Introduction to Molecular Mechanics · Molecular vs Quantum Mechanics: An Analogy H^ Ψ = EΨ E...

39
Introduction to Molecular Mechanics CHEM 430

Transcript of Introduction to Molecular Mechanics · Molecular vs Quantum Mechanics: An Analogy H^ Ψ = EΨ E...

Page 1: Introduction to Molecular Mechanics · Molecular vs Quantum Mechanics: An Analogy H^ Ψ = EΨ E total = E bond + E angle + E bond-angle + E torsion + E repulsion + E dispersion +

Introduction to Molecular Mechanics

CHEM 430

Page 2: Introduction to Molecular Mechanics · Molecular vs Quantum Mechanics: An Analogy H^ Ψ = EΨ E total = E bond + E angle + E bond-angle + E torsion + E repulsion + E dispersion +

Molecular vs Quantum Mechanics: An Analogy

HΨ = EΨ^

E total = E bond + E angle

+ E bond-angle + E torsion

+ E repulsion + E dispersion

+ E charge + E polarization

+ E solvation + E cross-terms

+ E ????

Page 3: Introduction to Molecular Mechanics · Molecular vs Quantum Mechanics: An Analogy H^ Ψ = EΨ E total = E bond + E angle + E bond-angle + E torsion + E repulsion + E dispersion +
Page 4: Introduction to Molecular Mechanics · Molecular vs Quantum Mechanics: An Analogy H^ Ψ = EΨ E total = E bond + E angle + E bond-angle + E torsion + E repulsion + E dispersion +
Page 5: Introduction to Molecular Mechanics · Molecular vs Quantum Mechanics: An Analogy H^ Ψ = EΨ E total = E bond + E angle + E bond-angle + E torsion + E repulsion + E dispersion +

Force Field Design Goals● Accuracy

provide “chemical accuracy” - approx. 1/2 kcal/mol useful for thermodynamics, ligand binding, solvation, etc.

● Transferability

conformational heterogeneity (intramolecular) environmental heterogeneity (T, P, phase, solvent, etc.) parameters transfer to similar molecules and groups model & parameters form well-defined protocols

● Interpretability

makes “chemical sense” - follows periodic trends, etc. provides classical physical rationale to explain results

● Efficiency

fast enough to provide adequate statistical sampling amenable to parallelization (OpenMP, MPI, GPUs, etc.)

Page 6: Introduction to Molecular Mechanics · Molecular vs Quantum Mechanics: An Analogy H^ Ψ = EΨ E total = E bond + E angle + E bond-angle + E torsion + E repulsion + E dispersion +
Page 7: Introduction to Molecular Mechanics · Molecular vs Quantum Mechanics: An Analogy H^ Ψ = EΨ E total = E bond + E angle + E bond-angle + E torsion + E repulsion + E dispersion +
Page 8: Introduction to Molecular Mechanics · Molecular vs Quantum Mechanics: An Analogy H^ Ψ = EΨ E total = E bond + E angle + E bond-angle + E torsion + E repulsion + E dispersion +
Page 9: Introduction to Molecular Mechanics · Molecular vs Quantum Mechanics: An Analogy H^ Ψ = EΨ E total = E bond + E angle + E bond-angle + E torsion + E repulsion + E dispersion +
Page 10: Introduction to Molecular Mechanics · Molecular vs Quantum Mechanics: An Analogy H^ Ψ = EΨ E total = E bond + E angle + E bond-angle + E torsion + E repulsion + E dispersion +
Page 11: Introduction to Molecular Mechanics · Molecular vs Quantum Mechanics: An Analogy H^ Ψ = EΨ E total = E bond + E angle + E bond-angle + E torsion + E repulsion + E dispersion +
Page 12: Introduction to Molecular Mechanics · Molecular vs Quantum Mechanics: An Analogy H^ Ψ = EΨ E total = E bond + E angle + E bond-angle + E torsion + E repulsion + E dispersion +
Page 13: Introduction to Molecular Mechanics · Molecular vs Quantum Mechanics: An Analogy H^ Ψ = EΨ E total = E bond + E angle + E bond-angle + E torsion + E repulsion + E dispersion +
Page 14: Introduction to Molecular Mechanics · Molecular vs Quantum Mechanics: An Analogy H^ Ψ = EΨ E total = E bond + E angle + E bond-angle + E torsion + E repulsion + E dispersion +
Page 15: Introduction to Molecular Mechanics · Molecular vs Quantum Mechanics: An Analogy H^ Ψ = EΨ E total = E bond + E angle + E bond-angle + E torsion + E repulsion + E dispersion +
Page 16: Introduction to Molecular Mechanics · Molecular vs Quantum Mechanics: An Analogy H^ Ψ = EΨ E total = E bond + E angle + E bond-angle + E torsion + E repulsion + E dispersion +
Page 17: Introduction to Molecular Mechanics · Molecular vs Quantum Mechanics: An Analogy H^ Ψ = EΨ E total = E bond + E angle + E bond-angle + E torsion + E repulsion + E dispersion +
Page 18: Introduction to Molecular Mechanics · Molecular vs Quantum Mechanics: An Analogy H^ Ψ = EΨ E total = E bond + E angle + E bond-angle + E torsion + E repulsion + E dispersion +
Page 19: Introduction to Molecular Mechanics · Molecular vs Quantum Mechanics: An Analogy H^ Ψ = EΨ E total = E bond + E angle + E bond-angle + E torsion + E repulsion + E dispersion +
Page 20: Introduction to Molecular Mechanics · Molecular vs Quantum Mechanics: An Analogy H^ Ψ = EΨ E total = E bond + E angle + E bond-angle + E torsion + E repulsion + E dispersion +
Page 21: Introduction to Molecular Mechanics · Molecular vs Quantum Mechanics: An Analogy H^ Ψ = EΨ E total = E bond + E angle + E bond-angle + E torsion + E repulsion + E dispersion +
Page 22: Introduction to Molecular Mechanics · Molecular vs Quantum Mechanics: An Analogy H^ Ψ = EΨ E total = E bond + E angle + E bond-angle + E torsion + E repulsion + E dispersion +
Page 23: Introduction to Molecular Mechanics · Molecular vs Quantum Mechanics: An Analogy H^ Ψ = EΨ E total = E bond + E angle + E bond-angle + E torsion + E repulsion + E dispersion +
Page 24: Introduction to Molecular Mechanics · Molecular vs Quantum Mechanics: An Analogy H^ Ψ = EΨ E total = E bond + E angle + E bond-angle + E torsion + E repulsion + E dispersion +
Page 25: Introduction to Molecular Mechanics · Molecular vs Quantum Mechanics: An Analogy H^ Ψ = EΨ E total = E bond + E angle + E bond-angle + E torsion + E repulsion + E dispersion +
Page 26: Introduction to Molecular Mechanics · Molecular vs Quantum Mechanics: An Analogy H^ Ψ = EΨ E total = E bond + E angle + E bond-angle + E torsion + E repulsion + E dispersion +

1.5 2.0 2.5 3.0 3.5 4.0

0

2

4

6

8

10

12

H 2 - NeH 2 - He

H 2 - NeH 2 - He

1.5 2.0 2.5 3.0 3.5 4.0

0

2

4

6

8

10

12

1.5 2.0 2.5 3.0 3.5 4.0

0

2

4

6

8

10

12

1.5 2.0 2.5 3.0 3.5 4.0

0

2

4

6

8

10

12

Probing vdWAnisotropy

rf = b / a

b

ain

tera

ctio

n e

ner

gy

(kc

al/m

ol)

inte

ract

ion

en

erg

y (

kcal

/mo

l)distance (Å) distance (Å)

distance (Å) distance (Å)

Page 27: Introduction to Molecular Mechanics · Molecular vs Quantum Mechanics: An Analogy H^ Ψ = EΨ E total = E bond + E angle + E bond-angle + E torsion + E repulsion + E dispersion +

Noble Gases and Homodiatomic MoleculesH2

3.50 0.010 0.80 N2 O2 F2 Ne

3.72 0.076 1.04 3.39 0.106 0.99 3.22 0.109 0.96 3.15 0.073

Cl2 Ar3.925 0.340 0.935 3.82 0.260

Kr4.09 0.359

Xe4.37 0.498

T P Density (g/cm3) Hvap (kcal/mol)(K) (atm) expt calc %error expt calc %error

Ne 27.1 -4 1.200 1.203 0.3 0.420 0.421 0.2Ar 87.5 -34 1.390 1.394 0.3 1.554 1.554 0.0Kr 120.3 8 2.400 2.405 0.2 2.161 2.163 0.1Xe 166.1 6 3.100 3.100 0.0 3.018 3.018 0.0H2 20.3 -3 0.070 0.069 -1.4 0.218 0.216 -0.9N2 77.3 -52 0.804 0.830 3.2 1.332 1.346 1.0O2 90.2 -5 1.142 1.145 0.3 1.628 1.617 -0.6F2 85.0 -23 1.512 1.511 -0.1 1.554 1.565 0.7Cl2 243.2 7 1.552 1.564 0.8 4.857 4.851 0.1

Page 28: Introduction to Molecular Mechanics · Molecular vs Quantum Mechanics: An Analogy H^ Ψ = EΨ E total = E bond + E angle + E bond-angle + E torsion + E repulsion + E dispersion +
Page 29: Introduction to Molecular Mechanics · Molecular vs Quantum Mechanics: An Analogy H^ Ψ = EΨ E total = E bond + E angle + E bond-angle + E torsion + E repulsion + E dispersion +
Page 30: Introduction to Molecular Mechanics · Molecular vs Quantum Mechanics: An Analogy H^ Ψ = EΨ E total = E bond + E angle + E bond-angle + E torsion + E repulsion + E dispersion +
Page 31: Introduction to Molecular Mechanics · Molecular vs Quantum Mechanics: An Analogy H^ Ψ = EΨ E total = E bond + E angle + E bond-angle + E torsion + E repulsion + E dispersion +
Page 32: Introduction to Molecular Mechanics · Molecular vs Quantum Mechanics: An Analogy H^ Ψ = EΨ E total = E bond + E angle + E bond-angle + E torsion + E repulsion + E dispersion +
Page 33: Introduction to Molecular Mechanics · Molecular vs Quantum Mechanics: An Analogy H^ Ψ = EΨ E total = E bond + E angle + E bond-angle + E torsion + E repulsion + E dispersion +
Page 34: Introduction to Molecular Mechanics · Molecular vs Quantum Mechanics: An Analogy H^ Ψ = EΨ E total = E bond + E angle + E bond-angle + E torsion + E repulsion + E dispersion +
Page 35: Introduction to Molecular Mechanics · Molecular vs Quantum Mechanics: An Analogy H^ Ψ = EΨ E total = E bond + E angle + E bond-angle + E torsion + E repulsion + E dispersion +
Page 36: Introduction to Molecular Mechanics · Molecular vs Quantum Mechanics: An Analogy H^ Ψ = EΨ E total = E bond + E angle + E bond-angle + E torsion + E repulsion + E dispersion +
Page 37: Introduction to Molecular Mechanics · Molecular vs Quantum Mechanics: An Analogy H^ Ψ = EΨ E total = E bond + E angle + E bond-angle + E torsion + E repulsion + E dispersion +
Page 38: Introduction to Molecular Mechanics · Molecular vs Quantum Mechanics: An Analogy H^ Ψ = EΨ E total = E bond + E angle + E bond-angle + E torsion + E repulsion + E dispersion +
Page 39: Introduction to Molecular Mechanics · Molecular vs Quantum Mechanics: An Analogy H^ Ψ = EΨ E total = E bond + E angle + E bond-angle + E torsion + E repulsion + E dispersion +