Institute of Astronomy, Radio Astronomy and Plasma Physics Group

of 48 /48
Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich Flare Electron Acceleration Arnold Benz

Embed Size (px)

description

Flare Electron Acceleration Arnold Benz. Institute of Astronomy, Radio Astronomy and Plasma Physics Group. Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich. 1. RHESSI Observations. Spectral evolution of flares. non-thermal. thermal. RHESSI - PowerPoint PPT Presentation

Transcript of Institute of Astronomy, Radio Astronomy and Plasma Physics Group

  • Institute of Astronomy,Radio Astronomy and Plasma Physics GroupEidgenssische Technische Hochschule ZrichSwiss Federal Institute of Technology, ZrichFlare Electron Acceleration

    Arnold Benz

  • 1. RHESSI ObservationsSpectral evolution of flares

  • thermalnon-thermalRHESSItwo component fits:T, EM, F35

  • Grigis & B.fluxspectral index

  • P. Grigis

  • P. Grigis

  • Battaglia et al. 2005

  • < C2 > C2Battaglia & B., 2005

  • FHXR Relation"Pivot" point at about 9 3 keV (soft-hard-soft)Consistent with constant acceleration rate above threshold energy (13.9 keV)Consistent with constant total power in particles above threshold energy (13.6 keV)Consistent with stochastic acceleration beyond 18.1 keVInconsistent with pure "statistical flare" scenario

  • Approximation for d Bessel equationSolution: f(E) = C E -d + 1/2 Kd(E)1/LaW}Benz 1977(

  • Approximate further, eliminate WL and get for observed HXR flux:FHXR C(1/2 + 1/2[1 +(+3/2)]1/2)2[( - 1)(+3/2)]2log FHXR Brown & Loran, 1985

  • 2. RHESSI Phoenix Observations

  • Type IIIPulsationsNarrowband spikesDiffuse cont.Type IVType IHf broadband(gyro-synchrotron)beforerisepeakdecayafter radio emission in 201 X-ray flares >C5.0

    Chart2

    52315162

    32739133

    149

    2212192

    1423

    151

    2214017

    213207

    14116

    18

    2931

    1421

    11

    42

    5132

    2

    1

    1

    1

    70

    2

    ViewAll

    72318162

    32840133

    149

    2212192

    1423

    151

    2234119

    213208

    15127

    18

    2931

    3431

    22

    42

    5142

    2

    11

    1

    242034

    11

    173

    2

    ViewAlle

    72318162

    32840133

    149

    2212192

    1423

    151

    2234119

    213208

    15127

    18

    2931

    3431

    22

    42

    5142

    2

    11

    1

    11

    242034

    173

    2

    Sheet1

    beforerisepeakdecayafter

    Type III

    regular metric72318162

    decimetric32840133

    broadband, m-dm149

    reversed drift, dm2212192

    slow drift, dm1423

    Pulsations

    quasi-periodic151

    irregular2234119

    drifting-up, irreg.213208

    diffuse15127

    Diffuse continuum

    broadband18

    drifting up ridge, II2931

    patch3431

    drifting down, patch22

    Narrowband spikes

    metric42

    decimetric5142

    Type IV assoc.2

    Type IV

    pulsations11

    intermediate drift1

    parallel dr. Bands

    sudden reductions11

    Type I242034

    Hf broadband

    hf broadband173

    hf broadband only2

    Sheet2

    Sheet3

  • Meter-Decimeter Radio Patternsof X-ray selected flares

    A Standard 129 B Just IIIm 8 C Afterglows 20 D No Radio 34 E Type I 10

  • Standard

  • M1.1Standard25 50 keV50 100 keVirreg.pulsation

  • Standardreverseddrift IIIm25 50 keV50 100 keVM1.1

  • Standardirregularpulsationdecimetricnarrowband spikes50 100 keV25 50 keVM1.1

  • C7.7StandardIIIdmirreg.pulsationhf continuum6 12 keV12 25 keV25 50 keV

  • Just IIIm

  • C7.9Just IIIm6 12 keV12 25 keV25 50 keV

  • Just IIIm6 12 keV12 25 keV25 50 keVC7.9

  • Type IV and DCIM "Afterglows"

  • type IVgyro-synchrotronPhoenix-2Radio spectrumGOESClassX17gyro-synchrotrondrifting structuredecimetric pulsations

  • Phoenix-2Radio spectrumdecimetric pulsationsdecimetric patch

  • Type IVDCIM

  • M2.312 25 keV6 12 keV3 6 keVAfterglowsnarrowband spikes IIIm andhf continuum

  • Afterglows3 6 keV6 12 keV12 25 keVM2.3regular dmpulsationpatch

  • 100 300 keVregular dmpulsationsAfterglows6 12 keV12 25 keV25 50 keV50 100 keVM5.0

  • No Radio

  • radio-quiet flareGOES class M1.06 12 keV12 25 keV25 50 keV50 100 keV

  • no-radio flaresFlares C5.0 C9.9 22 %Flares > M1.0 12 % All flares > C5.0 17 %Two possible interpretations:1. Small flares have less radio emission (sensitivity effect)2. Large flare have more associated processes ("large flare syndrom", suggesting indirect connection)

  • 21ABCStandard: reconnection at 1 and 2Just IIIm: reconnection at 2Type IV: reconnection at 2 after 1Noise storm: reconnection at 2Radio-quiet:: reconnection at 1

  • 21AStandard: reconnection at 1 and 2Just IIIm: reconnection at 2Type IV: reconnection at 2 after 1Noise storm: reconnection at 2Radio-quiet:: reconnection at 1

  • Summary on HXR - Radio CorrelationsHard X-ray and radio emissions of flares are relatively independent.17% of >C5.0 flares have no coherent radio emissions (22% if type I excluded). Many type IIIm have no hard X-ray emission.Correlation is often poor, suggesting multiple acceleration sites for "standard flare pattern" and "afterglows".Multiple reconnection may also interprete "big flare syndrom".

  • ConclusionsWhere are electrons accelerated? - often in more than one site (independent signatures) - most IIIm (and SEDs) have only very weak hard X-ray emission (possibly high-coronal flares). 2. How are they accelerated? - Violent acceleration processes are excluded. - If acceleration signature, why not close X-ray correlation? - Radio type IV and DCIM indicate processes long after flare 3. If loop-top, why this large number? - loop-top may be secondary acceleration site

  • Observational Constraints on Flare Particle Acceleration Absence of radio emission in 17% of flares does not support violent acceleration processes, such as single shocks or single DC fields.Consistent with heating processes (bulk energization).RHESSI observations show that flares start with soft non-thermal spectrum. In the beginning it is difficult to distinguish from a thermal spectrum ( 8).4. The spectrum of non-thermal electrons gets harder with flux of non- thermal electrons both in time during one flare, as well as with peak flare flux (Battaglia et al. 2005).

    5. The evidence supports stochastic bulk energization to hot thermal distribution and, if driven enough with power-law wings.

  • IIImirregular dmpulsationnarrowbandspikesreversed driftIIIdmStandard6 12 keV12 25 keV25 - 50 keVC9.0

  • 6 12 keVIIIIIdmHF cont.Standard12 25 keV25 50 keVX1.6IIIdmIIIdm

  • OVSAStandardIrregular pulsationC9.7

  • Standard6 12 keV12 25 keVC6.5irreg.pulsation

  • Christe & KruckerStandardRHESSI

  • Just IIIm6 12 keV12 25 keVC8.0

  • Type I12 25 keV6 12 keVC7.3

  • Type I