Instruments for x- and γ-ray astronomy...Cargèse, 5 April 2006 instrumentation 1 Instruments for...

43
Cargèse, 5 April 2006 instrumentation 1 Instruments for x- and γ-ray astronomy Detecting x- and γ-rays Detectors Gas-filled detectors Scintillators Semiconductors Telescope systems Geometric Optics Quantum Optics Wave Optics

Transcript of Instruments for x- and γ-ray astronomy...Cargèse, 5 April 2006 instrumentation 1 Instruments for...

  • Cargèse, 5 April 2006 instrumentation 1

    Instruments for x- and γ-ray astronomy

    Detecting x- and γ-rays

    Detectors

    Gas-filled detectorsScintillatorsSemiconductors

    Telescope systemsGeometric Optics

    Quantum Optics

    Wave Optics

  • Cargèse, 5 April 2006 instrumentation 2

    Instrument concepts in nuclear astrophysics

    The instrumental categories in nuclear astrophysics reflects our currentperception of light itself.

  • Cargèse, 5 April 2006 instrumentation 3

    Geometric Optics : Modulating Aperture Systems

  • Cargèse, 5 April 2006 instrumentation 4

    Collimator "on" - "off" telescope : e.g. OSSE on CGRO

  • Cargèse, 5 April 2006 instrumentation 5

    Collimator "on" - "off" telescope : e.g. OSSE on CGRO

  • Cargèse, 5 April 2006 instrumentation 6

    temporal modulation of a point source with a bigrid (Oda)-collimator

    measured parameters :

    Eγ : energy depositedt : arrival time

    expected count rate on detector :N’(t) = + B

    si : flux from the ith sourceε : detection efficiencyfi : transmission function for

    source i at time tB : background count rate.

    !i

    si. .fi(t)

  • Cargèse, 5 April 2006 instrumentation 7

    rotating modulator

    gi(α) =

    temporal modulation of a point source with a bigrid (Oda)-collimator

    Transmission fi for a point source located at the position r,θ from theinstrument z-axis

    fi = | 0.5 - (| gi-int(gi) |) |

    with gi depending on the type of collimator movement and where int(gi) is theinteger part of gi

    scanning modulator

    gi(α) = r.cos( ) -

    r.cos( - t)

  • Cargèse, 5 April 2006 instrumentation 8

    Occultation Transform Imaging (BATSE)

    with the planet earth as'rotation' modulation collimator(or scanning anti-collimator)

  • Cargèse, 5 April 2006 instrumentation 9

    coded mask imaging

    measured parameters :

    x,y : int. location on the detectorEγ : energy depositedt : arrival time

    astronomy : encoding of a two dimensionalsource distribution (i,j) into a 2-D dataspace(k,l)

    for sources at finite distance (nuclearmedicine, tomography of X-ray emittingplasmas) coded mask techniques can beused to extract depth information forvolumetric object reconstruction.

  • Cargèse, 5 April 2006 instrumentation 10

    Why is it ...

  • Cargèse, 5 April 2006 instrumentation 11

    Aristotle and the coded mask

    “Why is it that when the sun passes through quadilaterals, as forinstance wickerwork, it does not produce a figure rectangular in shapebut circular ?”Aristotle,problemata physica - problem XV,6

    “Why is it that in an eclipse of the sun, if one looks at it through asieve or through leaves, such as a planetree or other broad leavedtree, or if one joins of one hand over the fingers of the other, the raysare crescent-shaped where they reach the earth ? Is it for the samereason as that when light shines through a rectangular peep-hole, itappears circular in the form of a cone ? The reason is that there aretwo cones, one from the sun to the peephole and the other from thepeep-hole to the earth, and the vertices meet ..."Aristotle, problemata physica - problem XV,11

  • Cargèse, 5 April 2006 instrumentation 12

    Field of view characteristics of a coded mask instrument

    α2 β

    2Ω2

    ce

    a

    d

    b

    FOV (FWHM) = 2 arctg d2b

    fully coded FOV = 2 arctg d-a2b

    partially coded FOV = 2 arctg a+d2b

    angular resolution = r ’

    = r arctg cb

    vignetting e,b, z from z axis

  • Cargèse, 5 April 2006 instrumentation 13

    coded mask imaging : Encoding

    The intensity measured by the PSD can be expressed as a two-dimensionalmatrix Di,j (the shadowgram) presenting the number of interactions registeredin the detector element i,j.

    Dk,l = Σ Si,j . Ai+k ,j+l + Bk,l

    Si,j : matrix of the source distribution,

    Ai,j : aperture transmission function(1 for transparent mask elements, 0 for opaque elements)

    Bi,j : background noise matrix(all contributions not modulated by the aperture)

    i,j

  • Cargèse, 5 April 2006 instrumentation 14

    coded mask imaging : Decoding

    direct deconvolution :correlate the encoded matrix D with decoding array G (postprocessing array)

    S’i,j =

    Substituting the encoded matrix D results in

    S’ = (S * A) * G + B * G

    A*G is the point spread function (PSF). Optimal mask patterns produce deltafunction A*G ≡ δ

    S’ = S + B * G

    => source is perfectly reconstructedd with the exception of a background term.

    !k,l

    Dk,l . Gi+k,j+l

  • Cargèse, 5 April 2006 instrumentation 15

    “X-ray star camera”

    Fresnel Zone Plate = Mask

    ⇒ Shadowgram = Hologram

    Mertz & Young, 1961

  • Cargèse, 5 April 2006 instrumentation 16

    “Illustrative sample of optical Fresnel transformation”

    Mertz and Young’sdemo of the principleusing visible light :

    upper left : sourceilluminated pinholessimulate the n stars

    right : holograma Fresnel zone platecasts n distinctshadows

    lower left : imagereconstructed bydiffraction from areduced copy ofhologram

    Mertz & Young, 1961

  • Cargèse, 5 April 2006 instrumentation 17

    I N T G E R A L

    TITRE

    INTEGRAL

    Lebrun et al. (2003)

  • Cargèse, 5 April 2006 instrumentation 18

    SWIFT

    Detecting Area 5200 cm2Detector CdZnTeField of View 2 sr (half-coded)Detection Elements 256 modules of 128 elem.Detector Size 4 mm x 4 mm x 2 mmTelescope PSF 22 arcminEnergy Range 10-150 keVLaunch July 2004 !

    BAT

  • Cargèse, 5 April 2006 instrumentation 19

    Quantum Optics : e.g. Compton Telescopes

    measured parameters :

    x1,y1 : interaction location in D1E1 : energy deposit in D1x2,y2 : interaction location in D2E2 : energy deposit in D2t, Δt : arrival time, TOF D1-D2

    derived parameters :

    x1,y1,x2,y2  => χ, ψE1,E2 => ϕ

    cos ϕ = 1 - mec2/E2 + mec2/E1+E2

    encoding of the two dimensional sourcedistribution into a 3-D dataspace (Χ, Ψ, ϕ)

    -

    -

  • Cargèse, 5 April 2006 instrumentation 20

    the dataspace of classical Compton telescopes

    Eventcircles from a single pointsourceat χ, ψ (35°, 0°)

    events from same pointsource lie ona cone with apex at χ, ψ (35°, 0°)grayscale -> praobability density(for 1.8 MeV photons, max. at O(j,_) =23,7°)

  • Cargèse, 5 April 2006 instrumentation 21

    Time of Flight coincidence (TOF) COMPTEL data

    COMPTEL calibration data

    channel width : 0.25 nsdistance D1-D2 : 1.5 m ≈> 5 ns)

    COMPTEL flight data

    channel width : 0.25 ns“upward BG” from spacecraft and the Earth

  • Cargèse, 5 April 2006 instrumentation 22

    GRO COMPTEL

  • Cargèse, 5 April 2006 instrumentation 23

    Advanced Compton Telescope (ACT) options

    TIGRE MEGA Ge-ACT Liquid XEUC Riverside MPE, UNH UC Berkeley Columbia

  • Cargèse, 5 April 2006 instrumentation 24

    ACT science requirements

  • Cargèse, 5 April 2006 instrumentation 25

    Sensitivity

    Variance V of a signal at the limiting flux fnV = (fn.X + N)1/2

    N : number of equivalent total background counts, X : exposure.N = Non + α2Noff

    = 2.b.Aon.h.ΔE.Tobs.soff.l for α = 1 X = Aon.Tobs.t.m.l.efep.sThe γ-ray source flux will be detected at n standard deviations is

    fn = n . (fn.X + N)1/2 / X≈ n . N1/2 / X for fn.X fn = (n . N1/2/X) . [1 + ω+ 1/2ω2 + O(ω 4)] with ω := n/2 √ N

  • Cargèse, 5 April 2006 instrumentation 26

    Background

  • Cargèse, 5 April 2006 instrumentation 27

    Cosmic Ray interactions and γ-ray background

  • Cargèse, 5 April 2006 instrumentation 28

    The background of our friendly skies ...

    0.00

    100

    200

    300

    400

    16 jan 12:00 18:00 17 jan 0:00 6:00 12:00 18:0018:00

    Los Angeles to Toulouse

    exp

    osu

    re r

    ate

    [m

    icro

    R/h

    ]

    Toulouse time [h]

    Los AngelesLAX

    10±3 microR/h

    ParisCDG

    9±3 microR/h

    ToulouseBlagnac

    9±3 microR/h

    New YorkJFK

    11±3 microR/h

    january 1998

  • Cargèse, 5 April 2006 instrumentation 29

    Background - γ-Ray production within the atmosphere

    0 10000 20000 30000 40000 50000 60000 70000

    0

    5000

    10000

    15000

    20000

    25000

    30000

    35000

    40000

    growth curve, HIREGS flight january 1998, McMurdo

    count rate [counts / second]

    alti

    tude [m

    ]

    BGO shieldLLD

    BGO shieldULD

    Ge det

  • Cargèse, 5 April 2006 instrumentation 30

    Living with background - strategies

    A : fightpassive shieldingactive anticoincidence shieldssupershieldsdiscrimination of BG-event signatures e.g.

    - phoswhich- pulse shape discrimination (PSD)- time of flight measurements (TOF)

    B : avoidchoice of orbit (e.g. high cutoff rigidity, avoiding radiation belts)minimize passive masschoice of low BG materials (e.g.70Ge)solid angle effects (earth -> high orbit, spacecraft -> mast)coincidence techniques (Compton telescopes, TPC’s)small detectors (focusing)resolution (spectral-, angular-, timing)

  • Cargèse, 5 April 2006 instrumentation 31

    Background - Anticoincidence Shield

    background reduction, shields against- prompt CR interactions- cosmic diffuse gamma-ray component- γ-rays generated in the atmosphere / spacecraft

    defines a field of viewimproves spectral response function

    - “Anti-Compton” rejection of source events not in full energy peak- Rejection of source events >mec2 in the escape peaks

    background generator- converts CR p

    reduces lifetimeimplicitly reduces effective area : with limited mass budgets in balloon and satellite

    experiments, a shield is most likely the heaviest part of the instrument

    ( INTEGRAL SPI shield ACS : 856 kg ; BGO alone : 504 kg detector camera : 141 kg ; Ge alone : 19 kg )

  • Cargèse, 5 April 2006 instrumentation 32

    Ge detector background : SPI

    10-5

    10-4

    10-3

    10-2

    400 500 600 700 800 900

    E [keV]

    SPI 2003

    BG

    ra

    te [count s

    -1 c

    m-3

    keV

    -1]

    pvb 2

    1.7

    .2004

    e+e-

    (511)

    24Na

    (472)

    69Zn

    (439)

    67Ga

    (403)

    69Ge

    (574.1)

    121Te

    (573.1)

    69Ge

    (584)

    74As

    (596)

    214Bi

    (609)

    72Ge(n,n')

    (693)

    117Te

    (719.7)

    126I ?

    (753)

    27*Al

    (844)

    54Mn

    (835)

    69Ge

    (872)

    69Ge

    (883)

    58Co

    (811)

    (818)

  • Cargèse, 5 April 2006 instrumentation 33

    Ge detector background : SPI

    10-5

    10-4

    10-3

    10-2

    400 500 600 700 800 900

    E [keV]

    SPI 2003

    BG

    ra

    te [count s

    -1 c

    m-3

    keV

    -1]

    pvb 2

    1.7

    .2004

  • Cargèse, 5 April 2006 instrumentation 34

    Ge detector background : comparison

    10-5

    10-4

    10-3

    10-2

    400 500 600 700 800 900

    E [keV]

    SPI 2003

    Mars Odyssey

    HEAO-3

    HEXAGONE 1989

    BG

    ra

    te [count s-

    1 c

    m-3

    keV

    -1]

    pvb 2

    1.7

    .2004

    HIREGS 1994

    (ACS OFF)

    TGRS

    CLAIRE 2001

    HIREGS 1994

    SPI 2003

    (ACS OFF)

  • Cargèse, 5 April 2006 instrumentation 35

    Ge detector background : comparison

    10-5

    10-4

    10-3

    10-2

    400 500 600 700 800 900

    E [keV]

    SPI 2003

    Mars Odyssey

    HEAO-3

    HEXAGONE 1989

    BG

    rate

    [count s-

    1 c

    m-3

    keV

    -1]

    pvb 2

    1.7

    .2004

    TGRS

    CLAIRE 2001

    HIREGS 1994

    4 x

    6 x

  • Cargèse, 5 April 2006 instrumentation 36

    Anticoincidence shields - the limit of growth

  • Cargèse, 5 April 2006 instrumentation 37

    ACT/GRI sensitivity requirement

    f3σ < 5.10-7 s-1.cm-2

    f3σ < 5.10-7 s-1.cm-2 !You must be kiddingthis means : ~ one photon per cm2 every month

    with a BG produced by one CR particle per cm2 per secondproducing eg at 511 keV (SPI) ~ a BG event per cm2 every 3 minutes

  • Cargèse, 5 April 2006 instrumentation 38

    Past, present, and future observations in gamma-ray lines

  • Cargèse, 5 April 2006 instrumentation 39

    10-7

    10-6

    10-5

    10-4

    sensitivity

    sensitivity

    Past, present, and future observations in gamma-ray lines3 σ

    nar

    row

    line

    sens

    itivity

    at 8

    47 k

    eV

    OSSEHEAO-3

    SPI

    required

    sim

    bo

    l-X

    XE

    US

    GR

    I/M

    AX

    /AC

    T

    1960 1970 1980 1990

    HE

    AO

    3

    COMPTEL

    HE

    AO

    1

    OSSE

    SMM

    WATCH

    SIGMA

    BATSE

    GINGA

    GR

    AN

    AT

    Bep

    po

    -SA

    X

    ASCA

    Vela satellitesINTEGRAL

    HE

    TE

    2000 2010

    <SWIFT

    AGILE

    S

    u

    z

    a

    k

    u

    NEWTON, CHANDRA

    EC

    LA

    IRS

    10 MeV

    1 MeV

    100 keV

    10 keV

    1 keV

  • Cargèse, 5 April 2006 instrumentation 40

    Gamma-ray source statistics

    10.0

    100

    103

    104

    105n

    um

    be

    r o

    f so

    urc

    es

    (19

    98

    /99

    )

    gamma-ray source catalogue

  • Cargèse, 5 April 2006 instrumentation 41

    Gamma-ray source statistics

    10-2

    10-1

    100

    101

    0.1 1 10 100 103 104

    mass attenuation for NaI

    attenuation [cm

    2/g

    m N

    aI]

    E [MeV]

    pairCompton

    photoel.

    10.0

    100

    103

    104

    105n

    um

    be

    r o

    f so

    urc

    es

    (19

    98

    /99

    )

    gamma-ray source catalogue

  • Cargèse, 5 April 2006 instrumentation 42

    Gamma-ray source statistics

    10-4

    10-3

    10-2

    10-1

    100

    101

    10-10

    10-8

    10-6

    10-4

    10-2

    100

    0.01 0.1 1 10 100

    ba

    ckg

    rou

    nd

    [c

    m-2 s

    -1 M

    eV

    -1] (m

    fp *

    BG

    )

    Cra

    b p

    ho

    ton

    s [

    cm

    -2 s

    -1 M

    eV

    -1]

    energy [MeV]

    OSSE

    COMPTEL

    EGRET

    total Crab spectrum

    background spectrum forGe detectorsspecific BG rate

    times mean free path in Ge

    0.00

    50.0

    100

    150

    200

    0.1 1 10 100 103 104

    nu

    mb

    er

    of

    so

    urc

    es

    (19

    98

    )

    energy [MeV]

    gamma-ray source catalogue

    Macom

    b a

    nd G

    ehre

    ls, 1999

  • Cargèse, 5 April 2006 instrumentation 43

    Improving sensitivity

    the detectable minimum flux will depend on the

    Collecting area (for optical thick/thin detectors : detecting surface/volume)Detection efficiencyEffective exposure timeBackground

    fn ≈ n.(N)1/2/X ≈ n.(bVTobs)1/2/AeffTobs

    Building on present technology and measured BG spectra, the narrow line sensitivity ofan instrument with e.g. Aeff = 2000 cm2 (Ageo ≈ 1 m2) scales with respect to :

    Aeff f3σ f3σ (X = AeffTobs = 2.109 cm2s)

    OSSE 450 cm2 (662 keV) 8.10-5 4.10-5 [ph cm-2 s-1]COMPTEL 20-50 cm2 (2 MeV) 4.10-5 6.10-6 [ph cm-2 s-1]SPI 100 cm2 (847 keV) 2.10-5 4.10-6 [ph cm-2 s-1]

    but how to get the ACT GRI requirements of ~ 5.10-7 [ph cm-2 s-1] ?