Information Theory & Fundamentals of Digital Communications

61
A primer on Information Theory & Fundamentals of Digital Communications

description

Information Theory & Fundamentals of Digital Communications. Network/Link Design Factors. Transmission media Signals are transmitted over transmission media Examples: telephone cables, fiber optics, twisted pairs, coaxial cables Bandwidth ( εύρος ζώνης) - PowerPoint PPT Presentation

Transcript of Information Theory & Fundamentals of Digital Communications

Page 1: Information Theory & Fundamentals of Digital Communications

A primer on Information Theory &Fundamentals of Digital Communications

Page 2: Information Theory & Fundamentals of Digital Communications

2

Network/Link Design Factors Transmission media

Signals are transmitted over transmission media

Examples: telephone cables, fiber optics, twisted pairs, coaxial cables

Channel capacity and Bandwidth (εύρος ζώνης) Higher channel capacity (measured in Hz),

gives higher bandwidth (range of frequencies), gives higher data rate

Transmission impairments Attenuation (εξασθένηση) Interference (παρεμβολή)

Number of receivers In guided media More receivers (multi-point) introduce more

attenuation

Page 3: Information Theory & Fundamentals of Digital Communications

3

Channel Capacity and data rate Bandwidth

In cycles per second, or Hertz (e.g. 10 Mhz bandwidth)

Available bandwidth for signal transmission is constrained by transmitter and transmission medium makeup and capacity

Data rate Related to the bandwidth capabilities of the

medium in bits per second (the higher the bandwidth

the higher the rate) Rate at which data can be communicated Baud rate (symbols/sec) ≠ bit rate (bits/sec)

• Number of symbol changes made to the transmission medium per second

• One symbol can carry one or more bits of information

Page 4: Information Theory & Fundamentals of Digital Communications

4

Data Rate and Bandwidth Any transmission system has a limited

band of frequencies This limits the data rate that can be

carried E.g., telephone cables due to

construction can carry signals within frequencies 300Hz – 3400Hz

This has severe effect on what signals and what capacity in effect the channel has.

To understand this lets consider any complex signal and see if we can analyse its frequency content, and what effect the channel may have on the signal (distortion?) and in effect limit the rate of the transmitted signal (measured in bits/sec)

Page 5: Information Theory & Fundamentals of Digital Communications

5

Frequency content of signals http://

www.allaboutcircuits.com/vol_2/chpt_7/2.html

any repeating, non-sinusoidal waveform can be equated to a combination of DC voltage, sine waves, and/or cosine waves (sine waves with a 90 degree phase shift) at various amplitudes and frequencies.

This is true no matter how strange or convoluted the waveform in question may be. So long as it repeats itself regularly over time, it is reducible to this series of sinusoidal waves.

Page 6: Information Theory & Fundamentals of Digital Communications

6

Fourier series Mathematically,

any repeating signal can be represented by a series of sinusoids in appropriate weights, i.e. a Fourier Series.

http://en.wikipedia.org/wiki/Fourier_series

Page 7: Information Theory & Fundamentals of Digital Communications

The Mathematic Formulation

A periodic function is any function that satisfies

( ) ( )f t f t T

where T is a constant and is called the period of the function.

Note: for a sinusoidal waveform the frequency is the reciprocal of the period (f=1/T)

Page 8: Information Theory & Fundamentals of Digital Communications

Synthesis

Tntb

Tntaatf

nn

nn

2sin2cos2

)(11

0

DC Part Even Part Odd Part

T is a period of all the above signals

)sin()cos(2

)( 01

01

0 tnbtnaatfn

nn

n

Let 0=2/T.

Page 9: Information Theory & Fundamentals of Digital Communications

1122

00

dta

,2,1 0sin1cos22

00

nntn

ntdtan

,6,4,20

,5,3,1/2)1cos(1 cos1sin

21

00

nnn

nn

ntn

ntdtbn

2 3 4 5--2-3-4-5-6

f(t)1

Example (Square Wave)

-0.5

0

0.5

1

1.5

ttttf 5sin

513sin

31sin2

21)(

Page 10: Information Theory & Fundamentals of Digital Communications

Fourier series example Thus, square waves (and indeed and

waves) are mathematically equivalent to the sum of a sine wave at that same frequency, plus an infinite series of odd-multiple frequency sine waves at diminishing amplitude

10

Page 11: Information Theory & Fundamentals of Digital Communications

11

Another example

With 4 sinusoids we represent quite well a triangular waveform

Page 12: Information Theory & Fundamentals of Digital Communications

12

The ability to represent a waveform as a series of sinusoids can be seen in the opposite way as well:

What happens to a waveform if sent through a bandlimited (practical) channel

E.g. some of the higher frequencies are removed, so signal is distorted…

E.g what happens if a square waveform of period T is sent through a channel with bandwidth (2/T)?

Page 13: Information Theory & Fundamentals of Digital Communications

13

The Electromagnetic Spectrum

The electromagnetic spectrum and its uses for communication.

Note: frequency is related to wavelength (f=1/l)

Useful spectrum is limited, therefore its allocation/usage is managed

Page 14: Information Theory & Fundamentals of Digital Communications

14

Electromagnetic Spectrum

Note: frequency is related to wavelength (f=1/l) which is related to antenna length for radio, capacity, power and distance trade-offs exist, etc…

Page 15: Information Theory & Fundamentals of Digital Communications

15

Generally speaking there is a push into higher frequencies due to: efficiency in propagation, immunity to some forms of noise and

impairments as well as the size of the antenna required.

The antenna size is typically related to the wavelength of the signal and in practice is usually ¼ wavelength.

Page 16: Information Theory & Fundamentals of Digital Communications

Data and Signal: Analog or Digital Data

Digital data – discrete value of data for storage or communication in computer networks

Analog data – continuous value of data such as sound or image

Signal Digital signal – discrete-time signals

containing digital information Analog signal – continuous-time signals

containing analog information

16

Page 17: Information Theory & Fundamentals of Digital Communications

Periodic and Aperiodic Signals (1/4) Spectra of periodic analog signals: discrete

f1=100 kHz

400k Frequency

Amplitude

Time

100k

Amplitude

f2=400 kHz periodic analog signal

17

Page 18: Information Theory & Fundamentals of Digital Communications

Periodic and Aperiodic Signals (2/4) Spectra of aperiodic analog signals:

continous

aperiodic analog signal

f1

Amplitude

Amplitude

f2

Time

Frequency

18

Page 19: Information Theory & Fundamentals of Digital Communications

Periodic and Aperiodic Signals (3/4) Spectra of periodic digital signals: discrete

(frequency pulse train, infinite)

frequency = f kHzAmplitude periodic digital signal

Amplitude frequency pulse train

Time

Frequencyf 2f 3f 4f 5f...

...

19

Page 20: Information Theory & Fundamentals of Digital Communications

Periodic and Aperiodic Signals (4/4) Spectra of aperiodic digital signals:

continuous (infinite)aperiodic digital signalAmplitude

Amplitude

0

Time

Frequency...

20

Page 21: Information Theory & Fundamentals of Digital Communications

21

Sine Wave Peak Amplitude (A)

maximum strength of signal volts

Frequency (f) Rate of change of signal Hertz (Hz) or cycles per second Period = time for one repetition (T) T = 1/f

Phase () Relative position in time

Page 22: Information Theory & Fundamentals of Digital Communications

22

Varying Sine Waves

Page 23: Information Theory & Fundamentals of Digital Communications

23

Signal Properties

Page 24: Information Theory & Fundamentals of Digital Communications

24

Figure 1.8 Modes of transmission: (a) baseband transmission

Baseband Transmission

Page 25: Information Theory & Fundamentals of Digital Communications

25

Modulation (Διαμόρφωση) Η διαμόρφωση σήματος είναι μία

διαδικασία κατά την οποία, ένα σήμα χαμηλών συχνοτήτων (baseband signal), μεταφέρεται από ένα σήμα με υψηλότερες συχνότητες που λέγεται φέρον σήμα (carrier signal)

Μετατροπή του σήματος σε άλλη συχνότητα

Χρησιμοποιείται για να επιτρέψει τη μεταφορά ενός σήματος σε συγκεκριμένη ζώνη συχνοτήτων π.χ. χρησιμοποιείται στο ΑΜ και FM ραδιόφωνο

Page 26: Information Theory & Fundamentals of Digital Communications

26

Πλεονεκτήματα Διαμόρφωσης Δυνατότητα εύκολης μετάδοσης του

σήματος Δυνατότητα χρήσης πολυπλεξίας

(ταυτόχρονη μετάδοση πολλαπλών σημάτων)

Δυνατότητα υπέρβασης των περιορισμών των μέσων μετάδοσης

Δυνατότητα εκπομπής σε πολλές συχνότητες ταυτόχρονα

Δυνατότητα περιορισμού θορύβου και παρεμβολών

Page 27: Information Theory & Fundamentals of Digital Communications

27

Modulated Transmission

Page 28: Information Theory & Fundamentals of Digital Communications

28

Continuous & Discrete SignalsAnalog & Digital Signals

Page 29: Information Theory & Fundamentals of Digital Communications

29

Analog Signals Carrying Analog and Digital Data

Page 30: Information Theory & Fundamentals of Digital Communications

30

Digital Signals Carrying Analog and Digital Data

Page 31: Information Theory & Fundamentals of Digital Communications

31

Digital Data, Digital Signal

Page 32: Information Theory & Fundamentals of Digital Communications

32

Encoding (Κωδικοποίηση) Signals propagate over a physical

medium modulate electromagnetic waves e.g., vary voltage

Encode binary data onto signals binary data must be encoded before

modulation e.g., 0 as low signal and 1 as high signal

• known as Non-Return to zero (NRZ)Bits

NRZ

0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 0

Page 33: Information Theory & Fundamentals of Digital Communications

33

Encodings (cont)Bits

NRZ

Clock

Manchester

NRZI

0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 0

If the encoded data contains long 'runs' of logic 1's or 0's, this does not result in any bit transitions. The lack of transitions makes impossible the detection of the boundaries of the received bits at the receiver.This is the reason why Manchester coding is used in Ethernet.

Page 34: Information Theory & Fundamentals of Digital Communications

34

Other Encoding Schemes Unipolar NRZ Polar NRZ Polar RZ Polar Manchester and Differential

Manchester Bipolar AMI and Pseudoternary Multilevel Coding Multilevel Transmission 3 Levels RLL

Page 35: Information Theory & Fundamentals of Digital Communications

The Waveforms of Line Coding Schemes

1 1 1 1 1 10 0 0 0 0 0ClockData stream

Polar RZ

Polar NRZ-L

Manchester

Polar NRZ-I

Differential Manchester

AMI

MLT-3

Unipolar NRZ-L

35

Page 36: Information Theory & Fundamentals of Digital Communications

The Waveforms of Line Coding Schemes

1 1 1 1 1 10 0 0 0 0 0ClockData stream

Polar RZ

Polar NRZ-L

Manchester

Polar NRZ-I

Differential Manchester

AMI

MLT-3

Unipolar NRZ-L

36

Page 37: Information Theory & Fundamentals of Digital Communications

Bandwidths of Line Coding (2/3)• The bandwidth of Manchester.

• The bandwidth of AMI.1N 2N Frequncy

Power Bandwidth of Manchester Line Codingsdr=2, average baud rate = N (N, bit rate)

00

1.0

0.5

N/2 3N/2

1N 2N Frequncy

Power Bandwidth of AMI Line Codingsdr=1, average baud rate = N/2 (N, bit rate)

00

1.0

0.5

N/2 3N/2

37

Page 38: Information Theory & Fundamentals of Digital Communications

Bandwidths of Line Coding (3/3)

1N 2N Frequncy

Power Bandwidth of 2B1Q Line Codingsdr=1/2, average baud rate=N/4 (N, bit rate)

00

1.0

0.5

N/2 3N/2

• The bandwidth of 2B1Q

38

Page 39: Information Theory & Fundamentals of Digital Communications

39

Digital Data, Analog Signal After encoding of digital data, the

resulting digital signal must be modulated before transmitted

Use modem (modulator-demodulator) Amplitude shift keying (ASK) Frequency shift keying (FSK) Phase shift keying (PSK)

Page 40: Information Theory & Fundamentals of Digital Communications

40

Modulation Techniques

Page 41: Information Theory & Fundamentals of Digital Communications

Constellation Diagram (1/2) A constellation diagram: constellation

points with two bits: b0b1

+1-1

+1

-1

I

Amplitue

Amplitue of I component

Amplitue of Q component

PhaseIn-phase Carrier

QQuadrature Carrier

1101

1000

41Chapter 2: Physical Layer

Page 42: Information Theory & Fundamentals of Digital Communications

Amplitude Shift Keying (ASK) and Phase Shift Keying (PSK) The constellation diagrams of ASK and

PSK.

(a) ASK (OOK): b0 (b) 2-PSK (BPSK): b0 (c) 4-PSK (QPSK): b0b1 (d) 8-PSK: b0b1b2 (e) 16-PSK: b0b1b2

+1-1

+1

-1

Q

I

1101

1000

Q

I

110011

101000

111

100

001

010Q

I+1-1

Q

I

10

+1

Q

I0

10

42Chapter 2: Physical Layer

Page 43: Information Theory & Fundamentals of Digital Communications

The Circular Constellation Diagrams

The constellation diagrams of ASK and PSK.

(a) Circular 4-QAM: b0b1 (b) Circular 8-QAM: b0b1b2 (c) Circular 16-QAM: b0b1b2b3

Q

I+1-1

+1

-1

Q

I+1+ 3-1 - 3

+1+ 3

-1 - 3

+1-1

+1

-1

Q

I

1101

1000

43Chapter 2: Physical Layer

Page 44: Information Theory & Fundamentals of Digital Communications

The Rectangular Constellation Diagrams

(a) Alternative Rectangular 4-QAM: b0b1

(b) Rectangular 4-QAM: b0b1

(c) Alternative Rectangular 8-QAM: b0b1b2

(d) Rectangular 8-QAM: b0b1b2

(e) Rectangular 16-QAM: b0b1b2b3

+1 +3-3 -1

+1

-1

Q

I +1-1

+1

-1

Q

I +1 +3-3 -1

+1

+3

-1

-3

Q

I

101111110011 0111

101011100010 0110

100011000000 0100

100111010001 0101+1

+1

Q

I-1

-1+1

+1Q

I0

44Chapter 2: Physical Layer

Page 45: Information Theory & Fundamentals of Digital Communications

45

Quadrature PSK More efficient use if each signal

element (symbol) represents more than one bit e.g. shifts of /2 (90o) 4 different phase

angles Each element (symbol) represents

two bits• With 2 bits we can represent the 4 different

phase angles• E.g. Baud rate = 4000 symbols/sec and each

symbol has 8 states (phase angles). Bit rate=??

If a symbol has M states each symbol can carry log2M bits

Can use more phase angles and have more than one amplitude

• E.g., 9600bps modem use 12 angles, four of which have two amplitudes

Page 46: Information Theory & Fundamentals of Digital Communications

46

Modems (2)

(a) QPSK.(b) QAM-16.(c) QAM-64.

Page 47: Information Theory & Fundamentals of Digital Communications

47

Modems (3)

(a) V.32 for 9600 bps.(b) V32 bis for 14,400 bps.

(a) (b)

Page 48: Information Theory & Fundamentals of Digital Communications

48

Ak

Bk

16 “levels”/ pulse4 bits / pulse4W bits per second

Ak

Bk

4 “levels”/ pulse2 bits / pulse2W bits per second

2-D signal2-D signal

Page 49: Information Theory & Fundamentals of Digital Communications

49

Ak

Bk

4 “levels”/ pulse2 bits / pulse2W bits per second

Ak

Bk

16 “levels”/ pulse4 bits / pulse4W bits per second

Page 50: Information Theory & Fundamentals of Digital Communications

50

Analog Data, Digital Signal

Page 51: Information Theory & Fundamentals of Digital Communications

51

Signal Sampling and Encoding

Page 52: Information Theory & Fundamentals of Digital Communications

52

Digital Signal Decoding

Page 53: Information Theory & Fundamentals of Digital Communications

53

Alias generation due to undersampling

Page 54: Information Theory & Fundamentals of Digital Communications

54

Nyquist Bandwidth If rate of signal transmission is 2B then

signal with frequencies no greater than B is sufficient to carry signal rate

Given bandwidth B, highest signal (baud) rate is 2B

Given binary signal, data rate supported by B Hz is 2B bps (if each symbol carries one bit)

Can be increased by using M signal levels

C= 2B log2M

Page 55: Information Theory & Fundamentals of Digital Communications

55

Transmission Impairments Signal received may differ from signal

transmitted Analog degradation of signal quality Channel impairements Digital bit errors Caused by

Attenuation and attenuation distortion Delay distortion Noise

Page 56: Information Theory & Fundamentals of Digital Communications

56

Attenuation Signal strength falls off with distance Depends on medium Received signal strength:

must be enough to be detected must be sufficiently higher than noise to be

received without error Attenuation is an increasing function

of frequency

Page 57: Information Theory & Fundamentals of Digital Communications

57

Noise (1) Additional signals, exisiting or inserted,

between transmitter and receiver Thermal

Due to thermal agitation of electrons Uniformly distributed White noise

Intermodulation Signals that are the sum and difference of

original frequencies sharing a medium

Page 58: Information Theory & Fundamentals of Digital Communications

58

Noise (2) Crosstalk

A signal from one line is picked up by another

Impulse Irregular pulses or spikes e.g. External electromagnetic interference Short duration High amplitude

Page 59: Information Theory & Fundamentals of Digital Communications

59

signal noise signal + noise

signal noise signal + noise

HighSNR

LowSNR

SNR = Average Signal Power

Average Noise Power

SNR (dB) = 10 log10 SNR

t t t

t t t

Page 60: Information Theory & Fundamentals of Digital Communications

60

Shannon’s Theorem

Real communication have some measure of noise. This theorem tells us the limits to a channel’s capacity (in bits per second) in the presence of noise. Shannon’s theorem uses the notion of signal-to-noise ratio (S/N), which is usually expressed in decibels (dB):

)/(log10 10 NSdB

Page 61: Information Theory & Fundamentals of Digital Communications

61

Shannon’s Theorem – cont.

))/(1(log 2 NSBC

Kbps30)10001(log3000 2 C

Shannon’s Theorem:C: achievable channel rate (bps)B: channel bandwidth

For POTS, bandwidth is 3000 Hz (upper limit of 3300 Hz and lower limit of 300 Hz), S/N = 1000

For S/N = 100

Kbps5.19)1001(log3000 2 C