Introduction to Supersymmetry...0 R f , L f h 0 h Figure 3: Scalar boson contribution to the Higgs...

28
Introduction to Supersymmetry

Transcript of Introduction to Supersymmetry...0 R f , L f h 0 h Figure 3: Scalar boson contribution to the Higgs...

Page 1: Introduction to Supersymmetry...0 R f , L f h 0 h Figure 3: Scalar boson contribution to the Higgs mass term via the trilinear coupling. i m2 h j 2 = i N R d4k (2ˇ)4 h i k2 m2 L +

Introduction toSupersymmetry

Page 2: Introduction to Supersymmetry...0 R f , L f h 0 h Figure 3: Scalar boson contribution to the Higgs mass term via the trilinear coupling. i m2 h j 2 = i N R d4k (2ˇ)4 h i k2 m2 L +

Unreasonable effectiveness of the SM

LYukawa = − yt√2H0tLtR + h.c.

H0 = 〈H0〉+ h0 = v + h0

mt = yt v√2

0

R ,L

t t

h h0

Figure 1: The top loop contribution to the Higgs mass term.

Page 3: Introduction to Supersymmetry...0 R f , L f h 0 h Figure 3: Scalar boson contribution to the Higgs mass term via the trilinear coupling. i m2 h j 2 = i N R d4k (2ˇ)4 h i k2 m2 L +

−iδm2h|top = (−1)Nc

∫d4k

(2π)4 Tr[−iyt√

2i

6k−mt

(−iy∗t√

2

)i

6k−mt

]= −2Nc|yt|2

∫d4k

(2π)4k2+m2

t

(k2−m2t )2

k0 → ik4, k2 → −k2E

−iδm2h|top = iNc|yt|2

8π2

∫ Λ2

0dk2Ek2E(k2E−m

2t )

(k2E+m2t )2

x = k2E +m2

t

δm2h|top = −Nc|yt|2

8π2

∫ Λ2

m2tdx(

1− 3m2t

x +2m4

t

x2

)= −Nc|yt|2

8π2

[Λ2 − 3m2

t ln(

Λ2+m2t

m2t

)+ . . .

]

Page 4: Introduction to Supersymmetry...0 R f , L f h 0 h Figure 3: Scalar boson contribution to the Higgs mass term via the trilinear coupling. i m2 h j 2 = i N R d4k (2ˇ)4 h i k2 m2 L +

Lscalar = −λ2 (h0)2(|φL|2 + |φR|2)− h0(µL|φL|2 + µR|φR|2)−m2

L|φL|2 −m2R|φR|2

0

φ , φRL

h h0

Figure 2: Scalar boson contribution to the Higgs mass term via thequartic coupling.

Page 5: Introduction to Supersymmetry...0 R f , L f h 0 h Figure 3: Scalar boson contribution to the Higgs mass term via the trilinear coupling. i m2 h j 2 = i N R d4k (2ˇ)4 h i k2 m2 L +

0

Rφ ,

h h0

Figure 3: Scalar boson contribution to the Higgs mass term via thetrilinear coupling.

−iδm2h|2 = −iλN

∫d4k

(2π)4

[i

k2−m2L

+ ik2−m2

R

]δm2

h|2 = λN16π2

[2Λ2 −m2

L ln(

Λ2+m2L

m2L

)−m2

R ln(

Λ2+m2R

m2R

)+ . . .

].

−iδm2h|3 = N

∫d4k

(2π)4

[(−iµL i

k2−m2L

)2

+(−iµR i

k2−m2R

)2]

δm2h|3 = − N

16π2

[µ2L ln

(Λ2+m2

L

m2L

)+ µ2

R ln(

Λ2+m2R

m2R

)+ . . .

].

Page 6: Introduction to Supersymmetry...0 R f , L f h 0 h Figure 3: Scalar boson contribution to the Higgs mass term via the trilinear coupling. i m2 h j 2 = i N R d4k (2ˇ)4 h i k2 m2 L +

If N = Nc and λ = |yt|2 then Λ2 cancels

If mt = mL = mR and µ2L = µ2

R = 2λm2t log Λ are canceled as well

SUSY will guarantee these relations

Page 7: Introduction to Supersymmetry...0 R f , L f h 0 h Figure 3: Scalar boson contribution to the Higgs mass term via the trilinear coupling. i m2 h j 2 = i N R d4k (2ˇ)4 h i k2 m2 L +

Coleman-Mandula

Page 8: Introduction to Supersymmetry...0 R f , L f h 0 h Figure 3: Scalar boson contribution to the Higgs mass term via the trilinear coupling. i m2 h j 2 = i N R d4k (2ˇ)4 h i k2 m2 L +

Golfand-Lichtman

Page 9: Introduction to Supersymmetry...0 R f , L f h 0 h Figure 3: Scalar boson contribution to the Higgs mass term via the trilinear coupling. i m2 h j 2 = i N R d4k (2ˇ)4 h i k2 m2 L +

Haag-Lopuszanski-Sohnius

Page 10: Introduction to Supersymmetry...0 R f , L f h 0 h Figure 3: Scalar boson contribution to the Higgs mass term via the trilinear coupling. i m2 h j 2 = i N R d4k (2ˇ)4 h i k2 m2 L +

SUSY algebra

Qα, Q†α = 2σµααPµ,

σµαα = (1, σi) σµαα = (1,−σi)

σ1 =

(0 11 0

)σ2 =

(0 −ii 0

)σ3 =

(1 00 −1

)[Pµ, Qα] = [Pµ, Q

†α] = 0

[Qα, R] = Qα [Q†α, R] = −Q†α

H = P 0 = 14 (Q1Q

†1 +Q†1Q1 +Q2Q

†2 +Q†2Q2)

Page 11: Introduction to Supersymmetry...0 R f , L f h 0 h Figure 3: Scalar boson contribution to the Higgs mass term via the trilinear coupling. i m2 h j 2 = i N R d4k (2ˇ)4 h i k2 m2 L +

(−1)F |boson〉 = +1 |boson〉(−1)F |fermion〉 = −1 |fermion〉

(−1)F , Qα = 0∑i |i〉〈i| = 1

so

∑i〈i|(−1)FP 0|i〉 = 1

4

(∑i〈i|(−1)FQQ†|i〉+

∑i〈i|(−1)FQ†Q|i〉

)= 1

4

(∑i〈i|(−1)FQQ†|i〉+

∑ij〈i|(−1)FQ†|j〉〈j|Q|i〉

)= 1

4

(∑i〈i|(−1)FQQ†|i〉+

∑ij〈j|Q|i〉〈i|(−1)FQ†|j〉

)= 1

4

(∑i〈i|(−1)FQQ†|i〉+

∑j〈j|Q(−1)FQ†|j〉

)= 1

4

(∑i〈i|(−1)FQQ†|i〉 −

∑j〈j|(−1)FQQ†|j〉

)= 0.

Page 12: Introduction to Supersymmetry...0 R f , L f h 0 h Figure 3: Scalar boson contribution to the Higgs mass term via the trilinear coupling. i m2 h j 2 = i N R d4k (2ˇ)4 h i k2 m2 L +

SUSY:Qα|0〉 = 0

implies that the vacuum energy vanishes

〈0|H|0〉 = 0

SUSY breaking:Qα|0〉 6= 0

and the vacuum energy is positive

〈0|H|0〉 6= 0

Page 13: Introduction to Supersymmetry...0 R f , L f h 0 h Figure 3: Scalar boson contribution to the Higgs mass term via the trilinear coupling. i m2 h j 2 = i N R d4k (2ˇ)4 h i k2 m2 L +

(b)V

φ

VV

φ

φ φsdf

sdfasd

V(a)

(c) (d)

Page 14: Introduction to Supersymmetry...0 R f , L f h 0 h Figure 3: Scalar boson contribution to the Higgs mass term via the trilinear coupling. i m2 h j 2 = i N R d4k (2ˇ)4 h i k2 m2 L +

SUSY representationsmassive particle rest frame: pµ = (m,~0).

Qα, Q†α = 2mδααQα, Qβ = 0

Q†α, Q†β = 0

Clifford vacuum:

|Ωs〉 = Q1Q2|m, s′, s′3〉,Q1|Ωs〉 = Q2|Ωs〉 = 0

massive multiplet:

|Ωs〉Q†1|Ωs〉, Q

†2|Ωs〉

Q†1Q†2|Ωs〉

Page 15: Introduction to Supersymmetry...0 R f , L f h 0 h Figure 3: Scalar boson contribution to the Higgs mass term via the trilinear coupling. i m2 h j 2 = i N R d4k (2ˇ)4 h i k2 m2 L +

massive “chiral” multiplet:

state s3

|Ω0〉 0

Q†1|Ω0〉, Q†2|Ω0〉 ± 12

Q†1Q†2|Ω0〉 0

massive vector multiplet:

state s3

|Ω 12〉 ± 1

2

Q†1|Ω 12〉, Q†2|Ω 1

2〉 0, 1, 0,−1

Q†1Q†2|Ω 1

2〉 ± 1

2

Page 16: Introduction to Supersymmetry...0 R f , L f h 0 h Figure 3: Scalar boson contribution to the Higgs mass term via the trilinear coupling. i m2 h j 2 = i N R d4k (2ˇ)4 h i k2 m2 L +

Massless particlesframe: pµ = (E, 0, 0,−E)

Q1, Q†1 = 4E

Q2, Q†2 = 0

Qα, Qβ = 0

Q†α, Q†β = 0

Clifford vacuum:

|Ωλ〉 = Q1|E, λ′〉,Q1|Ωλ〉 = 0

〈Ωλ|Q2Q†2|Ωλ〉+ 〈Ωλ|Q†2Q2|Ωλ〉 = 0

〈Ωλ|Q2Q†2|Ωλ〉 = 0

Page 17: Introduction to Supersymmetry...0 R f , L f h 0 h Figure 3: Scalar boson contribution to the Higgs mass term via the trilinear coupling. i m2 h j 2 = i N R d4k (2ˇ)4 h i k2 m2 L +

massless supermultipletstate helicity|Ωλ〉 λ

Q†1|Ωλ〉 λ+ 12

CPT invariance requires:

state helicity|Ω−λ− 1

2〉 −λ− 1

2

Q†1|Ω−λ− 12〉 −λ

Page 18: Introduction to Supersymmetry...0 R f , L f h 0 h Figure 3: Scalar boson contribution to the Higgs mass term via the trilinear coupling. i m2 h j 2 = i N R d4k (2ˇ)4 h i k2 m2 L +

massless chiral multipletstate helicity|Ω0〉 0

Q†1|Ω0〉 12

include CPT conjugate states:

state helicity|Ω− 1

2〉 − 1

2

Q†1|Ω− 12〉 0

Page 19: Introduction to Supersymmetry...0 R f , L f h 0 h Figure 3: Scalar boson contribution to the Higgs mass term via the trilinear coupling. i m2 h j 2 = i N R d4k (2ˇ)4 h i k2 m2 L +

massless vector multipletstate helicity|Ω 1

2〉 1

2

Q†1|Ω 12〉 1

and its CPT conjugate:

state helicity|Ω−1〉 −1

Q†1|Ω−1〉 − 12

Page 20: Introduction to Supersymmetry...0 R f , L f h 0 h Figure 3: Scalar boson contribution to the Higgs mass term via the trilinear coupling. i m2 h j 2 = i N R d4k (2ˇ)4 h i k2 m2 L +

Superpartnersfermion ↔ sfermionquark ↔ squarkgauge boson ↔ gauginogluon ↔ gluino

Page 21: Introduction to Supersymmetry...0 R f , L f h 0 h Figure 3: Scalar boson contribution to the Higgs mass term via the trilinear coupling. i m2 h j 2 = i N R d4k (2ˇ)4 h i k2 m2 L +

Extended SUSY

Qaα, Q†αb = 2σµααPµδ

ab

Qaα, Qbβ = 0

Q†αa, Q†βb = 0

where

a, b = 1, . . . ,N

U(N )R R-symmetry

massless multiplets: pµ = (E, 0, 0,−E)

Qa1 , Q†1b = 4Eδab ,

Qa2 , Q†2b = 0.

Page 22: Introduction to Supersymmetry...0 R f , L f h 0 h Figure 3: Scalar boson contribution to the Higgs mass term via the trilinear coupling. i m2 h j 2 = i N R d4k (2ˇ)4 h i k2 m2 L +

general massless multipletstate helicity degeneracy|Ωλ〉 λ 1

Q†1a|Ωλ〉 λ+ 12 N

Q†1aQ†1b|Ωλ〉 λ+ 1 N (N − 1)/2

......

...

Q†11Q†12 . . . Q

†1N |Ωλ〉 λ+N/2 1

Page 23: Introduction to Supersymmetry...0 R f , L f h 0 h Figure 3: Scalar boson contribution to the Higgs mass term via the trilinear coupling. i m2 h j 2 = i N R d4k (2ˇ)4 h i k2 m2 L +

N = 2 massless vector multipletstate helicity degeneracy|Ω−1〉 −1 1

Q†|Ω−1〉 − 12 2

Q†Q†|Ω−1〉 0 1

with the addition of the CPT conjugate:

state helicity degeneracy|Ω0〉 0 1

Q†|Ω0〉 12 2

Q†Q†|Ω0〉 1 1

built from one N = 1 vector multiplet and one N = 1 chiral multiplet.

Page 24: Introduction to Supersymmetry...0 R f , L f h 0 h Figure 3: Scalar boson contribution to the Higgs mass term via the trilinear coupling. i m2 h j 2 = i N R d4k (2ˇ)4 h i k2 m2 L +

N = 2 Hypermultipletstate helicity degeneracy|Ω− 1

2〉 − 1

2 1 χαQ†|Ω− 1

2〉 0 2 φ

Q†Q†|Ω− 12〉 1

2 1 ψ†α

gauge-invariant mass term: ψαχα

N = 2 is vector-like

Page 25: Introduction to Supersymmetry...0 R f , L f h 0 h Figure 3: Scalar boson contribution to the Higgs mass term via the trilinear coupling. i m2 h j 2 = i N R d4k (2ˇ)4 h i k2 m2 L +

N = 4 massless vector supermultipletstate helicity R|Ω−1〉 −1 1

Q†|Ω−1〉 − 12 4

Q†Q†|Ω−1〉 0 6Q†Q†Q†|Ω−1〉 1

2 4Q†Q†Q†Q†|Ω−1〉 1 1

vector-like theory

Page 26: Introduction to Supersymmetry...0 R f , L f h 0 h Figure 3: Scalar boson contribution to the Higgs mass term via the trilinear coupling. i m2 h j 2 = i N R d4k (2ˇ)4 h i k2 m2 L +

Massive SupermultipletsQaα, Q

†αb = 2mδααδ

ab

state spin|Ωs〉 s

Q†αa|Ωs〉 s+ 12

Q†αaQ†βb|Ωs〉 s+ 1

...

Q†11Q†21Q

†12Q

†22 . . . Q

†1NQ

†2N |Ωλ〉 s

Page 27: Introduction to Supersymmetry...0 R f , L f h 0 h Figure 3: Scalar boson contribution to the Higgs mass term via the trilinear coupling. i m2 h j 2 = i N R d4k (2ˇ)4 h i k2 m2 L +

N = 2 massive supermultipletstate (dR, 2j + 1)|Ω0〉 (1, 1)

Q†|Ω0〉 (2, 2)Q†Q†|Ω0〉 (3, 1) + (1, 3)

Q†Q†Q†|Ω0〉 (2, 2)Q†Q†Q†Q†|Ω0〉 (1, 1)

16 states: five of spin 0, four of spin 12 , and one of spin 1.

Page 28: Introduction to Supersymmetry...0 R f , L f h 0 h Figure 3: Scalar boson contribution to the Higgs mass term via the trilinear coupling. i m2 h j 2 = i N R d4k (2ˇ)4 h i k2 m2 L +

N = 4 massive supermultipletstate (R, 2j + 1)|Ω0〉 (1, 1)

Q†|Ω0〉 (4, 2)Q†Q†|Ω0〉 (10, 1) + (6, 3)

Q†Q†Q†|Ω0〉 (20, 2) + (4, 4)Q†Q†Q†Q†|Ω0〉 (20′, 1) + (15, 3) + (1, 5)

Q†Q†Q†Q†Q†|Ω0〉 (20, 2) + (4, 4)Q†Q†Q†Q†Q†Q†|Ω0〉 (10, 1) + (6, 3)

Q†Q†Q†Q†Q†Q†Q†|Ω0〉 (4, 2)Q†Q†Q†Q†Q†Q†Q†Q†|Ω0〉 (1, 1)

which contains 256 states, including eight spin 32 states and one spin 2

state