ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … ·...

136
ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology Thomas Schwetz-Mangold 13 July 2011 T. Schwetz 1

Transcript of ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … ·...

Page 1: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

ISAPP 2011, MPIK Heidelberg“The Dark Side of the Universe”

Dark Matter phenomenology

Thomas Schwetz-Mangold

13 July 2011

T. Schwetz 1

Page 2: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Introduction

What is the Universe made of?

CMB (WMAP) BAO SN 1a

BBN

WMAP 7yr + BAO + H0: ΩCDM = 0.229± 0.015T. Schwetz 2

Page 3: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Introduction

The scale of galaxies and clusters of galaxies

• rotation curves • gravitational lensing • bullet clusters

• virial theorem applied to galaxies and clusters• X-rays from clusters of galaxies

⇒ Many independent observations are consistentwith the hypothesis that the dominating

gravitating componentof the Universe cannot be the matter we know.

T. Schwetz 3

Page 4: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Introduction

T. Schwetz 4

Page 5: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Introduction

We have no clue about DM properties ...

but there are good arguments that DM could be related to the "weakscale": → Weakly Interacting Massive Particle (WIMP)

in my lecture I will concentrate on the WIMP hypothesisBUT: there are very well motivated non-WIMP candidates:

I axion lecture by G. Raffelt

I gravitinoI keV neutrinos lecture by M. Shaposhnikov

I "GIMP"I ...

T. Schwetz 5

Page 6: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Introduction

We have no clue about DM properties ...

but there are good arguments that DM could be related to the "weakscale": → Weakly Interacting Massive Particle (WIMP)

in my lecture I will concentrate on the WIMP hypothesisBUT: there are very well motivated non-WIMP candidates:

I axion lecture by G. Raffelt

I gravitinoI keV neutrinos lecture by M. Shaposhnikov

I "GIMP"I ...

T. Schwetz 5

Page 7: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Introduction

Outline

The WIMP hypothesis

I thermal freeze-out of Dark MatterI the WIMP miracle (or what is special about the "weak scale")

DM direct detection

I PhenomenologyI XENON100 and the WIMP hypothesisI Hints for a DM signal and possible explanations

T. Schwetz 6

Page 8: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Thermal freeze-out

Outline

Thermal freeze-out of Dark Matter

The WIMP miracle

Dark Matter direct detection

Direct detection: present status

Hints for a DM signal?

Alternative particle physics

Conclusion

T. Schwetz 7

Page 9: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Thermal freeze-out Boltzmann equation

Boltzmann equationdistribution function: f (~p,~x , t)the evolution is described by the Boltzmann equation:

L[f ]︸︷︷︸Liouville operator

= C [f ]︸︷︷︸collision operator

L[f ] for non-relativistic particles:

L[f ] =dfdt

=∂f∂t

+∂f∂xi

xi +∂f∂pi

pi

(conservation of density in phase space)

relativistic generalization:

L[f ] = pµ ∂f∂xµ

− Γµαβpαpβ ∂f

∂pµ

T. Schwetz 8

Page 10: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Thermal freeze-out Boltzmann equation

Boltzmann equationdistribution function: f (~p,~x , t)the evolution is described by the Boltzmann equation:

L[f ]︸︷︷︸Liouville operator

= C [f ]︸︷︷︸collision operator

L[f ] for non-relativistic particles:

L[f ] =dfdt

=∂f∂t

+∂f∂xi

xi +∂f∂pi

pi

(conservation of density in phase space)

relativistic generalization:

L[f ] = pµ ∂f∂xµ

− Γµαβpαpβ ∂f

∂pµ

T. Schwetz 8

Page 11: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Thermal freeze-out Boltzmann equation

Boltzmann equationdistribution function: f (~p,~x , t)the evolution is described by the Boltzmann equation:

L[f ]︸︷︷︸Liouville operator

= C [f ]︸︷︷︸collision operator

L[f ] for non-relativistic particles:

L[f ] =dfdt

=∂f∂t

+∂f∂xi

xi +∂f∂pi

pi

(conservation of density in phase space)

relativistic generalization:

L[f ] = pµ ∂f∂xµ

− Γµαβpαpβ ∂f

∂pµ

T. Schwetz 8

Page 12: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Thermal freeze-out Boltzmann equation

Boltzmann ⇒ rate equation

Freedman-Robertson-Walker metric: f (~p,~x , t) = f (|~p|, t)

L[f ] = E∂f∂t− a

ap2 ∂f∂E

with E 2 = p2 + m2 and a/a ≡ H expansion rate

evolution of the number density n(t) = g(2π)3

∫d3p f (p, t):

g(2π)3

∫d3p

L[f ]

E= n − H

g(2π)3

∫d3p

p2

E∂f∂E

= . . .

= n + 3Hn =1a3

ddt

(na3)

(in absence of collisions: dilution with expansion)

T. Schwetz 9

Page 13: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Thermal freeze-out Boltzmann equation

Boltzmann ⇒ rate equation

Freedman-Robertson-Walker metric: f (~p,~x , t) = f (|~p|, t)

L[f ] = E∂f∂t− a

ap2 ∂f∂E

with E 2 = p2 + m2 and a/a ≡ H expansion rate

evolution of the number density n(t) = g(2π)3

∫d3p f (p, t):

g(2π)3

∫d3p

L[f ]

E= n − H

g(2π)3

∫d3p

p2

E∂f∂E

= . . .

= n + 3Hn =1a3

ddt

(na3)

(in absence of collisions: dilution with expansion)

T. Schwetz 9

Page 14: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Thermal freeze-out Boltzmann equation

The collision operatorconsider 12 ↔ 34 process:

C [f1] =12

∫dπ2dπ3dπ4(2π)4δ4(p1 + p2 − p3 − p4)×∑

spins

[|M34→12|2f3f4(1± f1)(1± f2)− (12 ↔ 34)

]+ Celast[f1]

with dπ ≡ d3p(2π)32E

T. Schwetz 10

Page 15: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Thermal freeze-out Boltzmann equation

The collision operatorconsider 12 ↔ 34 process:

C [f1] =12

∫dπ2dπ3dπ4(2π)4δ4(p1 + p2 − p3 − p4)×∑

spins

[|M34→12|2f3f4(1± f1)(1± f2)− (12 ↔ 34)

]+ Celast[f1]

with dπ ≡ d3p(2π)32E

calculateg

(2π)3

∫d3p1

C [f1]E1

in order to obtain the rate equation for n

T. Schwetz 10

Page 16: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Thermal freeze-out Boltzmann equation

The collision operatorconsider 12 ↔ 34 process:

C [f1] =12

∫dπ2dπ3dπ4(2π)4δ4(p1 + p2 − p3 − p4)×∑

spins

[|M34→12|2f3f4(1± f1)(1± f2)− (12 ↔ 34)

]+ Celast[f1]

with dπ ≡ d3p(2π)32E

I neglect statistical factors (FD,BE → MB)I assume |M34→12|2 = |M12→34|2 (satisfied for χχ↔ ψψ)I assume that 34 are in kinetic + chemical equilibrium: f3f4 = f eq

3 f eq4

I detailed balance: in equilibrium ddt (na3) = 0 ⇒ f eq

3 f eq4 = f eq

1 f eq2

I 12 stay in kinetic equilibrium even after chemical equilibrium is lostT. Schwetz 10

Page 17: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Thermal freeze-out Boltzmann equation

Rate equation for densitydefine thermally averaged cross section times velocity:

〈σ12v〉 ≡ 1neq

1 neq2

∫g1

d3p1

(2π)3 g2d3p2

(2π)3 f eq1 f eq

2 σv

v ≡

√(p1 · p2)2 −m2

1m22

E1E2

integrated Boltzmann equation becomes:

n1 + 3Hn1 = 〈σ12v〉(neq

1 neq2 − n1n2

)consider self-conjugated particle n1 = n2 ≡ n (χχ↔ X ⇒ σ12 → σann):

n + 3Hn = 〈σannv〉(n2

eq − n2)T. Schwetz 11

Page 18: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Thermal freeze-out Boltzmann equation

Rate equation for densitydefine thermally averaged cross section times velocity:

〈σ12v〉 ≡ 1neq

1 neq2

∫g1

d3p1

(2π)3 g2d3p2

(2π)3 f eq1 f eq

2 σv

v ≡

√(p1 · p2)2 −m2

1m22

E1E2

integrated Boltzmann equation becomes:

n1 + 3Hn1 = 〈σ12v〉(neq

1 neq2 − n1n2

)consider self-conjugated particle n1 = n2 ≡ n (χχ↔ X ⇒ σ12 → σann):

n + 3Hn = 〈σannv〉(n2

eq − n2)T. Schwetz 11

Page 19: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Thermal freeze-out Relic density estimate

Rescale by entropy density

re-write differential equation in terms of

Y ≡ ns

by using entropy conservation in comoving volume: a3s = const

Y = −〈σannv〉s(Y 2 − Y 2

eq)

(get rid of trivial exansion term)

T. Schwetz 12

Page 20: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Thermal freeze-out Relic density estimate

Change variables

. . . from time to dimensionless temperature x ≡ mT

H =

√83πGNρ

ρ = geffπ2

30T 4

s = heff2π2

45T 3

g∗ =h2

effgeff

(1 +

T3heff

dheff

dT

)2

Gondolo, Gelmini, 1991

geff, heff, g∗: parametrize relativistic degrees of freedom(for const heff and all species at the same T : geff = heff = g∗)

T. Schwetz 13

Page 21: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Thermal freeze-out Relic density estimate

Yield equation

dYdx

= −√

πg∗45GN

mx2 〈σannv〉

(Y 2 − Y 2

eq)

consider heff = const, Γ = neq〈σannv〉: xYeq

dYdx

= − Γ

H

(Y 2

Y 2eq− 1

)thermal freeze-out for Γ ∼ H at x ' xF

x 1 neq = g(

mT2π

)3/2

e−m/T

x 1 Yeq = C gheff

x3/2e−x

x 1 Yeq = C′ gheff

T. Schwetz 14

Page 22: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Thermal freeze-out Relic density estimate

DM yield at infinity

dYdx

= −√

πg∗45GN

mx2 〈σannv〉

(Y 2 − Y 2

eq)

neglect Yeq compared to Y for x xF

1Y∞

≈ 1Y (xF )

+

√π

45GNm

∫ ∞

xF

dx〈σannv〉

x2

√g∗(x)

neglect 1/Y (xF ) and assume 〈σannv〉 ≈ const:

Y∞ ≈

√45GN

πg∗(xF )

xF

m1

〈σannv〉

⇒ large 〈σannv〉 give small DM yield

T. Schwetz 15

Page 23: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Thermal freeze-out Relic density estimate

DM yield at infinity

dYdx

= −√

πg∗45GN

mx2 〈σannv〉

(Y 2 − Y 2

eq)

neglect Yeq compared to Y for x xF

1Y∞

≈ 1Y (xF )

+

√π

45GNm

∫ ∞

xF

dx〈σannv〉

x2

√g∗(x)

neglect 1/Y (xF ) and assume 〈σannv〉 ≈ const:

Y∞ ≈

√45GN

πg∗(xF )

xF

m1

〈σannv〉

⇒ large 〈σannv〉 give small DM yield

T. Schwetz 15

Page 24: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Thermal freeze-out Relic density estimate

Relic density estimate

Ωh2 =ρ0h2

ρcrit=

s0Y∞mh2

ρcrit

s0 = heff(x0)2π2

45 T 30 ≈ 2890 cm2, ρcrit ≈ 1.05× 10−5h2 GeV cm−3

Ωh2 ' 3× 10−38 cm2

〈σannv〉xF√

g∗(xF )

for m ∼ 100 GeV and 〈σannv〉 ∼ 10−36 cm2:

xF ' 20, TF =mxF∼ 5 GeV, geff(xF ) ' 80− 100⇒ xF√

g∗(xF )' 2− 3

Ωh2 ' 10−37 cm2

〈σannv〉

T. Schwetz 16

Page 25: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Thermal freeze-out Relic density estimate

Relic density estimate

Ωh2 =ρ0h2

ρcrit=

s0Y∞mh2

ρcrit

s0 = heff(x0)2π2

45 T 30 ≈ 2890 cm2, ρcrit ≈ 1.05× 10−5h2 GeV cm−3

Ωh2 ' 3× 10−38 cm2

〈σannv〉xF√

g∗(xF )

for m ∼ 100 GeV and 〈σannv〉 ∼ 10−36 cm2:

xF ' 20, TF =mxF∼ 5 GeV, geff(xF ) ' 80− 100⇒ xF√

g∗(xF )' 2− 3

Ωh2 ' 10−37 cm2

〈σannv〉

T. Schwetz 16

Page 26: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Thermal freeze-out Thermally averaged cross section

Thermally averaged cross section

remember: 〈σannv〉 ≡ 1neq

1 neq2

∫g1

d3p1

(2π)3 g2d3p2

(2π)3 f eq1 f eq

2 σv

assume Maxwell-Boltzmann distribution:

〈σannv〉 =

∫d3p1d3p2 e−E1/T e−E2/T σv∫

d3p1d3p2 e−E1/T e−E2/T

v ≡√

(p1 · p2)2 −m4

E1E2

non-relat

−→|~p1 − ~p2|

m= vrel

T. Schwetz 17

Page 27: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Thermal freeze-out Thermally averaged cross section

Thermally averaged cross section

remember: 〈σannv〉 ≡ 1neq

1 neq2

∫g1

d3p1

(2π)3 g2d3p2

(2π)3 f eq1 f eq

2 σv

assume Maxwell-Boltzmann distribution:

〈σannv〉 =

∫d3p1d3p2 e−E1/T e−E2/T σv∫

d3p1d3p2 e−E1/T e−E2/T

Gondolo, Gelmini, Nucl. Phys. B 360 (1991) 145

〈σannv〉 =1

8m4TK 22 (x)

∫ ∞

4m2ds σ(s − 4m2)

√sK1

(√s

T

)with the modified Bessel functions

K1(x) = x∫ ∞

1dt e−xt

√t2 − 1

K2(x) = x∫ ∞

1dt e−xtt

√t2 − 1

T. Schwetz 17

Page 28: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Thermal freeze-out Thermally averaged cross section

Thermally averaged cross section

remember: 〈σannv〉 ≡ 1neq

1 neq2

∫g1

d3p1

(2π)3 g2d3p2

(2π)3 f eq1 f eq

2 σv

assume Maxwell-Boltzmann distribution:

〈σannv〉 =

∫d3p1d3p2 e−E1/T e−E2/T σv∫

d3p1d3p2 e−E1/T e−E2/T

xF ∼ 20 non-relativistic expansion: σv ≈ a + bv2

〈σannv〉 ≈ a + b〈v2〉 ≈ a +6bx

replace 〈σannv〉 in the relic density estimate by a + 3b/xF

T. Schwetz 17

Page 29: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Thermal freeze-out Thermally averaged cross section

Expansion in v is not accurate in the following cases:Griest, Seckel, 1991

I close to an s-channel resonance (2mχ ≈ mφ):

σv ∝ 1(s −m2

φ)2 , s = (E1cm + E2cm)2 ≈ 4m2χ(1 + v2)

I close to thresholds of annihilation channels χχ→ XX with mχ ≈ mX :

σv ∝√

s − 4m2X

I in the presence of other particles close in mass, which participate inthe annihilations (“co-annihilations”)

χ1χ1 ↔ XX , χ1χ2 ↔ XX ′ , χ2χ2 ↔ XX

T. Schwetz 18

Page 30: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Thermal freeze-out Thermally averaged cross section

Expansion in v is not accurate in the following cases:Griest, Seckel, 1991

I close to an s-channel resonance (2mχ ≈ mφ):

σv ∝ 1(s −m2

φ)2 , s = (E1cm + E2cm)2 ≈ 4m2χ(1 + v2)

I close to thresholds of annihilation channels χχ→ XX with mχ ≈ mX :

σv ∝√

s − 4m2X

I in the presence of other particles close in mass, which participate inthe annihilations (“co-annihilations”)

χ1χ1 ↔ XX , χ1χ2 ↔ XX ′ , χ2χ2 ↔ XX

T. Schwetz 18

Page 31: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Thermal freeze-out Thermally averaged cross section

Expansion in v is not accurate in the following cases:Griest, Seckel, 1991

I close to an s-channel resonance (2mχ ≈ mφ):

σv ∝ 1(s −m2

φ)2 , s = (E1cm + E2cm)2 ≈ 4m2χ(1 + v2)

I close to thresholds of annihilation channels χχ→ XX with mχ ≈ mX :

σv ∝√

s − 4m2X

I in the presence of other particles close in mass, which participate inthe annihilations (“co-annihilations”)

χ1χ1 ↔ XX , χ1χ2 ↔ XX ′ , χ2χ2 ↔ XX

T. Schwetz 18

Page 32: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Thermal freeze-out Thermally averaged cross section

I For accurate relic density calculation use the Gondolo, Gelminiintegral for the thermally averaged cross section and solve the rateequation numerically

I Public codes: micrOMEGAs, Dark SUSY

T. Schwetz 19

Page 33: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Thermal freeze-out References for themal production

Classic papers:I B. W. Lee and S. Weinberg, “Cosmological lower bound on heavy-neutrino

masses,” Phys. Rev. Lett. 39 (1977) 165.I J. Bernstein, L. S. Brown, G. Feinberg, “The Cosmological Heavy Neutrino

Problem Revisited,” Phys. Rev. D32, 3261 (1985).I R. J. Scherrer, M. S. Turner, “On the Relic, Cosmic Abundance of Stable

Weakly Interacting Massive Particles,” Phys. Rev. D33, 1585 (1986).

Classic textbook:I Kolb, Turner, The Early Universe.

Accurate and pedagogic discussion:I P. Gondolo and G. Gelmini, “Cosmic abundances of stable particles:

Improved analysis,” Nucl. Phys. B 360 (1991) 145.

Exceptions and co-annihilations:I K. Griest and D. Seckel, “Three exceptions in the calculation of relic

abundances,” Phys. Rev. D 43 (1991) 3191.I J. Edsjo and P. Gondolo, “Neutralino Relic Density including

Coannihilations,” Phys. Rev. D 56 (1997) 1879 [hep-ph/9704361].T. Schwetz 20

Page 34: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

The WIMP miracle

Outline

Thermal freeze-out of Dark Matter

The WIMP miracle

Dark Matter direct detection

Direct detection: present status

Hints for a DM signal?

Alternative particle physics

Conclusion

T. Schwetz 21

Page 35: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

The WIMP miracle

The “WIMP miracle”

Ωh2 ' 10−37 cm2

〈σannv〉= 0.1126± 0.0036 [WMAP]

need σannv ∼ 10−36 cm2 = 1 pb to obtain correct relic abundance

“typical” cross section for particles at the weak scale:

Λweak ∼ 〈H〉 = 250 GeV

s-wave annihilations of a particle χ due to mediator φ:

〈σannihv〉 ∼

g4

π

m2χ

m4φ' 10−36cm2 g4

( mχ

100 GeV

)2(

1 TeVmφ

)4mφ mχ

g4

16πm2χ' 10−36cm2

( g0.3

)4(

200 GeVmχ

)2mφ mχ

T. Schwetz 22

Page 36: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

The WIMP miracle

The “WIMP miracle”

Ωh2 ' 10−37 cm2

〈σannv〉= 0.1126± 0.0036 [WMAP]

need σannv ∼ 10−36 cm2 = 1 pb to obtain correct relic abundance

“typical” cross section for particles at the weak scale:

Λweak ∼ 〈H〉 = 250 GeV

s-wave annihilations of a particle χ due to mediator φ:

〈σannihv〉 ∼

g4

π

m2χ

m4φ' 10−36cm2 g4

( mχ

100 GeV

)2(

1 TeVmφ

)4mφ mχ

g4

16πm2χ' 10−36cm2

( g0.3

)4(

200 GeVmχ

)2mφ mχ

T. Schwetz 22

Page 37: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

The WIMP miracle

MSSM neutralino annihilation

G. Jungman, M. Kamionkowski, K. Griest, “Supersymmetric Dark Matter” Phys. Rept. 267 (1996) 195-373

T. Schwetz 23

Page 38: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

The WIMP miracle

CMSSM relic density constraint

m0: universal soft SUSY breaking scalar mass @ GUT scale J. Feng @ COSMO 09M1/2: universal gaugino mass @ GUT scale

see talk by A. MasieroT. Schwetz 24

Page 39: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

The WIMP miracle

Relic density constraint

Ωh2 ' 10−37 cm2

〈σannv〉= 0.1126± 0.0036 [WMAP]

the requirement to obtain the correct relic density by thermal freeze outprovides a stringent constraint on any model

BUT:I under-abundant thermal DM (〈σannv〉 too large):

non-thermal production, additional DM component, ...I over-abundant thermal DM (〈σannv〉 too small):

late entropy production, ...

T. Schwetz 25

Page 40: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

The WIMP miracle

What’s so special about the "weak scale"?

T. Schwetz 26

Page 41: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

The WIMP miracle

What’s so special about the "weak scale"?

T. Schwetz 26

Page 42: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

The WIMP miracle

What’s so special about the "weak scale"?

We expect new physics to show up at the weak scale:

SM is an effective theory only up to some high scale Λloop correction to the Higgs mass:

δm2H =

3Λ2

8π〈H〉(2m2

W + m2Z + m2

H − 4m2t ) ∼ −(0.23Λ)2

tuning of (mH)0 against δmH → "hierarchy problem"

⇒ introduce new physics at Λ ∼ TeV to cancel divergences(SUSY, extra dimension, technicolor,...)

lecture by G. Servant

T. Schwetz 27

Page 43: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

The WIMP miracle

What’s so special about the "weak scale"?

We expect new physics to show up at the weak scale:

SM is an effective theory only up to some high scale Λloop correction to the Higgs mass:

δm2H =

3Λ2

8π〈H〉(2m2

W + m2Z + m2

H − 4m2t ) ∼ −(0.23Λ)2

tuning of (mH)0 against δmH → "hierarchy problem"

⇒ introduce new physics at Λ ∼ TeV to cancel divergences(SUSY, extra dimension, technicolor,...)

lecture by G. Servant

T. Schwetz 27

Page 44: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

The WIMP miracle

New physics at the weak scale

BUT: the new physics has to be "special":I not seen at LEP/TeVatron (EWPT, direct searches)

"little hierarchy" (100 GeV ↔ 10 TeV)I no new flavor violating processesI proton lifetime

introduce "parity" to protect the Standard Model:new particles odd, SM particles even ⇒

lightest of the new physics particles becomes stable→ potential DM candidate

T. Schwetz 28

Page 45: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

The WIMP miracle

New physics at the weak scale

BUT: the new physics has to be "special":I not seen at LEP/TeVatron (EWPT, direct searches)

"little hierarchy" (100 GeV ↔ 10 TeV)I no new flavor violating processesI proton lifetime

introduce "parity" to protect the Standard Model:new particles odd, SM particles even ⇒

lightest of the new physics particles becomes stable→ potential DM candidate

T. Schwetz 28

Page 46: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

The WIMP miracle

New physics at the weak scale

I introduce new physics model to solve the hierarchy problem andget a DM candidate as "extra bonus"SUSY, new dimensions, Little Higgs, Technicolor/composite Higgs,...

I just introduce new particles at the TeV scale to get a WIMPscalar singlet, inert doublet, minimal DM, hidden sector models,...

G. Servant

T. Schwetz 29

Page 47: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

The WIMP miracle

New physics at the weak scale

I introduce new physics model to solve the hierarchy problem andget a DM candidate as "extra bonus"SUSY, new dimensions, Little Higgs, Technicolor/composite Higgs,...

I just introduce new particles at the TeV scale to get a WIMPscalar singlet, inert doublet, minimal DM, hidden sector models,...

G. Servant

T. Schwetz 29

Page 48: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

The WIMP miracle

Testing the WIMP hypothesis

indirect detection

PAMELA, FERMI, AMS-II, IceCube,HESS, ...

talks by C. de los Heros, M. Cirelli

colliders

LHC at CERN

talk by T. Plehn

direct detection

XENON, LUX, CDMS, CRESST, DEAP,COUPP, EURECA,...talk by J. Jochum

T. Schwetz 30

Page 49: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

The WIMP miracle

Testing the WIMP hypothesis

indirect detection

PAMELA, FERMI, AMS-II, IceCube,HESS, ...

talks by C. de los Heros, M. Cirelli

colliders

LHC at CERN

talk by T. Plehn

direct detection

XENON, LUX, CDMS, CRESST, DEAP,COUPP, EURECA,...talk by J. Jochum

T. Schwetz 30

Page 50: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

The WIMP miracle

Testing the WIMP hypothesis

indirect detection

PAMELA, FERMI, AMS-II, IceCube,HESS, ...

talks by C. de los Heros, M. Cirelli

colliders

LHC at CERN

talk by T. Plehn

direct detection

XENON, LUX, CDMS, CRESST, DEAP,COUPP, EURECA,...talk by J. Jochum

T. Schwetz 30

Page 51: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

The WIMP miracle

Testing the WIMP hypothesis

indirect detection

PAMELA, FERMI, AMS-II, IceCube,HESS, ...

talks by C. de los Heros, M. Cirelli

colliders

LHC at CERN

talk by T. Plehn

direct detection

XENON, LUX, CDMS, CRESST, DEAP,COUPP, EURECA,...talk by J. Jochum

T. Schwetz 30

Page 52: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Dark Matter direct detection

Outline

Thermal freeze-out of Dark Matter

The WIMP miracle

Dark Matter direct detection

Direct detection: present status

Hints for a DM signal?

Alternative particle physics

Conclusion

T. Schwetz 31

Page 53: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Dark Matter direct detection

Dark Matter in a Milkyway-like Galaxy

Via Lactea N-body DM simulation Diemand, Kuhlen, Madau, astro-ph/0611370

see talk by V. Springel

T. Schwetz 32

Page 54: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Dark Matter direct detection

Local Dark Matter density

“standard halo model”:

local DM density: ρχ ≈ 0.389± 0.025 GeV cm−3Catena, Ullio, 0907.0018

Maxwellian velocity distribution (in halo rest frame)

fgal(~v) ≈

N exp(−v2/v2) v < vesc

0 v > vesc

with v ' 220 km/s and vesc ' 600 km/s

⇒ local DM flux: φχ ∼ 105 cm−2s−1(

100 GeVmχ

) (ρχ

0.4 GeV cm−3

)solar neutrinos: φν ∼ 6 × 1010 cm−2s−1

T. Schwetz 33

Page 55: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Dark Matter direct detection

Local Dark Matter density

“standard halo model”:

local DM density: ρχ ≈ 0.389± 0.025 GeV cm−3Catena, Ullio, 0907.0018

Maxwellian velocity distribution (in halo rest frame)

fgal(~v) ≈

N exp(−v2/v2) v < vesc

0 v > vesc

with v ' 220 km/s and vesc ' 600 km/s

⇒ local DM flux: φχ ∼ 105 cm−2s−1(

100 GeVmχ

) (ρχ

0.4 GeV cm−3

)solar neutrinos: φν ∼ 6 × 1010 cm−2s−1

T. Schwetz 33

Page 56: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Dark Matter direct detection

DM direct detection

assuming DM has non-gravitational interactions (“WIMP”)look for recoil of DM-nucleus scattering M. Goodman, E. Witten, PRD 1985

T. Schwetz 34

Page 57: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Dark Matter direct detection

DM direct detectioncolliding a ∼ 100 GeV DM particle with a ∼ 100 GeV nucleusDM velocity: v ∼ 10−3c ⇒ non-relativistic

recoil energy: ER =2µ2v2

mAcos2 θlab ∼ 10 keV

counts / day / kg detector mass / keV recoil energy ER :

dNdER

(t) =1

mA

ρχ

∫v>vmin

d3vdσdER

v f⊕(~v , t)

ρχ DM energy density, default ≈ 0.3 GeV cm−3

mA: mass of the target nucleus with mass number Avmin: minimal DM velocity required to produce recoil energy ER

elastic scattering: vmin =

√mAER

2µ2 , µ =mχmA

mχ + mA

T. Schwetz 35

Page 58: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Dark Matter direct detection

DM direct detectioncolliding a ∼ 100 GeV DM particle with a ∼ 100 GeV nucleusDM velocity: v ∼ 10−3c ⇒ non-relativistic

recoil energy: ER =2µ2v2

mAcos2 θlab ∼ 10 keV

counts / day / kg detector mass / keV recoil energy ER :

dNdER

(t) =1

mA

ρχ

∫v>vmin

d3vdσdER

v f⊕(~v , t)

ρχ DM energy density, default ≈ 0.3 GeV cm−3

mA: mass of the target nucleus with mass number Avmin: minimal DM velocity required to produce recoil energy ER

elastic scattering: vmin =

√mAER

2µ2 , µ =mχmA

mχ + mA

T. Schwetz 35

Page 59: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Dark Matter direct detection

DM velocity distributionin Earth rest frame f⊕ → Galilei trafo from galaxy rest frame fgal:

f⊕(~v , t) = fgal(~v + ~v + ~v⊕(t)) fgal(~v) ≈

N exp(−v2/v2

)v < vesc

0 v > vesc

v ' 220 km/s vesc ' 550 km/ssun velocity: ~v = (0, 220, 0) + (10, 13, 7) km/s

earth velocity: ~v⊕(t) with v⊕ ≈ 30 km/s

T. Schwetz 36

Page 60: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Dark Matter direct detection

Velocity distribution integral

dNdER

(t) =1

mA

ρχ

∫v>vmin

d3vdσdER

v f⊕(~v , t)

differential cross section

dσdER

=1

32π|M|2

mAm2χv2

in many interesting cases |M|2 is constant (indep of v) ⇒

η(ER , t) =

∫v>vmin(ER)

d3vf⊕(~v , t)

v

T. Schwetz 37

Page 61: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Dark Matter direct detection

Velocity distribution integral

-600 -400 -200 0 200 400 600 800 1000vy [km/s]

-600

-400

-200

0

200

400

600

800

1000

v z[k

m/s

]

center of galaxy: x-axis

vmin for M = 118 GeV(127I), m = 10 GeV

E R = 10 keV

5 keV3 keV

∫v>vmin

d3vf⊕(~v , t)

v

vmin =

√mAER

2µ2

T. Schwetz 38

Page 62: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Dark Matter direct detection

Velocity distribution integral

-600 -400 -200 0 200 400 600 800 1000vy [km/s]

-600

-400

-200

0

200

400

600

800

1000

v z[k

m/s

]

center of galaxy: x-axis

vmin for M = 118 GeV(127I), m = 10 GeV, Erec = 3 keV

June 2nd

Dec 2nd

∫v>vmin

d3vf⊕(~v , t)

v

vmin =

√mAER

2µ2

T. Schwetz 38

Page 63: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Dark Matter direct detection

Velocity distribution integral

η(ER , t) ∝1

vobs(t)

∫ ∞

vmin(ER )

dv[e−

“v−vobs(t)

v

”2

− e−“

v+vobs(t)v

”2]

0 200 400 600 800v [km/s]

velo

city

dis

tribu

tion

[arb

. uni

ts]

0 200 400 600 8001

10

100

DM

mas

s [G

eV]

vmin

June 2nd

Dec. 2nd

M = 21.4 GeV (Na), Erec = 3 keV

M = 67.5 GeV (Ge), Erec = 10 keVM = 118 GeV (I), E

rec = 3 keV

vm

ean

vmin =

smAER

2µ2

vobs(t) = |~v + ~v⊕(t)|

T. Schwetz 39

Page 64: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Dark Matter direct detection

DM nucleon scattering cross sectionassume effective interaction of DM with SM ⇒ Example: fermionic DM

Leff =1Λ2 (χΓdarkχ) (ψΓvisψ)

S P V A T ATΓdark,vis 1 γ5 γµ γµγ5 σµν σµνγ5

calculate 〈N|ψΓvisψ|N〉 ⇒match to nucleus level (form factors) ⇒

non-rel limit of DM current

I (S ⊗ S), (V ⊗ V ): spin-independent ⇒ A2 enhancement

I (A⊗ A), (T ⊗ T ): spin-dependent ⇒ unpaired n or p

I other combinations are suppressed by O(q2/m2N , v

2) ∼ 10−6

e.g., A. Kurylov, M. Kamionkowski, hep-ph/0307185

applies also for scalar/vector DM

T. Schwetz 40

Page 65: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Dark Matter direct detection

DM nucleon scattering cross sectionassume effective interaction of DM with SM ⇒ Example: fermionic DM

Leff =1Λ2 (χΓdarkχ) (ψΓvisψ)

S P V A T ATΓdark,vis 1 γ5 γµ γµγ5 σµν σµνγ5

calculate 〈N|ψΓvisψ|N〉 ⇒match to nucleus level (form factors) ⇒

non-rel limit of DM current

I (S ⊗ S), (V ⊗ V ): spin-independent ⇒ A2 enhancement

I (A⊗ A), (T ⊗ T ): spin-dependent ⇒ unpaired n or p

I other combinations are suppressed by O(q2/m2N , v

2) ∼ 10−6

e.g., A. Kurylov, M. Kamionkowski, hep-ph/0307185

applies also for scalar/vector DMT. Schwetz 40

Page 66: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Dark Matter direct detection

Going from quark level to nucleon levelexample: consider quark operator Gqqqχχ (SI interact.) →

eff. coupling to nucleon N = p, n: fN =∑

q Gq〈N|qq|N〉

can relate 〈N|qq|N〉 to measurable/calculable quantities:

mu

md,

ms

md, σπN =

mu + md

2(〈uu〉+ 〈dd〉) , σ0

σπN=〈uu〉+ 〈dd〉 − 2〈ss〉

〈uu〉+ 〈dd〉

fN =∑

q=u,s,d

GqmN

mqξN

q +227

1−∑

q=u,s,d

ξNq

∑q=c,b,t

GqmN

mq

ξpd ≈ 0.033 , ξp

u ≈ 0.023 , ξps ≈ 0.26

ξnd ≈ 0.042 , ξn

u ≈ 0.018 , ξns ≈ 0.26

e.g., Ellis, Olive, Savage, 0801.3656T. Schwetz 41

Page 67: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Dark Matter direct detection

Going from quark level to nucleon levelexample: consider quark operator Gqqqχχ (SI interact.) →

eff. coupling to nucleon N = p, n: fN =∑

q Gq〈N|qq|N〉

can relate 〈N|qq|N〉 to measurable/calculable quantities:

mu

md,

ms

md, σπN =

mu + md

2(〈uu〉+ 〈dd〉) , σ0

σπN=〈uu〉+ 〈dd〉 − 2〈ss〉

〈uu〉+ 〈dd〉

fN =∑

q=u,s,d

GqmN

mqξN

q +227

1−∑

q=u,s,d

ξNq

∑q=c,b,t

GqmN

mq

ξpd ≈ 0.033 , ξp

u ≈ 0.023 , ξps ≈ 0.26

ξnd ≈ 0.042 , ξn

u ≈ 0.018 , ξns ≈ 0.26

e.g., Ellis, Olive, Savage, 0801.3656T. Schwetz 41

Page 68: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Dark Matter direct detection

Going from quark level to nucleon level

fN =∑

q=u,s,d

GqmN

mqξN

q +227

1−∑

q=u,s,d

ξNq

∑q=c,b,t

GqmN

mq

ξpd ≈ 0.033 , ξp

u ≈ 0.023 , ξps ≈ 0.26

ξnd ≈ 0.042 , ξn

u ≈ 0.018 , ξns ≈ 0.26

examples:

Higgs mediated interactions: Gq =λyqm2

H∝ mq = yq〈H〉

fN =λ

m2H

mN

〈H〉∑

q=u,s,d

ξNq +

29

1−∑

q=u,s,d

ξNq

≈ λ

m2H

mN

〈H〉ξN

s

Higgs mediated interaction dominated by s-quark and fn ≈ fpT. Schwetz 42

Page 69: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Dark Matter direct detection

Going from quark level to nucleon level

fN =∑

q=u,s,d

GqmN

mqξN

q +227

1−∑

q=u,s,d

ξNq

∑q=c,b,t

GqmN

mq

ξpd ≈ 0.033 , ξp

u ≈ 0.023 , ξps ≈ 0.26

ξnd ≈ 0.042 , ξn

u ≈ 0.018 , ξns ≈ 0.26

examples:

flavour universal couplings: Gq = G

fN ≈ GmN∑

q=u,s,d

ξNq

mq,

md

mu' 2 ,

md

mu' 20

⇒ fn ' fp

T. Schwetz 42

Page 70: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Dark Matter direct detection

Going from nucleon to nucleus level

for coherent interaction on all nucleons in nucleus (A,Z ):

∝ [fpZ + fn(A− Z )]2

momentum transfer: q =√

2mAER ∼ 20− 100 MeV ∼ 1/(10− 2 fm)when the momentum transfer becomes comparible to the size of thenuclues interactions will no longer be coherent →nucleus form factor ∼ Fourier transform of density distribution(assume matter ∝ charge, charge distr. from electron scattering)parameterization:

F (q2) = 3e−q2s2

2sin(qr)− qr cos(qr)

(qr)3 , s = 1 fm, r ∼ A1/3 fm

T. Schwetz 43

Page 71: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Dark Matter direct detection

Going from nucleon to nucleus level

for coherent interaction on all nucleons in nucleus (A,Z ):

∝ [fpZ + fn(A− Z )]2

momentum transfer: q =√

2mAER ∼ 20− 100 MeV ∼ 1/(10− 2 fm)when the momentum transfer becomes comparible to the size of thenuclues interactions will no longer be coherent →nucleus form factor ∼ Fourier transform of density distribution(assume matter ∝ charge, charge distr. from electron scattering)parameterization:

F (q2) = 3e−q2s2

2sin(qr)− qr cos(qr)

(qr)3 , s = 1 fm, r ∼ A1/3 fm

T. Schwetz 43

Page 72: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Dark Matter direct detection

Event spectrum for SI elastic scattering

dNdER

(t) =ρχ

σp|F (q)|2A2

2µ2p

∫v>vmin(ER)

d3vf⊕(~v , t)

v

vmin =mχ+mA

√ER

2mA

minimal v requiredto produce recoil ER

spectrum gets shifted to low energies for low WIMP masses⇒ need light target and/or low threshold on ER to see light WIMPsT. Schwetz 44

Page 73: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Dark Matter direct detection

Event spectrum for SI elastic scattering

dependence on the target nucleus:

1 10Erecoil [keV]

10-4

10-3

10-2

10-1

100

even

ts /

ton

/ day

/ ke

V XeGeAr

1 10 100Erecoil [keV]

1 10 100Erecoil [keV]

m = 10 GeV m = 1 TeVm = 100 GeV

! = 10-44 cm2 , dashed: without nuclear form factor

nuclear form factor is less important for low mass WIMPs

T. Schwetz 45

Page 74: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Dark Matter direct detection

elastic scattering exclusion curve

T. Schwetz 46

Page 75: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Direct detection: present status

Outline

Thermal freeze-out of Dark Matter

The WIMP miracle

Dark Matter direct detection

Direct detection: present status

Hints for a DM signal?

Alternative particle physics

Conclusion

T. Schwetz 47

Page 76: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Direct detection: present status

I many exps. running and setting relevant limits:

CDMS (Ge, Si), CoGeNT (Ge), COUPP (CF3I), CRESST (CaWO4), DAMA(NaI), Edelweiss (Ge), KIMS (CsI), PICASSO (F), SIMPLE (C2ClF5),TEXONO (Ge), XENON (Xe), ZEPLIN (Xe),. . .appologizes for the ones I forgot

different target materials and different techniques usedlecture by J. Jochum

T. Schwetz 48

Page 77: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Direct detection: present status XENON100 results

XENON100

2 phase (gas/liquid) Xenon detector @ Gran SassoS1: prompt scintillation signal, S2: delayed ionization signal

48 kg fid., 100.9 days (Jan to June 2010) 1104.2549

3 events observed, 1.8± 0.6 background expectation

T. Schwetz 49

Page 78: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Direct detection: present status XENON100 results

XENON100 limit on spin-indep. interactions

SI cross section: σp ∼G2

eff m2p

π

T. Schwetz 50

Page 79: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Direct detection: present status XENON100 results

XENON100 limit on spin-indep. interactions

SI cross section: σp ∼G2

eff m2p

π

Z0 mediated interaction: σp ∼ λ2χZ

G2F m2

pπ ∼ 10−38 cm2 λ2

χZ

“heavy Dirac neutrino” is excuded as DM by many orders of magnitudeT. Schwetz 50

Page 80: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Direct detection: present status XENON100 results

XENON100 limit on spin-indep. interactions

SI cross section: σp ∼G2

eff m2p

π

Higgs mediated interaction: σp ∼ 10−44 cm2(

λχ

0.1

)2 (115 GeV

mH

)4

T. Schwetz 50

Page 81: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Direct detection: present status XENON100 results

implications of σscat . 10−44cm2 for the WIMP argument

Ωχh2 ' 10−37cm2

〈σannihv〉= 0.1126± 0.0036

assume a Higgs mediated interaction:

L = λχH1χχ+ yqqLH2qR + h.c. → 〈σannv〉 ≈3m2

χλ2χy2

q 〈v2〉8π(4m2

χ −m2H)2

⇒ for mχ = 50 GeV, mH = 115 GeV, λχ = 0.1:

〈σbbv〉 ≈ 10−38cm2

"typical" annihilation cross section is too low → overproduce DM

T. Schwetz 51

Page 82: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Direct detection: present status XENON100 results

implications of σscat . 10−44cm2 for the WIMP argument

CDMSXENON

0.05

0.2

0.7

50 100 200 50010-4810-4710-4610-4510-4410-43

mΧ @GeVD

Σp

@cm

2 D

poster by D. Schmidt

need mechanism to enhance annihilation cross section:I go to the s-channel resonance 2mχ ≈ mmediatorI additional annihilation channels (W±, light mediator particles,. . . )I co-annihilationsI . . .

T. Schwetz 52

Page 83: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Direct detection: present status XENON100 results

implications of σscat . 10−44cm2 for the WIMP argument

CDMSXENON

0.05

0.2

0.7

50 100 200 50010-4810-4710-4610-4510-4410-43

mΧ @GeVD

Σp

@cm

2 D

poster by D. Schmidt

need mechanism to enhance annihilation cross section:I go to the s-channel resonance 2mχ ≈ mmediatorI additional annihilation channels (W±, light mediator particles,. . . )I co-annihilationsI . . .

T. Schwetz 52

Page 84: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Direct detection: present status XENON100 results

σscat . 10−44cm2 and the CMSSM

Bertone, Cerdeno, Ruiz de Austri, Fornasa, Strege, Trotta, 1107.1715

T. Schwetz 53

Page 85: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Direct detection: present status XENON100 results

implications of σscat . 10−44cm2 for the WIMP argument

I XENON100 is probing an exciting region of parameter space,motivated by the argument of DM thermal freeze-out

I if no signal is found within 1-2 orders of magnitude in σ the WIMPhypothesis will come under pressure, and one should start to thinkabout alternatives (“secluded” models, non-thermal DM production,non-WIMP candidates,. . . )

T. Schwetz 54

Page 86: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Hints for a DM signal?

Outline

Thermal freeze-out of Dark Matter

The WIMP miracle

Dark Matter direct detection

Direct detection: present status

Hints for a DM signal?

Alternative particle physics

Conclusion

T. Schwetz 55

Page 87: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Hints for a DM signal?

I a few experiments report “hints” for WIMP interactions:

CoGeNT, DAMA, (CRESST?)

⇒ WIMPs (SI) in the low-mass (∼10 GeV) region?⇒ or maybe something more exotic⇒ or have nothing to do with DM at all

I Severe constraints from CDMS and XENON10/100

T. Schwetz 56

Page 88: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Hints for a DM signal? Comments on ∼ 10 GeV WIMPs

10 GeV WIMPs?

“conventional” WIMP has ∼ 100 GeV

light WIMP must not couple to Z 0 (LEP)

T. Schwetz 57

Page 89: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Hints for a DM signal? Comments on ∼ 10 GeV WIMPs

Scalar singlet DMadd scalar singlet to the SM with Z2 symmetrySilveira, Zee, 85; McDonald 94; Burgess, Pospelov, Veldhuis, 00; Andreas, Arina, Hambye, Ling, Tytgat, 1003.2595;. . .

L = LSM +12∂νS∂νS − 1

2µ2S2 − 1

2λ1S4 − λ2S2H†H

communication with the SM via the “Higgs portal” λ2relic abundance obtained for mS ∼ 10 GeV with right cross section

He, Li, Li, Tandean, Tsai, 09T. Schwetz 58

Page 90: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Hints for a DM signal? Comments on ∼ 10 GeV WIMPs

MSSM neutralinoLEP Z 0 invis width OK by making it mostly bino, but have to depart fromCMSSM to make it light ⇒ non-universal gaugino massese.g., Bottino, Donato, Fornengo, Scopel, 02,03,07,08,09; Hooper, Plehn, 02; Belanger, Boudjema, Cottrant, Pukhov,

Rosier-Lees, 03; Asano, Matsumoto, Senami, Sugiyama, 09; Hisano, Nakayama, Yamanaka, 09; Kuflik, Pierce, Zurek,

1003.0682; Feldman, Liu, Nath, 1003.0437; Albornoz, Belanger, Boehm, Pukhov, Silk, 1009.4380; Fornengo, Scopel, Bottino,

1011.4743; Calibbi, Ota, Takanishi, 1104.1134

Bs → µ+µ−, Tevatron light Higgs searches, B,K decaysfine-tuned region allows mχ ∼ 10 GeV → tested soon

Belli et al., 1106.4667T. Schwetz 59

Page 91: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Hints for a DM signal? Comments on ∼ 10 GeV WIMPs

MSSM extensions

I NMSSM (singlino component)e.g., Gunion, Hooper, McElrath, hep-ph/0509024; Bae, Kim, Shin, 1005.5131; Das, Ellwanger, 1007.1151; Belikov,

Gunion, Hooper, Tait, 1009.0549; Gunion, Belikov, Hooper, 1009.2555; Draper, Liu, Wagner, Wang, Zhang, 1009.3963;

Albornoz, Belanger, Boehm, Pukhov, Silk, 1009.4380; Kappl, Ratz, Winkler, 1010.0553

I sneutrino: MSSM + νRArkani-Hamed, Hall, Murayama, Tucker-Smith, Weiner, 00; Belanger, Kakizaki, Park, Kraml, Pukhov, 1008.0580

T. Schwetz 60

Page 92: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Hints for a DM signal? Comments on ∼ 10 GeV WIMPs

Asymmetric Dark Matter

Nussinov, 1985; Barr, Chivukula, Farhi, 1990; Barr, 1991; Kaplan, 1992; Kaplan, Luty, Zurek, 0901.4117; An, Chen, Mohapatra,

Zhang, 0911.4463; Shelton, Zurek, 1008.1997; Davoudiasl, Morrissey, Sigurdson, Tulin, 1008.2399; Haba, Matsumoto,

1008.2487; McDonald, 1009.3227; Chun, 1009.0983; Buckley, Randall, 1009.0270; Gu, Lindner, Sarkar, Zhang, 1009.2690;

Blennow, Dasgupta, Fernandez-Martinez, Rius, 1009.3159; Allahverdi, Dutta, Sinha, 1011.1286 Falkowski, Ruderman, Volansky,

1101.4936; Haba, Matsumoto, Sato, 1101.5679; Graesser, Shoemaker, Vecchi, 1103.2771; Frandsen, Sarkar, Schmidt-Hoberg,

1103.4350; McDermott, Yu, Zurek, 1103.5472; Kouvaris, Tinyakov, 1104.0382; Buckley, 1104.1429;. . .

ΩDM

ΩB=

nDM

nB

mDM

mp' 5

DM carries some quantum number; invoke common mechanism for baryonand DM genesis: nDM ∼ nB ⇒ mDM ∼ mp

T. Schwetz 61

Page 93: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Hints for a DM signal? Recent results from CoGeNT

CoGeNT: exponential event excess and hint for modulation

Germanium detector with very low threshold of 0.4 keVee ≈ 1.9 keVnr

Aalseth et al, 1106.0650

T. Schwetz 62

Page 94: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Hints for a DM signal? Recent results from CoGeNT

Annual modulation in CoGeNT

-1

0

1

-1

0

1

even

ts /

keV

kg

day

0 100 200 300 400 500days since Dec 3 2009

-4-2024

3 - 4.5 keV

0.9 - 3 keV

0.5 - 0.9 keV

χ2

no mod = 11.7 / 15

χ2

no mod = 16.8 / 15

χ2

no mod = 9.5 / 15

0.5− 3 keV: χ2no mod = 20/15 (17%)

T. Schwetz 63

Page 95: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Hints for a DM signal? Recent results from CoGeNT

Annual modulation in CoGeNT

-1

0

1

-1

0

1

even

ts /

keV

kg

day

0 100 200 300 400 500days since Dec 3 2009

-4-2024

3 - 4.5 keV

0.9 - 3 keV

0.5 - 0.9 keV

χ2

no mod = 11.7 / 15

χ2

no mod = 16.8 / 15

χ2

no mod = 9.5 / 15

χ2

min = 11.6 / 13

χ2

min = 7.7 / 13

χ2

min = 5.9 / 13

∆χ2 = 9.1 (3σ, 1 dof)

∆χ2 = 3.6 (1.9σ, 1 dof)

0.5− 3 keV: 2.8σ preference for modulation Aalseth et al, 1106.0650

T. Schwetz 63

Page 96: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Hints for a DM signal? Recent results from CoGeNT

Annual modulation in CoGeNT

0 0.5 1 1.5 2amplitude [ev / kg day keV]

0

100

200

300t 0 [

day]

0.5 - 0.9 keV:a = 1.24 +/- 0.65χ2

a=0 = 9.5, χ2

min = 5.9

0.9 - 3 keV:a = 0.56 +/- 0.18χ2

a=0 = 16.8, χ2

min = 7.7

3 - 4.5 keV:a = 0.04 +/- 0.14χ2

a=0 = 11.7, χ2

min = 11.6

∆χ2 = 1, 2, 4

June 2nd

T. Schwetz 64

Page 97: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Hints for a DM signal? Recent results from CoGeNT

Fitting CoGeNT with elastic SI scattering

4 6 8 10 12 14 16 18 20m! [GeV]

10-41

10-40

10-39

" p [cm

2 ]

10 20

90%, 99% CL (2 dof)v0 = 230 km/s, vesc = 550 km/s

CoGeNT 11 (modulation)

CoGeN

T 11 (unmod)

CoGeNT 10

-1

0

1

-1

0

1

even

ts /

keV

kg

day

cosine fit

10.5 GeV, 9.5e-41 cm2

8 GeV, 7.4e-41 cm2

0 100 200 300 400 500days since Dec 3 2009

-4-2024

3 - 4.5 keV

0.9 - 3 keV

0.5 - 0.9 keV

χ2 = 14.5

χ2

no mod = 16.8 / 15

χ2

no mod = 9.5 / 15

χ2 = 7.5

χ2

min = 7.7 / 13

χ2

min = 5.9 / 13

χ2 = 12.5

χ2 = 7.5

T. Schwetz 65

Page 98: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Hints for a DM signal? Recent results from CoGeNT

Fitting CoGeNT with elastic SI scattering

4 6 8 10 12 14 16 18 20m! [GeV]

10-41

10-40

10-39

" p [cm

2 ]

10 20

90%, 99% CL (2 dof)v0 = 230 km/s, vesc = 550 km/s

CoGeNT 11 (modulation)

CoGeN

T 11 (unmod)

CoGeNT 10

-1

0

1

-1

0

1

even

ts /

keV

kg

day

cosine fit

10.5 GeV, 9.5e-41 cm2

8 GeV, 7.4e-41 cm2

0 100 200 300 400 500days since Dec 3 2009

-4-2024

3 - 4.5 keV

0.9 - 3 keV

0.5 - 0.9 keV

χ2 = 14.5

χ2

no mod = 16.8 / 15

χ2

no mod = 9.5 / 15

χ2 = 7.5

χ2

min = 7.7 / 13

χ2

min = 5.9 / 13

χ2 = 12.5

χ2 = 7.5

T. Schwetz 65

Page 99: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Hints for a DM signal? DAMA/LIBRA and CRESST

DAMA/LIBRA annual modulation signalScintillation light in NaI detector, 1.17 t yr exposure (13 yrs)∼ 1 cnts/d/kg/keV → ∼ 4× 105 events/keV in DAMA/LIBRA∼ 8.9σ evidence for an annual modulation of the count rate with maximum atday 146± 7 (June 2nd: 152) Bernabei et al., 0804.2741, 1002.1028

2-6 keV

Time (day)

Res

idua

ls (

cpd/

kg/k

eV) DAMA/NaI (0.29 ton×yr)

(target mass = 87.3 kg)DAMA/LIBRA (0.53 ton×yr)

(target mass = 232.8 kg)

Energy (keV)

S m (

cpd/

kg/k

eV)

-0.05

-0.025

0

0.025

0.05

0 2 4 6 8 10 12 14 16 18 20

energy shape of modulation isimportant for constraining paramsChang, Pierce, Weiner, 0808.0196Fairbairn, TS, 0808.0704

T. Schwetz 66

Page 100: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Hints for a DM signal? DAMA/LIBRA and CRESST

DAMA/LIBRA annual modulation signalScintillation light in NaI detector, 1.17 t yr exposure (13 yrs)∼ 1 cnts/d/kg/keV → ∼ 4× 105 events/keV in DAMA/LIBRA∼ 8.9σ evidence for an annual modulation of the count rate with maximum atday 146± 7 (June 2nd: 152) Bernabei et al., 0804.2741, 1002.1028

the time-integrated event rate in DAMA

2 3 4 5 6 7 8 9 10E [keVee]

0

0.5

1

1.5co

unts

/ kg

/ da

y / k

eVee

12 GeV, 1.3e-41 cm2

51 GeV, 7.8e-42 cm2

T. Schwetz 66

Page 101: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Hints for a DM signal? DAMA/LIBRA and CRESST

CRESST-IITalks by W. Seidel @ WONDER 2010, IDM 2010

CaWO4 target, 9 detectors, about 400 kg d

excess of single-scatter events in O-band (magenta)

%%R '

!

#!$

$

$

!

%

10 15 20 25 30 35 40E

nr [keV]

0

1

2

3

4

even

ts p

er k

eV

m = 12 GeV

observe 32 events, expect 8.7± 1.4 backgroundshape agrees with ∼ 10 GeV WIMP

T. Schwetz 67

Page 102: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Hints for a DM signal? DAMA/LIBRA and CRESST

Hints not quite consistent...

4 6 8 10 12 14 16 18 20m! [GeV]

10-41

10-40

10-39

" p [cm

2 ]

10 20

90%, 99% CL (2 dof)v0 = 230 km/s, vesc = 550 km/s

CoGeNT 11 (modulation)

CoGeN

T 11 (unmod)

DAMA/LIBRA

CRESST(VERY SPECULATIVE)

WARNING: CRESST region very speculative! ⇒ will change/go away(?) whendetailed information on CRESST events and background becomes available

T. Schwetz 68

Page 103: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Hints for a DM signal? DAMA/LIBRA and CRESST

Can we make CoGeNT and DAMA consistent?

Hooper, Collar, Hall, McKinsey, 1007.1005; Hooper, Kelso, 1106.1066

How well do we know the quenching factor of Na?

4 6 8 10 12 14 16 18 20mχ [GeV]

10-41

10-40

10-39

σ p [cm

2 ]

10 20

90%, 99% CL (2 dof)v

0 = 230 km/s, v

esc = 550 km/s

CoGeNT 11(modulation)

CoG

eNT 11 (unm

od)

CoGeNT 10

DAMA/LIBRA qNa

= 0.3 +/- 0.030.5 +/- 0.1

0 50 100 150 200 250E

nr [keV]

0

0.1

0.2

0.3

0.4

0.5

quen

chin

g fa

ctor

Tovey et al., PLB 1998Chagani et al., JINST, 0806.1916

semi-empirical fitTretyak 0911.3041

Iodine

T. Schwetz 69

Page 104: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Hints for a DM signal? Constraints from CDMS and XENON

CDMS constraints

4 6 8 10 12 14 16 18 20m! [GeV]

10-41

10-40

10-39

" p [cm

2 ]

10 20

CDMS-II 09CDMS Si 05CDMS low-thr 10

90%, 99% CL (2 dof)v0 = 230 km/s, vesc = 550 km/s

I CDMS data on Si astro-ph/0509259:12 kg day, 7 keV threshold

I low-threshold analysis ofSoudan Ge data (2006–08)1011.2482

do not insist on full NR/electrdiscrimination →accept some background →lower threshold to 2 keV

T. Schwetz 70

Page 105: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Hints for a DM signal? Constraints from CDMS and XENON

CDMS constraints

4 6 8 10 12 14 16 18 20m! [GeV]

10-41

10-40

10-39

" p [cm

2 ]

10 20

CDMS-II 09CDMS Si 05CDMS low-thr 10

90%, 99% CL (2 dof)v0 = 230 km/s, vesc = 550 km/s

E-scale +20%E-scale +40%

energy scale uncertainty inCDMS low-thr?

T. Schwetz 70

Page 106: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Hints for a DM signal? Constraints from CDMS and XENON

XENON bounds

4 6 8 10 12 14 16 18 20m! [GeV]

10-42

10-41

10-40

10-39

" p [cm

2 ]

10 20

90%, 99% CL (2 dof)v0 = 230 km/s, vesc = 550 km/s

CDMS low-thr

XEN

ON

100low

Leff

translate S1 [PE] into Enr [keV]:Enr = S1

Leff (Enr )1Ly

SeSn

heated discussion: Collar, McKinsey, 1005.0838;

XENON100, 1005.2615; Collar, McKinsey, 1005.2615;

Savage et al., 1006.0972; Sorensen, 1007.3549;

Collar, 1006.2031, 1106.0653

T. Schwetz 71

Page 107: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Hints for a DM signal? Constraints from CDMS and XENON

XENON bounds

translate S1 [PE] into Enr [keV]:Enr = S1

Leff (Enr )1Ly

SeSn

heated discussion: Collar, McKinsey, 1005.0838;

XENON100, 1005.2615; Collar, McKinsey, 1005.2615;

Savage et al., 1006.0972; Sorensen, 1007.3549;

Collar, 1006.2031, 1106.0653

Bezrukov, Kahlhoefer, Lindner, 1011.3990

relation between ionization and scintillation suggest high Leff .

T. Schwetz 71

Page 108: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Hints for a DM signal? Constraints from CDMS and XENON

XENON bounds

4 6 8 10 12 14 16 18 20mχ [GeV]

10-42

10-41

10-40

10-39

σ p [cm

2 ]

10 20

90%, 99% CL (2 dof)v

0 = 230 km/s, v

esc = 550 km/s

CDMS low-thr

XENON10 S2(indicative)

XE

NO

N 100

low L

eff

translate S1 [PE] into Enr [keV]:Enr = S1

Leff (Enr )1Ly

SeSn

heated discussion: Collar, McKinsey, 1005.0838;

XENON100, 1005.2615; Collar, McKinsey, 1005.2615;

Savage et al., 1006.0972; Sorensen, 1007.3549;

Collar, 1006.2031, 1106.0653

S2 only analysis of XENON 10 data Sorensen @ iDM 2010; J. Angle et al. 1104.3088

energy scale from ionization signal (S2) → independent of Leffsee also Collar, 1010.5187, 1106.0653

T. Schwetz 71

Page 109: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Hints for a DM signal? Constraints from CDMS and XENON

How to reconcile?

I Experimental issues?∼ 10 GeV region is experimentally challengingsystematic uncertainties on quenching factors, energy scale, thresholdeffects, backgrounds. . . have to be understood and taken intoaccount before making strong statements.

However, in order to get a consistent picture we need to assume thatI CDMS made a major calibration error (in Ge and Si),I the XENON S2 analysis is completely wrong,I there is a serious problem with Leff in Xenon, andI major error in the Na quenching factor determination for DAMA

T. Schwetz 72

Page 110: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Hints for a DM signal? Constraints from CDMS and XENON

Modify astrophysics?changing v , vesc has little impact on consistencynon-standard halos (asymmetric, DM streams, dark disc)may marginally improve but require extreem params

10 100mχ [GeV]

10-44

10-43

10-42

10-41

10-40

10-39

σ p [cm

2 ]

10 100

dashed: vesc

= 550 km/ssolid: v

esc = 700 km/s

10 100m

χ [GeV]

10-42

10-41

10-40

σp [

cm

2]

10 100

dashed: standard halo

solid:

90%, 99.73% CL (2 dof)

vR

= 142 km/s

vT = 63 km/s

vR

= vT = 220 km/s

left: value of vesc TS, 1011.5432; right: asymmetric velocity distr. Fairbairn, TS 0808.0704

halo indep. comparison of experiments: Fox, Kribs, Tait 1011.1910; Fox, Liu, Weiner, 1011.1915

T. Schwetz 73

Page 111: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Hints for a DM signal? Constraints from CDMS and XENON

Modify astrophysics?changing v , vesc has little impact on consistencynon-standard halos (asymmetric, DM streams, dark disc)may marginally improve but require extreem params

10 100mχ [GeV]

10-44

10-43

10-42

10-41

10-40

10-39

σ p [cm

2 ]

10 100

dashed: vesc

= 550 km/ssolid: v

esc = 700 km/s

10 100m

χ [GeV]

10-42

10-41

10-40

σp [

cm

2]

10 100

dashed: standard halo

solid:

90%, 99.73% CL (2 dof)

vR

= 142 km/s

vT = 63 km/s

vR

= vT = 220 km/s

left: value of vesc TS, 1011.5432; right: asymmetric velocity distr. Fairbairn, TS 0808.0704

halo indep. comparison of experiments: Fox, Kribs, Tait 1011.1910; Fox, Liu, Weiner, 1011.1915

T. Schwetz 73

Page 112: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Alternative particle physics

Outline

Thermal freeze-out of Dark Matter

The WIMP miracle

Dark Matter direct detection

Direct detection: present status

Hints for a DM signal?

Alternative particle physics

Conclusion

T. Schwetz 74

Page 113: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Alternative particle physics

Let’s depart from elastic SI scattering

I spin-dependent interactionI inelastic DM Tucker-Smith, Weiner, hep-ph/0101138

I inelastic SD Kopp, Schwetz, Zupan, 0912.4264

I mirror DM R. Foot; An, Chen, Mohapatra, Nussinov, Zhang, 1004.3296

I leptophilic DM Fox, Poppitz, 0811.0399; Kopp, Niro, Schwetz, Zupan, 0907.3159

I form factor DM Feldstein, Fitzpatrick, Katz, 0908.2991

I momentum dep. DM Scattering Chang, Pierce, Weiner, 0908.3192

I resonant Dark Matter Bai, Fox, 0909.2900

I luminous Dark Matter Feldstein, Graham, Rajendran, 1008.1988

I electro-magnetic DM interactions Masso, Mohanty, Rao, 0906.1979; Chang, Weiner, Yavin,

1007.4200; Barger, Keung, Marfatia, 1007.4345; Fitzpatrick, Zurek, 1007.5325; Banks, Fortin, Thomas, 1007.5515

I iso-spin violating SI scattering Chang, Liu, Pierce, Weiner, Yavin, 1004.0697;

Feng, Kumar, Marfatia, Sanford, 1102.4331; Frandsen et al., 1105.3734

I more to comeT. Schwetz 75

Page 114: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Alternative particle physics Spin-dependent scattering

Spin-dependent scattering

coupling mainly to an un-paired nucleon:

neutron protonDAMA 23

11Na even oddDAMA, KIMS, COUPP 127

53 I even oddSIMPLE 35

17Cl, 3717Cl even odd

XENON, ZEPLIN 12954 Xe, 131

54 Xe odd evenCDMS, CoGeNT 73

32Ge odd evenPICASSO, COUPP, SIMPLE 19

9 F even oddCRESST A

74W, 168 O, 40

20Ca even even

coupling with proton promising for DAMA vs CDMS/XENON

BUT: severe bounds from COUPP, KIMS, PICASSO, SIMPLE

T. Schwetz 76

Page 115: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Alternative particle physics Spin-dependent scattering

Spin-dependent scattering

proton (mainly) neutron

5 10 15 20mχ [GeV]

10-37

10-36

10-35

σ p [cm

2 ]

5 10 15 20

90%, 99% CL (2 dof)v

0 = 230 km/s, v

esc = 550 km/s

SD(p), δ = 0

DAMA/LIBRA

XENON100

SIMPL

E

PICASSO

5 10 15 20m! [GeV]

10-36

10-35

10-34

" p [cm

2 ]5 10 15 20

90%, 99% CL (2 dof)v0 = 230 km/s, vesc = 550 km/sSD an / ap = 7

DAMA/LIBRAX

ENO

N100

CoGeNT (unmod)CDM

S Ge low-thr

Schwetz, Zupan, 11

T. Schwetz 77

Page 116: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Alternative particle physics Spin-dependent scattering

Constraints from Tevatronassume effective quark DM interaction:

λ2

Λ2 (qγ5γµq)(χγ5γµχ) ⇒ pp → χχ+ j

constraints from mono-jet searches at Tevatronassume EFT is still valid at ∼TeV momentum transfere.g., Feng, Su, Takayama, hep-ph/0503117; Beltran et al., 1002.4137; Goodman et al., 1005.1286; . . .

Bai, Fox, Harnik, 1005.3797

T. Schwetz 78

Page 117: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Alternative particle physics Spin-dependent scattering

SD and constraints from neutrinosSD interactions on protons → large WIMP capture cross section in the sunWIMPs may annihilate and produce high energy neutrinos →constraints from SuperKamiokandeIn relation to light DM: e.g., Feng, Kumar, Learned, Strigari, 0808.4151; Andreas, Tytgat, Swillens, 0901.1750; Niro, Bottino,

Fornengo, Scopel, 0909.2348; Hooper, Petriello, Zurek, Kamionkowski, 0808.2464

Kappl, Winkler, 1104.0679

T. Schwetz 79

Page 118: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Alternative particle physics Inelastic scattering

Inelastic DM scattering Tucker-Smith, Weiner, 01

mχ∗ −mχ = δ ' 100 keV ∼ 10−6mχ , v inelmin =

1√2MER

(MER

µχ+ δ

)

0 20 40 60 80 100E

recoil [keV]

even

t spe

ctru

m [

arb.

uni

ts]

δ = 0

δ = 50 keV

δ = 100 keV

δ = 150 keV

δ = 200 keV

mχ = 100 GeV scattering off Xenon

σ increased by factor 10 in each step for δ

0 20 40 60 80 100ER [keV]

0

200

400

600

800

1000

v min

[km

/s]

GeI, Xe

elastic

inelastic

m! = 120 GeV, " = 100 keV

I sampling only high-velocity tail of velocity distributionI no events at low recoil energiesI high mass targets favouredI enhance modulation compared to unmodulated signal

T. Schwetz 80

Page 119: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Alternative particle physics Inelastic scattering

Inelastic DM scattering Tucker-Smith, Weiner, 01

mχ∗ −mχ = δ ' 100 keV ∼ 10−6mχ , v inelmin =

1√2MER

(MER

µχ+ δ

)

0 20 40 60 80 100E

recoil [keV]

even

t spe

ctru

m [

arb.

uni

ts]

δ = 0

δ = 50 keV

δ = 100 keV

δ = 150 keV

δ = 200 keV

mχ = 100 GeV scattering off Xenon

σ increased by factor 10 in each step for δ

0 100 200 300day

0

0.01

0.02

0.03

0.04

0.05

cnts

/ kg

/ d

/ keV

! = 37.65 keV! = 39 keV

m" = 10.92 GeV, # = 1.66e-38 cm2

I sampling only high-velocity tail of velocity distributionI no events at low recoil energiesI high mass targets favouredI enhance modulation compared to unmodulated signal

T. Schwetz 80

Page 120: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Alternative particle physics Inelastic scattering

iDM and CoGeNT modulation

10 100m! [GeV]

10-41

10-40

10-39

10-38

10-37

" p [cm

2 ]

10 100

90% CL, # = 25 keV

CoGeNT (mod)

XEN

ON

100

CDMS low-thr

CoGeNT (unmod)

TS, Zupan, 11

-1

0

1

even

ts /

keV

kg

day

0 100 200 300 400 500days since Dec 3 2009

-4-2024

0.9 - 3 keV

0.5 - 0.9 keV

!2 = 14.5

!2 = 7.5

!2 = 12.5

!2 = 7.5

0.4 0.8 1.2 1.6 2keVee

0

4

8

12

16

20

coun

ts /

keV

kg

day

m = 8 GeV, ! = 7.4e-41 cm2, " = 0m = 12 GeV, ! = 2.2e-39 cm2, " = 25 keV

I make mod and unmod spectrum consistent but cannot explain rateI XENON bound still severe

T. Schwetz 81

Page 121: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Alternative particle physics Inelastic scattering

iDM and DAMA modulation

XENON100 1104.3121

talk by W. Seidel @ IDM 2010

disfavored by XENON100 and CRESST (tungsten)

T. Schwetz 82

Page 122: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Alternative particle physics Inelastic scattering

Inelastic spin-dependent scattering on protons

Kopp, Schwetz, Zupan, 0912.4264; Schwetz, Zupan, 11

10 15 20 25mχ [GeV]

10-36

10-35

10-34

10-33

σ p [cm

2 ]

10 15 20 25

90%, 99% CL (2 dof)v

0 = 230 km/s, v

esc = 550 km/s

SD(p), δ = 22 keV

DAMA/LIBRA

XENON100

SIMPLE

PICASSO

KIM

S

40 100 200mχ [GeV]

10-36

10-35

10-34

10-33

σ p [cm

2 ]

100

90%, 99% CL (2 dof)v

0 = 230 km/s, v

esc = 550 km/s

SD(p), δ = 114 keV

DAMA/LIBRAXENON100

KIMS

I SD coupling to proton gets rid of XENON/CDMS/CRESST bounds(no unpaired proton)

I inelastic scatt. gets rid of PICASSO/COUPP (light target)

T. Schwetz 83

Page 123: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Alternative particle physics Inelastic scattering

Inelastic spin-dependent scattering on protons

Kopp, Schwetz, Zupan, 0912.4264; Schwetz, Zupan, 11

10 15 20 25mχ [GeV]

10-36

10-35

10-34

10-33

σ p [cm

2 ]

10 15 20 25

90%, 99% CL (2 dof)v

0 = 230 km/s, v

esc = 550 km/s

SD(p), δ = 22 keV

DAMA/LIBRA

XENON100

SIMPLE

PICASSO

KIM

S

40 100 200mχ [GeV]

10-36

10-35

10-34

10-33

σ p [cm

2 ]

100

90%, 99% CL (2 dof)v

0 = 230 km/s, v

esc = 550 km/s

SD(p), δ = 114 keV

DAMA/LIBRAXENON100

KIMS

BUT:I cannot explain CoGeNT/CRESST-OI neutrinos from the sun (annih. into u, d , µ, e still OK) Shu, Yin, Zhu, 1001.1076

I probably mono-jet bounds from Tevatron apply

T. Schwetz 83

Page 124: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Alternative particle physics Inelastic scattering

iSD - toy modelKopp, Schwetz, Zupan, 09: generalize idea of Tucker-Smith, Weiner, 01 to SD int.:assume 4-Fermi interaction with T ⊗ T structure:

Lint =CT

Λ2

[ψΣµνψ

][qΣµνq

], Σµν = i [γµ, γν ]/2

ψ = (η, ξ†) with Dirac mψψ and Majorana mass (δηηη + δξξξ)/2⇒ two Majorana fermions with masses m ± δ (δη = δξ = δ m):

χ1 = i(η − ξ)/√

2, χ2 = (η + ξ)/√

2

⇒ ψΣµνψ = −2i(χ2σµνχ1 + χ†2σµνχ†1) ,

I inelastic scattering for δ 6= 0I T ⊗ T leads to spin dependent scattering in the non-rel. limit

T. Schwetz 84

Page 125: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Alternative particle physics Inelastic scattering

magnetic inelastic DMobserve that I, Cs, Na, F nuclei have very large effective MMassume DM has MM: L =

µχ

2 χ∗σµνχF µν + h.c.

Chang, Weiner, Yavin, 1007.4200

I use large MM of iodine to enhance rate in DAMAI inelast kinematics avoids florine constraints (light target)I no explanation for CoGeNT/CRESST-O

T. Schwetz 85

Page 126: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Alternative particle physics General iso-spin dependence

Generalized couplings to neutron and proton

SI scattering cross section ∝ [Zfp + (A− Z )fn]2

typically (iso-spin symmetry) one has fn ≈ fp ⇒ SI ∝ σpA2

consider quark operator Gqqqχχ → eff. coupling to nucleon N = p, n:

fN =∑

q

Gq〈N|qq|N〉

=∑

q=u,s,d

GqmN

mqξN

q +227

1−∑

q=u,s,d

ξNq

∑q=c,b,t

GqmN

mq

ξpd ≈ 0.033 , ξp

u ≈ 0.023 , ξps ≈ 0.26

ξnd ≈ 0.042 , ξn

u ≈ 0.018 , ξns ≈ 0.26

⇒ ex.: Higgs mediated interaction dominated by s-quark and fn ≈ fp

T. Schwetz 86

Page 127: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Alternative particle physics General iso-spin dependence

Generalized couplings to neutron and proton

allow for general couplings: Chang et al., 1004.0697; Feng, Kumar, Marfatia, Sanford, 1102.4331;

Frandsen et al., 1105.3734; Nobile, Kouvaris, Sannino, 1105.5431

SI ∝ σeffA2eff with

σeff ≡σn + σp

2, tan θ ≡ fn/fp

A2eff = 2

∑i=iso

ri [Z cos θ + (Ai − Z ) sin θ]2

for fn/fp < 0: cancellations ⇒can suppress rate for isotope if fn/fp = −Z/(A− Z )

T. Schwetz 87

Page 128: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Alternative particle physics General iso-spin dependence

Generalized couplings to neutron and proton

-1.2 -1 -0.8 -0.6fn / fp

10-4

10-3

10-2

10-1

A2 ef

f / A

2

-1.2 -1 -0.8 -0.6

Si

Na

Ge

I

Xe

F

Cl

5 10 15 20mχ [GeV]

10-39

10-38

10-37

σ eff [

cm2 ]

5 10 15 20

90%, 99% CL (2 dof)v

0 = 230 km/s, v

esc = 550 km/s

DAMA/LIBRA

CoG

eNT

XE

NO

N100

CD

MS Si

fn / f

p= -0.7

CDMS Gelow-thr

SIMPLE

low L

eff

suppress Xe rate for fn/fp ≈ −0.7, but enhanced rate for Si and Fconstraint from CDMS low-threshold Ge analysis remains

T. Schwetz 88

Page 129: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Alternative particle physics General iso-spin dependence

Generalized couplings to neutron and proton + inelasticity

proposed to reconcile CoGeNT modulation and DAMAFrandsen et al., 1105.3734; poster by F. Kahlhoefer

10 100m! [GeV]

10-39

10-38

10-37

10-36

10-35

" p [cm

2 ]

10 100

90% CL, # = 15 keV, fn / fp = -0.7

CoGeNT (mod)

XENON100 CDMS low-thr

CoGeNT (unmod)

DAMA

CDMS Si

SIMPLE

10 100m! [GeV]

10-39

10-38

10-37

10-36

10-35

" p [cm

2 ]

10 100

90% CL, # = 25 keV, fn / fp = -0.7

CoGeNT (mod)

XEN

ON

100 CDMS low-thr

CoGeNT (unmod)

Si

DAMA

SIMPLE

TS, Zupan, 11

T. Schwetz 89

Page 130: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Alternative particle physics Leptophilic DM

DM scattering off electrons

I DAMA and CoGeNT do not discriminate nuclear recoil and electronevents ⇒ pure electron events fully contribute

I CDMS, XENON10, CRESST, KIMS, ZEPLIN,. . . reject electronevents to perform a low background search for nuclear recoils

T. Schwetz 90

Page 131: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Alternative particle physics Leptophilic DM

DM scattering off electrons

DM scattering off electrons at rest: recoils of order mev2 ∼ eVcannot account for the DAMA signal at few keV

⇒ bound electrons with p ∼ MeV, Bernabei et al., 0712.0562

105 106 10710-16

10-14

10-12

10-10

10-8

10-6

p @eVD

p2ÈΧHpL

2@e

V-

1 D

Iodine

1s

2p 2s3d

3p 3s4d

4p 4s

5p 5s

105 106 10710-16

10-14

10-12

10-10

10-8

10-6

p @eVD

p2ÈΧHpL

2@e

V-

1 D

Sodium

1s

2p

2s

3s

wave function suppression of count rate ∼ 10−6

T. Schwetz 91

Page 132: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Alternative particle physics Leptophilic DM

Loop induced DM-nucleus scattering

an effective interaction of DM with electrons can induce DM-nucleusinteractions at loop level:

whenever loop-induced DM-nucleon scattering is present it will dominateover scattering off electrons because of the wave function suppression ⇒Have to forbid loop diagrams!

example: fermionic DM with axial-vector coupling

Leff = G (χγµγ5χ) (¯γµγ5`) with G = 1/Λ2

Kopp, Niro, Schwetz, Zupan, 0907.3159

T. Schwetz 92

Page 133: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Alternative particle physics Leptophilic DM

Axial coupling without loop

Best fit prediction for the modulated and unmodulated spectrum in DAMAfrom DM-electron scattering

0 5 10 15 20

-0.04

-0.02

0.00

0.02

0.04

0.06

E @keVD

S m@d-

1kg-

1ke

V-

1 D

Full analysis

wo 1st bin

Σe0 = 5.´ 10-31 cm2, mΧ = 816. GeV

Χ2 = 55.9

Σe0 = 5.01´ 10-31 cm2, mΧ = 202. GeV

Χ2 = 20.6

0 2 4 6 8 100.0

0.5

1.0

1.5

2.0

2.5

E @keVDR

ate@d-

1kg-

1ke

V-

1 D

Leptophilic DM, Axial vector interactionsScattering on bound electrons

⇒ disfavoured by spectral shape and constraint from unmodulated eventrate (similar for CoGeNT)

T. Schwetz 93

Page 134: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Alternative particle physics Leptophilic DM

Axial coupling without loop

Kopp, Niro, TS, Zupan, 0907.3159; 1011.1398

I very “large” Xsec: σ0χe ∼ 10−31 cm2 ( mχ

100 GeV

)requires Λ . 0.1 GeV

I excluded by SuperK constraints on neutrinos from the sunI severe constraints from LEP Fox, Harnik, Kopp, Tsai, 1103.0240

T. Schwetz 94

Page 135: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Conclusion

Outline

Thermal freeze-out of Dark Matter

The WIMP miracle

Dark Matter direct detection

Direct detection: present status

Hints for a DM signal?

Alternative particle physics

Conclusion

T. Schwetz 95

Page 136: ISAPP 2011, MPIK Heidelberg ``The Dark Side of the Universe'' - @let@token Dark … · 2018-09-18 · ISAPP 2011, MPIK Heidelberg “The Dark Side of the Universe” Dark Matter phenomenology

Conclusion

Conclusions

I Thermal freeze-out provides a motivation for DM at the weak scale:⇒ WIMP

I we are probing the WIMP hypothesis with direct detection, indirectdetection, and LHC ⇒ exciting times ahead!

I Some hints for DM around 10 GeV from direct detection ⇒in tension with constraints

I Also exotic particle physics seems not to be able to fit all

I More data will tell

T. Schwetz 96