Isight Approximation Pointer - · PDF file1 Ι r 1 Isight Approximation Pointer Dr Malik...
Embed Size (px)
Transcript of Isight Approximation Pointer - · PDF file1 Ι r 1 Isight Approximation Pointer Dr Malik...

1
© D
assa
ult
Sys
tèm
es Ι
SG
L M
ichi
gan
RU
M,
Oct
ober
12,
2011
Isight Approximation Pointer
Dr Malik Kayupov | DS Simulia Corp.
Great Lakes Regional Users Meeting
October 12, 2011

2
© D
assa
ult
Sys
tèm
es Ι
SG
L M
ichi
gan
RU
M,
Oct
ober
12,
2011
Overview
Motivation – why create approximation models?
Question - Which Isight approximation model gives
the best fit of this data set? RSM? RBF? Kriging?
EBF? OPM? Tuning parameter values?
How it works
Some details of the procedure
Approximation Pointer

3
© D
assa
ult
Sys
tèm
es Ι
SG
L M
ichi
gan
RU
M,
Oct
ober
12,
2011
Overview
Motivation – why create approximation models?
Question - Which Isight approximation model gives
the best fit of this data set? RSM? RBF? Kriging?
EBF? OPM? Tuning parameter values?
How it works
Some details of the procedure
Approximation Pointer

4
© D
assa
ult
Sys
tèm
es Ι
SG
L M
ichi
gan
RU
M,
Oct
ober
12,
2011
Motivation
Long running codes are not suitable for extensive computer
experiments
In order to conduct design study, a DOE-Approximation
Model-Design Exploration-Validation process is used
Approximation Pointer

5
© D
assa
ult
Sys
tèm
es Ι
SG
L M
ichi
gan
RU
M,
Oct
ober
12,
2011
Big Picture – Automated Design Strategies
Y1
Constraint
Boundary
Y2
Initial Design
Make an
Approximation
Model
and Search for
Solution
Robust/Reliability Design
(Quality Engineering)
Feasible Infeasible
(safe) (failed)X2
X1
DOE:
Critical Factors,
Initial Design,
Data Set
Flexible automated design exploration strategies
combining DOE, approximation models, multi-objective
optimization and DFSS
Approximation Pointer

6
© D
assa
ult
Sys
tèm
es Ι
SG
L M
ichi
gan
RU
M,
Oct
ober
12,
2011
ExampleAutomotive Crashworthiness Role of vehicle structure for safety
o Absorb/manage the crash energy(through structure deformation)
o Maintaining passenger compartment integrity
Design challenges:o Analysis complexity
• Large deformation / rotation, bending, twisting
• Buckling, cracking, shearing, compression
o Computational complexity• >100,000 element FE model• CPU time: days to weeks per run
o Design studies require many analyses• DOE
• Optimization, multi-objective tradeoffs
• Stochastics: reliability and robustness
o Many crash modes
Approximations / Surrogate models Low fidelity empirical models
Created “bottom-up” from the simulation data
Extremely fast to evaluate
Reasonably accurate

7
© D
assa
ult
Sys
tèm
es Ι
SG
L M
ichi
gan
RU
M,
Oct
ober
12,
2011
Motivation
Long running codes are not suitable for extensive computer experiments
In order to conduct design study, a DOE-Approximation Model-Design Exploration-Validation process is used
However, the result depends on the accuracy of the approximation model.
Challenge –
Which approximation model is better?
Is there a better one?
Approximation Pointer

8
© D
assa
ult
Sys
tèm
es Ι
SG
L M
ichi
gan
RU
M,
Oct
ober
12,
2011
Overview
Motivation – why create approximation models?
Question - Which Isight approximation model gives
the best fit of this data set? RSM? RBF? Kriging?
EBF? OPM? Tuning parameter values?
How it works
Some details of the procedure
Approximation Pointer

9
© D
assa
ult
Sys
tèm
es Ι
SG
L M
ichi
gan
RU
M,
Oct
ober
12,
2011
Isight Approximation Models
9

10
© D
assa
ult
Sys
tèm
es Ι
SG
L M
ichi
gan
RU
M,
Oct
ober
12,
2011
RSM? RBF? EBF? Kriging? OPM?
Tuning parameters?
Which Isight approximation model gives me the best
fit?
Approximation Pointer
Input Parameters Output Parameters
BeamHeight FlangeThickness FlangeWidth WebThickness BeamMass MaximumDeflection MaximumStress
71.58 2.68 56.84 1.42 1.11634544 0.013605933 3.576588413
54.74 2.47 31.58 1.84 0.69338416 0.051128099 9.577362262
46.32 3.11 47.37 1 0.93727592 0.035739432 5.928557525
44.21 4.58 36.32 2.47 1.17394116 0.037466181 5.974288021
48.42 3.32 33.16 4.58 1.15229744 0.04108774 7.208779369
50.53 2.05 60 2.68 1.03721072 0.030469574 5.554294604
77.89 2.26 37.89 2.05 0.90067964 0.025836154 6.044978641
40 1.84 42.63 3.11 0.75553408 0.073960797 10.85847743
65.26 3.53 58.42 4.37 1.86698176 0.011317423 2.724947204
73.68 1.42 53.68 3.53 1.12704592 0.019973612 5.460258565
61.05 5 44.21 4.16 1.8325104 0.013929318 3.086860295
69.47 3.95 30 3.32 1.23595472 0.027988782 5.351855061
80 4.16 48.95 2.89 1.72037376 0.009002552 2.529132474
63.16 1.21 34.74 3.74 0.87146752 0.05819578 11.27438069
52.63 1.63 50.53 5 1.15241784 0.033878717 6.795097939
42.11 3.74 52.11 3.95 1.47439964 0.032076328 4.745204799
75.79 2.89 41.05 4.79 1.60332732 0.01651373 4.024054963
58.95 1 45.79 1.63 0.5163438 0.055498016 12.2429895
56.84 4.79 55.26 2.26 1.78135552 0.013534904 2.759519976
67.37 4.37 39.47 1.21 1.16454828 0.016615638 3.884060273

11
© D
assa
ult
Sys
tèm
es Ι
SG
L M
ichi
gan
RU
M,
Oct
ober
12,
2011
Manual approach:
One by one, manually make RBF, EBF, RSM, Kriging , and OPM approximations for variety of the tuning parameters using interactive Isight procedure.
Assess accuracy of every model created for every output parameter and write down the results into a table
Analyze the data table, select the model type and tuning parameter combination that allows the best accuracy
Approximation Pointer
=
Satisfied?
Modify
Model
Assess Approximation
Model Accuracy

12
© D
assa
ult
Sys
tèm
es Ι
SG
L M
ichi
gan
RU
M,
Oct
ober
12,
2011
Software Robot approach:
Use the tool described below to automatically make and evaluate RBF, EBF, RSM, Kriging , and OPM approximations for variety of the tuning parameters, and get Isight tasks stuffed with best quality approximation models for every individual output parameter for two fitness criteria
Approximation Pointer
=
Satisfied?
Modify
Model
Assess Approximation
Model Accuracy

13
© D
assa
ult
Sys
tèm
es Ι
SG
L M
ichi
gan
RU
M,
Oct
ober
12,
2011
Overview
Motivation – why create approximation models?
Question - Which Isight approximation model gives
the best fit of this data set? RSM? RBF? Kriging?
EBF? OPM? Tuning parameter values?
How it works
Some details of the procedure
Approximation Pointer

14
© D
assa
ult
Sys
tèm
es Ι
SG
L M
ichi
gan
RU
M,
Oct
ober
12,
2011
Cross-Validation Process
Approximation Pointer
Input Parameters Output Parameters
BeamHeight FlangeThickness FlangeWidth WebThickness BeamMass MaximumDeflection MaximumStress
71.58 2.68 56.84 1.42 1.11634544 0.013605933 3.576588413
54.74 2.47 31.58 1.84 0.69338416 0.051128099 9.577362262
46.32 3.11 47.37 1 0.93727592 0.035739432 5.928557525
44.21 4.58 36.32 2.47 1.17394116 0.037466181 5.974288021
48.42 3.32 33.16 4.58 1.15229744 0.04108774 7.208779369
50.53 2.05 60 2.68 1.03721072 0.030469574 5.554294604
77.89 2.26 37.89 2.05 0.90067964 0.025836154 6.044978641
40 1.84 42.63 3.11 0.75553408 0.073960797 10.85847743
65.26 3.53 58.42 4.37 1.86698176 0.011317423 2.724947204
73.68 1.42 53.68 3.53 1.12704592 0.019973612 5.460258565
61.05 5 44.21 4.16 1.8325104 0.013929318 3.086860295
69.47 3.95 30 3.32 1.23595472 0.027988782 5.351855061
80 4.16 48.95 2.89 1.72037376 0.009002552 2.529132474
63.16 1.21 34.74 3.74 0.87146752 0.05819578 11.27438069
52.63 1.63 50.53 5 1.15241784 0.033878717 6.795097939
42.11 3.74 52.11 3.95 1.47439964 0.032076328 4.745204799
75.79 2.89 41.05 4.79 1.60332732 0.01651373 4.024054963
58.95 1 45.79 1.63 0.5163438 0.055498016 12.2429895
56.84 4.79 55.26 2.26 1.78135552 0.013534904 2.759519976
67.37 4.37 39.47 1.21 1.16454828 0.016615638 3.884060273
1. Remove a single row from data table
2. Make an approximation model based on the reduced data set
3. Calculate outputs in the point with inputs from the deleted row
4. Compare the model prediction with output values in the deleted row
5. Repeat steps 1 – 4 for another row

15
© D
assa
ult
Sys
tèm
es Ι
SG
L M
ichi
gan
RU
M,
Oct
ober
12,
2011
Shooting Competition: 5 shots

16
© D
assa
ult
Sys
tèm
es Ι
SG
L M
ichi
gan
RU
M,
Oct
ober
12,
2011
Shot #1

17
© D
assa
ult
Sys
tèm
es Ι
SG
L M
ichi
gan
RU
M,
Oct
ober
12,
2011
Shot #2

18
© D
assa
ult
Sys
tèm
es Ι
SG
L M
ichi
gan
RU
M,
Oct
ober
12,
2011
Shot #3

19
© D
assa
ult
Sys
tèm
es Ι
SG
L M
ichi
gan
RU
M,
Oct
ober
12,
2011
Shot #4

20
© D
assa
ult
Sys
tèm
es Ι
SG
L M
ichi
gan
RU
M,
Oct
ober
12,
2011
Shot #5

21
© D
assa
ult
Sys
tèm
es Ι
SG
L M
ichi
gan
RU
M,
Oct
ober
12,
2011
All Shot Results

22
© D
assa
ult
Sys
tèm
es Ι
SG
L M
ichi
gan
RU
M,
Oct
ober
12,
2011
Winners

23
© D
assa
ult
Sys
tèm
es Ι
SG
L M
ichi
gan
RU
M,
Oct
ober
12,
2011
Cross-Validation: Fitness Criteria
Approximation Pointer
x
Y
Ymax
Ymin
Data Points
used to build
the model
Model
DY
Data Point
used in cross-
validation
minmaxmaxmin ,,max
where,meanminmaxmin
YYYY
YFit
FitorFit
error
errorerror
D

24
© D
assa
ult
Sys
tèm
es Ι
SG
L M
ichi
gan
RU
M,
Oct
ober
12,
2011
Step-by-Step:Step #1. Get data table in a form of a tab separated text file
Step #2. Open Approximation Pointer in Isight Design Gateway
Approximation Pointer
Step #3. Specify data file name and parameter information in the Task
Step #4. Run the Isight job

25
© D
assa
ult
Sys
tèm
es Ι
SG
L M
ichi
gan
RU
M,
Oct
ober
12,
2011
Step-by-Step
Approximation Pointer
Step #5. Get Isight
tasks with optimally
tuned Approximation
models produced as
output file parameters
in the described
above Approximation
Pointer task

26
© D
assa
ult
Sys
tèm
es Ι
SG
L M
ichi
gan
RU
M,
Oct
ober
12,
2011
Overview
Motivation – why create approximation models?
Question - Which Isight approximation model gives
the best fit of this data set? RSM? RBF? Kriging?
EBF? OPM? Tuning parameter values?
How it works
Some details of the procedure
Approximation Pointer

27
© D
assa
ult
Sys
tèm
es Ι
SG
L M
ichi
gan
RU
M,
Oct
ober
12,
2011
Approximation Pointer: How It Works
Approximation Pointer
History File
Approximation Screener
Approximation Task Builder
Approximation Task

28
© D
assa
ult
Sys
tèm
es Ι
SG
L M
ichi
gan
RU
M,
Oct
ober
12,
2011
JAVA CODESThree Java classes: ApproxScreener, ApproxScreenerIsight, ApproxTaskBuilder, and
ReadFile

29
© D
assa
ult
Sys
tèm
es Ι
SG
L M
ichi
gan
RU
M,
Oct
ober
12,
2011
Name-and-Value Configuration File Pretty free file format. Parameters are identified by their names in the config.txt file. “ = “ is
used to separate control parameter’s name and value. Example: expression
DataFile = I-Beam_200.txt
sets data file name to “I-Beam_200.txt”

30
© D
assa
ult
Sys
tèm
es Ι
SG
L M
ichi
gan
RU
M,
Oct
ober
12,
2011
History File

31
© D
assa
ult
Sys
tèm
es Ι
SG
L M
ichi
gan
RU
M,
Oct
ober
12,
2011
Model Selection with EDM

32
© D
assa
ult
Sys
tèm
es Ι
SG
L M
ichi
gan
RU
M,
Oct
ober
12,
2011
Demo

33
© D
assa
ult
Sys
tèm
es Ι
SG
L M
ichi
gan
RU
M,
Oct
ober
12,
2011
Questions?

34
© D
assa
ult
Sys
tèm
es Ι
SG
L M
ichi
gan
RU
M,
Oct
ober
12,
2011
THANK YOU