INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf ·...

43
JN Reddy 1 INTRODUCTION TO THE THEORY OF SHELLS Geometry of shells Kinematics of shells Displacements and strains Strain-displacement equations Stress resultants Equations of motion Shell constitutive relations Specialization to cylindrical shells Examples CONTENTS

Transcript of INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf ·...

Page 1: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy

1

INTRODUCTION TO THE THEORY OF SHELLS

• Geometry of shells• Kinematics of shells• Displacements and strains• Strain-displacement equations• Stress resultants• Equations of motion• Shell constitutive relations• Specialization to cylindrical shells• Examples

CONTENTS

Page 2: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy

GEOMETRY OF SHELLS

h

ζ

1ξ2ξMiddle surface

R2R1

= constant curve( curve)

= constant curve( curve)

2dξ

1dξ2g

1g

n

1x2x

3x

1i

rd+r r

dr

ds

Middle surface

2i

3i

Page 3: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy

GEOMETRY OF SHELLS

1 11 2 22 1 2 1 2

1 2, ( , )

, , , cos

d d d

g a g a g a a

r rr g g

g g g g

R2

n

••

rRh

ζ2g

1x2x

3x

3i

1i2i

Page 4: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy Shells: 4

KINEMATICS OF SHELLS

1 2

1 2

2

2 2 2 21 1 2 2 1 2 1 22

ˆsin

( )

( ) ( ) cos

a a

ds d d g d d

a d a d a a d d

g g

r r

n

1

ˆ

ˆ

ˆ (no sum on )

ii

d d d d d d

R

R r

R R RR G

R rG g

n

n

n

R2

n

••

rRh

ζ2g

1x2x

3x

3i

1i2i

Page 5: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy Shells: 5

1 11 2 22 3 1

1

, , ,

(no sum on )

G A G A G A

A aR

G G

2 2 2 2 2 2 2 21 1 2 2 3

2 1 1 2

1 1 1 2 2 2 1 2

2 21 1 2 2 2 1

2 2 2 1 1 1

1 1 2

2 2 2 2 1 1 1

1 1

1 1

1 1 1 1

( ) ( ) ( ) ( ) ( )

,

,

dS d d G d d d A d A d A d

A A a aA A R R

A A A A A AA A

A a AA a A a

R R

2

1

a

KINEMATICS OF SHELLS

Page 6: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy

DISPLACEMENT FIELD AND STRAINS

1 1 1 1 11

2 2 2 2 22

1

1

dS d A d d a d dR

dS d A d d a d dR

1 1 1 1 11

1 ,dS a d A dR

2 2 2 2 2

2

1dS a d A dR

ζ

12σ 21σ

13 5σ σ=23 4σ σ=

22 2σ σ=11 1σ σ=

1dξ2dξ

1dS2dS

1ξ 2ξ

Page 7: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy Shells: 7

AREAS AND VOLUME OF A SHELL ELEMENT

0 1 2 1 2 1 2 1 21 2

1 2 1 2 1 2 1 21 2

dA d d d d a a d d

dA d d d d A A d d

r rr r n n

R RR R n n

1 2 1 2 1 2

1 2 1 21 2

1 1

dV d d d dA d A A d d d

a a d d dR R

R R n

Middle surface

dr1 dr2n

dA0

x1

x2

x3r2r1

rg2g1

ζ

1ξ 2ξ

0 1 2 1 2dA a a d d 1e 3e

2e

11N

1Q

12N21N

2Q

22N

12M11M

21M22M

11 12 21 22 11 12 21 22

1 2

Membrane forces Flexural forces, , , , , ,

,N N N N M M M M

Q Q

ξ1 ξ2

ζ Surface at +ζ

dR1 dR2n

dAζ

x1

x2

x3 R2

R1R G2G1

ζ

1 2 1 2dA A A d d

1e3e

2e

Page 8: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy Shells: 8

STRAIN-DISPLACEMENT RELATIONS2

3 3

1 1

23

21

1 1 12

1 1 2 32 ,

( , , )

i k i i k ii

k ki i i k k i i i k k

k i i

k k ii i k k

j ji iij

j j i i i j

u u A u u AA A A A A A

u u A iA A

A uA uA A A A

3

3

1

1

1 1

1

,

j jk i i k

k i k j i j i k k j k k

j ji i k i

kj j i i i i i k k

j ji i

i i j j j

u Au u A uA A A A

u Au u u AA A A A A

u uu AA A

3

1

3 1 1 2 2 3 31 2

1

1 1 1, , ,

jk

kj j k k

AuA A A

A a A a A aR R

Page 9: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy Shells: 9

2

1 2 1 1 1 2 1 11 11 3 32

1 1 2 2 1 1 1 2 2 1

2 2

32 1 1 11

1 2 2 1 1

2 1 2 22 22 3

2 2 1 1 2

1 12

1

u u a a u u a au uA a R A a R

uu u a a ua R

u u a a uA a R

2

2 1 2 232

2 2 1 1 2

2 2

31 2 2 22

2 1 1 2 2

2 2 2

3 31 23 33

12

12

u u a a uA a R

uu u a a ua R

u uu u

STRAIN-DISPLACEMENT RELATIONS(simplified relations)

Page 10: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy

STRAIN-DISPLACEMENT RELATIONS(simplified relations - continued)

3 2 2 2 1 2 24 23 2 3

2 2 2 2 2 1 1 2

3 31 1 2 2 22

2 1 1 2 2

3 15 13 1

1 1 1

1 12

1 12

u u u u u a aA uA A A a R

u uu u u a a ua R

u uAA A A

1 1 2 1 1

31 1 2 2 1

3 32 2 1 1 11

1 2 2 1 1

2 2 1 1 1 2 26 12

1 1 2 2 2 1 1 2 2 1 1

12

u u u a a ua R

u uu u u a a ua R

A u A u u u aA A A A A A a

1 1 1

2 31 2 2 1

3 32 1 1 2 2 2 1 21 3 1 2

1 2 2 2 1 1 2 1 1 2 2

1

1

u a au ua R

u uu u a u a a a au u u ua a R R R

Page 11: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy Shells: 11

/2 /211 2 2 11 2 11 2 2/2 /2

2

/2 /211 2 2 11 2 11 2 2/2 /2

2

11 11/2

12 12 21/22

1

2

21

2

3

1

1

1 ,

h h

h h

h h

h h

h

h

s

dS d a d d N a dR

dS d a d d M a dR

N NN d N

RQ K Q

− −

− −

= + ≡

= + ≡

= +

∫ ∫

∫ ∫

∫/2

21/2

23

/2 /211 11 22/2 /2

12 12

22

1

2

21 2 12

2

1

1

1 , 1

h

h

s

h h

h h

dR

K

M MM

d dR M R

− −

= +

= + = +

∫ ∫

STRESS RESULTANTS

Page 12: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy

ASSUMPTIONS 1. The transverse normal is inextensible (i.e., ) and the

transverse normal stress is small compared with the other normal stress components and may be neglected.

2. Normals to the undeformed middle surface of the shell before deformation remain straight, but not necessarily normal after deformation.

3. The deflections and strains are sufficiently small so that the quantities of second- and higher-order magnitude, except for second-order rotations about the transverse normals, may be neglected in comparison with the first-order terms.

4. The rotations about the and axes are moderate so that we retain second-order terms (i.e., terms that are products and squares of the terms ) in the strain-

displacement relations (the von K'arm'an nonlinearity).

3 0

1 2

3u a uR

Page 13: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy 2-D Problems: 13

DISPLACEMENTS AND STRAINS0

1 1 2 1 1 2 1 1 2

02 1 2 2 1 2 2 1 2

03 1 2 3 1 2

( , , , ) ( , , ) ( , , )( , , , ) ( , , ) ( , , )( , , , ) ( , , )

u t u t tu t u t tu t u t

20 00 0 0

1 3 31 2 1 1 1 1 2 11

1 1 2 2 1 1 1 1 1 2 2

20 00 0 02 3 32 1 2 2 2 2 1 2

22 2 1 1 2 2 2 2 2 1 1

1 12

1 12

a u uu u a a u aA a R A R a

a u uu u a a u aA a R A R a

0 00 03 32 2 1 1

3 4 2 5 12 2 2 2 1 1 1 1

0 00 00 03 32 2 1 1 1 2

6 1 21 1 2 2 2 1 1 2 1 1 2 2

1 10

1

, ,u ua u a uA a R A a R

u uA u A u a au uA A A A A A R R

2 2 1 1

1 1 2 2 2 1

A AA A A A

Page 14: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy Shells: 14

EQUATIONS OF MOTION(obtained through the use of virtual work principle)

1 2 12 11 1 21 12 22 1

2 1 1 2 2 1 1

0 00 0 2 0 23 311 1 1 12 2 2 1 1

0 12 21 1 1 1 2 1 2 2

21 22 2 12 21

1 2 2 1 1

1

1

ˆ

( ) ( )

( ) ( )

a a Qa N a N N N fa a R

u uN a u N a u uI Ia R R a R R t t

aa N a N Na a

1 211 2

2 2

0 00 0 2 0 23 322 2 2 12 1 1 2 2

0 12 22 2 2 2 1 2 1 1

0 00 03 32 1 1 2 2

11 121 2 1 1 1 1 2 2

122

2 2

1

ˆ

ˆ

ˆ

( ) ( )

a QN fR

u uN a u N a u uI Ia R R a R R t t

u ua a u a uN Na a a R R

a Na

0 00 03 32 2 1 1

12 2 1 1 22 2 1 1 1 2

2 0311 22

3 0 21 2

( ) ( )u ua u a uN a Q a QR R

uN N f IR R t

Page 15: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy 2-D Problems: 15

1 22 11 1 21 12 22 1

1 2 1 2 2 1

2 0 21 1

1 22 2

2 12 12 1 22 21 11 2

2 1 1 2 1 2

2 0 22 2

1 22 2

1

1

( ) ( )

( ) ( )

a aa M a M M M Qa a

uI It t

a aa M a M M M Qa a

uI It t

EQUATIONS OF MOTION

Page 16: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy Shells: 16

Stress-Strain Relations

11 1255

1255

66

1 12 2 211 12 22

12 21 12 21 1

22

2 21

00

00

0 0

1 1 1

,

, , ,

yz

xx xxxz xz

yy yyyz

xy xy

Q QQ

Q QQ

Q

E E EQ Q Q

66 12 4 23 55 134, , ,Q G Q G Q G

CONSTITUTIVE RELATIONS

011 11 12 1 11 1

1

11 12 1

022 12 22 2 22 12 22 2

012 6 12

166 66 6

0 00 0

0 0 0 0 ,

MN A AN

D DM D DM

AD

AN A

0442 4

0551 5

00s

AQK

AQ

Resultant-Strain Relations

322 2

2 2 12,

h h

h hij ij ij ij ij ijhA Q d Q h D Q d Q

Page 17: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy Shells: 17

STRAIN-DISPLACEMENT RELATIONS00 0

1 31 2 1

1 1 2 2 1

00 02 32 1 20

12 2 1 1 20

0 00 3 2

20 2 2 2

0 00 3 1

11 1 1

0 02 1 1

1 1 2

2

4

5

6

2

1

1

1

1

1

a uu u aa a R

a uu u aa a R

u ua R

u ua R

u u aa a

0 01 2 2

2 2 1 1

1 u u aa a

1 2 1

1 1 2 2111 2 1 2

2 2 1 11

2 1 1 1 2 2

1 1 2 2 2 2 1 1

2

6

1

1

1 1

aa a

aa a

a aa a a a

Page 18: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy

2 0 211 1 1

21 0 12 1 0 12 21 2

2 0 222 2 2 2

12 0 12 2 0 12 21 2

2 031 2 22

3 0 21 2

2 0 211 21 1 1

1 1 22 21 2

2 012 22 2

2 1 21 2

( )

( )

N uN C M f I Ix x t t

N Q uN C M f I Ix x R t t

uQ Q N f Ix x R t

M M uQ I Ix x t t

M M uQ Ix x t

22

2 2I

t

1 2 1 1 1 2 2 2 1 21 0 1( / ) , , , , ,R R R a x a x a a R

SPECIALIZATION TO CYLINDRICAL SHELLS

R1 xξ =

y2ξ θ=

+

zζ =

yfxf

zf

Nθθ

Nθθ

xN θ

xxxN

xN θ

zζ =xxN

xN θ

xN θ

2 yξ =

Page 19: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy 2-D Problems: 19

THIN CYLINDRICAL SHELLS

1 1 1 2 2 2 0 11 12 22

11 12 22 1 2

0 0 01 0 2 0 3 0 1 2

1 2, , / , , , ,

, , , , ,

, , , ,

xx x

xx x x

x

a x x a x R C R N N N N N N

M M M M M M Q Q Q Q

u u u v u w

R1 xξ =

y2ξ θ=

+

zζ =

θ

1 xξ =

zζ =2 yξ =

yfxf

zf

Nθθ

Nθθ

xN θ

xxxN

xN θ

zζ =xxN

xN θ

xN θ

2 yξ =

Page 20: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy Cylindrical shells: 20

THIN CYLINDRICAL SHELLS

1 1 0 12

1 1 0 22

1 0 3

1 0 4

1 0 5

( )

( )

( )

( )

( )

xxx x x

x x

xz

xx xx

x

N N M fx R R

N QN M fx R R R

Q Q N fx R R

M M Qx R

M M Qx R

R1 xξ =

y2ξ θ=

+

zζ =

yfxf

zf

Nθθ

Nθθ

xN θ

xxxN

xN θ

zζ =xxN

xN θ

xN θ

2 yξ =

Page 21: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy Cylindrical shells: 21

CONSTITUTIVE EQUATIONS FOR CYLINDRICAL SHELLS

0

0 02

0 0

1 011 0

11 10 0

2

( )

xx

x

uxN

v wEhNR R

N v ux R

0 03

20

11 011 0

12 11 10 0

2

( ),

x

x

xx

s

xxx

x w vMQEh R RM K GhQR w

Mx

x R

Page 22: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy Pure membrane state: 22

Internal pressure

Rapid change of curvature causes bending deformation under any load

p

Stiffening ring

Local bending

pDeformed centerline of the shell

MEMBRANE AND BENDING STATES

Page 23: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy Pure membrane state: 23

Stiffening ring

Local bending

Deformed centerline of the shell Temperature

change, T∆

○○○

Allows pure membranestate of stress

○○○

Membrane stateof stress is onlyapproximate

Bending state ofstress exists

MEMBRANE AND BENDING STATES

Page 24: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy Membrane theory of shells: 24

1 0

1 0

0

xx xx

x

z

N N fx R

N N fx R

N fR

MEMBRANE THEORY OF CYLINDRICAL SHELLS

The equilibrium equations governing the membrane state of deformation and stress, called the membrane theory, are obtained by setting bending moments and transverse shear forces to zero:

R1 xξ =

y2ξ θ=

+

zζ =

yfxf

zf

Nθθ

Nθθ

xN θ

xxxN

xN θ

zζ =xxN

xN θ

xN θ

2 yξ =

Page 25: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy Membrane theory of shells: 25

1 0 1

1 0 2

0 3

( )

( )

( )

xx xx

x

z

N N fx R

N N fx R

N fR

ANALYTICAL SOLUTIONSof the membrane theory of shells

EXAMPLE 1: Consider a circular cylindrical shell of radius R and thickness h, filled with liquid, and simply supported at itsends. Determine assuming that there are no axial forces at the ends of the shell and the bending deformation is negligible.

, , andx xxN N N

R

+

θz

L

zx

+

θcosR

Page 26: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy Membrane theory of shells: 26

The components of load for this case are is the pressure at the axis of the tube and is the specific weight of the liquid. We have

0

0

0 and cos ,where is the pressure at the axis of the tube and

is the specific weight of the liquid.

x zf f f p Rp

2

00 cosz

N f N p R RR

From the Eq. (3) we obtain

EXAMPLE 1: CYLINDRICAL SHELL FILLED WITH LIQUID

Page 27: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy Exact solution of membrane shells: 27

2

1

12

sin sin ( )

( )cos cos ( ) ( )

xx

xx xxx

N N R N x R Ax R

N N A x xx N A Bx R R R

From the Eqs. (1) and (2) we obtain

EXAMPLE 1 CONTINUED

2 20 0 5

2( ) ( )cos , . sin , cosx xxN p R R N R L x C N xL x

Using the end conditions

Thus, we have

0 0 0 0 0 01 102 2

( , ) , ( , ) , ( , ) : ( )

( , ) : ( ) cos ( ) sin

xx xx xx

xx

N N L N B

N L A RL A RL C

In the absence of any torsional moment, we have C=0

Page 28: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy Exact solutions of shells: 28

EXAMPLE 2: CYLINDRICAL PANEL UNDER ITS OWN WEIGHT

θθNxxN

θxN

x0.5L

+R

A

BC

D

z ζ=

coszf p θ= −

sinf pθ θ= p

0.5L

Consider a cylindrical shell of semicircular cross section supporting its own weight, which is assumed to be distributed uniformly over the surface of the shell. The shell is assumed to be supported at the four corners A, B, C, and D, but the edges AB and CD are free, as shown in the figure. Using the membrane theory of shells and assuming that there are no axial forces at the ends of the shell, , determine the forces, and displacements .

2 0 2 0( / ) , ( / )xx xxN L N L )( , ,x xxN N N

0 0 0, , u v w

Page 29: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy

EXAMPLE 2: CYLINDRICAL PANEL UNDER ITS OWN WEIGHT

The body force components arewhere p is the weight per unit area. From Eq. (3), we obtain

0, sin , cosx zf f p f p

cosN pR

21 1 22 'sin ( ), cos ( ) ( )x xx

p xN xp C N x C CR R

Equations (2) and (1), respectively, yield

2 2( / , ) ( / , )x xN L N L Since (by symmetry), we must have. . Also, the boundary conditions give1 0( )C 2 0( / )xxN L

2

2 4( ) cospLC

R

2 22 44

cos , sin , cos( )x xxpN pR N xp N L xR

Thus, the complete solution is

Page 30: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy Shells: 30

EXAMPLE 2: Cylindrical panel under its own weight (continued)

Plots of the variations of these forces with $\theta$, for a fixed $x$, are shown in figure below.

Exact solutions of shells: 30

C

θθθN θxN xxNθf

zf

g p

pR2 24

4( )p L x

R

2px

Page 31: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy Cylindrical shells: 31

The displacements can be determined using the constitutive relations

0

0 02

0 0

1 011 0

11 10 0

2

( )

xx

x

uxN

v wEhNR R

N v ux R

0

0 0

0 0

1 01 1 1 0

0 0 2 11 ( )

xx

x

ux N

v w NEh R R

Nu vR x

Inverting the relations

EXAMPLE 2: Cylindrical panel under its own weight (continued)

Page 32: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy Shells: 32

EXAMPLE 2: Cylindrical shell filled with liquid(continued)

From the first equation, we have

2

2 20 14

cosxxu p LN N x Rx Eh ERh

Integrating with respect to x gives2 2

20 33 4( , ) cos ( )px x Lu x R C

ERh

Using the boundary condition (by symmetry)

0 30 0 0( , ) , ( )u C

The third equation can now be expressed as2 2

20 02

1 2 1 4 33 4

( ) ( ) sinxv u px x LN Rx R Eh ER h

Page 33: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy Shells: 33

Upon integration, we have2 2 2

20 42 4 3

2 6 4( , ) ( ) sin ( )px x Lv x R C

ER h

The boundary condition allows us to calculateas

2 22

4 2

5 4 38 24

( ) ( ) sinpL LC RER h

We have2 2 2 2 2

0 2 4 5 4 24 4 3192

( , ) ( ) sin( ) ( )pv x L x L x REhR

0 2 0( / , )v L

4( )C

EXAMPLE 2: Cylindrical panel under its own weight (continued)

Page 34: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy Shells: 34

Finally, using the second equation, we can write

EXAMPLE 2: Cylindrical panel under its own weight (continued)

00

2 2 2 2 2 42 4 5 4 24 4 192

192( ) cos{( ) ( ) }

xxv Rw N N

Ehp L x L x R R

EhR

Thus, the displacement field is given by

2 2 20

2 2 2 2 20 2

2 2 2 2 2 40 2

4 3 1212

4 5 4 24 4 3192

4 5 4 24 4 192192

( , ) cos

( , ) ( ) sin

( , ) ( ) cos

( ) ( ){( ) ( ) }

pxu x x L RERh

pv x L x L x REhR

pw x L x L x R REhR

We note that implying that there is some bending state of stress at x = L/2.

0 2 0( / , ) ,w L

Page 35: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy Flexure of shells: 35

Flexural Theory for Axisymmetric Loads

0 0, ,x xxxx z x

dQ dMNN f Qdx R dx

If the cylindrical shell is axisymmetrically loaded, i.e., the shell is subjected to only forces normal to the surface, the deformation is independent of , , are zero, and

are constant. Then the second and fifth equations of equilibrium of cylindrical shells (slide 20) are trivially satisfied, and the remaining three equations take the form

( ), ,x xN M Q 0 0(i .e., )v

( , )N M

There are two equations in three unknowns, requiring us to use kinematic relations. We consider here isotropic material:

211 22 12

3 211 22 12

112 1/ ( ),/ ( ),

A A A Eh A AD D D Eh D D

Page 36: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy Flexure of axismmetric cylindrical shells: 36

Flexural Theory of Thin Shells for Axisymmetric Loads

0 0 0 02

0 0 02

2301

2 2

2 30 0

2 3

01

1

12 1( )

,

xx

xx

xxxx x

du w du wEhNdx R dx Rdu w EhwEhNdx R R

d wdEhM Ddx dx

d w dM d wM M D Q Ddx dx dx

2 220 0

2 2 2 2xx

z zd M d w EhwN df D f

dx R dx dx R

Stress resultant-displacement relations

Equilibrium equation in terms of transverse deflection

Page 37: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy Flexure of shells: 37

EXAMPLE 3: Flexure of Thin Shells for Axisymmetric Loads

Consider a long circular cylindrical shell of radius R, subjected to uniform bending moment and shearing force at the end x = 0. Determine the deflection .

0Q0M0w

0 1 2 3 4( ) cos sin cos sinx xw x e K x K x e K x K x

The displacement field is given by

424

EhR D

where .

Since the applied loads and are expected to produce local bending and shear and their influence on the solution is expected to die out rapidly with x increasing (St. Venant's principle), the constants and must be zero, giving the solution

0M 0Q0w

1K 2K

Page 38: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy Flexure of shells: 38

EXAMPLE 3: Flexure of Thin Shells for Axisymmetric Loads (cont.)

2 30 0

0 0 0 02 30 0( ) , ( )( ) ( )xx x x xd w d wM D M Q D Qdx dx

We obtain

0 3 4( ) cos sinxw x e K x K x

The remaining constants, and , are determined using theboundary conditions at x = 0:

3K 4K

0 0 03 43 22 2

,Q M MK KD D

0 0 03

12

( ) cos sin cos( )xw x e M x x Q xD

The solution becomes

(1)

Page 39: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy Flexure of shells: 39

z

x+0M

0Q

L

R+θ

0Q0M

z

xxM

xQxxN

x

θ

z

θθN

00 0 2 0 3 0 3 0 13 2

0 1 0 4 0 1 0 4

0 2 0 33

1 2

3 4

1 1 22 2

1

2

( ) ( ) , ( ) ( )

( ) ( ) , ( ) ( )

( ) ( )

( ) cos sin ( ) cos sin( ) cos ,

, ,

xx

x x

x

dww M f x Q f x M f x Q f xD dx D

M M f x Q f x M M f x Q f x

EhN M f x Q f xR D

f x e x x f x e x xf x e x f

( ) sinxx e x

EXAMPLE 3: Flexure of Thin Shells for Axisymmetric Loads (cont.)

Page 40: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy Flexure of shells: 40

EXAMPLE 4: Flexure of Thin Shells for Axisymmetric Loads

Consider a long isotropic circular cylindrical shell of radius R and thickness h, subjected to uniform internal pressure of intensity p. Determine the deflection and bending moment

when the edges are built-in.0w

xxM

L

2R

x0p

pp 2pR

h θσ

h θσ

pRhθ

σ =

L

2R 0p

Page 41: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy Flexure of shells: 41

2 2, , ,xx xx

pR pR pRN N pRh h

EXAMPLE 4: Flexure of Thin Shells for Axisymmetric Loads

If the shell is free of any geometric constraints, the shellexperiences membrane forces and hoop and circumferential stresses of

where h is the thickness of the cylinder. The cylinder experiences an increase in the radius of the cylinder by the amount

2

0 22xx

R pRRE Eh

Since the ends of the cylinder are restrained from moving out, the shell develops local bending stresses at the edges. If the shell is sufficiently long, we can use the solution (1) of Example 3 to

Page 42: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy Flexure of shells: 42

EXAMPLE 4: Flexure of Thin Shells for Axisymmetric Loads (continued)

determine the bending moment and shear force developed at the ends that produce zero deflection and slope there. Thus, the deflection for the present problem is the sum of the deflection in Eq. (1) and

0M 0Q

0

0 0 0 03

12

( ) cos sin cos( )xw x e M x x Q xD

The boundary conditions yield00 0 0 0, atdww x

dx

2 30 0 0 022 4

2,p pM D Q D

Page 43: INTRODUCTION TO THE THEORY OF SHELLSmechanics.tamu.edu/.../03/Lecture-09-Linear_Shells.pdf · THEORY OF SHELLS • Geometry of shells ... , ,, 4 23 55 13. CONSTITUTIVE RELATIONS.

JN Reddy Flexure of shells: 43

2

0

2

1

2

( ) cos sin ,

( ) sin cos , ( ) cos

( )x

x xxx x

pRw x e x xEh

p pM x e x x Q x e x

EXAMPLE 4: Flexure of Thin Shells for Axisymmetric Loads (continued)

The solution becomes

The maximum deflection occurs for large values of x and it is equal to ; the maximum bending and shear forces occur at x = 0 and they are

0

0 22max max max, ,p pw M Q

More examples can be found in the author’s book on plates and shells.