Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk,...

63
Inverse cascades, zonal jets and turbulence/transport suppression in CHM model Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010

Transcript of Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk,...

Page 1: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Inverse cascades, zonal jets and

turbulence/transport suppression in

CHM model

Sergey Nazarenko, Warwick, UK

Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov,

1988-2010

Page 2: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Drift waves in fusion

devices

Rossby waves in atmospheres

of rotating planets

Page 3: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Charney-Hasegawa-Mima

equation

• Ψ – streamfunction (electrostatic potential).

• ρ – Deformation radius (ion Larmor radius).

• β – PV gradient (diamagnetic drift).

• x – east-west (poloidal arc-length)

• y – south-north (radial length).

2 2

2 2 0t x x y y x

Page 4: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Turbulence-ZF system. LH-transition

• Small-scale turbulence generates zonal flows

• ZF’s suppress waves

• Hence transport barriers, LH transition

Page 5: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Zonal Jets in Earth’s Atmosphere

Average oceanic winds on Earth (QSCAT)

Page 6: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Zonal Jets in Earth’s Oceans

Eddy-resolving simulation of Earths oceans (Earth Simulator Center/JAMSTEC)

Page 7: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Barotropic governor in GFD• James and Gray’ 1986

Page 8: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Mechanisms of zonal flow generation:

• (part 1) Anizotropic inverse cascade

• (part 2) Modulational instability

(part 3) Feedback of ZF onto turbulence:

turbulence suppression, LH transition

Page 9: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Part 1

ZF generation by anisotropic inverse cascades

Page 10: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

• Ψ – streamfunction (electrostatic potential).

• ρ – Deformation radius (ion Larmor radius).

• β – PV gradient (diamagnetic drift).

• x – east-west (poloidal arc-length)

• y – south-north (radial length).

2 2

2 2 0t x x y y x

2D Euler equation

Page 11: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Conservation laws for Euler

- energy spectrum( ) ( ) ( ) ik xE k u x r u x e dr

2

2 2

( )

( ) ( )

u E k dk

u k E k dk

- energy

-enstrophy

Page 12: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

FjØrtoft’53 argument for 2D turbulence.

• Produce turbulence at kf and have two dissipation regions at k- and k+separated by large inertial ranges.

• Production rates for energy and enstrophy are related as kf2 .

• If energy is dissipated at k+ at rate ~ then enstrophy is dissipated at a rate k+

2 >> kf2 which is a contradiction. Therefore, energy must be

dissipated at k- – inverse energy cascade.

• Similar ad absurdum argument is used to show that enstrophy cannot be dissipated at k-, and therefore cascades forward in k.

2

2 2

( )

( ) ( )

u E k dk

u k E k dk

Page 13: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Rhines scale crossover

• Nonlinear=linear → Rhinesscale.

• “Lazy 8” separates vortex-dominated and wave-dominated scales (Rhines’75, Holloway’84)

• Outside of lazy-8: Kraichnan’s isotropicinverse cascade.

• Inside lazy-8 the cascade is anisotropic and dominated by triad wave resonances.

2 2

2 2 0t x x y y x

Page 14: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Extra quadratic invariant on β-plane

• Balk, Nazarenko & Zakharov (1990)

• Adiabatic for the original β-plane equation: requires small nonlinearity and possibly random phases.

• For case kρ >>1:

Page 15: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Anisotropic cascades in β-plane turbulence

• 3 cascades cannot be isotropic.

• Let us produce turbulence near some k0, surround it by a large non-dissipative area and dissipate at large k and at small kx and small ky.

•Fjortoft’s argument separates the k-space into three non-intersecting sectors to which the energy, enstrophy and zonostrophy can cascade.

•Zonostrophy Φ forces energy E to the scales corresponding to zonal flows.

Page 16: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Numerics• Pseudo-spectral, no dissipation.

• Initial condition:

Quantify cascades via trajectory

Of centroids for E, Z and Φ:

Page 17: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Weak nonlinearity run, NL/L =k02/kβ

2=0.07

• Initial turbulence is well

within the dumbbell.

• Because of slow weakly

nonlinear evolution, we

compare with a non-

conserved quantity (red).

• Energy and zonostrophy

are well conserved,

enstrophy less well.

Page 18: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Weak nonlinearity run, NL/L =k02/kβ

2=0.07

• All three invariants

cascade as predicted.

• Energy cascades to

zonal scales along

the boundary of its

sector.

• Zonostrophy cascade

is slightly anisotropic.

Page 19: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Strong nonlinearity run, NL/L =k02/kβ

2=0.7

• Initial turbulence is at the

border of the dumbbell.

• Zonostropy is not

conserved initially, but is

conserved later.

• This is because the

nonlinearity weakens as

the inverse cascade enters

into the dumbbell.

Page 20: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Strong nonlinearity run, NL/L =k02/kβ

2=0.7

• E, Z and Φ cascade

similar to the weakly

nonlinear case.

• Faster and less

chaotic trajectories.

• Enstrophy and

Zonostrophy

cascades are almost

isotropic.

Page 21: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Vorticity field

Page 22: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Vorticity field

Page 23: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Vorticity field

Page 24: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Vorticity field

Page 25: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Vorticity field

Page 26: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Vorticity field

Page 27: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Vorticity field

Page 28: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Vorticity field

Page 29: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Vorticity field

Page 30: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Vorticity field

Page 31: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Vorticity field

Page 32: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Vorticity field

Page 33: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Vorticity field

Page 34: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Vorticity field

Page 35: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Vorticity field

Page 36: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Vorticity field

Page 37: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Vorticity field

Page 38: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Vorticity field

Page 39: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Vorticity field

Page 40: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Vorticity field

Page 41: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Vorticity field

Page 42: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Vorticity field

Page 43: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

2D spectrum

Page 44: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

2D spectrum

Page 45: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

2D spectrum

Page 46: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

2D spectrum

Page 47: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

2D spectrum

Page 48: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

2D spectrum

Page 49: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

2D spectrum

Page 50: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Part 2: Modulational Instability

• These waves are solutions of CHM equation for any amplitude. Are

they stable? (Lorentz 1972, Gill 1973).

· ·

0 0 0( , ) i i t i i tt e e k x k xx

2frequency of linear v( a es) w .xk

k F

k

0 1

1

( ,0) ( ) ( ),

( ) ( ) ( ) perturbati( o .n)Z

x x x

x x x x

· ·

· ·

· ·

( ) (0,zonal part

satellite

satellite

)

( )

( ) .

,

,

i i

Z

i i

i i

ae ae q

b e b e

b e b e

q x q x

p x p x

p x p x

x q

x p k q

x p k q

Page 51: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Instability dispersion relation

2 2 2 22 22 2 2

0 2 2( ) ( ) 0

( )( ) ( )( )x

x x

k kq F q k q

F

p

F

p

p p p p

k q

3

0 nonlinearity param t .e erk

M

Euler limit (Rayleigh instabilty);

weak monlinearity: resonant wave inetr0 ac .tion

M

M

Page 52: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Structure of instability as a function of M

Unstable region collapses onto the resonant curve. For small M

the most unstable disturbance is not zonal.

M=10 M=1

M=0.5

M=0.1

1 2

1 2( ) ( (

+ = ,

+ ) = )

k k k

k k k

Page 53: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Nonlinear stage of modulational instability

Pinching of jets predicted by Manin & SN, 1994. Transport barriers.

Growth of the q-mode compared to

predictions of linear stability. Zonal velocity profile (averaged over x).

Page 54: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Strong wave case (M = 10)

• Jet pinch, roll-up into a double vortex street. After long time, the

street breaks via a vortex pairing instability, leading to turbulence with

a PV staircase structure.

Page 55: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Weak wave case (M = 0.1)

Original drift wave experiences self-focusing, but jets do not roll into

vortices. Energy oscillates between 4-modes as predicted by the 4-mode

truncation. At long time: transition to turbulence with inclined jets.

Page 56: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Ocean jets

• From Maximenko et al 2008.

• Slightly off-zonal jets.

Page 57: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Summary for part 2.

• MI of a travelling drift wave exists for any nonlinearity M. Two limits :

Euler limit for M>>1 vs weak resonance interaction for M<<1.

• Most unstable disturbance is zonal for large M’s and an inclined wave

for small M. Inclined jets are seen of small M for long-time nonlinear

stage.

• ZF’s are mostly eastward due to the beta-effect.

• Nonlinear pinching of ZF’s (for any M). Simplest model for the

transport barriers.

• Role of MI for broad initial wave spectra?

Page 58: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Part 3: LH transition

• Small-scale turbulence causes anomalous transport, hence L-mode.

• Negative feedback loop.

• Suppressed turbulence →no transport →improved confinement & H-mode.

Balk, SN and Zakharov 1990

Page 59: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Cartoon of nonlocal interaction

• Eddy scale L decreases via shearing by ZF

• Potential enstrophy Z is conserved.

• => Eddy energy E =Z L2 is decreasing

• Total E is conserved, => E is transferred from the eddy to ZF

• Wrong! Both smaller and larger L’s are produced. The energy of the eddy is unchanged. (Kraichnan 1976).

Victor P. Starr,Physics of Negative

Viscosity Phenomena (McGraw Hill Book

Co., New York 1968).

Page 60: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Small-scale energy conservation

• Energy in SS eddies is conserved if they

are initially isotropic (Kraichnan 1976)

• 1. Dissipation: ellipse cannot get too thin.

• 2. Anisotropic initial eddies

Page 61: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Wave instabilities

• Maximum on the kx-axis at kρ ~ 1.

• γ=0 line crosses k=0 point.

Access to stored free energy:

GFD: Baroclinic instability.

In plasmas: ITG, ETG instablities.

2 2

2 2 ˆt x x y y x

Page 62: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Forced CHM simulation• Generation of ZF and

suppression of small-scale

turbulence

• Diffusion on k-space curves

(as predicted in Balk et al

1991)

• ZF saturation:

* max

ZF

f

v LU

k

Page 63: Inverse cascades, zonal jets and turbulence/transport ... · Sergey Nazarenko, Warwick, UK Balk, Connaughton, Dyachenko, Manin, Nadiga, Quinn, Zakharov, 1988-2010 . Drift waves in

Summary for all parts.

• ZF’s can be generated via modulational

instability (for narrowband initial data) and by

anisotropic inverse cascade (for broadband

initial data)

• ZF’s suppress turbulence thereby causing

transport barriers.

• All effects present in forced/dissipated CHM

model.

• Examine 2-potential models which includes

instabilities.