Interaction of Charged Particles with Matter · dr r Z dr r Z r d rr e r Vr edr r r e eZ ... eigen...

21
Sizes

Transcript of Interaction of Charged Particles with Matter · dr r Z dr r Z r d rr e r Vr edr r r e eZ ... eigen...

Page 1: Interaction of Charged Particles with Matter · dr r Z dr r Z r d rr e r Vr edr r r e eZ ... eigen functions. W. Udo Schröder, 2009 Nuclear Deformations 6. Restrictions on Nuclear

Sizes

Page 2: Interaction of Charged Particles with Matter · dr r Z dr r Z r d rr e r Vr edr r r e eZ ... eigen functions. W. Udo Schröder, 2009 Nuclear Deformations 6. Restrictions on Nuclear

W. Udo Schröder, 2009

Nuc

lear

Def

orm

atio

ns2

Coulomb Fields of Finite Charge Distributions

|e|Z

e

θ

z

( )rρ ′

r ′

r r r′ −

Coulomb interactionnucleus - e

( )3( )Nucleus

eV

Z rr r

re

rd

ρ ′⋅′∫ ′

=−

Expansion of 1r r for r r−′ ′−

( ) r rr r r r r r rrr r r

θ θ−− −− ′ ′ ′ ′ ′ ′− = − = + − = + −

1 21/2 1/21 2 2 2 12 cos 1 ( 2cos )

«1

Certain regions of Segré chart: Non-spherical nuclei in ground states (different types of deformation). Excitation allows for many types of deformation.

Detailed shape “invisible” at r (everything looks like a point charge)

e

θ

z

( )rρ ′

r ′

r r′ −

( ) ( )3; : 1Charge distribution r Norm d r rρ ρ′ ′ ′ =∫

Page 3: Interaction of Charged Particles with Matter · dr r Z dr r Z r d rr e r Vr edr r r e eZ ... eigen functions. W. Udo Schröder, 2009 Nuclear Deformations 6. Restrictions on Nuclear

W. Udo Schröder, 2009

Nuc

lear

Def

orm

atio

ns3

Coulomb Fields of Finite Charge Distributions

( )rCoulomb Potential V r Ze d r

r rρ ′

′= ∫ ′ −

2 3( )

1 21 1

1 ( 2cos )For r r

r rr

r rr rexpand

θ−

−′′ +

′− = −

x x x x− ⋅ ⋅ ⋅+ = − + − + ⋅ ⋅ ⋅

1 32 21 1 3 1 3 51 1 .....2 2 4 2 4 6

1 2

0

2 1c1 1 ...os 3cos 1 (cos )12

r Pr rrr r

r rr r

θ θ θ∞−

= −

′ ′ ′ = + + ′− ∑

+ =

( ) ( ) ( )20 1 2

11, cos cos , cos 3cos 12

Legendre Polynomia

P P

ls

P θ θ θ θ≡ = = −

Recovered expansion of symmetric angular shape in terms of

|e|Z

e

θ

z

( )rρ ′

r ′

r r r′ −

Page 4: Interaction of Charged Particles with Matter · dr r Z dr r Z r d rr e r Vr edr r r e eZ ... eigen functions. W. Udo Schröder, 2009 Nuclear Deformations 6. Restrictions on Nuclear

( )

( )

( )

( ) ( )

er r

e

Z

Z d r r

Z d r r

Z

r dr r

e rV r e d r

r r

e e Z

e e Z

e e Zr ed r Qr

rr

ρ

ρ θ

θ

ρ

ρ

′ ′

′⋅′= =∫ ′ −

+ ←

+ ←

′ ⋅ − +

′ ′∫

←∫

+

′ ′

3

2

2

2

2 23

3 2

3

23 3

1

cos

1

(

3cos 1

)

2......

W. Udo Schröder, 2009

Nuc

lear

Def

orm

atio

ns4

Multipole Expansion of Coulomb Interaction

Monopoleℓ = 0

Dipole ℓ = 1Quadrupole ℓ =2

Point Charges

Nuclear distribution

|e|Z

e

θ

z

( )rρ ′

r ′

r r r′ −

Different multipole shapes/ distributions have different spatial symmetries

Page 5: Interaction of Charged Particles with Matter · dr r Z dr r Z r d rr e r Vr edr r r e eZ ... eigen functions. W. Udo Schröder, 2009 Nuclear Deformations 6. Restrictions on Nuclear

W. Udo Schröder, 2009

Nuc

lear

Def

orm

atio

ns5

Parity: A Quantal Symmetry

Symmetric nuclear shape symmetric Symmetry of H( )rρ

ˆ ˆ ˆˆ ( ) ( )ˆ ˆ, 0 E

Parity Op r r H r H r

H simultaneous eigenfunctions

eratorπψ

Π→ − Π = −

→ Π = →

3(cos ) (( ) cos ) ( )n nnl

n neM dr P rr r rP

ρθ θψ ψ∗ ∝ ∝ ∫

both even or odd

n even π = +1n odd π = -10el

nM for n odd= =

If strong nuclear forces conserveparity

( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )2 2

ˆ

1ˆ1

ˆ ˆ

E E E E

E E E

E E E EH r E r and

r r r r

evenr r r

od

r r

d

π π π π

π π

π π

π

π π

ψ ψ ψ π ψ

ψ π ψ

ψ ψ π

π

ψ ψ

ψ

Π = − → − = ⋅

+Π = = → =

= ⋅ Π ⋅

=

All odd electrostatic moments = 0

Simultaneous eigen

functions

Page 6: Interaction of Charged Particles with Matter · dr r Z dr r Z r d rr e r Vr edr r r e eZ ... eigen functions. W. Udo Schröder, 2009 Nuclear Deformations 6. Restrictions on Nuclear

W. Udo Schröder, 2009

Nuc

lear

Def

orm

atio

ns6

Restrictions on Nuclear Field

Expt: There are no nuclei with non-zero electrostatic dipole moment

Consequences for nuclear Hamiltonian (assume some average mean field U for each nucleon i):

2

1

2 22 2 2 2

2 2

1

1 1 1

ˆˆ ( )2

ˆˆ ˆ , 0( )

ˆ( ), 0

( ) ( ) (| |

ˆ ˆ,

)

: ( )

0A

ii

i i

i ii i

Ai

i

A A Ai i i

i i i

i i

pH U r parity conserving

m

Since p px x

and therefore U r

U r U r U r

Arbitrary r r

H

U

=

=

= = =

= + →∑

∂ ∂ = − = − → Π = ∂ ∂ −

Π =∑

→→

= − =∑ ∑ ∑

=

Π =

( ) (|(

|))

i i

iU r CentralU

Potentir r

aU

l−

=

=

Average mean field for nucleons conserves π U= inversion invariant, e.g., central potential

Page 7: Interaction of Charged Particles with Matter · dr r Z dr r Z r d rr e r Vr edr r r e eZ ... eigen functions. W. Udo Schröder, 2009 Nuclear Deformations 6. Restrictions on Nuclear

n nInteraction B d Eε µ= −

W. Udo Schröder, 2009

Nuc

lear

Def

orm

atio

ns7

Neutron Electric Dipole Moment

- + B n n

nn

B E

EB d

dε µ ω

ε µ ω

+ +

− −

= + =

= − =

2

2

2

2

Overall charge qn = 0, but possibly small dn ≠ 0.CP and P violation could explain matter/antimatter asymmetry.

Measure NMR HF splitting for E B↑↓

Transition energies∆ω=4dnE

s

nd

B

E

B = 0.1T, tune with Bosc B. E = 1MV/m ω = 30Hz spin-flip

ultra-cold (kT~mK) neutrons

Ekin=10-7eV, λ =670Åneutrons in magnetic bottleguided in reflecting Ni tubes

Page 8: Interaction of Charged Particles with Matter · dr r Z dr r Z r d rr e r Vr edr r r e eZ ... eigen functions. W. Udo Schröder, 2009 Nuclear Deformations 6. Restrictions on Nuclear

PNPI (1996): dn < (2.6 ± 4.0 ±1.6)·10-26 e·cm

ILL-Sussex-RAL (1999): dn < (-1.0 ± 3.6)·10-26 e·cm

dn experimental sensitivity/upper lim.From size of neutron (r0≈ 1.2fm): expect dn 10-15 e·m.So far, only upper limits for dn

Experimental Results for n Electric Dipole Moment

W. Udo Schröder, 2009

8N

ucle

ar D

efor

mat

ions Atomic beam experiments:

199 28

205 27

d( Hg) 2.1 10 ecmd( Tl ) 1.6 10 ecm

< ×

< ×

I.B. Khriplovich et al., CP Violation without Strangeness: Electric Dipole Moments of Particles, Springer-Verl., New York (1997)

Page 9: Interaction of Charged Particles with Matter · dr r Z dr r Z r d rr e r Vr edr r r e eZ ... eigen functions. W. Udo Schröder, 2009 Nuclear Deformations 6. Restrictions on Nuclear

W. Udo Schröder, 2009

Nuc

lear

Def

orm

atio

ns9

Intrinsic Electric Quadrupole Moment

Consider axially symmetric nuclei (for simplicity), body-fixed system (’), z =z’ symmetry axis

θ’

z

r ′

( )( )( )

3 2

2 2

20

3

( ) 3cos 1

3) co( s

Q eZ d r r r

rr reZ d r θ

ρ θ

ρ

′ ′ ′ ′= ⋅ −∫

′ ′ ′′ ′∫ −= ⋅

Sphere:

sphr x y z Qz= + + = → =2 2 2 20

2 3 0

Q0 measures average deviation from spherical shape.

2 20cos 3 z rz r Qθ′ ′= ⋅ → = −

Page 10: Interaction of Charged Particles with Matter · dr r Z dr r Z r d rr e r Vr edr r r e eZ ... eigen functions. W. Udo Schröder, 2009 Nuclear Deformations 6. Restrictions on Nuclear

W. Udo Schröder, 2009

Nuc

lear

Def

orm

atio

ns10

Collective and s.p. Deformations

Q0>0 “prolate” Q0<0 “oblate”

collectivedeformation

cigarsingle holearound core

zz z z

collectivedeformation

discsingle particlearound core

z

b a

Planar single-particle orbit: 20 3spQ eZ z= ⋅ { }2 2r eZ r− = − ⋅

Ellipsoidprincipal axes a, b

( )

( )2 2 20

; ; :22 45 5

coll

a b RR R b aR

Q eZ b a eZ R

δ

δ

+ ∆= ∆ = − =

= ⋅ − = ⋅ ⋅

Deformation parameter δ

Page 11: Interaction of Charged Particles with Matter · dr r Z dr r Z r d rr e r Vr edr r r e eZ ... eigen functions. W. Udo Schröder, 2009 Nuclear Deformations 6. Restrictions on Nuclear

W. Udo Schröder, 2009

Nuc

lear

Def

orm

atio

ns11

Spectroscopic Quadrupole Moment

Body-fixed {x’, y’, z’}, Lab {x, y, z}Symmetry axis z defined by the experiment

2 20 3Q eZ z r′= − Intrinsic Q moment

What Q is measured in the Lab system?(Transformation of variables, c.f. Segré)

( ) ( )( )

2

0 2

2 20

13 ....... 3co

c s

s

o )

1

(2

z

z

Q Q P

Q eZ z r Q eZ θ

θ

= − = = −

= ⋅ finite rotation through θ

Measured Q depends on orientation of deformed nucleus w/r to Lab symmetry axis. define Qz as the largest Q measurable.

How to control or determine orientation of nuclear Q?

Nuclear spin to symmetry axis, no quantal rotation about z’

No spin, no alignment control

z

θ

Page 12: Interaction of Charged Particles with Matter · dr r Z dr r Z r d rr e r Vr edr r r e eZ ... eigen functions. W. Udo Schröder, 2009 Nuclear Deformations 6. Restrictions on Nuclear

W. Udo Schröder, 2009

Nuc

lear

Def

orm

atio

ns12

Angular Momentum and QQz =maximum measurable maximum spin (I) alignment

( ) ( )2 2 2 2 ˆˆ ˆ ˆ ˆ3 3z zm II I I

I IQ eZ z r z r Q

m I m I== − = − ∝

= =

{Legendre polynomials}= complete basis set

2

0( , ) ( , ) (cos )

II Id Pφ ψ θ φ ψ θ φ α θ∗

=⋅ = ∑∫

232 2

0( ) (cos ) ( ) sin (cos ) (cos )

Iz I IQ d r r P r d P Pψ θ ψ α θ θ θ θ∗

=′ ′ ′∝ = ⋅ ⋅∑∫ ∫

2δ=

0

22 ,2 0 1z

for any

Q I

Q

0 for I → == <

Spins too small to effect alignment of Q in the lab.

z ISpinI couples with I to L =2

L

32( ) (cos ) ( ) . .z I I IQ eZ d r r P r nucl wave functψ θ ψ ψ∗′ ′ ′∝ =∫

Clebsch-Gordan Coefficient (spin coupling)

Page 13: Interaction of Charged Particles with Matter · dr r Z dr r Z r d rr e r Vr edr r r e eZ ... eigen functions. W. Udo Schröder, 2009 Nuclear Deformations 6. Restrictions on Nuclear

W. Udo Schröder, 2009

Nuc

lear

Def

orm

atio

ns13

Vector Coupling of Spins

20

1ˆ 3cos 12z m III I

I IQ Q Q

m I m Iθ

== = −

= =

I≠0:

( )( )

1 cos cos1

IIm I I I

I Iθ θ= = + → =

+

( ) 0 (2 12

0 ,1 2)1

0z for IIQ QI

−= ⋅

+= =

( ) ( )23 ( 1)

( )2 1

Iz I z I

m I IQ m Q m I

I I− +

= ⋅ =−

mI

z

θ ( )1I I +

I

Any orientation

quadratic dependence of Qz on mI

“The” quadrupole moment

Page 14: Interaction of Charged Particles with Matter · dr r Z dr r Z r d rr e r Vr edr r r e eZ ... eigen functions. W. Udo Schröder, 2009 Nuclear Deformations 6. Restrictions on Nuclear

W. Udo Schröder, 2009

Nuc

lear

Def

orm

atio

ns14

Electric Multipole Interactions

Inhomogeneous external field torque on deformed nucleus. orientation-dependent int. energy WQExamples: crystal lattice, heavy ion fly-by

E U= ∇

z

E+∆E

E

F+∆F

F

( )2 2 2

2 2 20 2 2 20

0 0 0

1( ) ...2

U U UU r U r U x y zx y z

∂ ∂ ∂ = + ∇ + + + + ∂ ∂ ∂

0Taylor expansion r center of nucleus=

2 2

2 , ,ij ii j i

U U x x y zx x x

δ ∂ ∂

= = ∂ ∂ ∂

Axial symm. field (z)

( )

3

2 2 22 2 2

0 2 2 200 0 0

( ) ( )

...2

W eZ d r r U r

eZ U U UeZU eZ U r x y zx y z

ρ= ⋅ =∫ ∂ ∂ ∂ = + ∇ + + + +

∂ ∂ ∂

Monopole WIS

Dipole 0Quadrupole WQ

no mixed derivatives

WIS: isomer shift, WQ: quadrupole hyper-fine splitting

Page 15: Interaction of Charged Particles with Matter · dr r Z dr r Z r d rr e r Vr edr r r e eZ ... eigen functions. W. Udo Schröder, 2009 Nuclear Deformations 6. Restrictions on Nuclear

W. Udo Schröder, 2009

Nuc

lear

Def

orm

atio

ns15

Electric Quadrupole Interactions

2 22 2 2

2 20 0

2QeZ U UW x y z

x z

∂ ∂ = + + ∂ ∂

Maxwell Equs. 4 (0) 0U πρ∆ = =

2 2

2 20

2

200

12

U U Uzx y

∂ ∂ ∂ ∂

∂− ∂

=

=2 2 2

2 2 20 U U U

x y z

∂ ∂ ∂= + + ∂ ∂ ∂

No charge at center

{ }

{ }

22 2 2

20

22 2 2

20

24

24

QeZ UW x y z

z

eZ U r z zz

∂ = − + + ∂

∂ = − − + ∂

2

20

(4

) )( z IIQeZ U

zQ mmW

∂⋅ ⋅

∂ =

Field gradient · spectroscopic quadrupole moment mI

2

axial symm=Uzz

2 23 z r= −

Page 16: Interaction of Charged Particles with Matter · dr r Z dr r Z r d rr e r Vr edr r r e eZ ... eigen functions. W. Udo Schröder, 2009 Nuclear Deformations 6. Restrictions on Nuclear

W. Udo Schröder, 2009

Nuc

lear

Def

orm

atio

ns16

Quadrupole Hyper-Fine Splitting of γ Lines

Inhomogeneous external electrostatic field aligns Q via nuclear spin I,Measure interaction energies WQ (mI) (possible for I >1/2). Quadrupole hyper-fine splitting of nuclear or atomic energy levels

Weak “hf” splitting mI2

of nuclear and atomic levels in Uzz≠0

splitting of γ emission/absorption lines

dN/dEγ

Uzz=0

Estimates atomic energies ~ eVatomic size ~ 10-8cmpotential gradient Uz ~ 108V/cmfield gradient Uzz ~ 1016V/cm2

With Q0 ~ 10-24 e cm2

WQ ~ 10-8 eV small !

mI=±2

mI=±1

I=0

I=2

mI=0

mI=0E2

ground stateUzz=0 Uzz≠0

Excited state

isomer shift

centroid

Page 17: Interaction of Charged Particles with Matter · dr r Z dr r Z r d rr e r Vr edr r r e eZ ... eigen functions. W. Udo Schröder, 2009 Nuclear Deformations 6. Restrictions on Nuclear

W. Udo Schröder, 2009

Nuc

lear

Def

orm

atio

ns17

Experimental Methods for Quadrupole Moments

Weak “hf” splitting WQ of nuclear and atomic levels in Uzz≠0

splitting of X-ray/ γ emission/absorption lines

Measurable for atomic transitions with laser excitations

nuclear transitions with Mössbauer spectroscopy

Muonic atoms:

107 times larger hf splittings WQ with X-ray and γ spectroscopy

scattering experiments Uzz(t)

Nuclear spectroscopy of collective rotations model for moment of inertia

( )2

0

2

12

: ( )2

II I

Q E

Lanthanides10 - 20 keV

Actinides

+→ ℑ → =

ℑ ℑ

g.s. I=0I=2I=4

I=6

I=8

. .

. .

0Qℑ →

Page 18: Interaction of Charged Particles with Matter · dr r Z dr r Z r d rr e r Vr edr r r e eZ ... eigen functions. W. Udo Schröder, 2009 Nuclear Deformations 6. Restrictions on Nuclear

W. Udo Schröder, 2009

Nuc

lear

Def

orm

atio

ns18

Collective Rotations

43 5

RR

πβ ∆=

z

b a β : deformation parameter

Nuclei with large Q0 (lanthanides, actinides) collective rotations

Wood et al.,Heyde

;2

a bR R a b+= ∆ = −

20

20

2. . .: 1 0.3159:8

rig

irr

rigid body m o i MR

hydro dynamical MR

β

πβ

− ℑ = +

− ℑ =

( )2

12IRotational and inversion symmetry ev II Ien E→ = +

0023 1 0.16

5Intrinsic quadrupole moment Q eZ R β

πβ= +

20 0( , ) 1 ( , )R R Yθ φ β θ φ = +

Page 19: Interaction of Charged Particles with Matter · dr r Z dr r Z r d rr e r Vr edr r r e eZ ... eigen functions. W. Udo Schröder, 2009 Nuclear Deformations 6. Restrictions on Nuclear

Rotational Spectra of Actinides

W. Udo Schröder, 2009

Nuc

lear

Def

orm

atio

ns19

215 18

2keV≈ −

Page 20: Interaction of Charged Particles with Matter · dr r Z dr r Z r d rr e r Vr edr r r e eZ ... eigen functions. W. Udo Schröder, 2009 Nuclear Deformations 6. Restrictions on Nuclear

W. Udo Schröder, 2009

Nuc

lear

Def

orm

atio

ns20

Systematics of Electric Quadrupole Moments

2Q R

RZRδ ∆

∝ =

odd-Nodd-Z

Q(167Er)=30R2

Prolate

Oblate

8 20 28 50 82 126

Q<0 : e.g., extra particle around spherical core. pattern recognizable17

29 5163 123

8209

8 3, , ,O Cu Sb Bi

Q>0 : e.g., hole in spherical core pattern not obvious. If such nuclei exist, weak effect of hole for Q

27 55 115 176 16713 25 49 71 68, , , ,Al Mn In Lu Er

Somewhat tightly bound nuclei are also spherical (Q = 0):“Magic” numbers N or Z = 8, 20, 28, 50, 82, 126, …

Mostly prolate (Q>0) heavy nuclei

Not a necessary condition for Q = 0

Page 21: Interaction of Charged Particles with Matter · dr r Z dr r Z r d rr e r Vr edr r r e eZ ... eigen functions. W. Udo Schröder, 2009 Nuclear Deformations 6. Restrictions on Nuclear

W. Udo Schröder, 2009

Nuc

lear

Def

orm

atio

ns21

Q0 SystematicsMøller, Nix, Myers, Swiatecki, Report LBL 1993

Q0 large between magic N, Z numbersQ0≈0 close to magic numbers