Introduction to Composite - NPTELnptel.ac.in/courses/112104168/L32.pdf · Some Observations on...

14
Introduction to Composite Introduction to Composite Materials and Structures Nachiketa Tiwari Nachiketa Tiwari Indian Institute of Technology Kanpur

Transcript of Introduction to Composite - NPTELnptel.ac.in/courses/112104168/L32.pdf · Some Observations on...

Page 1: Introduction to Composite - NPTELnptel.ac.in/courses/112104168/L32.pdf · Some Observations on Shear Strength • Figure 32.1 shows that when a unidirectional lamina is subjected

Introduction to CompositeIntroduction to Composite Materials and Structures

Nachiketa TiwariNachiketa Tiwari

Indian Institute of Technology Kanpur

Page 2: Introduction to Composite - NPTELnptel.ac.in/courses/112104168/L32.pdf · Some Observations on Shear Strength • Figure 32.1 shows that when a unidirectional lamina is subjected

Lecture 32

Strength of a Composite Lamina

Page 3: Introduction to Composite - NPTELnptel.ac.in/courses/112104168/L32.pdf · Some Observations on Shear Strength • Figure 32.1 shows that when a unidirectional lamina is subjected

Failure Criteria for Isotropic MaterialsFailure Criteria for Isotropic Materials

• Isotropic materials can fail in a variety of ways. Failure in suchIsotropic materials can fail in a variety of ways. Failure in such materials can be predicted by using one of the following failure criteria.– For brittle materials

• Maximum principal stress criterion

• Maximum principal strain criterion

• Coulomb‐Mohr criterion

– For ductile materials• Maximum shear stress or Tresca criterion

• vonMises stress or distortion energy criterion

• To use these criteria, especially in multi‐axial loading situation, theTo use these criteria, especially in multi axial loading situation, the concept of principal stress and principal strains is quite frequently invoked.

Page 4: Introduction to Composite - NPTELnptel.ac.in/courses/112104168/L32.pdf · Some Observations on Shear Strength • Figure 32.1 shows that when a unidirectional lamina is subjected

Failure Criteria for Isotropic LaminaFailure Criteria for Isotropic Lamina

• However, none of the failure criteria used for isotropic materials areHowever, none of the failure criteria used for isotropic materials are of much use for predicting failure in composite lamina. 

• This so, because the planes along which the lamina may be possibly the weakest, may not be necessarily aligned with the direction of “principal” stresses in a laminaprincipal  stresses in a lamina. 

• Thus for the same reason the concept of principal stresses is ofThus, for the same reason, the concept of principal stresses is of little use in case of composite materials.

• For this reason, several alternative failure theories have been developed, which may be used to predict failure of composite l ilamina.

Page 5: Introduction to Composite - NPTELnptel.ac.in/courses/112104168/L32.pdf · Some Observations on Shear Strength • Figure 32.1 shows that when a unidirectional lamina is subjected

Different Strengths of a Composite Lamina• The strength of a unidirectional composite lamina may be characterized by five 

different material parameters. These are:– Longitudinal tensile strength, σu1.

– Longitudinal compressive strength, σu1’– Transverse tensile strength, σu2.

– Transverse compressive strength, σu2’– In‐plane shear strength, τu12.

• For a three‐dimensional analysis, i.e. for composite laminates, four additional strength parameters, are relevant. These are:

– Interlaminar tensile strength, σuI– Interlaminar compressive strength, σuI’p g uI

– Interlaminar shear strength, τu13, for the 1‐3 plane.

– Interlaminar shear strength, τu23, for the 2‐3 plane.

• For transversely isotropic materials, with 2‐3 as plane of isotropy:– σuI = σu2 σuI’ = σu2’, and τu13 = τu23

• Here, all material properties are measured in absolute numerical values.

Page 6: Introduction to Composite - NPTELnptel.ac.in/courses/112104168/L32.pdf · Some Observations on Shear Strength • Figure 32.1 shows that when a unidirectional lamina is subjected

Sign Convention for Shear Stresses

• A positive shear stress applied in L‐T di ti l b ddirection can also be expressed as a specimen which experiences tensile stress at 45 degrees (anti‐clockwise turn w r t x‐axis) of value τ and aturn w.r.t. x‐axis) of value τ, and a compressive stress applied in ‐45 degree direction (i.e. clockwise turn of 45 degrees w.r.t x‐axis).g )

• A negative shear stress applied in L‐T direction can also be expressed asT direction can also be expressed as a specimen which experiences compressive stress at 45 degrees (anti‐clockwise turn w.r.t. x‐axis) of value τ, and a tensile stress applied in ‐45 degree direction (i.e. clockwise turn of 45 degrees w.r.t x‐i )axis).

• Fig. 32.1: Sign convention for positive and negative shear stresses.

Page 7: Introduction to Composite - NPTELnptel.ac.in/courses/112104168/L32.pdf · Some Observations on Shear Strength • Figure 32.1 shows that when a unidirectional lamina is subjected

Some Observations on Shear Strengthg

• Figure 32.1 shows that when a unidirectional lamina is subjected to g jpositive shear stress τ12, (i.e. shear stress referred to principal material planes), it is equivalent to application of normal tensile and compressive loads at 45⁰ to longitudinal (fiber) directionloads at 45  to longitudinal (fiber) direction.

• Given this, the strength of a lamina subjected to pure τ12 does not get affected by sense (positive or negative) of shear stress. However, the same is not true when shear stress is applied at an angle to principal material directions. 

• Consider Fig. 32.2 as shown on the next slide.

Page 8: Introduction to Composite - NPTELnptel.ac.in/courses/112104168/L32.pdf · Some Observations on Shear Strength • Figure 32.1 shows that when a unidirectional lamina is subjected

Some Observations on Shear Strength

Fig. 32.2a: A LaminaLamina subjected to pure positive h t 45 d= shear at 45 deg. to fiber direction.

=

Fig. 32.2b: A LaminaLamina subjected to pure negative h t 45 dshear at 45 deg. to fiber direction.

=

Page 9: Introduction to Composite - NPTELnptel.ac.in/courses/112104168/L32.pdf · Some Observations on Shear Strength • Figure 32.1 shows that when a unidirectional lamina is subjected

Some Observations on Shear Strength

• In Fig. 32.2a, a lamina is subjected to pure positive shear at 45⁰  to fiber direction This stress‐state is equivalent to a tensile stress state indirection. This stress‐state is equivalent to a tensile stress state in longitudinal direction, and compressive stress state in transverse direction.

• In Fig. 32b, the same lamina is subjected to pure negative shear at 45⁰  to fiber direction. This stress‐state is equivalent to a compressive stress statefiber direction. This stress state is equivalent to a compressive stress state in longitudinal direction, and tensile stress state in transverse direction.

• Looking at Fig. 32a and Fig. 32b, and noting the fact that most composite lamina are weakest in transverse tension, we can make the case that the lamina would be weaker under negative shear, and stronger in positive shear.

Page 10: Introduction to Composite - NPTELnptel.ac.in/courses/112104168/L32.pdf · Some Observations on Shear Strength • Figure 32.1 shows that when a unidirectional lamina is subjected

Failure Theories for Composite Lamina

• Failure theories for composite lamina can be classified into three distinct groups These are:groups. These are:

– Non‐interactive or limit theories: Here, failure modes are predicted by comparing individual stresses or strains respective to their ultimate stresses and strains. However, such theories do not account for interplay between different stress components.such theories do not account for interplay between different stress components. Examples of such theories are maximum stress criteria, and maximum strain criteria.

– Interactive theories: These theories go a step further than limit theories, and also g p ,account for interaction between  various stress/strain components. Examples of such theories are those of Tsai‐Wu and Tsai‐Hill. They are able to predict overall failure, but cannot predict the exact failure mode.

– Failure mode based theories: These theories provide separate criteria for failure of matrix, fiber and interface.  Examples of such theories are those of Puck, and Hashim‐RotemRotem.

• Here, we discuss three theories in particular, maximum stress, maximum i d i illstrain, and Tsai‐Hill.

Page 11: Introduction to Composite - NPTELnptel.ac.in/courses/112104168/L32.pdf · Some Observations on Shear Strength • Figure 32.1 shows that when a unidirectional lamina is subjected

Maximum Stress Theory

• To use this theory:– Calculate stresses in material directions on a layer‐by‐layer basisCalculate stresses in material directions on a layer by layer basis.– Failure occurs, if at least one of the following conditions in any layer is 

satisfied.

– σ1 > σu1 if σ1 > 0.– σ1 > σu1’ if σ1 < 0.

– σ2 > σu2 if σ2 > 0.– σ2 > σu2’ if σ2 < 0.

– σ3 > σu3 if σ3 > 0.– σ3 > σu3’ if σ3 < 0.

– |τ12| >  τu12– |τ13| >  τu13– |τ23| >  τu23

• These equations in red color are not relevant for two‐dimensional state of stress.

Page 12: Introduction to Composite - NPTELnptel.ac.in/courses/112104168/L32.pdf · Some Observations on Shear Strength • Figure 32.1 shows that when a unidirectional lamina is subjected

Maximum Strain Theory

• To use this theory:– Calculate strains in material directions on a layer‐by‐layer basisCalculate strains in material directions on a layer by layer basis.– Failure occurs, if at least one of the following conditions in any layeris

satisfied.

– ε 1 > ε u1 if ε1 > 0.– ε1 > εu1’ if ε1 < 0.

– ε2 > εu2 if ε2 > 0.– ε2 > εu2’ if ε2 < 0.

– ε3 > εu3 if ε3 > 0.– ε3 > εu3’ if ε3 < 0.

– |γ12| > γu12– | γ13| > γu13– | γ23| > γu23

• These equations in red color are not relevant for two‐dimensional state of stress.

Page 13: Introduction to Composite - NPTELnptel.ac.in/courses/112104168/L32.pdf · Some Observations on Shear Strength • Figure 32.1 shows that when a unidirectional lamina is subjected

Tsai‐Hill Theory

• To use this theory:Calculate stresses in material directions on a layer by layer basis– Calculate stresses in material directions on a layer‐by‐layer basis.

– Failure occurs, if  the following condition is satisfied in any layer.

(σ1/F1)2 + (σ2/F2)2 + (τ12/F6)2 ‐ (σ1σ2/F1)2 > 1.

where,

F1 = σ 1 if σ1 > 0F1   σu1 if σ1 > 0.

F1 = σu1’ if σ1 < 0.

F2 = σu2 if σ2 > 0.

F2 = σu2’ if σ2 < 0.

F6 = τu12

• It may be noted that the above relation is valid only if the laminaIt may be noted that the above relation is valid only if the lamina has a two‐dimensional stress state.

• This is an interactive theory, and is popularly used.

Page 14: Introduction to Composite - NPTELnptel.ac.in/courses/112104168/L32.pdf · Some Observations on Shear Strength • Figure 32.1 shows that when a unidirectional lamina is subjected

R fReferences

1. Analysis and Performance of Fiber Composites, Agarwal,B D d B t L J J h Wil & SB.D. and Broutman, L. J., John Wiley & Sons.

2 M h i f C i M i l J R M M G2. Mechanics of Composite Materials, Jones, R. M., Mc‐GrawHill.

3. Engineering Mechanics of Composite Materials, Daniel, I.M and Ishai O Oxford University PressM. and Ishai, O., Oxford University Press.