IRTG%1524/ΔMRSEC%€¦ · PosterList 1 Agudo Jaime...

14
IRTG 1524/ΔMRSEC Summer School 2014 SelfAssembly in SoftMatter Systems Beverly, Massachusetts, USA August 03–08, 2014

Transcript of IRTG%1524/ΔMRSEC%€¦ · PosterList 1 Agudo Jaime...

Page 1: IRTG%1524/ΔMRSEC%€¦ · PosterList 1 Agudo Jaime EngulfmentPatterns1of1Nanoparticles1on1Membranes 2 Armstrong Daniel The1Use1of1High1Dielectric1ConstantLiquids1in1Dielectric1Elastomer1Actuators

IRTG  1524/ΔMRSEC  

Summer  School  2014  

Self-­‐Assembly  in  Soft-­‐Matter  Systems  

Beverly,  Massachusetts,  USA  August  03–08,  2014  

!!

"#$%#!&'()!!!"#$%&''"()#"*+!,$-%./--"0+1/2,'-034-30"'++

&-+52-"0$/4"'!

!*++,-.!/0012+3!(4&&!

!506!708+9!5:!

;<1=>08!4?@4A9!(4&&!!!

! ! !

! !

Page 2: IRTG%1524/ΔMRSEC%€¦ · PosterList 1 Agudo Jaime EngulfmentPatterns1of1Nanoparticles1on1Membranes 2 Armstrong Daniel The1Use1of1High1Dielectric1ConstantLiquids1in1Dielectric1Elastomer1Actuators

Poster  List

1Ag

udo

Jaim

eEn

gulfm

ent  P

atterns  o

f  Nanop

articles  o

n  Mem

branes

2Armstrong

Daniel

The  Use  of  H

igh  Dielectric  Con

stant  Liquids  in  Dielectric  Elastom

er  Actuators

3Ch

ristau

Step

hanie

Polymer  Brush/G

old  Nanop

article  Hybrid

s:  (1

)  Mutual  structural  effe

cts  o

n  particle  distrib

ution  and  (2)  e

ffect  of  tem

perature  on  particle  uptake  and  distrib

ution

4Fu

Lin

Theo

retical  and

 Com

putatio

nal  Study  of  C

olloidal  M

agne

tic  Assem

bly

5Falk

Caroline

Conformational  transition

s  of  d

s-­‐DN

A  with

in  ultrathin  am

phiphilic  film

s6Ru

tkow

ski

David

Desig

n  of  M

ultip

olar  Colloidal  Rod

s  Usin

g  Discon

tinuo

us  M

olecular  Dynam

ics

7Ko

gler

Florian

Aggregation  of  colloids  w

ith  field  indu

ced  patchine

ss8Gu

 Re

npen

gTo

wards  Engineered  Biologically-­‐In

spire

d  Materials:  Facile  Synthesis  of  DNA  Block  Co

polymers

9Meißn

erJens

Protein  Ad

sorptio

n  at  nano-­‐structured

 Silica  Surfaces:  Effe

cts  o

f  Salt  a

nd  Surface  Ionisatio

n10

Phillips

Katherine

Simulation  Stud

ies  o

f  the

 Selectiv

ity  of  Ion

s  in  Ch

arged  Carbon

 Nanotub

e  Bu

ndles

11Obe

rleMichael

Compe

tititv

e  Protein  adsoption  on

to  polym

eric  m

aterial:  The  case  of  m

icrogels

12Marcoux

Catherine

Self-­‐assembly  of  a  limit-­‐pe

riodic  structure

13Schlotthauer

Sergej

Disclination  lines  at  h

omogen

eous  and

 heterogen

eous  colloids  immersed  in  chiral  liquid  crystal

14Ha

nKo

ohee

Prototypes  of  Soft  R

obotic  Com

pone

nts  B

ased

 on  Novel  Dynam

ic  Patterns  from  M

etallo-­‐Dielectric  M

icrocube

s  Driv

en  by  External  Fields

15Tavarone

Raffa

ele

Mon

te  Carlo  simulation  for  switchable  mod

el  m

olecules

16Wu

Wie-­‐Che

nLarge-­‐Scale  Silica  Overcoatin

g  of  Gold  Nanorod

s  and

 The

ir  Thermal  Stability

17Tsereteli

Levan

Coarse  graining  and  mon

te  carlo  simulation  of  polysaccharides

18Mish

raSumeet

Aniso

trop

ic  re

spon

se  of  e

lastom

eric  m

edia  con

taining  magne

tic  chains

19Pe

rez-­‐Ga

rcia

Rodrigo

Control  of  fullerene

 (C60)  n

ucleation  by  nanoind

entatio

ns20

Simon

Joseph

Hierarchically  structured

 materials  comprise

d  of  biologically  inspire

d  po

lype

ptides

21Sokolowski

Marek

The  investigation  of  th

e  interaction  be

tween  po

lymer  m

odified

 silicon

 nano-­‐particles  a

nd  pho

spho

lidmem

branes

22Seo

Youn

gee

Physicoche

mical  aspects  of  p

oly  (2-­‐oxazoline)s  b

ased

 polym

eric  m

icelles  a

nd  th

eir  clusters

23Steinküh

ler

Jan

Adhe

sion-­‐indu

ced  do

main  form

ation  in  m

ulticom

pone

nt  m

embranes

24Lamas

Joseph

Photorespo

nsive  DN

A  with

 Click  Ch

emistry

25Stolarski

Michael

Recent  stud

ies  in  the  fie

ld  of  stark  sp

ectroscopy  and

 DHP

26Li

Alice

Self-­‐im

mob

ilizatio

n  of  Stim

uli-­‐respo

nsive  Biom

olecules  on  Surface  via  Silica  Bind

ing  Pe

ptide

Page 3: IRTG%1524/ΔMRSEC%€¦ · PosterList 1 Agudo Jaime EngulfmentPatterns1of1Nanoparticles1on1Membranes 2 Armstrong Daniel The1Use1of1High1Dielectric1ConstantLiquids1in1Dielectric1Elastomer1Actuators

 

   

 

Lecturers       Tutorials   Talks  

Zemb   Thomas   Surfactant-­‐free  micelles  and  microemulsions    

Szleifer   Igal   Understanding  pH  Effects  in  Soft  Materials    

Heinrich   Volkmar     Biological  Intuition  vs.  Physical  Rigor:  Allies  or  Foes?  

Hagan   Michael    Computational  studies  of  virus  assembly  around  nucleic  acids  and  on  lipid  membranes  

Schmid   Friederike   Self-­‐Consistent  Field  Theories  of  Inhomogeneous  (Co)polymer  blends    

Hellweg   Thomas  Nanosecond  dynamics  in  soft  matter  as  seen  by  neutron  spin-­‐echo  spectroscopy  (NSE)  

 

Szleifer   Igal     Molecular  Organization  and  Translocation  in  Nuclear  Pore  Complexes  

Zemb   Thomas     Organisation  of  surfaces:  the  in-­‐plane  equation  of  state  at  fluid  interfaces  

Reiter   Günter   Unique  features  of  polymer  crystallisation  visualized  in  thin  films    

Reiter   Günter     Correlating  Polymer  Crystals  via  Self‐Induced  Nucleation  

Walker   Lynn   Soft  Materials  with  fluid-­‐fluid  Interfaces:  We  need  more  than  just  interfacial  tension    

Rubinstein   Michael   Scaling  theory  of  micellization  of  block  copolymers  in  selective  solvents    

Hellweg   Thomas    Smart  microgels  and  microgel  nanoparticle  hybrids:  Properties,  characterization,  and  potential  applications  

Schmid   Friederike     On  ripples  and  rafts:  Curvature  induced  nanoscale  structures  in  lipid  membranes  

Heinrich   Volkmar   Practical  Membrane  Biophysics    

Hagan   Michael   Principles  of  self-­‐assembly,  from  1D  filaments  to  2D  shells  and  3D  crystals    

Rubinstein   Michael     Weak  micellization  of  block  elastin-­‐like  copolymers  

Walker   Lynn     Complex  Solutions  to  Control  Systems  with  Fluid-­‐Fluid  Interfaces  

Page 4: IRTG%1524/ΔMRSEC%€¦ · PosterList 1 Agudo Jaime EngulfmentPatterns1of1Nanoparticles1on1Membranes 2 Armstrong Daniel The1Use1of1High1Dielectric1ConstantLiquids1in1Dielectric1Elastomer1Actuators

Zemb,  Thomas  Surfactant-­‐free  micelles  and  microemulsions  Is  this  an  old  urban  legend  or  a  useful  opportunity  for  new  formulations?    We  will  review  findings  concerning  ouzo,  pastis,  mouth  washes  ,  lemoncello  and  model  ternary  systems  with  surfactant  containing  a  "pre-­‐ouzo"  domain.  Structural  evidence  by  scattering  revive  the  debate  and  the  search  for  a  general  explanation.  We  will  corpus  of  observations  and  formulate  a  proposition  based  on  hydration  cooperative  forces  perturbed  non  electrolytes  distribution  near  fluid  interfaces.  Notes:                                Szleifer,  Igal  Understanding  pH  Effects  in  Soft  Materials  Acid-­‐base  equilibrium  is  a  chemical  reaction  that  involves  a  different  number  of  charged  species  in  the  reactant  and  the  product.  Therefore,  shifting  the  chemical  equilibrium  provides  a  way  to  turn  on  and  off,  or  tune,  electrostatic  interactions.  The  treatment  of  acid-­‐base  equilibrium  is  usually  based  on  bulk  solution  behavior.  In  this  lecture  we  will  describe  how  acid-­‐base  equilibrium  within  a  soft  material  is  qualitatively  and  quantitatively  different  than  that  in  bulk  solution.  This  is  due  to  the  ability  of  the  soft  material  to  respond  with  structural  changes  to  the  presence  (or  absence)  of  charges.  As  a  result  there  is  a  coupling  between  the  molecular  organization  of  the  material,  the  chemical  state  and  the  physical  interactions  (which  include  electrostatic,  steric  and  van  der  Walls).  We  will  present  a  systematic  approach  of  how  to  theoretically  describe  the  coupling  between  molecular  organization,  physical  interactions  and  chemical  state.  The  predictions  show  emergent  behavior  and  it  provides  with  new  insights  on  the  importance  of  the  local  variation  of  chemical  equilibrium.  Namely,  the  assumption  often  done  of  a  fixed  state  of  charge  similar  to  that  of  bulk  solution  provides  an  incorrect  picture.    The  importance  of  this  effect  depends  on  the  degree  of  nanoconfinement.  We  will  show  examples  starting  from  simple  ligand  covered  nanoparticles,  to  polymer  brushes,  where  pH  changes  can  lead  to  novel  self-­‐assembled  patterns  with  the  final  examples  being  pH  responsive  gels.  One  of  the  interesting  finding  is  the  dual  role  that  salt  concentration  plays  of  screening  electrostatic  interactions  while  enhancing  the  charge  in  the  system.  This  effect  leads  to  a  non-­‐monotonic  dependence  of  the  swelling  of  both  polymer  brushes  and  gels  on  salt  concentration.    The  relevance  of  these  effects  in  soft  materials  in  general  and  biological  environments  in  particular  will  be  discussed.  Notes:

Page 5: IRTG%1524/ΔMRSEC%€¦ · PosterList 1 Agudo Jaime EngulfmentPatterns1of1Nanoparticles1on1Membranes 2 Armstrong Daniel The1Use1of1High1Dielectric1ConstantLiquids1in1Dielectric1Elastomer1Actuators

Heinrich,  Volkmar  Biological  Intuition  vs.  Physical  Rigor:  Allies  or  Foes?  A  fundamental  rule  of  research  at  the  crossroads  of  the  physical  and  life  sciences  seems  to  be  that  the  product  of  "first-­‐principle  joy"  and  biomedical  usefulness  is  constant.  Yet  in  view  of  the  inherently  cross-­‐disciplinary  nature  of  many  aspects  of  biomedicine,  there  can  be  no  doubt  that  future  breakthroughs  will  require  new,  interdisciplinary  strategies.  This  talk  provides  an  introduction  to  immunophysics,  an  emerging  field  that  strives  to  alleviate  gaps  in  our  knowledge  of  how  immune  cells  recognize—or  fail  to  recognize—pathogens.  Future-­‐oriented  analyses  of  single-­‐live-­‐cell  encounters  with  microbes  should  be  integrative,  encompassing  the  spectrum  of  mechanisms  by  which  immune  cells  home  in  on  (by  chemotaxis),  take  hold  of  (through  adhesion),  and  internalize  (by  phagocytosis)  microbial  pathogens.  We  will  discuss  how  biophysical  approaches  examining  one-­‐on-­‐one  encounters  between  immune  cells  and  microbes  allow  us  to  study  single-­‐cell  chemotaxis,  adhesion,  and  phagocytosis.  These  experiments  have  been  validated  with  various  types  of  human  immune  (and  other)  cells,  and  have  already  revealed  insight  into  cellular  behavior  that  had  been  inaccessible  to  traditional  techniques.  Notes:                      Hagan,  Michael  Computational  studies  of  virus  assembly  around  nucleic  acids  and  on  lipid  membranes  For  many  viruses,  the  spontaneous  assembly  of  a  capsid  shell  around  the  nucleic  acid  (NA)  genome  is  an  essential  step  in  the  viral  life  cycle.  Understanding  how  this  process  depends  on  the  charge,  structure,  and  sequence  of  the  nucleic  acid  could  promote  biomedical  efforts  to  block  viral  propagation  and  guide  the  reengineering  of  capsids  for  gene  therapy  applications.  This  talk  will  describe  coarse-­‐grained  models  of  capsid  proteins  and  NAs  which  enable  dynamical  simulations  of  the  assembly  process.  With  these  models,  we  investigate  how  assembly  efficiency  and  mechanisms  depend  on  biophysical  parameters,  such  as  RNA  length  and  structure,  solution  conditions,  and  capsid  protein  charge.  We  find  that  capsids  spontaneously  ‘overcharge’;  that  is,  the  NA  length  which  is  kinetically  and  thermodynamically  optimal  possesses  a  negative  charge  greater  than  the  positive  charge  of  the  capsid.  When  applied  to  specific  virus  capsids,  the  calculated  optimal  NA  lengths  closely  correspond  to  the  natural  viral  genome  lengths.  These  results  suggest  that  the  features  included  in  this  model  (i.e.  electrostatics,  excluded  volume,  and  NA  tertiary  structure)  play  key  roles  in  determining  assembly  thermodynamics  and  consequently  exert  selective  pressure  on  viral  evolution.  We  then  show  that  assembly  can  proceed  through  two  qualitatively  different  classes  of  pathways,  which  can  be  tuned  by  controlling  solution  conditions  or  changing  the  capsid  protein  charge.  Time  permitting,  we  will  also  discuss  how  viruses  assemble  on  a  substrate  with  a  different  topology  –  an  enveloping  lipid  membrane.  Notes:

Page 6: IRTG%1524/ΔMRSEC%€¦ · PosterList 1 Agudo Jaime EngulfmentPatterns1of1Nanoparticles1on1Membranes 2 Armstrong Daniel The1Use1of1High1Dielectric1ConstantLiquids1in1Dielectric1Elastomer1Actuators

Schmid,  Friederike  Self-­‐Consistent  Field  Theories  of  Inhomogeneous  (Co)polymer  blends  The  course  gives  an  introduction  into  basic  concepts  of  the  theory  of  polymer/copolymer  blends,  with  a  particular  emphasis  on  the  so-­‐called  'self-­‐consistent  field  theory'  (SCF  theory).  The  topics  to  be  covered  include:  –   General  introduction  in  polymer  models  –   Flory  Huggins  theory  and  chi-­‐parameter  –   Detailed  introduction  into  SFC  theory  –   Limiting  behaviour  at  strong  and  weak  segrgation  –   Fluctuation  effects  –   Introducing  time  –   Applications  Notes:                                Hellweg,  Thomas  Nanosecond  dynamics  in  soft  matter  as  seen  by  neutron  spin-­‐echo  spectroscopy  (NSE)  Neutron  spin-­‐echo  spectroscopy  (NSE)  was  invented  in  the  1970s  by  F.  Mezei  [1].  Among  all  quasielastic  and  inelastic  neutron  scattering  techniques  NSE  provides  the  highest  energy  resolution,  which  is  in  the  range  of  nano-­‐eV.    This  technique  is  especially  well  suited  to  study  thermally  excited  dynamics  in  self-­‐assembled  colloids  (micelles,  microemulsion  droplets,  lamellar  phases,  etc.).  The  tutorial  will  introduce  the  basics  of  this  experimental  approach  and  afterwards  give  some  examples  for  its  application  to  lipid  vesicles  [2],  polymer  based  lamellar  phases,  proteins  and  gel  networks.  [1]  F.  Mezei.  C.  Pappas,  T.  Gutberlet:  Neutron  Spin  Echo  Spectroscopy:  Basics,  Trends  and  Applications  (Lecture  Notes  in  Physics),  Springer,  2003  [2]  Arriaga,  L.  R.,  Lopez-­‐Montero,  I.,  Monroy,  F.,  Orts-­‐Gil,  G.,  Farago,  B.,  &  Hellweg,  T.:  Stiffening  Effect  of  Cholesterol  on  Disordered  Lipid  Phases:  A  Combined  Neutron  Spin  Echo  plus  Dynamic  Light  Scattering  Analysis  of  the  Bending  Elasticity  of  Large  Unilamellar  Vesicles,  Biophys.J.,  96,  3629-­‐3637,  2009    Notes:

Page 7: IRTG%1524/ΔMRSEC%€¦ · PosterList 1 Agudo Jaime EngulfmentPatterns1of1Nanoparticles1on1Membranes 2 Armstrong Daniel The1Use1of1High1Dielectric1ConstantLiquids1in1Dielectric1Elastomer1Actuators

Szleifer,  Igal  Molecular  Organization  and  Translocation  in  Nuclear  Pore  Complexes    In  this  talk  we  will  describe  theoretical  predictions  for  the  molecular  structure  of  yeast  Nuclear  Pore  Complex  (NPC)  and  the  translocation  of  model  particles.  The  theoretical  approach  that  we  apply  is  a  molecular  theory  that  accounts  for  the  geometry  of  the  pore  and  the  sequence  and  anchoring  position  of  the  unfolded  domains  of  the  nucleoporin  proteins  (the  FG-­‐Nups),  which  control  selective  transport  through  the  pore.  The  theory  explicitly  models  the  electrostatic,  hydrophobic,  steric,  conformational  and  acid-­‐base  properties  of  the  FG-­‐Nups.  The  electrostatic  potential  within  the  pore,  which  arises  from  the  specific  charge  distribution  of  the  FG  Nups,  is  predicted  to  be  negative  close  to  pore  walls  and  positive  along  pore  axis.  The  positive  electrostatic  potential  facilitates  the  translocation  of  negatively  charged  particles  and  the  free  energy  barrier  for  translocation  decreases  for  increasing  particle  hydrophobicity.  The  above  results  agree  with  the  experimental  observation  that  transport  receptors  which  form  complexes  with  hydrophilic/neutral  or  positively  charged  proteins  to  transport  them  through  the  NPC,  are  both  hydrophobic  and  strongly  negatively  charged.  The  molecular  theory  shows  that  the  effects  of  electrostatic  and  hydrophobic  interactions  on  the  translocating  potential  are  cooperative  and  non-­‐equivalent  due  to  the  interaction-­‐dependent  reorganization  of  the  FG-­‐Nups  in  the  presence  of  the  translocating  particle.  The  combination  of  electrostatic  and  hydrophobic  interactions  can  give  rise  to  complex  translocation  potentials  displaying  a  combination  of  wells  and  barriers,  in  contrast  to  the  simple  barrier  potential  observed  for  a  hydrophilic/neutral  translocating  particle.    This  work  demonstrates  the  importance  of  explicitly  considering  the  amino  acid  sequence  and  hydrophobic,  electrostatic  and  steric  interactions  in  understanding  the  translocation  through  the  NPC.  Notes:                    Zemb,  Thomas  Organisation  of  surfaces:  the  in-­‐plane  equation  of  state  at  fluid  interfaces  Equations  of  state  are  expressed  either  as  a  link  of  pressures,  temperature  and  volume  per  molecule  or  in  integral  form  by  a  free  energy  functional  d  depending  on  temperature  and  composition  This  started  in  3  dimensions  with  the  van  der  Waals  gas,  and  is  equivalent  in  the  domain  of  colloids  used  by  Jean  Perrin  over  a  century  ago.  We  will  show  in  this  lesson  that  a  "lateral"  equation  of  state  allows  to  understadn  and  unify  approach  to  fluid-­‐surfaces.  Examples  will  be  taken  at  the  liquid-­‐air  interface,  the  liquid-­‐liuqid  interfaces.  This  has  been  extended  in  the  seventies  to  dispersed  bilayers  and  more  recently  to  mono-­‐layered  vesicles.  In  a  second  part,  we  will  show  how  teh  determination  of  lateral  equations  of  state  in  known  portions  of  phase  diagrams  has  allowed  to  derive  general  quantities,  such  as  overall  hydration  of  glycolipids,  modulation  of  electrostatic  effects  by  ion  specific  or  chaotopic/comsotropic  effects  or  even  neutrla  bilayer  systems  stabilized  by  hydration  forces.    Notes:  

Page 8: IRTG%1524/ΔMRSEC%€¦ · PosterList 1 Agudo Jaime EngulfmentPatterns1of1Nanoparticles1on1Membranes 2 Armstrong Daniel The1Use1of1High1Dielectric1ConstantLiquids1in1Dielectric1Elastomer1Actuators

Reiter,  Günter  Unique  features  of  polymer  crystallisation  visualized  in  thin  films  Mono-­‐lamellar  single  crystals  in  thin  films  provide  suitable  model  systems  for  studying  crystallisation  of  long  chain  polymers,  making  distinct  differences  with  respect  to  small  molecules  visible.  Due  to  the  high  viscosity  of  polymeric  melts,  transport  toward  the  growth  front  is  slow  and  the  corresponding  crystal  growth  can  suitably  be  followed  in  time.  Besides  being  able  to  investigate  generic  processes  in  controlling  crystal  morphology  like  epitaxial  growth  or  growth  front  instabilities,  thin  film  studies  reveal  unique  features  of  polymer  crystallisation.  In  particular,  it  is  possible  to  observe  a  logarithmic  spatiotemporal  evolution  of  the  lamellar  crystal  thickness,  caused  by  continuous  rearrangements  leading  to  regions  of  differing  degrees  of  meta-­‐stability  within  polymer  single  crystals.  As  a  consequence  of  the  kinetically  determined  lamellar  thickness  and  the  corresponding  variations  in  melting  temperature,  polymer  crystals  allow  for  self-­‐seeding,  i.e.,  crystals  can  be  re-­‐grown  from  a  melt  which  contains  a  few  thermodynamically  stable  remnants  of  pre-­‐existing  crystals  acting  as  seeds.  Hence,  when  a  single  crystal  is  molten,  all  remnants  have  a  unique  orientation  and  thus  also  the  crystals  re-­‐grown  from  these  seeds.  The  logarithmic  time-­‐dependence  of  the  variation  in  crystal  thickness  is  reflected  in  a  number  of  seeds  decreasing  exponentially  with  increasing  seeding  temperature.  Despite  their  molecular  complexity  and  some  unique  features,  polymers  proved  to  be  valuable  systems  for  detailed  studies  of  crystal  growth,  allowing  testing  of  theoretical  concepts  of  morphology  development.    

Reiter,  Günter  Correlating  Polymer  Crystals  via  Self-­‐Induced  Nucleation  H.  Zhang,  M.  Yu,  B.  Zhang,  R.  Reiter,  M.  Vielhauer,  R.  Mülhaupt,  J.  Xu,  and  G.  Reiter*  Crystallizable  polymers  often  form  multiple  stacks  of  uniquely  oriented  lamellae,  which  have  good  registry  despite  being  separated  by  amorphous  fold  surfaces.  These  correlations  require  multiple  synchronized,  yet  unidentified,  nucleation  events.  Here,  we  demonstrate  that  in  thin  films  of  isotactic  polystyrene,  the  probability  of  generating  correlated  lamellae  is  controlled  by  the  branched  morphology  of  a  single  primary  lamella.  The  nucleation  density  ns  of  secondary  lamellae  is  found  to  be  dependent  on  the  width  w  of  the  branches  of  the  primary  lamella  such  that  ns  �  w−2.  This  relation  is  independent  of  molecular  weight,  crystallization  temperature,  and  film  thickness.  We  propose  a  nucleation  mechanism  based  on  the  insertion  of  polymers  into  a  branched  primary  lamellar  crystal.  Even  in  single  crystals,  characterized  by  faceted  structures  with  a  well-­‐defined  envelope  reflecting  the  underlying  crystal  unit  cell,  polymers  are  folded  and  thus  in  a  meta-­‐stable  state.  Annealing  such  meta-­‐stable  single  crystals  allowed  to  unveil  the  initial  morphological  framework  of  a  dendritic  single  crystal,  i.e.  the  initial  stages  of  growth.    

Notes:  

Page 9: IRTG%1524/ΔMRSEC%€¦ · PosterList 1 Agudo Jaime EngulfmentPatterns1of1Nanoparticles1on1Membranes 2 Armstrong Daniel The1Use1of1High1Dielectric1ConstantLiquids1in1Dielectric1Elastomer1Actuators

Walker,  Lynn  Soft  Materials  with  Fluid-­‐fluid  Interfaces:  We  need  more  than  just  interfacial  tension  Fluid-­‐fluid  interfaces  provide  exciting  potential  for  materials  development.  These  distinct  interfaces  attract  amphiphilic  species;  including  macromolecular  species,  colloidal  particles,  proteins,  bacteria  and  other  objects  of  interest  to  the  field  of  soft  matter.  These  same  interfaces  can  be  deformed,  processed,  altered  by  external  fields  and  manipulated  using  many  of  the  same  tools  that  are  central  to  the  field.  In  this  tutorial,  the  basic  forces  at  play  in  manipulation  of  fluid-­‐fluid  interfaces  will  be  discussed  along  with  characterization  approaches  and  tools.  Important  in  processing  and  developing  interface-­‐dominated  materials  is  the  timescales  associated  with  adsorption  at  interfaces  and  transport  to  interfaces.  Dynamic  surface  tension  will  be  considered  as  a  probe  of  transport  to  and  from  an  interface  to  connect  interfacial  and  bulk  diffusion  properties.    Also  important  are  the  mechanical  properties  of  interfaces.    Examples  of  different  types  of  complex  interfaces  will  be  presented  and  the  tools  used  to  probe  mechanical  properties  described.  Impact  on  processes  like  interfacial  deformation,  break-­‐up  and  coalescence  will  be  explained.  The  goal  is  to  provide  participants  with  an  overall  sense  of  the  state  of  the  art  in  fluid-­‐fluid  interfaces.  Notes:                      Rubinstein,  Michael  Scaling  theory  of  micellization  of  block  copolymers  in  selective  solvents  Scaling  concepts  in  polymer  physics  will  be  reviewed.  Swelling  of  isolated  polymers  in  good  solvents  and  their  collapse  in  poor  solvents  will  be  discussed  using  the  concept  of  thermal  blob.  Basic  properties  of  many  overlapping  chains  in  semidilute  polymer  solutions  will  be  introduced.  Chains  densely  tethered  at  one  end  to  the  surfaces,  called  polymer  brushes,  will  be  described.  Properties  of  brushes  in  good,  theta,  and  poor  solvents  will  be  described  and  generalized  from  planar  to  cylindrical  and  spherical  cases.  Self-­‐assembly  of  block  copolymers  in  selective  solvents  will  be  introduced  as  an  application  of  scaling  theory  to  polymer  self-­‐assembly.  Predictions  of  scaling  theories  will  be  compared  with  experimental  results.  The  self-­‐assembly  of  synthetic  diblock  copolymers  has  been  extensively  studied  both  experimentally  and  theoretically.  In  contrast,  polypeptide  diblock  self-­‐assembly  has  so  far  been  studied  mostly  experimentally.  We  extend  and  generalize  the  theory  developed  for  synthetic  diblock  copolymers  to  make  it  applicable  for  elastin-­‐like  diblock  polypeptides.  We  demonstrate  that  these  diblock  polypeptides  self-­‐assemble  into  the  so-­‐called  weak  micelles  with  almost  unstretched  coronas,  a  state  not  observed  for  synthetic  diblock  copolymers.  Such  micelles  are  expected  to  form  when  surface  tension  at  the  core-­‐corona  interface  is  low  compared  to  what  is  expected  from  the  dense  state  of  the  core.  The  predictions  of  the  theory  of  weak  micelles  for  critical  micelle  temperature,  hydrodynamic  radius,  and  micelle  aggregation  number  are  in  reasonable  agreement  with  the  experimentally  measured  values.  Notes:

Page 10: IRTG%1524/ΔMRSEC%€¦ · PosterList 1 Agudo Jaime EngulfmentPatterns1of1Nanoparticles1on1Membranes 2 Armstrong Daniel The1Use1of1High1Dielectric1ConstantLiquids1in1Dielectric1Elastomer1Actuators

Hellweg,  Thomas    Smart  microgels  and  microgel  nanoparticle  hybrids:  Properties,  characterization,  and  potential  applications  Microgels  based  on  poly(N-­‐isopropylacrylamide)  (PNIPAM)  belong  to  the  class  of  so  called  smart  materials,  which  are  able  to  respond  upon  changes  of  an  external  parameter  like  e.g.  temperature  by  changes  in  particle  dimensions.  This  contribution  will  briefly  review  the  properties  of  these  materials.    An  interesting  application  of  such  colloids  is  the  preparation  of  monolayer  films  from  these  particles  [1,2].  Microgels  are  non-­‐covalently  attached  to  a  surface  allowing  us  to  use  them  on  a  broad  variety  of  (charged)  surfaces.  This  is  a  major  advantage  as  compared  to  approaches  relying  on  covalent  attachment  of  active  films.  The  shape  of  the  coated  substrate  shouldn't  be  of  importance.  Such  thermoresponsive  poly(N-­‐isopropylacrylamide)  (PNIPAM)  microgel  films  are  shown  to  allow  controlled  detachment  of  adsorbed  vertebrate  cells  via  simply  changing  the  temperature.  Cell  response  occurs  on  the  timescale  of  several  minutes,  is  reversible,  and  allows  to  harvest  vertebrate  cells  in  a  mild  fashion  [3].    Moreover,  to  create  interesting  optical  properties  responsive  microgels  can  be  combined  with  nanoparticles  [4].  Also  examples  for  such  hybrid  systems  will  be  discussed  (e.g.  [5]).  [1]  Schmidt,  S.,  H.  Motschmann,  T.  Hellweg,  and  R.  von  Klitzing:  Thermoresponsive  surfaces  by  spin-­‐coating  of  PNIPAM-­‐co-­‐PAA  microgels.  A  combined  AFM  and  ellipsometry  study.  POLYMER,  49:  749-­‐756,  2008  -­‐-­‐-­‐-­‐-­‐  [2]  Schmidt,  S.,  T.  Hellweg,  and  R.  von  Klitzing:  Control  of  the  packing  density  of  P(NIPAM-­‐co-­‐AA)  microgel  films:  Effect  of  surface  charge,  pH,  and  preparation  technique.  Langmuir,  24:  12595-­‐12602,  2008.  -­‐-­‐-­‐-­‐-­‐  [3]  Schmidt,  S.,M.  Zeiser,  Th.  Hellweg,  C.  Duschl,  A.  Fery,  and  H.  Möhwald:  Adhesion  and  Mechanical  Properties  of  PNIPAM  Microgel  Films  and  their  Potential  Use  as  Switchable  Cell  Culture  Substrates.  Adv.  Func.  Mater.,  20:3235–3243,  2010.  -­‐-­‐-­‐-­‐-­‐  [4]  Hellweg,  T.:  Responsive  Core-­‐Shell  Microgels:  Synthesis,  Characterization,  and  possible  Applications.  J.  Polymer  Sci.,  Part  B  Polymer  Physics,  51:1073-­‐1083,  2013  -­‐-­‐-­‐-­‐-­‐  [5]  Karg,  M.,  T.  Hellweg,  P.  Mulvaney:  Self-­‐Assembly  of  Tunable  Nanocrystal  Superlattices  Using  Poly-­‐(NIPAM)  Spacers,  Adv.  Func.  Mater.,  21:4668-­‐4676,  2011  Notes:    Schmid,  Friederike  On  ripples  and  rafts:  Curvature  induced  nanoscale  structures  in  lipid  membranes  Biomembranes  are  ubiquitous  in  all  living  matter.    They  are  essential  for  compartmentalization  and  controlling  processes  that  are  central  for  life  such  as  transport  or  signalling.  The  basic  frame  of  a  biomembrane  is  a  bilayer  of  self-­‐assembled  lipids,  in  which  proteins  are  incorporated  that  perform  various  biological  functions.  Whereas  research  has  long  focussed  on  the  membrane  proteins,  the  role  of  the  lipid  bilayer  for  controlling  and  organizing  the  proteins  is  more  and  more  acknowledged.  This  implies  that  important  biological  processes  are  driven  or  at  least  strongly  influenced  by  physical  processes.  For  physicists,  membranes  have  many  fascinating  aspects:  First,  they  are  beautiful  examples  of  self-­‐assembled  mesoscale  structures,  second,  they  are  real-­‐life  examples  of  two-­‐dimensional  fluctuating  manifolds  in  space,  and  third,  they  have  a  rich  phase  behavior,  and  all  of  these  aspects  contribute  to  the  biological  function  of  membranes.  The  talk  will  start  with  a  short  introduction  to  membranes  and  lipid  bilayers,  and  then  focus  on  our  own  work  in  this  area.  I  will  present  a  simple  coarse-­‐grained  simulation  model  for  lipids  which  reproduces  many  important  properties  of  lipid  bilayers.    Furthermore,  I  will  discuss  an  elastic  theory  that  predicts  the  spontaneous  formation  of  nanoscale  structures  in  lipid  bilayers  which  locally  phase  separate  between  two  phases  with  different  spontaneous  monolayer  curvature.  The  theory  rationalizes  in  a  unified  manner  the  observation  of  a  variety  of  nanoscale  structures  in  lipid  membranes:  Rippled  states  in  one-­‐component  membranes,  lipid  rafts  in  multicomponent  membranes.  Both  have  been  observed  in  our  generic  simulations,  with  properties  that  are  compatible  with  experimental  observations  and  with  our  elastic  model.  Literature:  [1]  F.  Schmid,  Phys.  Rev.  Lett.  111,  028303  (2013).  -­‐-­‐-­‐-­‐-­‐  [2]  S.  Meinhardt,  R.L.C.  Vink,  F.  Schmid,  PNAS  119,  4476  (2013).  -­‐-­‐-­‐-­‐-­‐  [3]  O.  Lenz,  F.  Schmid,  Phys.  Rev.  Lett.  98,  058104  (2007).  Notes:

Page 11: IRTG%1524/ΔMRSEC%€¦ · PosterList 1 Agudo Jaime EngulfmentPatterns1of1Nanoparticles1on1Membranes 2 Armstrong Daniel The1Use1of1High1Dielectric1ConstantLiquids1in1Dielectric1Elastomer1Actuators

Heinrich,  Volkmar  Practical  Membrane  Biophysics  This  tutorial  presents  an  overview  of  experiments  that  have  contributed  the  bulk  of  today's  quantitative  insight  into  the  behavior  of  membranes.    Micropipetting  in  particular  has  allowed  us  to  establish  physical  membrane  properties  like  permeability,  cohesive  strength,  and  various  elastic  moduli.  The  analysis  of  membrane  shapes  –  including  nanotubes  called  "tethers"  –  has  led  to  a  firm  grasp  of  the  mechanical  behavior  of  artificial  membranes.    Some  of  this  insight  has  inspired  neat  examples  of  "biophysics  in  reverse".  For  instance,  the  idea  to  employ  human  red  blood  cells  as  force  transducers  has  been  soundly  validated  both  theoretically  as  well  as  experimentally,  and  successfully  translated  into  a  device  uniquely  capable  of  measuring  minuscule  mechanical  forces.  Unfortunately  though,  a  deep  gulf  divides  the  biophysical  behavior  of  "simple"  membranes  (such  as  of  vesicles  or  red  blood  cells)  and  that  of  membranes  of  living  cells.    Some  prospects  –  and  limitations  –  of  biophysical  studies  of  "real"  cell  membranes  will  be  discussed.  Notes:                                  Hagan,  Michael  Principles  of  self-­‐assembly,  from  1D  filaments  to  2D  shells  and  3D  crystals.    Self-­‐assembly  refers  to  the  process  by  which  basic  units  spontaneously  form  structures  with  increased  size  and  complexity.  In  this  lecture  I  will  discuss  some  of  the  general  principles  which  govern  the  thermodynamics  and  kinetics  of  self-­‐assembly  processes.  As  example  systems,  I  will  focus  on  the  assembly  of  1D  filaments  and  2D  shells  (icosahedral  viral  capsids).  I  will  then  discuss  relationships  between  self-­‐assembly  and  crystallization.  Notes:

Page 12: IRTG%1524/ΔMRSEC%€¦ · PosterList 1 Agudo Jaime EngulfmentPatterns1of1Nanoparticles1on1Membranes 2 Armstrong Daniel The1Use1of1High1Dielectric1ConstantLiquids1in1Dielectric1Elastomer1Actuators

Rubinstein,  Michael  Weak  micellization  of  block  elastin-­‐like  copolymers    The  self-­‐assembly  of  synthetic  diblock  copolymers  has  been  extensively  studied  both  experimentally  and  theoretically.  In  contrast,  polypeptide  diblock  self-­‐assembly  has  so  far  been  studied  mostly  experimentally.  We  extend  and  generalize  the  theory  developed  for  synthetic  diblock  copolymers  to  make  it  applicable  for  elastin-­‐like  diblock  polypeptides.  We  demonstrate  that  these  diblock  polypeptides  self-­‐assemble  into  the  so-­‐called  weak  micelles  with  almost  unstretched  coronas,  a  state  not  observed  for  synthetic  diblock  copolymers.  Such  micelles  are  expected  to  form  when  surface  tension  at  the  core-­‐corona  interface  is  low  compared  to  what  is  expected  from  the  dense  state  of  the  core.  The  predictions  of  the  theory  of  weak  micelles  for  critical  micelle  temperature,  hydrodynamic  radius,  and  micelle  aggregation  number  are  in  reasonable  agreement  with  the  experimentally  measured  values.  Notes:                                Walker,  Lynn  Complex  Solutions  to  Control  Systems  with  Fluid-­‐Fluid  Interfaces  Systems  involving  interfaces  between  immiscible  fluids  offer  a  challenge  for  materials  design.  Static  interfacial/  surface  tension  is  often  the  only  parameter  considered  in  the  design  of  systems  with  fluid-­‐fluid  interfaces.  In  foams,  emulsions,  blends,  sprays,  droplet-­‐based  microfluidic  devices  and  a  number  of  other  applications,  the  dynamic  nature  of  surface  active  species  and  deformation  of  interfaces  requires  a  more  detailed  characterization  of  the  interfacial  transport  and  dynamic  interfacial  properties.  Macroscopic  properties  and  the  ability  to  tune  and  control  phenomena  requires  an  improved  understanding  of  the  time-­‐dependent  properties  of  the  interfacial  tension  and  interfacial  mechanics.  We  have  developed  tools  and  approaches  to  quantify  the  impact  of  surface  active  species  on  interfacial  behavior.  Simple  surfactants  at  interfaces  make  evident  the  need  to  characterize  timescales  in  the  adsorption  problem.  Polymer-­‐grafted  nanoparticles  show  the  ability  to  bridge  between  macromolecular  and  particulate  (Pickering)  laden  interfaces.  Competitive  adsorption  of  macromolecular  species  demonstrates  the  complexity  associated  with  designing  treatments  for  oil  dispersion.  This  talk  will  provide  the  motivation  to  use  microscale  interfaces  for  efficient  analysis  of  complex  interfacial  phenomena  and  how  that  relates  to  the  material  properties  of  interface-­‐dominated  materials.  Notes:  

Page 13: IRTG%1524/ΔMRSEC%€¦ · PosterList 1 Agudo Jaime EngulfmentPatterns1of1Nanoparticles1on1Membranes 2 Armstrong Daniel The1Use1of1High1Dielectric1ConstantLiquids1in1Dielectric1Elastomer1Actuators

Summer  Schoo

l  201

4  „Self-­‐A

ssem

bly  in  Soft  M

atter  S

ystems“  

Directors  

G.  Lóp

ez  (Δ

MRSEC

),  M.  Schoe

n  (IR

TG  1524)  

Date  

August  03–

08  (a

rrival  Aug  03,  dep

arture  Aug  09)  

Venu

e  Th

e  Wylie  In

n  an

d  Co

nferen

ce  Cen

ter,  Be

verly

 MA  

Prog

ram  

Sun  08

/03  

Mon

 08/04

 Tu

e  08

/05  

Wed

 08/06

 Th

u  08

/07  

Fri  08/08

 Sat  0

8/09

   

   

   

 6:30

 am  

Shuttle  

 07

:00–

08:30  am

 Breakfast  

Room

:  Tup

per  M

anor  

07:00–

08:30  am

 Breakfast  

Room

:  Tup

per  M

anor  

07:00–

08:30  am

 Breakfast  

Room

:  Tup

per  M

anor  

07:00–

08:30  am

 Breakfast  

Room

:  Tup

per  M

anor  

07:00–

08:30  am

 Breakfast  

Room

:  Tup

per  M

anor  

07:00–

08:30  am

 Breakfast  

Room

:  Tup

per  M

anor  

 08

:30–

10:00  am

 Tu

toria

l  Zem

b  Ro

om:  N

ewbu

rypo

rt  

08:30–

10:00  am

 Tu

toria

l  Schmid  

Room

:  New

burypo

rt  

08:30–

10:00  am

 Tu

toria

l  Reiter  

Room

:  New

burypo

rt  

08:30–

10:00  am

 Tu

toria

l  Walker  

Room

:  New

burypo

rt  

08:30–

10:00  am

 Tu

toria

l  Heinrich  

 Roo

m:  N

ewbu

rypo

rt  

9:00

 am  

Shuttle

   10

:00  am

   Shuttle

   10

.00–

10:15  am

 Break  

10.00–

10:15  am

 Break  

10.00–

10:15  am

 Break  

10.00–

10:15  am

 Break  

10.00–

10:15  am

 Break  

 

 10

:15–

11:45  am

 Tu

toria

l  Szleifer    

Room

:  New

burypo

rt  

10:15–

11:45  am

 Tu

toria

l  Hellweg  

Room

:  New

burypo

rt  

10:15–

11:15  am

 Talk  Reiter  

Room

:  New

burypo

rt  

10:15–

11:45  am

 Tu

toria

l  Rub

instein  

Room

:  New

burypo

rt  

10:15–

11:45  am

 Tu

toria

l  Hagan

 Ro

om:  N

ewbu

rypo

rt  

 

 12

:00–

01:00  pm

 Lunch  

Room

:  Tup

per  M

anor  

12:00–

01:00  pm

 Lunch  

Room

:  Tup

per  M

anor  

12:00–

12:45  pm

 Bo

xed  Lunch  

12:00–

01:00  pm

 Lunch  

Room

:  Tup

per  M

anor  

12:00–

01:00  pm

 Lunch  

Room

:  Tup

per  M

anor  

 

 01

:00–

02:30  pm

 Short  talks  abo

ut  

posters  (#  1-­‐13

)  Ro

om:  N

ewbu

rypo

rt  

01:00–

02:30  pm

 Short  talks  abo

ut  

posters  (#  14

-­‐26)  

Room

:  New

burypo

rt  

12:45  pm

 Shu

ttle  

 01

:00–

02:30  pm

 Po

ster  se

ssion  

All  Posters/Voting  

Room

:  Ipswich  

01:00–

02:00  pm

 Spare  tim

e    

4:00

 pm    

Shuttle

   02

:30–

04:30  pm

 Po

ster  se

ssion  

Poster  #  1–1

3  Ro

om:  Ipswich  

02:30–

04:30  pm

 Po

ster  se

ssion  

Poster  #  14–

26  

Room

:  Ipswich  

1:30

 pm  Boa

rding  

02:00–

06:00  pm

 Wha

le  watch  

Excursion  in  Gloucester  

02:30–

05:30  pm

 Spare  tim

e  02

:00–

04:00  pm

 Talks  

Walker/Ru

binstein  

 Roo

m:  N

ewbu

rypo

rt  

 

 04

:30–

05:30  pm

 Spare  tim

e  04

:30–

05:30  pm

 Spare  tim

e  06

:00–

07:30  pm

 Spare  tim

e/Glou

cester  

 04

:00–

04:15  pm

 Break  

 

06:00–

07:00  pm

 Get  to

gether  

Room

:  Atrium  

05:30–

07:30  pm

 Talks    

Heinrich/Hagan  

Room

:  New

burypo

rt  

05:30–

07:30  pm

 Talks  

Szleife

r/Zemb  

Room

:  New

burypo

rt  

07:30  pm

   De

parture/Glou

cester  

05:30–

07:30  pm

 Talks  

Schm

id/H

ellweg  

Room

:  New

burypo

rt  

04:15–

06:30  pm

 Po

ster  prize  aw

ard/  

Pane

l  disc

ussio

n/  

Feed

back  

Room

:  New

burypo

rt  

 

07:30  pm

 Dinn

er  

Room

:  Atrium  

08:00  pm

 Dinn

er  

Room

:  Tup

per  M

anor  

08:00  pm

 Dinn

er    

Room

:  Tup

per  M

anor  

08:00  pm

 Ba

rbecue

 Ro

om:  Tup

per  M

anor  

08:00  pm

 Dinn

er  

Room

:  Tup

per  M

anor  

07:00  pm

 Dinn

er    

Room

:  Tup

per  M

anor  

 

 

Page 14: IRTG%1524/ΔMRSEC%€¦ · PosterList 1 Agudo Jaime EngulfmentPatterns1of1Nanoparticles1on1Membranes 2 Armstrong Daniel The1Use1of1High1Dielectric1ConstantLiquids1in1Dielectric1Elastomer1Actuators

IRTG  1524  Summer  School  08/03/14–08/08/14  in  Beverly,  MA,  USA  –  Participants

Agudo,  Jaime Max-­‐Planck-­‐Institut  für  Kolloid-­‐  und  Grenzflächenforschung,  Potsdam [email protected],  David North  Carolina  State  University,  Raleigh [email protected],  Bhuvnesh North  Carolina  State  University,  Raleigh [email protected],  William Texas  State  University,  San  Marcos [email protected],  Stephanie Technische  Universität  Berlin [email protected]­‐berlin.deErdmann,  Petra Technische  Universität  Berlin petra.erdmann@tu-­‐berlin.deFalk,  Caroline Humboldt-­‐Universität  zu  Berlin [email protected]­‐berlin.deFliegner,  Daniela Technische  Universität  Berlin daniela.fliegner@tu-­‐berlin.deFu,  Lin Duke  University,  Durham [email protected],  Jan North  Carolina  State  University,  Raleigh [email protected],  Renpeng Duke  University,  Durham [email protected],  Michael Brandeis  University,  Waltham [email protected],  Koohee North  Carolina  State  University,  Raleigh [email protected],  Volkmar University  of  California,  Davis [email protected],  Thomas Universität  Bielefeld thomas.hellweg@uni-­‐bielefeld.deKlapp,  Sabine Technische  Universität  Berlin [email protected]­‐berlin.deKogler,  Florian Technische  Universität  Berlin [email protected]­‐berlin.deLamas,  Joseph Texas  State  University,  San  Marcos [email protected],  Alice Duke  University,  Durham [email protected],  Catherine Duke  University,  Durham [email protected]ßner,  Jens Technische  Universität  Berlin [email protected]­‐berlin.deMishra,  Sumeet North  Carolina  State  University,  Raleigh [email protected],  Michael Helmholtz  Zentrum  Berlin michael.oberle@helmholtz-­‐berlin.dePerez-­‐Garcia,  Rodrigo Max-­‐Planck-­‐Institut  für  Kolloid-­‐  und  Grenzflächenforschung,  Potsdam Rodrigo.Perez-­‐[email protected],  Katherine North  Carolina  State  University,  Raleigh [email protected],  Günher Albert-­‐Ludwigs-­‐Universität  Freiburg [email protected]­‐freiburg.deRiegler,  Hans Max-­‐Planck-­‐Institut  für  Kolloid-­‐  und  Grenzflächenforschung,  Potsdam [email protected],  Michael University  of  North  Carolina,  Chapel  Hill [email protected],  David North  Carolina  State  University,  Raleigh [email protected],  Sergej Technische  Universität  Berlin [email protected],  Friederike Johannes-­‐Gutenberg-­‐Universität  Mainz friederike.schmid@uni-­‐mainz.deSchoen,  Martin Technische  Universität  Berlin [email protected]­‐berlin.deSeo,  Youngee University  of  North  Carolina,  Chapel  Hill [email protected],  Joseph Duke  University,  Durham [email protected],  Marek Technische  Universität  Berlin marek-­‐[email protected],  Marina University  of  North  Carolina,  Chapel  Hill [email protected]ühler,  Jan Max-­‐Planck-­‐Institut  für  Kolloid-­‐  und  Grenzflächenforschung,  Potsdam [email protected],  Michael Technische  Universität  Berlin [email protected],  Igal Northwestern  University,  Evanston [email protected],  Raffaele Technische  Universität  Berlin [email protected],  Levan Max-­‐Planck-­‐Institut  für  Kolloid-­‐  und  Grenzflächenforschung,  Potsdam [email protected],  Lynn Carnegie  Mellon  University,  Pittsburgh [email protected],  Wei-­‐Chen North  Carolina  State  University,  Raleigh [email protected],  Stefan Duke  University,  Durham [email protected],  Thomas Max-­‐Planck-­‐Institut  für  Kolloid-­‐  und  Grenzflächenforschung,  Potsdam [email protected]