2010 2010.3 2010.7 2011

2010 2010.3 2010.7 2011 2010 2010.3 2010.7 2011Time/Date

C2H

6 mix

ing

ratio

[ppt

]

ObservationsCH4 only

Prior

Alert, Canada Barrow, Alaska

Mauna Loa, HI Ascension Island

American Samoa Cape Grim, Aus.

C2H6 - CH4 mixing ratio only inversion

Posterior - Prior

Page 16: Isolating wetland methane emissions using the additional ......Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework

Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework ‘Chapter’ - type here 16

Multi-species inversion

Transport model TM3

A-priori CH4 fluxes

Model CH4

Adjoint model TM3

SensitivitiesCost function!

!J = mismatch + adjustment

13CH4CH4

C2H6CH4

Model δ13CH4

Model C2H6

Obs. CH4

Obs. δ13CH4

Obs. C2H6

Adjusted CH4 fluxes

Page 17: Isolating wetland methane emissions using the additional ......Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework

−90−63

−45

−23

0

23

45

6390

−8 −6 −4 −2 0 2 4 6 8CH4 Emissions [Tg/yr]

Latit

ude

Scenario CH4 only CH4+d13CH4+C2H6

Process

WetlandsRiceSoil OxidationOceansBiomass Burning

FossilBiofuelsAnimal husbandry & manureLandfills and waste waterTotal flux

Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework ‘Chapter’ - type here

Multi-species inversion - CH4 mixing ratio

17

ALT BRW

MLO ASC

SMO CGO

170017501800185019001950

170017501800185019001950

170017501800185019001950

170017501800185019001950

170017501800185019001950

170017501800185019001950

2010 2010.3 2010.7 2011 2010 2010.3 2010.7 2011

2010 2010.3 2010.7 2011 2010 2010.3 2010.7 2011

2010 2010.3 2010.7 2011 2010 2010.3 2010.7 2011Time/Date

CH

4 mix

ing

ratio

[ppb

]

ObservationsCH4+13CH4+C2H6

CH4 onlyPrior

CH4+C2H6CH4+13CH4

Alert, Canada Barrow, Alaska

Mauna Loa, HI Ascension Island

American Samoa Cape Grim, Aus.

CH4+δ13CH4+C2H6 CH4

CH4+δ13CH4+C2H6 CH4

Posterior - Prior

Page 18: Isolating wetland methane emissions using the additional ......Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework

−90−63

−45

−23

0

23

45

6390

−8 −6 −4 −2 0 2 4 6 8CH4 Emissions [Tg/yr]

Latit

ude

Scenario CH4 only CH4+d13CH4+C2H6

Process

WetlandsRiceSoil OxidationOceansBiomass Burning

FossilBiofuelsAnimal husbandry & manureLandfills and waste waterTotal flux

Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework ‘Chapter’ - type here 18

ALT BRW

MLO ASC

SMO CGO

−48.0

−47.6

−47.2

−46.8

−48.0

−47.6

−47.2

−46.8

−48.0

−47.6

−47.2

−46.8

2010 2010.3 2010.7 20112010 2010.3 2010.7 2011

2010 2010.3 2010.7 20112010 2010.3 2010.7 2011

2010 2010.3 2010.7 20112010 2010.3 2010.7 2011Time/Date

δ13C

H4 [

perm

ill]

ObservationsCH4+13CH4+C2H6

CH4 onlyPrior

CH4+C2H6CH4+13CH4

Alert, Canada Barrow, Alaska

Mauna Loa, HI Ascension Island

American Samoa Cape Grim, Aus.

Multi-species inversion - δ13CH4 mixing ratio

CH4+δ13CH4+C2H6 CH4

Posterior - Prior

Page 19: Isolating wetland methane emissions using the additional ......Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework

−90−63

−45

−23

0

23

45

6390

−8 −6 −4 −2 0 2 4 6 8CH4 Emissions [Tg/yr]

Latit

ude

Scenario CH4 only CH4+d13CH4+C2H6

Process

WetlandsRiceSoil OxidationOceansBiomass Burning

FossilBiofuelsAnimal husbandry & manureLandfills and waste waterTotal flux

Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework ‘Chapter’ - type here 19

ALT BRW

MLO ASC

SMO CGO

0

1000

2000

3000

4000

0

1000

2000

3000

4000

0

1000

2000

3000

4000

0

1000

2000

3000

4000

0

1000

2000

3000

4000

0

1000

2000

3000

4000

2010 2010.3 2010.7 2011 2010 2010.3 2010.7 2011

2010 2010.3 2010.7 2011 2010 2010.3 2010.7 2011

2010 2010.3 2010.7 2011 2010 2010.3 2010.7 2011Time/Date

C2H

6 mix

ing

ratio

[ppt

]

ObservationsCH4+13CH4+C2H6

CH4 onlyPrior

CH4+C2H6CH4+13CH4

Alert, Canada Barrow, Alaska

Mauna Loa, HI Ascension Island

American Samoa Cape Grim, Aus.

Multi-species inversion - C2H6 mixing ratio

CH4+δ13CH4+C2H6 CH4

Posterior - Prior

Page 20: Isolating wetland methane emissions using the additional ......Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework

BMW

CHL

EGB

ETL

FSD

KEY

LEF

LLB

NWRPTASGP

UTA

WKT

45

50

55

60

−115 −110 −105 −100 −95 −90 −85 −80 −75Longitude

Latit

ude

[g m−2a−1]

0.001.252.503.755.006.257.508.7510.00

Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework ‘Chapter’ - type here 20

−112.45, LLB −104.98, ETL −94.07, CHL −90.27, LEF −81.57, FSD −79.78, EGB

1800185019001950200020502100

2010 2010.5 2010 2010.5 2010 2010.5 2010 2010.5 2010 2010.5 2010 2010.5Time/DateC

H4 m

ixin

g ra

tio [p

pb]

ObservationsCH4+13CH4+C2H6

CH4 onlyPrior

CH4+C2H6CH4+13CH4

Lac La Biche East Trout Lake Park Falls Fraserdale EgbertChurchill

−112.45, LLB −90.27, LEF

0

2000

4000

6000

8000

2010 2010.5 2010 2010.5Time/Date

C2H

6 mix

ing

ratio

[ppb

]

Lac La Biche −112.45, LLB −90.27, LEF

0

2000

4000

6000

8000

2010 2010.5 2010 2010.5Time/Date

C2H

6 mix

ing

ratio

[ppb

]

−112.45, LLB −90.27, LEF

0

2000

4000

6000

8000

2010 2010.5 2010 2010.5Time/Date

C2H

6 mix

ing

ratio

[ppb

]

Park Fallsppt

ppt

1 2 3 4 5 6 7 8 9 10 120.0e

+00

2.0e

+11

4.0e

+11

Hudson Bay Lowland

MonthMonth

0.0

0.5

1.0

1.5

2.0

Inun

date

d Ar

ea [k

m2 ]

Wet

land

CH

4 Em

issi

on [T

g m

onth

−1]

Multi-species inversion - Case: Hudson Bay Lowland

InundationCH4 only CH4+13CH4

CH4+C2H6

CH4+13CH4+C2H6

Prior

Page 21: Isolating wetland methane emissions using the additional ......Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework

ALT BRW

MLO ASC

SMO CGO

170017501800185019001950

170017501800185019001950

170017501800185019001950

170017501800185019001950

170017501800185019001950

170017501800185019001950

2010 2010.3 2010.7 2011 2010 2010.3 2010.7 2011

2010 2010.3 2010.7 2011 2010 2010.3 2010.7 2011

2010 2010.3 2010.7 2011 2010 2010.3 2010.7 2011Time/Date

CH

4 mix

ing

ratio

[ppb

]

ObservationsCH4+13CH4+C2H6

CH4 onlyPrior

CH4+C2H6CH4+13CH4

American Samoa Cape Grim, Aus.

ALT BRW

MLO ASC

SMO CGO

−48.0

−47.6

−47.2

−46.8

−48.0

−47.6

−47.2

−46.8

−48.0

−47.6

−47.2

−46.8

2010 2010.3 2010.7 20112010 2010.3 2010.7 2011

2010 2010.3 2010.7 20112010 2010.3 2010.7 2011

2010 2010.3 2010.7 20112010 2010.3 2010.7 2011Time/Date

δ13C

H4 [

perm

ill]

ObservationsCH4+13CH4+C2H6

CH4 onlyPrior

CH4+C2H6CH4+13CH4

American Samoa Cape Grim, Aus.

CH

4 mix

ing

ratio

δ13 C

H4 [

‰]

• First attempt of attaining source differentiated CH4 fluxes that are consistent with δ13CH4 and C2H6 signals at a global scale

• Southern Hemisphere trade-off - more CH4 but more enriched δ13CH4 signal is needed – Southern Hemisphere CH4 dominated by tropical wetlands emissions– Biomass burning enhanced but still relatively small source!!!

!!!!

• Limitations:– Variability in source signature ratios should be taken in consideration

• e.g. enriched δ13CH4 signal in the Amazon

– Large uncertainty in marine boundary layer Cl atoms

Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework ‘Chapter’ - type here

Conclusion

21

Page 22: Isolating wetland methane emissions using the additional ......Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework

Isolating wetland methane emissions using the additional constraints of δ13CH4, and ethane in a inverse modelling framework ‘Chapter’ - type here

Thank you!

22