Instruments for x- and γ-ray astronomy...Cargèse, 5 April 2006 instrumentation 1 Instruments for...
Embed Size (px)
Transcript of Instruments for x- and γ-ray astronomy...Cargèse, 5 April 2006 instrumentation 1 Instruments for...
-
Cargèse, 5 April 2006 instrumentation 1
Instruments for x- and γ-ray astronomy
Detecting x- and γ-rays
Detectors
Gas-filled detectorsScintillatorsSemiconductors
Telescope systemsGeometric Optics
Quantum Optics
Wave Optics
-
Cargèse, 5 April 2006 instrumentation 2
Instrument concepts in nuclear astrophysics
The instrumental categories in nuclear astrophysics reflects our currentperception of light itself.
-
Cargèse, 5 April 2006 instrumentation 3
Geometric Optics : Modulating Aperture Systems
-
Cargèse, 5 April 2006 instrumentation 4
Collimator "on" - "off" telescope : e.g. OSSE on CGRO
-
Cargèse, 5 April 2006 instrumentation 5
Collimator "on" - "off" telescope : e.g. OSSE on CGRO
-
Cargèse, 5 April 2006 instrumentation 6
temporal modulation of a point source with a bigrid (Oda)-collimator
measured parameters :
Eγ : energy depositedt : arrival time
expected count rate on detector :N’(t) = + B
si : flux from the ith sourceε : detection efficiencyfi : transmission function for
source i at time tB : background count rate.
!i
si. .fi(t)
-
Cargèse, 5 April 2006 instrumentation 7
rotating modulator
gi(α) =
temporal modulation of a point source with a bigrid (Oda)-collimator
Transmission fi for a point source located at the position r,θ from theinstrument z-axis
fi = | 0.5 - (| gi-int(gi) |) |
with gi depending on the type of collimator movement and where int(gi) is theinteger part of gi
scanning modulator
gi(α) = r.cos( ) -
r.cos( - t)
-
Cargèse, 5 April 2006 instrumentation 8
Occultation Transform Imaging (BATSE)
with the planet earth as'rotation' modulation collimator(or scanning anti-collimator)
-
Cargèse, 5 April 2006 instrumentation 9
coded mask imaging
measured parameters :
x,y : int. location on the detectorEγ : energy depositedt : arrival time
astronomy : encoding of a two dimensionalsource distribution (i,j) into a 2-D dataspace(k,l)
for sources at finite distance (nuclearmedicine, tomography of X-ray emittingplasmas) coded mask techniques can beused to extract depth information forvolumetric object reconstruction.
-
Cargèse, 5 April 2006 instrumentation 10
Why is it ...
-
Cargèse, 5 April 2006 instrumentation 11
Aristotle and the coded mask
“Why is it that when the sun passes through quadilaterals, as forinstance wickerwork, it does not produce a figure rectangular in shapebut circular ?”Aristotle,problemata physica - problem XV,6
“Why is it that in an eclipse of the sun, if one looks at it through asieve or through leaves, such as a planetree or other broad leavedtree, or if one joins of one hand over the fingers of the other, the raysare crescent-shaped where they reach the earth ? Is it for the samereason as that when light shines through a rectangular peep-hole, itappears circular in the form of a cone ? The reason is that there aretwo cones, one from the sun to the peephole and the other from thepeep-hole to the earth, and the vertices meet ..."Aristotle, problemata physica - problem XV,11
-
Cargèse, 5 April 2006 instrumentation 12
Field of view characteristics of a coded mask instrument
α2 β
2Ω2
ce
a
d
b
FOV (FWHM) = 2 arctg d2b
fully coded FOV = 2 arctg d-a2b
partially coded FOV = 2 arctg a+d2b
angular resolution = r ’
= r arctg cb
vignetting e,b, z from z axis
-
Cargèse, 5 April 2006 instrumentation 13
coded mask imaging : Encoding
The intensity measured by the PSD can be expressed as a two-dimensionalmatrix Di,j (the shadowgram) presenting the number of interactions registeredin the detector element i,j.
Dk,l = Σ Si,j . Ai+k ,j+l + Bk,l
Si,j : matrix of the source distribution,
Ai,j : aperture transmission function(1 for transparent mask elements, 0 for opaque elements)
Bi,j : background noise matrix(all contributions not modulated by the aperture)
i,j
-
Cargèse, 5 April 2006 instrumentation 14
coded mask imaging : Decoding
direct deconvolution :correlate the encoded matrix D with decoding array G (postprocessing array)
S’i,j =
Substituting the encoded matrix D results in
S’ = (S * A) * G + B * G
A*G is the point spread function (PSF). Optimal mask patterns produce deltafunction A*G ≡ δ
S’ = S + B * G
=> source is perfectly reconstructedd with the exception of a background term.
!k,l
Dk,l . Gi+k,j+l
-
Cargèse, 5 April 2006 instrumentation 15
“X-ray star camera”
Fresnel Zone Plate = Mask
⇒ Shadowgram = Hologram
Mertz & Young, 1961
-
Cargèse, 5 April 2006 instrumentation 16
“Illustrative sample of optical Fresnel transformation”
Mertz and Young’sdemo of the principleusing visible light :
upper left : sourceilluminated pinholessimulate the n stars
right : holograma Fresnel zone platecasts n distinctshadows
lower left : imagereconstructed bydiffraction from areduced copy ofhologram
Mertz & Young, 1961
-
Cargèse, 5 April 2006 instrumentation 17
I N T G E R A L
TITRE
INTEGRAL
Lebrun et al. (2003)
-
Cargèse, 5 April 2006 instrumentation 18
SWIFT
Detecting Area 5200 cm2Detector CdZnTeField of View 2 sr (half-coded)Detection Elements 256 modules of 128 elem.Detector Size 4 mm x 4 mm x 2 mmTelescope PSF 22 arcminEnergy Range 10-150 keVLaunch July 2004 !
BAT
-
Cargèse, 5 April 2006 instrumentation 19
Quantum Optics : e.g. Compton Telescopes
measured parameters :
x1,y1 : interaction location in D1E1 : energy deposit in D1x2,y2 : interaction location in D2E2 : energy deposit in D2t, Δt : arrival time, TOF D1-D2
derived parameters :
x1,y1,x2,y2 => χ, ψE1,E2 => ϕ
cos ϕ = 1 - mec2/E2 + mec2/E1+E2
encoding of the two dimensional sourcedistribution into a 3-D dataspace (Χ, Ψ, ϕ)
-
-
-
Cargèse, 5 April 2006 instrumentation 20
the dataspace of classical Compton telescopes
Eventcircles from a single pointsourceat χ, ψ (35°, 0°)
events from same pointsource lie ona cone with apex at χ, ψ (35°, 0°)grayscale -> praobability density(for 1.8 MeV photons, max. at O(j,_) =23,7°)
-
Cargèse, 5 April 2006 instrumentation 21
Time of Flight coincidence (TOF) COMPTEL data
COMPTEL calibration data
channel width : 0.25 nsdistance D1-D2 : 1.5 m ≈> 5 ns)
COMPTEL flight data
channel width : 0.25 ns“upward BG” from spacecraft and the Earth
-
Cargèse, 5 April 2006 instrumentation 22
GRO COMPTEL
-
Cargèse, 5 April 2006 instrumentation 23
Advanced Compton Telescope (ACT) options
TIGRE MEGA Ge-ACT Liquid XEUC Riverside MPE, UNH UC Berkeley Columbia
-
Cargèse, 5 April 2006 instrumentation 24
ACT science requirements
-
Cargèse, 5 April 2006 instrumentation 25
Sensitivity
Variance V of a signal at the limiting flux fnV = (fn.X + N)1/2
N : number of equivalent total background counts, X : exposure.N = Non + α2Noff
= 2.b.Aon.h.ΔE.Tobs.soff.l for α = 1 X = Aon.Tobs.t.m.l.efep.sThe γ-ray source flux will be detected at n standard deviations is
fn = n . (fn.X + N)1/2 / X≈ n . N1/2 / X for fn.X fn = (n . N1/2/X) . [1 + ω+ 1/2ω2 + O(ω 4)] with ω := n/2 √ N
-
Cargèse, 5 April 2006 instrumentation 26
Background
-
Cargèse, 5 April 2006 instrumentation 27
Cosmic Ray interactions and γ-ray background
-
Cargèse, 5 April 2006 instrumentation 28
The background of our friendly skies ...
0.00
100
200
300
400
16 jan 12:00 18:00 17 jan 0:00 6:00 12:00 18:0018:00
Los Angeles to Toulouse
exp
osu
re r
ate
[m
icro
R/h
]
Toulouse time [h]
Los AngelesLAX
10±3 microR/h
ParisCDG
9±3 microR/h
ToulouseBlagnac
9±3 microR/h
New YorkJFK
11±3 microR/h
january 1998
-
Cargèse, 5 April 2006 instrumentation 29
Background - γ-Ray production within the atmosphere
0 10000 20000 30000 40000 50000 60000 70000
0
5000
10000
15000
20000
25000
30000
35000
40000
growth curve, HIREGS flight january 1998, McMurdo
count rate [counts / second]
alti
tude [m
]
BGO shieldLLD
BGO shieldULD
Ge det
-
Cargèse, 5 April 2006 instrumentation 30
Living with background - strategies
A : fightpassive shieldingactive anticoincidence shieldssupershieldsdiscrimination of BG-event signatures e.g.
- phoswhich- pulse shape discrimination (PSD)- time of flight measurements (TOF)
B : avoidchoice of orbit (e.g. high cutoff rigidity, avoiding radiation belts)minimize passive masschoice of low BG materials (e.g.70Ge)solid angle effects (earth -> high orbit, spacecraft -> mast)coincidence techniques (Compton telescopes, TPC’s)small detectors (focusing)resolution (spectral-, angular-, timing)
-
Cargèse, 5 April 2006 instrumentation 31
Background - Anticoincidence Shield
background reduction, shields against- prompt CR interactions- cosmic diffuse gamma-ray component- γ-rays generated in the atmosphere / spacecraft
defines a field of viewimproves spectral response function
- “Anti-Compton” rejection of source events not in full energy peak- Rejection of source events >mec2 in the escape peaks
background generator- converts CR p
reduces lifetimeimplicitly reduces effective area : with limited mass budgets in balloon and satellite
experiments, a shield is most likely the heaviest part of the instrument
( INTEGRAL SPI shield ACS : 856 kg ; BGO alone : 504 kg detector camera : 141 kg ; Ge alone : 19 kg )
-
Cargèse, 5 April 2006 instrumentation 32
Ge detector background : SPI
10-5
10-4
10-3
10-2
400 500 600 700 800 900
E [keV]
SPI 2003
BG
ra
te [count s
-1 c
m-3
keV
-1]
pvb 2
1.7
.2004
e+e-
(511)
24Na
(472)
69Zn
(439)
67Ga
(403)
69Ge
(574.1)
121Te
(573.1)
69Ge
(584)
74As
(596)
214Bi
(609)
72Ge(n,n')
(693)
117Te
(719.7)
126I ?
(753)
27*Al
(844)
54Mn
(835)
69Ge
(872)
69Ge
(883)
58Co
(811)
(818)
-
Cargèse, 5 April 2006 instrumentation 33
Ge detector background : SPI
10-5
10-4
10-3
10-2
400 500 600 700 800 900
E [keV]
SPI 2003
BG
ra
te [count s
-1 c
m-3
keV
-1]
pvb 2
1.7
.2004
-
Cargèse, 5 April 2006 instrumentation 34
Ge detector background : comparison
10-5
10-4
10-3
10-2
400 500 600 700 800 900
E [keV]
SPI 2003
Mars Odyssey
HEAO-3
HEXAGONE 1989
BG
ra
te [count s-
1 c
m-3
keV
-1]
pvb 2
1.7
.2004
HIREGS 1994
(ACS OFF)
TGRS
CLAIRE 2001
HIREGS 1994
SPI 2003
(ACS OFF)
-
Cargèse, 5 April 2006 instrumentation 35
Ge detector background : comparison
10-5
10-4
10-3
10-2
400 500 600 700 800 900
E [keV]
SPI 2003
Mars Odyssey
HEAO-3
HEXAGONE 1989
BG
rate
[count s-
1 c
m-3
keV
-1]
pvb 2
1.7
.2004
TGRS
CLAIRE 2001
HIREGS 1994
4 x
6 x
-
Cargèse, 5 April 2006 instrumentation 36
Anticoincidence shields - the limit of growth
-
Cargèse, 5 April 2006 instrumentation 37
ACT/GRI sensitivity requirement
f3σ < 5.10-7 s-1.cm-2
f3σ < 5.10-7 s-1.cm-2 !You must be kiddingthis means : ~ one photon per cm2 every month
with a BG produced by one CR particle per cm2 per secondproducing eg at 511 keV (SPI) ~ a BG event per cm2 every 3 minutes
-
Cargèse, 5 April 2006 instrumentation 38
Past, present, and future observations in gamma-ray lines
-
Cargèse, 5 April 2006 instrumentation 39
10-7
10-6
10-5
10-4
sensitivity
sensitivity
Past, present, and future observations in gamma-ray lines3 σ
nar
row
line
sens
itivity
at 8
47 k
eV
OSSEHEAO-3
SPI
required
sim
bo
l-X
XE
US
GR
I/M
AX
/AC
T
1960 1970 1980 1990
HE
AO
3
COMPTEL
HE
AO
1
OSSE
SMM
WATCH
SIGMA
BATSE
GINGA
GR
AN
AT
Bep
po
-SA
X
ASCA
Vela satellitesINTEGRAL
HE
TE
2000 2010
<SWIFT
AGILE
S
u
z
a
k
u
NEWTON, CHANDRA
EC
LA
IRS
10 MeV
1 MeV
100 keV
10 keV
1 keV
-
Cargèse, 5 April 2006 instrumentation 40
Gamma-ray source statistics
10.0
100
103
104
105n
um
be
r o
f so
urc
es
(19
98
/99
)
gamma-ray source catalogue
-
Cargèse, 5 April 2006 instrumentation 41
Gamma-ray source statistics
10-2
10-1
100
101
0.1 1 10 100 103 104
mass attenuation for NaI
attenuation [cm
2/g
m N
aI]
E [MeV]
pairCompton
photoel.
10.0
100
103
104
105n
um
be
r o
f so
urc
es
(19
98
/99
)
gamma-ray source catalogue
-
Cargèse, 5 April 2006 instrumentation 42
Gamma-ray source statistics
10-4
10-3
10-2
10-1
100
101
10-10
10-8
10-6
10-4
10-2
100
0.01 0.1 1 10 100
ba
ckg
rou
nd
[c
m-2 s
-1 M
eV
-1] (m
fp *
BG
)
Cra
b p
ho
ton
s [
cm
-2 s
-1 M
eV
-1]
energy [MeV]
OSSE
COMPTEL
EGRET
total Crab spectrum
background spectrum forGe detectorsspecific BG rate
times mean free path in Ge
0.00
50.0
100
150
200
0.1 1 10 100 103 104
nu
mb
er
of
so
urc
es
(19
98
)
energy [MeV]
gamma-ray source catalogue
Macom
b a
nd G
ehre
ls, 1999
-
Cargèse, 5 April 2006 instrumentation 43
Improving sensitivity
the detectable minimum flux will depend on the
Collecting area (for optical thick/thin detectors : detecting surface/volume)Detection efficiencyEffective exposure timeBackground
fn ≈ n.(N)1/2/X ≈ n.(bVTobs)1/2/AeffTobs
Building on present technology and measured BG spectra, the narrow line sensitivity ofan instrument with e.g. Aeff = 2000 cm2 (Ageo ≈ 1 m2) scales with respect to :
Aeff f3σ f3σ (X = AeffTobs = 2.109 cm2s)
OSSE 450 cm2 (662 keV) 8.10-5 4.10-5 [ph cm-2 s-1]COMPTEL 20-50 cm2 (2 MeV) 4.10-5 6.10-6 [ph cm-2 s-1]SPI 100 cm2 (847 keV) 2.10-5 4.10-6 [ph cm-2 s-1]
but how to get the ACT GRI requirements of ~ 5.10-7 [ph cm-2 s-1] ?