Introduction to Lattice QCD II

81
Introduction to Lattice QCD II Karl Jansen Task: compute the proton mass need an action need an algorithm need an observable need a supercomputer Anomalous magnetic moment of Muon

Transcript of Introduction to Lattice QCD II

Page 1: Introduction to Lattice QCD II

Introduction to Lattice QCD II

Karl Jansen

• Task: compute the proton mass

– need an action– need an algorithm– need an observable– need a supercomputer

• Anomalous magnetic moment of Muon

Page 2: Introduction to Lattice QCD II

Monte Carlo Method

〈f(x)〉 =∫dxf(x)e−x

2/∫dxe−x

2

→ solve numerically:

• generate succesively Gaussian random numbers xi

• do this N -times

⇒ 〈f(x)〉 ≈ 1N

∑i f(xi)±O(1/

√N)

• but, what if I have a distribution e−S(φ)?(Φ representing generic degrees of freedom)

1

Page 3: Introduction to Lattice QCD II

find a transition probality W (φ, φ′) that brings us from a setof generic fields φ → φ′ and which satisfies

• W (φ, φ′) > 0 strong ergodicity (W ≥ 0 is weak ergodicity)

•∫dφ′W (φ, φ′) = 1

• W (φ, φ′) =∫dφ′′W (φ, φ′′)W (φ′′, φ′) (Markov chain)

• W (φ, φ′) is measure preserving, dφ′ = dφ

under these conditions, we are guaranteed

– to converge to a unique equilibrium distribution P eq

namely the Boltzmann distribution e−S

– that this is independent from the initial conditions

→ proof: (Creutz and Freedman; Luscher, Cargese lectures)

2

Page 4: Introduction to Lattice QCD II

Markov chain condition

W (φ, φ′) =∫dφ′′W (φ, φ′′)W (φ′′, φ′)

can be rephrased when taking the equilibrium distribution itself

P (φ′) =∫dφW (φ′, φ)P (φ)

to fulfill (most of) our conditions it is sufficient not neccessary that W fulfills thedetailled balance condition:

W (φ,φ′)W (φ′,φ) = P (φ′)

P (φ)

for example

∫dφP (φ)W (φ, φ′) =

∫dφP (φ)P (φ′)

P (φ)W (φ′, φ)

=

∫dφP (φ′)W (φ′, φ) = P (φ′)

in the following discuss particular choices for W for problems of interest

3

Page 5: Introduction to Lattice QCD II

Metropolis Algorithms

WMetro(Φ,Φ′) = Θ(S(Φ(x))− S(Φ′(x)))

+exp (−∆S(Φ′,Φ)) Θ(S(Φ′(x))− S(Φ(x)))

∆S(Φ′(x),Φ(x)) = S(Φ′(x)− S(Φ(x)), Θ() Heavyside function

How this works:

i) generate uniformly distributed Φ′(x) in a neighbourhood of Φ(x)

– discretized quantum mechanics: x′i ∈ [xi − Ω, xi + Ω]– SU(N): U ′n,µ = RUn,µ, elements of R “close to” Un,µ

ii) if ∆S(Φ′(x),Φ(x)) ≤ 0) accept Φ′(x)

iii) if ∆S(Φ′(x),Φ(x)) > 0) accept with probability exp(−∆S(Φ′(x),Φ(x))

• steps i)− iii) are repeated N -times

• step iii) can be realized by uniformly choosing randon number r ∈ [0, 1] andaccept, if exp(−∆S) > r

4

Page 6: Introduction to Lattice QCD II

Metropolis Algorithms

• very general algorithm, can be used for many physical systems

• shows, however, often very long autocorrelation times

• much too costly for fermionic systems (why?)

5

Page 7: Introduction to Lattice QCD II

Hybrid Monte Carlo Algorithm

expectation values in lattice field theory

〈O〉 =∫DΦOe−S∫DΦe−S

do not change if field independent contributions are added to the action

〈O〉 =∫DΦ

∫DπOe−

12π

2−S

∫DΦ

∫Dπe−

12π

2−S

field configurations are generated chronologically in a fictitious (computer) time τ

take π’s Gaussian distributed, satisfying

< π(τ) >= 0, < π(τ)π(τ ′) >= δ(τ − τ ′)

consider a 4-dimensional Hamiltonian

H = 12π

2 + S

6

Page 8: Introduction to Lattice QCD II

consider quantum mechanical action: S =∑n(x(n+ a)− x(n))2 +m2x2(n)

in ficititious time τ the sytem develops according toHamilton’s equations of motion

∂∂τπ(n) = − ∂

∂x(n)S ≡ force, ∂∂τx(n) = π(n)

⇒ conservation of energy

in practise, equations are integrated numerically up to time T = 1

divide T into N intervals of length δτ such that T = Nδτ : leap-frog scheme

π(δτ/2) = π(0)−δτ2 ∂∂xS

∣∣x(0)

x(δτ) = x(0) + π(δτ/2)δτ

π(3δτ/2) = π(δτ/2)−δτ ∂∂xS∣∣x(δτ)

...

π(T ) = π(Nδτ/2)−δτ2 ∂∂xS

∣∣x((N−1)δτ)

7

Page 9: Introduction to Lattice QCD II

leap-frog scheme has a finite step-size δτ ⇒ energy is no longer conserved

H(xini, πini) 6= H(xend, πend)

introduce a Metropolis like accept/reject step

accept new field configuration xend, πend with a probability

Pacc = min(1, eH(xini,πini)−H(xend,πend)

)

8

Page 10: Introduction to Lattice QCD II

Hybrid Monte Carlo Algorithm

general transition matrix:

W (Φ′,Φ) =1

∫D[π] e−

12(π,π)

Pacc(π,Φ)

x

δ(Φ′(x),Φτ(x))

+(1− Pacc(π,Φ))∏

x

δ(Φ′(x),Φ(x))

• fulfills detailled balance proof: (Luscher, Cargese lectures)

⇐ needs reversibility of the leap-frog integrator

• preserves measure

• Ergodicity?

9

Page 11: Introduction to Lattice QCD II

The case of Lattice QCD

action for two flavors of fermions (up and down quark)

S = a4∑x ψM

†Mψ

path integral

Z =∏x dψ(x)dΨ(x)e−S =

∏x dΦ†(x)dΦ(x)e−Φ†[M†M]

−1Φ

interaction of the scalar fields is very complicated: inverse fermion matrix[M†M

]−1couples all points on the lattice with each other

How would a Metropolis algorithm work?

simulate with Hybrid Monte Carlo algorithm

ddτπ = − dS

dΦ†=[M†M

]−1Φ ≡ force

ddτΦ = π

update of the momenta π(x) is completely independent of update of Φ -field,non-locality of the action is not a problem

10

Page 12: Introduction to Lattice QCD II

to update the momenta, have to compute the vector

X =[M†M

]−1Φ

⇒ solve an equation

[M†M

]X = Φ

Exercise:estimate the number of flops to apply the Wilson operator on a vector

assume you want to have 2000 thermalization and 5000 measurement stepson a 483 · 96 lattice

assume number of iterations to solve[M†M

]X = Φ is 500

assume number of time steps in the HMC is 100

How long would the program run on your laptop?(assume –unrealistic– efficiency of 50%)

If you save the 5000 configurations, would this fit on your laptop disk?

11

Page 13: Introduction to Lattice QCD II

autocorrelation times

generating field configurations as a Markov process,⇒ configurations are not independent from each other

free field theory S =∫d4xΦ(x)[∇mu∗∇µ +m2

0]Φ(x) in Fourier space

S =∫d4kΦ(k)[k2 +m2

0]Φ(k)

Langevin equation ↔ HMC algorithm

ddτΦ(k, τ) = −[k2 +m2

0]Φ(k, τ) + η(k, τ)

< η(τ) >= 0, < η(τ)η(τ ′) >= δ(τ − τ ′)

then a solution may be written down

Φ(k, τ) =∫ τ

ds exp−(τ − s)[k2 +m2

0]η(k, s)

compute correlation of fields at τ = 0 with fields at τ

12

Page 14: Introduction to Lattice QCD II

consider the autocorrelation function

C(k, τ) = Φ(k, 0)Φ(k, τ)

=

∫ds1ds2 exp

[k2 +m2

0]s1

(−(τ − s)[k2 +m2

0])

η(k, s1)η(k, s2)

∝ e−[k2+m20]τ

k2+m20≡ e−τ/τ0

k2+m20

• the autocorrelation function C(k, τ) decays exponentiallyautocorrelation time τ0

• decay is lowest for the zero mode k = 0

• τ ∝ 1/m20 ⇒ the correlations become stronger closer to

the critical point m0 = 0 → critical slowing down

• scaling law τ0 ∝ 1/mz , z the dynamical critical exponent

13

Page 15: Introduction to Lattice QCD II

How to deal with the autocorrelation?

measure it:

Γ(τ) = 〈x(τ) · x(0)〉/〈x(0)〉2 ∝ e−τ/τint

0 10 20 30 40 50 60−0.5

0

0.5

1normalized autocorrelation of mass

ρ

0 10 20 30 40 50 600

5

10

τint

with statistical errors of mass

τ int

W

Comment: integrated auto correlation time τint observable dependent

14

Page 16: Introduction to Lattice QCD II

A consequence from autocorrelations: Errors

measure average position of quantum mechanical particle x from N measurements

x = 1N

∑Ni=1 xi

This has a variance

σ = 1N−1

(x2 − x2

)

and a standard deviation

∆0 ≡√σ ∝ 1/

√N for N 1

If we have an autocorrelation time τ ⇒ statistics reduces to n = N/τ

⇒ ∆true ∝ 1/√n =√τ/√N =

√τ∆0

15

Page 17: Introduction to Lattice QCD II

Can we improve the error scaling for evaluating pathintegrals?

reminder:

Z =∫Dx e−S[x] ; x = (x1, . . . , xd) ;Dx =

∏di=1 xi

〈O〉 = Z−1∫Dx e−S[x] O[x]

• stochastically through Markov chain Monte Carlo methods

• finite Markov chain: x1, . . . , xN → N samples of O: O1, . . . , ON

• estimate 〈O〉 = 1N

∑Ni=1Oi has standard error ∆〈O〉 = σO√

N

16

Page 18: Introduction to Lattice QCD II

Distribution of integration variables

Example: 512 two-dimensional pseudo-random points

0/8 2/8 4/8 6/8 8/8

0/8

2/8

4/8

6/8

8/8

Pseudo random 2d point set Histogram of counts

count

freq

uenc

y

4 6 8 10 12 14

02

46

810

8

• sample 512 points grid of 8× 8 equal squares

• count number of points in each square

• count occurrence of 1, 2, . . . points in a square

• ≈ Poisson distribution → uneven sampling → large stochastic error

17

Page 19: Introduction to Lattice QCD II

Improved integration: Quasi Monte Carlo

• construction of deterministic low-discrepancy point-sets

• low-discrepancy → “more uniform”

• promises N−1 asymptotic error behaviour for suitable integrands

• applied successfully to financial problems

18

Page 20: Introduction to Lattice QCD II

Distribution of integration points

QMC point set (2d Sobol samples):

0/8 2/8 4/8 6/8 8/8

0/8

2/8

4/8

6/8

8/8

RQMC point set Histogram of counts

count

freq

uenc

y

4 6 8 10 12 14

020

4060

8

• each square contains same number of points → delta distribution

• even coverage → less stochastic fluctuations

• makes QMC a most promising tool

• randomisation possible (RQMC): → practical error estimation

19

Page 21: Introduction to Lattice QCD II

First investigation for quantum mechanical model in Euclidean time(K. Jansen, H. Leovey, A. Ammon, A. Griewank, T. Hartung, M. Muller-Preußker)

S = a∑di=1

(M02

(xi+1−xi)2

a2 + ω2

2 x2i + λx4

i

); xd+1 = x1

• M0: particle mass

• ω: frequency

• a: lattice spacing

• d number of lattice sites, → T = da time extent

• λ = 0 → harmonic oscillator

• λ > 0 → anharmonic oscillator( µ2 < 0 → double well potential)

20

Page 22: Introduction to Lattice QCD II

Observables considered

Cumulants

〈x2〉 = 〈1d∑i x

2i 〉

〈x4〉 = 〈1d∑i x

4i 〉

Correlator

〈xkxk+t〉 = 〈1d∑i xixi+t〉 ∝ e−(E1−E0)t

Energies

ground state energy: E0 = 3λ〈x4〉+ µ2〈x2〉+ ω4

16

energy gap E1 − E0

21

Page 23: Introduction to Lattice QCD II

Case of harmonic oscillator

parameters: ω2 = 2.0 , M0 = 0.5, a = 0.5, d = 100

1e−

071e

−05

1e−

03

Number of samples − N

Err

or o

f <x2 >

27 210 213 216 219

Error of <x2> for the Harmonic Oscillator

Mc−MCRand. QMC10i N10i N i = − 5 : 5

7 8 9 10 11 12 13

−15

−14

−13

−12

−11

−10

−9

Fit QMC, α = −1.007799 + − 0.01490616

log(N)

∆<X

2 >

χ2 = 0.06955923; dof = 2

• fit ∆〈x2〉 = c ·Nα → α = −1.007799

• perfect error scaling → QMC at work

• trivial, but successful application to physical problem

22

Page 24: Introduction to Lattice QCD II

Case of anharmonic oscillator

5e−

042e

−03

Error of <X2>, d = 1000

N

∆<X

2 >

213 216 219

0.00

20.

010

0.05

0

Error of <X4>, d = 1000

N

∆<X

4 >

213 216 219

0.00

50.

020

Error of E0, d = 1000

N

∆E0

213 216 219

23

Page 25: Introduction to Lattice QCD II

Case of anharmonic oscillator

• parameters: M0 = 0.5 , a = 0.015 , ω2 = −16

• fit: ∆O ∼ c ·Nα

O α logC χ2/dof

d = 100 X2 -0.763(8) 2.0(1) 7.9 / 6X4 -0.758(8) 4.0(1) 13.2 / 6E0 -0.737(9) 4.0(1) 8.3 / 6

d = 1000 X2 -0.758(14) 2.0(2) 5.0 / 4X4 -0.755(14) 4.0(2) 5.7 / 4E0 -0.737(13) 4.0(2) 4.0 / 4

Energy gap

• parameters: d = 100, N = 25, 28, 211, 214

• 400 Sobol’ sequences each → error estimate → α = −0.735(13)

24

Page 26: Introduction to Lattice QCD II

The observable

25

Page 27: Introduction to Lattice QCD II

What we learn from mesons and baryonsmesons

q q

baryons

q

q

q

1

Pseudoscalar Mesons spectrum

Q/e-1 0 +1

Mass[GeV]

1.0

0.5

0.0

π− π0 π+ (ud), (dd − uu)/

√(2), (du)

K− (us), (ds), (sd), (su)K0K

0K+

η ≈ (dd + uu − 2ss)/

√(6)

≈ (dd + uu + ss)/

√(3)η′n

udd

p

uud

1

• confinement of quarks

• spontaneous chiral symmetry breaking

• topological effects of gluon field configurations

26

Page 28: Introduction to Lattice QCD II

The complicated baryon spectrum

Octet

Decuplett 32-plet

27

Page 29: Introduction to Lattice QCD II

QCD: the Mass Spectrum

goal: non-perturbative computation of this rich bound state spectrum

using QCD alone

→ euclidean correlation functionsReconstruction theorem relates this to Minkowski space

operator O(x, t) with quantum numbers of a given particle

correlation function decays exponentially: e−Et , E2 = m2 + p2

⇒ mass obtained at zero momemtum

O(t) =∑

xO(x, t)

correlation function

〈O(0)O(t)〉 = 1Z

n

〈0|O(0)e−Ht|n〉〈n|O(0)|0〉

= 1Z

n

|〈0|O(0)|n〉|2e−(En−E0)t

28

Page 30: Introduction to Lattice QCD II

connected correlation function

limt→∞[〈O(0)O(t)〉 − |〈O(0)〉|2

]∝ e−E1t

vanishing of connected correlation function at large times

→ cluster property ⇒ locality of the theory

periodic boundary conditions

〈O(0)O(t)〉c =∑n cn

[e−Ent + e−En(T−t)]

1 t T : 〈O(0)O(t)〉c ∝ e−mt + e−m(T−t)

0.01

0.1

1

10

100

0 10 20 30 40 50 60

C(t

/a)

t/a

DataFit

29

Page 31: Introduction to Lattice QCD II

Hadron Spectrum in QCD

hadrons are bound states in QCD

• mesons pion, kaon, eta, ...

• baryons neutron, proton, Delta, ..

for the computation of the hadon spectrum

– construct operators with the suitable quantum numbers

– compute the connected correlation function

– take the large time limit of the correlation function

30

Page 32: Introduction to Lattice QCD II

Lorentz symmetry, parity and charge conjugation

rotational symmetry → hypercubic group: discrete rotations and reflectionsclassification of operators: irreducible representations R(note hypercubic group is a subgroup of SO(3))

parity charge conjugationΨ(x, t)→ γ0Ψ(−x, t) Ψ(x, t)→ CΨT (x, t)

Ψ(x, t)→ Ψ(−x, t)γ0 Ψ(x, t)→ −ΨT (x, t)C−1

C charge conjugation matrix C = γ0γ2

C satisfies

CγµC−1 = −γTµ = −γ∗µ

31

Page 33: Introduction to Lattice QCD II

The Proton

Nucleon: baryonic isospin-doublet, I = 12:

proton (uud) I3 = +12 and neutron (udd) I3 = −1

2

local interpotating field of proton

P (x) = −εabc[uTa (x)Cγ5db(x)

]uc(x) , [ ] spin trace

uC charged conjugate quark field

ψC(x) = CψT (x) , ψC = −ψT (x)C−1

leading to

ΓP (t) =∑~x〈0|P (x)P (0)|0〉

32

Page 34: Introduction to Lattice QCD II

Exercise:

using the operator

P (x) = −εabc[uTa (x)Cγ5db(x)

]uc(x) , [ ] spin trace

will we really get the proton?

→ check quantum numbers

33

Page 35: Introduction to Lattice QCD II

Contraction

• 2-point-function calculation

OΓ(x) = ψΓψ(0)

〈OΓ(x)OΓ(0)〉 =

ψ(x)Γψ(0)ψ(x)Γψ(0) (1)

= tr[ΓS(x, 0)ΓS(0, x)]

in terms of eigenvalues and eigenvectors:

tr[ΓS(x, 0)ΓS(0, x)] =∑

λi,λj

1λiλj

αβγδ

[(φ†αj (x)Γαβφ

βi (x))(φ†γi (0)Γγδφ

δj(0))

]

34

Page 36: Introduction to Lattice QCD II

Example: pion operator → need speudoscalar operator

OPS(x, t) = Ψ(x, t)γ5Ψ(x, t)

correlation function

fPS(t) ≡ 〈OPS(0)OPS(t)〉 =∑

x

[ψ(x, t)γ5Ψ(x, t)

] [ψ(0, 0)γ5Ψ(0, 0)

]

=∑

x

Tr [SF (0, 0;x, t)γ5SF (x, t; 0, 0)γ5]

used Wick’s theorem and SF = D−1 the fermion propagator

remark: formula simplifies using γ5 hermiticity of DWilson

⇒ need to compute inverse of the fermion matrix

a t T : fPS(t) = |〈0|P |PS〉|22mPS︸ ︷︷ ︸

≡F 2PS/2mPS

·(e−mPSt + e−mPS(T−t))

FPS pion decay constant

35

Page 37: Introduction to Lattice QCD II

Effective Masses and exponential fits

effective mass (neglecting boundary)

amXeff(t) = log

(CX(t)CX(t+1)

)= amX + log

(1+∑∞i=1 cie

−∆it

1+∑∞i=1 cie

−∆i(t+1)

)−→t→∞ amX

∆i = mi −mX mass difference of the excited state i to the ground mass mX

in practise: amXeff(t) ≈ amX + log

(1+c1e

−∆1t

1+c1e−∆1(t+1)

)

0.3

0.4

0.5

0.6

0.7

0 4 8 12 16 20

am

eff

t/a

Ξ0

Exponential fitConstant fit 0.8

0.9

1

1.1

1.2

0 4 8 12 16 20

am

eff

t/a

Ωc0

Exponential fitConstant fit

36

Page 38: Introduction to Lattice QCD II

Identifying exicited states

amXeff(t) = log

(CX(t)CX(t+1)

)= amX + log

(1+∑∞i=1 cie

−∆it

1+∑∞i=1 cie

−∆i(t+1)

)−→t→∞ amX

∆i = mi −mX mass difference of the excited state i to the ground mass mX

• large errors for excited states

• generalized eigenvalue approach

• need of large operator basis

37

Page 39: Introduction to Lattice QCD II

Quenched approximation

38

Page 40: Introduction to Lattice QCD II

The Quenched Approximation

→ neglect steady generation of quarks and antiquarks inphysical quantum processes

⇒ truncation, works surprisingly well however

(A) Quenched QCD: no internal quark loops

(B) full QCD

39

Page 41: Introduction to Lattice QCD II

A short history of proton mass computation(take example of Japanese group)

1986 (Itoh, Iwasaki, Oyanagi and Yoshie)

quenched approximation, 123 · 24 lattice

a ≈ 0.15fm, 30 configurations

Machine: HITAC S810/20 → 630 Mflops

⇒ only meson masses, conclusion:time extent of T = 24 too small to extract baryon ground state

1988 (plenary talk by Iwasaki at Lattice symposium at FermiLab)

quenched approximation, 163 · 48 lattice

a ≈ 0.11fm, 15 configurations

particle lattice experimentKaon 470(45) 494

Nucleon 866(108) 938Ω 1697(89) 1672

40

Page 42: Introduction to Lattice QCD II

The story goes on ...

1992 (Talk Yoshie at Lattice ’92 in Amsterdam):

quenched approximation, 243 · 54 lattice

two lattice spacings: a ≈ 0.11fm , a ≈ 0.10fm, O(200) configurations

Machine: QCDPAX 14 Gflops

⇒ worries about excited state effects⇒ worries about finite size effects

1995 (paper by QCDPAX collaboration)

stat. sys.(fit-range) sys.(fit-func.)β = 6.00 mN = 1.076 ±0.060 +0.047 −0.020 +0.0 −0.017 GeVβ = 6.00 m∆ = 1.407 ±0.086 +0.096 −0.026 +0.038 −0.015 GeV

“Even when the systematic errors are included, the baryon masses at β = 6.0 donot agree with experiment. Our data are consistent with the GF111 data at finitelattice spacing, within statistical errors. In order to take the continuum limit of ourresults, we need data for a wider range of β with statistical and systematic errorsmuch reduced.”

1GF11 has been a 5.6Gflops machine developed by IBM research.

41

Page 43: Introduction to Lattice QCD II

where the quenched story ends

2003 (Paper by CP-PACS collaboration):

quenched approximation from 323 · 56 to 643 · 112 lattice

two lattice spacings: a ≈ 0.05fm − a ≈ 0.10fm, O(150) – O(800)configurations

Machine: CP-PACS, massively parallel, 2048 processing nodes,completed september 1996

→ reached 614Gflops

• control of systematic errors

– finite size effects– lattice spacing– chiral extrapolation– excited states

42

Page 44: Introduction to Lattice QCD II

CP-PACS collaboration

Solution of QCD?

→ a number of systematic errors

quenched

quenched

43

Page 45: Introduction to Lattice QCD II

Another example: glueballs

prediction of QCD: the existence of states made out of gluons alone, the glueballs

• hard to detect experimentally

• difficult to compute, of purely non-perturbative nature

⇒ challenge for lattice QCD

transformation laws for gauge links

parity charge conjugationU(x, t, 4)→ U(−x, t, 4) U(x, t, 4)→ U∗(x, t, 4)

U(x, t, i)→ U(−x, t,−i) U(x, t, i)→ U∗(x, t, i)

example: combination of 1× 1 Wilson loops W (C)xy

O(x, t) = W(x,t),12 +W(x,t),13 +W(x,t),23

invariant under hypercubic group, parity and charge conjugation → 0++

44

Page 46: Introduction to Lattice QCD II

glueball spectrum → unique prediction from lattice QCD

++ −+ +− −−PC

0

2

4

6

8

10

12

r 0m G

2++

0++

3++

0−+

2−+

0*−+

1+−

3+−

2+−

0+−

1−−2−−3−−

2*−+

0*++

0

1

2

3

4

m G (GeV

)

‘Morningstar and Peardon

quenched

quenched

45

Page 47: Introduction to Lattice QCD II

start of dynamical (mass-degenerate up and down) quarksimulations

1998 (Paper by UKQCD collaboration):

lattices: from 83 · 24 to 163 · 24

a ≈ 0.10fm, mπ/mρ > 0.7

Machine: CRAY T3E ≈ 1Tflop

1999 (Paper by SESAM collaboration):

lattice: 163 · 32 lattice

a ≈ 0.10fm, mπ/mρ > 0.7

Machine: APE100 ≈ 100Gflop

• period of algorithm development

– improved higher order integrators– multiboson algorithm– PHMC algorithm

46

Page 48: Introduction to Lattice QCD II

Costs of dynamical fermions simulations, the “Berlin Wall”see panel discussion in Lattice2001, Berlin, 2001

formula C ∝(mπmρ

)−zπ(L)

zL (a)−za

zπ = 6, zL = 5, za = 7

0 0.2 0.4 0.6 0.8 1mPS / mV

0

5

10

15

20

TFlop

s × ye

ar

a-1 = 3 GeV

a-1 = 2 GeV

1000 configurations with L=2fm[Ukawa (2001)]

↑ ↑| || |

physical contact topoint χPT (?)

“both a 108 increase in computing powerAND spectacular algorithmic advancesbefore a useful interaction withexperiments starts taking place.”(Wilson, 1989)

⇒ need of Exaflops Computers

47

Page 49: Introduction to Lattice QCD II

A generic improvement for Wilson type fermions

New variant of HMC algorithm (Urbach, Shindler, Wenger, K.J.)

(see also SAP (Luscher) and RHMC (Clark and Kennedy) algorithms)

• even/odd preconditioning

• (twisted) mass-shift (Hasenbusch trick)

• multiple time steps

0 0.2 0.4 0.6 0.8 1mPS / mV

0

5

10

15

20

TFlo

ps ×

yea

r

a-1 = 3 GeV

a-1 = 2 GeV

1000 configurations with L=2fm[Ukawa (2001)]

−→

tm @ β = 3.9Orth et al.

Urbach et al.Tflops · years

mPS/mV

10.50

0.25

0.2

0.15

0.1

0.05

0

2001 2006

– comparable to staggered

– reach small pseudo scalar masses ≈ 300MeV

48

Page 50: Introduction to Lattice QCD II

Recent pricture

0 10 20 30 40 50 60 70 80 90

quark mass [MeV]

0.01

0.1

1

10

100

No

ps

[Tfl

ops

x yea

r]HMC ’01

DD-HMC ’04

deflated DD-HMC ’07

physical point

49

Page 51: Introduction to Lattice QCD II

Supercomputer

ca. 1700, Leibniz Rechenmaschine

Denn es ist eines ausgezeichneten Mannes nichtwurdig, wertvolle Stunden wie ein Sklaveim Keller der einfachen Rechnungen zu verbringen.Diese Aufgaben konnten ohne Besorgnisabgegeben werden, wenn wir Maschinen hatten.

Because it is unworthy for an excellent man to spent valuable hours as a slave inthe cellar of simple calculations. These tasks can be given away without any worry,if we would have machines.

50

Page 52: Introduction to Lattice QCD II

German Supercomputer Infrastructure

• apeNEXT in Zeuthen 3Teraflopsand Bielefeld 5Teraflops→ dedicated to LGT

• NIC 72 racks of BG/P Systemat FZ-Julich 1 Petaflops

• 2208 Nehalem processorCluster computer:208 Teraflops

• Altix System at LRZ Munic

• SGI Altix ICE 8200 at HLRN (Berlin, Hannover)31 Teraflops→ will be upgraded to a 3 Petaflops system

51

Page 53: Introduction to Lattice QCD II

State of the art

• BG/Q

52

Page 54: Introduction to Lattice QCD II

1283 × 2881283 × 256643 × 128323 × 64

# processors [103]

Tflop

1000100101

1000

100

10

1

Strong Scaling

• Test on 72 racks BG/P installation at supercomputer center Julich(Gerhold, Herdioza, Urbach, K.J.)

• using tmHMC code (Urbach, K.J.)

53

Page 55: Introduction to Lattice QCD II

Low budget machines

• QPACE 4+4 Racks in Julich und Wuppertal1900 PowerXCell 8i nodes 190 TFlops (peak)based on cell processor3-d torus networklow power consumption 1.5W/Gflop

• Videocards (NVIDIA Tesla)CUDA programming language (C extension)

• Judge GPU cluster at research center Julich with 206 nodes

– GPU: 2 NVIDIA Tesla M2050 (Fermi) 1.15 GHz (448 cores)– GPU: 2 NVIDIA Tesla M2070 (Fermi) 1.15 GHz (448 cores)– 240 Tflops peak performance

• trend: hybrid archictetures with accelerators

• challenge for 2020: Exaflop Computing

54

Page 56: Introduction to Lattice QCD II

Computer and algorithm development over the years

time estimates for simulating 323 · 64 lattice, 5000 configurations

→ O(few months) nowadays with a typical collaborationsupercomputer contingent

55

Page 57: Introduction to Lattice QCD II

Nf = 2 dynamical flavours

56

Page 58: Introduction to Lattice QCD II

Examples of present Collaborations (using Wilson fermions)

• CLS collaborationWilson gauge and clover improved Wilson fermions

• ALPHAWilson gauge and clover improved Wilson fermionsSchrodinger functional

• QCDSFtadpole improved Symanzik gauge and clover improved Wilson fermions

• ETMCtree-level Symanzik improved gauge andmaximally twisted mass Wilson fermions

• RBCdomain wall fermions

• BMWimproved gauge andnon-perturbatively imporved, 6 stout smeared Wilson fermions

57

Page 59: Introduction to Lattice QCD II

Extraction of Masses

• Quark propagator: stochastic, fuzzed sources

• Change the location of the time-slice source: reduce autocorrelations

2 4 6 8 10 12 14 16 18 20 22t/a

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

local-locallocal-fuzzedfuzzed-fuzzed

β=3.9 µ=0.0040ameff

pion

• effective mass of π±

• isolate ground state : small statistical errors

⇒ get a number, but what does it mean? How to get physical units?

58

Page 60: Introduction to Lattice QCD II

Setting the scale

mlattPS = amphys

PS , f lattPS = afphys

PS

fphysPS

mphysPS

=f latt

PS

mlattPS

+ O(a2)

→ settingf latt

PS

mlattPS

= 130.7/139.6

→ obtain mlattPS = a139.6[Mev]

→ value for lattice spacing a

59

Page 61: Introduction to Lattice QCD II

available configurations (free on ILDG)

β a [fm] L3 · T L [fm] aµ Ntraj (τ = 0.5) mPS [MeV]

4.20 ∼ 0.050 483 · 96 2.4 0.0020 5200 ∼ 300323 · 64 2.1 0.0060 5600 ∼ 420

4.05 ∼ 0.066 323 · 64 2.2 0.0030 5200 ∼ 3000.0060 5600 ∼ 4200.0080 5300 ∼ 4800.0120 5000 ∼ 600

3.9 ∼ 0.086 323 · 64 2.8 0.0030 4500 ∼ 2700.0040 5000 ∼ 300

243 · 48 2.1 0.0064 5600 ∼ 3800.0085 5000 ∼ 4400.0100 5000 ∼ 4800.0150 5400 ∼ 590

3.8 ∼ 0.100 243 · 48 2.4 0.0060 4700× 2 ∼ 3600.0080 3000× 2 ∼ 4100.0110 2800× 2 ∼ 4800.0165 2600× 2 ∼ 580

60

Page 62: Introduction to Lattice QCD II

Continuum limit scaling

r0mPS = 0.614r0mPS = 0.900r0mPS = 1.100

r0fPS

(a/r0)2

0.060.040.020

0.42

0.38

0.34

0.30

0.26

fPS MN

observe small O(a2) effects

61

Page 63: Introduction to Lattice QCD II

Chiral perturbation theory

r0fPS = r0f0

[1− 2ξ log

(χµΛ2

4

)+ ...

(r0mPS)2 = χµr20

[1 + ξ log

(χµΛ2

3

)+ ...

where

ξ ≡ 2B0µq/(4πf0)2, χµ ≡ 2B0µR, µR ≡ µq/ZP

62

Page 64: Introduction to Lattice QCD II

Chiral perturbation theory

→ add finite volume and lattice spacing dependence:

r0fPS = r0f0

[1− 2ξ log

(χµΛ2

4

)+DfPS

a2/r20 + TNNLO

f

]KCDHf (L)

(r0mPS)2 = χµr20

[1 + ξ log

(χµΛ2

3

)+DmPS

a2/r20 + TNNLO

m

]KCDHm (L)2

r0/a(aµq) = r0/a+Dr0(aµq)2

where

ξ ≡ 2B0µq/(4πf0)2, χµ ≡ 2B0µR, µR ≡ µq/ZP

• Df,m parametrize lattice artefacts

• KCDHf,m (L) Finite size corrections Colangelo et al., 2005

• TNNLOf,m NNLO correction

63

Page 65: Introduction to Lattice QCD II

Chiral perturbation theory

• Fit B: NLO continuum χPT, TNNLOm,f ≡ 0, DmPS,fPS

fitted

r0µR

r 0f P

S

0.00 0.05 0.10 0.15

0.25

0.30

0.35

0.40

β = 3.9β = 4.05r0fπ

Fit

r0µR

(r 0m

PS)2

0.00 0.05 0.10 0.15

0.0

0.2

0.4

0.6

0.8

1.0

1.2

β = 3.9β = 4.05Fit

two values of the lattice spacing → Dm = −1.07(97) , Df = 0.71(57)

64

Page 66: Introduction to Lattice QCD II

Chiral perturbation theory: results

quantity value

mu,d [MeV] 3.37(23)¯3 3.49(19)

¯4 4.57(15)

f0 [MeV] 121.75(46)B0 [GeV] 2774(190)r0 [fm] 0.433(14)〈r2〉s 0.729(35)

Σ1/3 [MeV] 273.9(6.0)fπ/f0 1.0734(40)

• averaged over many fit results, weighted with confidence levels

• B0, Σ, mu,d renormalised in MS scheme at scale µ = 2 GeV

• LECs can be used to compute further quantities: scattering lengths

65

Page 67: Introduction to Lattice QCD II

A more rigorous approach to chiral perturbation theory

BMW collaboration → pion masses down to 120MeV

90

100

110

120

130

140

1002 2002 2502 3002 3502 4002 4502 5002 5502

[MeV

]

M2π [MeV2]

β=3.5β=3.61β=3.7β=3.8

χ2

#dof = 1.54, #dof = 17, p-value = 0.07Exp value (NOT INCLUDED)

90

100

110

120

130

140

1002 2002 2502 3002 3502 4002 4502 5002 5502

[MeV

]

M2π [MeV2]

β=3.5β=3.61β=3.7β=3.8

χ2

#dof = 1.19, #dof = 48, p-value = 0.18Exp value (NOT INCLUDED)

NLO, fit for Mπ < 300MeV NNLO, fit for Mπ < 500MeV

• NLO: only applicable for Mπ ≤ 300MeV

• NNLO: wider applicability Mπ . 300MeVbut need very precise data for stable fit

⇒ better work directly at physical point

66

Page 68: Introduction to Lattice QCD II

What about chiral extrapolations for the nucleon mass?

simplest, O(p3) formula mN = m(0)N − 4c1m

2π −

3g2A

32πf2πm3π

next order, O(p4)

mN = m0N − 4c1m

2π −

3g2A

32πf2πm3π − 4E1(λ)m4

π −3(g2

A+3c2A)64π2f2

πm0Nm4π −

(3g2A+10c2A)

32π2f2πm

0Nm4π log

(mπλ

)

− c2A3π2f2

π

(1 + ∆

2m0N

) [∆4m

2π +

(∆3 − 3

2m2π∆)

log(mπ2∆

)+(∆2 −m2

π

)R (mπ)

](2)

0.8

0.9

1

1.1

1.2

1.3

1.4

0 0.05 0.1 0.15 0.2 0.25

mN

(G

eV)

mπ2 (GeV2)

β=1.90, L/a=32, L=3.0fmβ=1.90, L/a=24, L=2.2fmβ=1.90, L/a=20, L=1.9fmβ=1.95, L/a=32, L=2.6fmβ=1.95, L/a=24, L=2.0fmβ=2.10, L/a=48, L=3.1fmβ=2.10, L/a=32, L=2.1fm 0.8

0.9

1

1.1

1.2

1.3

1.4

0 0.05 0.1 0.15 0.2 0.25

mN

(G

eV)

mπ2 (GeV2)

O(p3) fit O(p4) fit

67

Page 69: Introduction to Lattice QCD II

The lattice QCD benchmark calculation: the spectrum

spectrum for Nf = 2 + 1 and 2 + 1 + 1 flavours

0.8

1

1.2

1.4

1.6

1.8

2

2.2

N Λ Σ Ξ Δ Σ* Ξ* Ω

M/m

N

ETMC Nf=2+1+1 BMW PACS LHPC

first spectrum calculation BMW repeated by other collaborations(ETMC: C. Alexandrou, M. Constantinou,

V. Drach, G. Koutsou, K.J.)

• spectrum for Nf = 2, Nf = 2 + 1 and Nf = 2 + 1 + 1 flavours→ no flavour effects for light baryon spectrum

68

Page 70: Introduction to Lattice QCD II

We can go further

0 1 2 3 4 0 1 2 3 4 _ _ _ _ _ + + + + +

M -

M /

2 (M

eV

c

LatticeExperiment

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

DK

DK

(M ~ 400 MeV)π

0.3 0.4 0.5 0.6p

-2.0

-1.0

0.0

1.0

2.0

b(p)

DataFit

charmed spectrum Phase shifts (model calculation)(G. Moir, M. Peardon, S. Ryan (P. Giudice, D. McManus, M. Peardon)

C.Thomas, L. Liu)

69

Page 71: Introduction to Lattice QCD II

We can go further

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

Λc Σc Ξc Ξc' Ωc Ξcc Ωcc

M (

Ge

V)

ETMC Nf=2+1+1Liu et al.Na et al.

Briceno et al.

K*(892)

K*(1410)

K*(1680)K3*(1780)

T1u

0.5

1.0

1.5

2.0

2.5

3.0

Experiment Lattice

5m3m

Ω

charmed spectrum excited K meson spectrum(C. Alexandrou, V. Drach, (J. Bulava, B. Fahy, J. Foley, Y. Jhang

K. Hadiyiannakou, C. Kallidonis, K.J.) K. Juge, D. Lenkner, C. Morningstar, H. Wong)

70

Page 72: Introduction to Lattice QCD II

The ρ-meson resonance: dynamical quarks at work(X. Feng, D. Renner, K.J., 2011)

• usage of three Lorentz frames

0.3 0.35 0.4 0.45 0.5 0.55 0.6aE

CM

0

0.5

1

sin2 (δ

)

CMFMF1MF2sin

2(δ)=1=>aM

R

0 0.05 0.1 0.15 0.2mπ

2(GeV

2)

0

0.05

0.1

0.15

0.2

0.25

Γ R(G

eV)

a=0.086fma=0.067fmPDG data

mπ+ = 330 MeV, a = 0.079 fm, L/a = 32 fitting z = (Mρ + i12Γρ)2

mρ = 1033(31) MeV, Γρ = 123(43) MeV

71

Page 73: Introduction to Lattice QCD II

We can go further

0

20

40

60

80

100

120

140

160

180

800 850 900 950 1000 1050

QCD phase shift(J. Dudek, R. Edwards, C. Thomas, 2013)

72

Page 74: Introduction to Lattice QCD II

Even isospin and electromagnetic mass splitting(BMW collaboration)

−8

−7

−6

−5

−4

−3

−2

−1

0

1

∆MN ∆MΣ ∆MΞ

(M

eV

)

BMWc preliminary

∆M2K

−6000

−4000

−2000

0

2000

(M

eV

2)

totalQCDQEDexperiment

baryon spectrum with mass splitting

• nucleon: isospin and electromagnetic effects with opposite signs

• nevertheless physical splitting reproduced

73

Page 75: Introduction to Lattice QCD II

NLO for other masses

mNLOΛ (mπ) = m

(0)Λ − 4c

(1)Λ m2

π −g2

ΛΣ(4πfπ)2F(mπ,∆ΛΣ, λ)− 4g2

ΛΣ∗(4πfπ)2F(mπ,∆ΛΣ∗, λ)

mNLOΣ (mπ) = m

(0)Σ − 4c

(1)Σ m2

π −2g2

ΣΣ16πf2

πm3π −

g2ΛΣ

3(4πfπ)2F(mπ,−∆ΛΣ, λ)− 4g2Σ∗Σ

3(4πfπ)2F(mπ,∆ΣΣ∗, λ)

mNLOΞ (mπ) = m

(0)Ξ − 4c

(1)Ξ m2

π −3g2

ΞΞ16πf2

πm3π −

2g2Ξ∗Ξ

(4πfπ)2F(mπ,∆ΞΞ∗, λ)

mNLO∆ (mπ) = m

(0)∆ − 4c

(1)∆ m2

π − 2527

g2∆∆

16πf2πm3π −

2g2∆N

3(4πfπ)2F(mπ,−∆N∆, λ)

mNLOΣ∗ (mπ) = m

(0)Σ∗ − 4c

(1)Σ∗m

2π − 10

9

g2Σ∗Σ∗

16πf2πm3π − 2

3(4πfπ)2

[g2

Σ∗ΣF(mπ,−∆ΣΣ∗, λ) + g2ΛΣ∗F(mπ,−∆ΛΣ∗, λ)

]

mNLOΞ∗ (mπ) = m

(0)Ξ∗ − 4c

(1)Ξ∗m

2π − 5

3

g2Ξ∗Ξ∗

16πf2πm3π −

g2Ξ∗Ξ

(4πfπ)2F(mπ,−∆ΞΞ∗, λ)

mNLOΩ (mπ) = m

(0)Ω − 4c

(1)Ω m2

π

F(m,∆,λ)=(m2−∆2)√

∆2−m2+iε log

∆−√

∆2−m2+iε

∆+√

∆2−m2+iε

−32∆ m2 log

(m2

λ2

)−∆3 log

(4∆2

m2

)

74

Page 76: Introduction to Lattice QCD II

Effect of applying LO and NLO chiral perturbation theory

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

0 0.05 0.1 0.15 0.2 0.25

mΛ (

GeV

)

mπ2 (GeV2)

NLO HBχPTLO HBχPT

β=2.10, L/a=48β=1.95, L/a=32β=1.90, L/a=32

Baryon O(p3) NLO

N 64.9(1.5) 45.3(4.3)Λ 46.0(1.8) 74.5(1.8)Σ+ 55.6(2.1) 65.3(2.2)Σ0 54.7(1.7) 64.5(1.8)Σ− 58.3(1.9) 68.3(1.9)∆ 79.9(3.0) 100.3(3.1)Σ∗ 45.1(2.8) 68.6(2.7)Ξ∗ 20.8(2.2) 38.2(2.2)

nucleon σ-terms

• chiral extrapolation dominating systematic error

⇒ need physical point simulations

75

Page 77: Introduction to Lattice QCD II

Simulation at physical pion mass

• Lattice spacing: a = 0.1fm

• Pion mass: mπ = 140MeV

• Suppression of finite size effects: L ·mπ > 5

• Requirement

– L ≈ 5fm → 483 · 96 lattice ( ← present standard)

– for a = 0.05fm → 963 · 192 lattice

– grows of simulation cost ∝ a−6

76

Page 78: Introduction to Lattice QCD II

Examples of present Collaborations (using Wilson fermions)

• BMWE.g., low lying baryon spectrum, BK,quark masses, QCD thermodynamics, several lattice spacings

• PACS-CSE.g., charmed baryons, charm physics

• MILC collaborationE.g.: kaon semileptonic formfactor

• ETMCMeson masses and decay constants, nucleon structure,hadronic contributions to electroweak observables

• RBCdomain wall fermions

77

Page 79: Introduction to Lattice QCD II

Summary

• wanted to show basic step for proton mass computation

• 25 years effort

– conceptual developments: O(a)-improved actions– algorithm developments– machine developments

• mission of hadron spectrum benchmark calculation completed

• ready for more complicated observables→ (see other lectures at this school

78

Page 80: Introduction to Lattice QCD II

General articles

Lectures, review articles

• R. GuptaIntroduction to Lattice QCD, hep-lat/9807028

• C. DaviesLattice QCD, hep-ph/0205181

• M. LuscherAdvanced Lattice QCD, hep-lat/9802029Simulation strategies, hep-lat/xxxxxxxChiral gauge theories revisited, hep-th/0102028

• A.D. KennedyAlgorithms for Dynamical Fermions, hep-lat/0607038

79

Page 81: Introduction to Lattice QCD II

Books about Lattice Field Theory

• C. Gattringer and C. LangQuantum Chromodynamics on the LatticeLecture Notes in Physics 788, Springer, 2010

• T. DeGrand and C. DeTarLattice methods for Quantum ChromodynamicsWorld Scientific, 2006

• H.J. RotheLattice gauge theories: An IntroductionWorld Sci.Lect.Notes Phys.74, 2005

• J. Smit Introduction to quantum fields on a lattice: A robust mateCambridge Lect.Notes Phys.15, 2002

• I. Montvay and G. MunsterQuantum fields on a latticeCambridge, UK: Univ. Pr., 1994

• Yussuf SaadIterative Methods for sparse linear systemsSiam Press, 2003

80