In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t...

78
Invariant Variational Problems & Invariant Curve Flows Peter J. Olver University of Minnesota http://www.math.umn.edu/ olver Oxford, December, 2008

Transcript of In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t...

Page 1: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Invariant Variational Problems

&

Invariant Curve Flows

Peter J. Olver

University of Minnesota

http://www.math.umn.edu/! olver

Oxford, December, 2008

Page 2: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Basic Notation

x = (x1, . . . , xp) — independent variables

u = (u1, . . . , uq) — dependent variables

u!J = !Ju! — partial derivatives

F (x, u(n)) = F ( . . . xk . . . u!J . . . ) — di!erential function

G — transformation group acting on the space of independent

and dependent variables

Page 3: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Variational Problems

I[u ] =!

L(x, u(n)) dx — variational problem

L(x, u(n)) — Lagrangian

Variational derivative — Euler-Lagrange equations: E(L) = 0

components: E!(L) ="

J

("D)J !L

!u!J

DkF =!F

!xk+

"

!,J

u!J,k

!F

!u!J

— total derivative of F with respect to xk

Page 4: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Invariant Variational Problems

According to Lie, any G–invariant variational problem can be

written in terms of the di!erential invariants:

I[u ] =!

L(x, u(n)) dx =!

P ( . . . DKI! . . . ) !

I1, . . . , I" — fundamental di!erential invariants

D1, . . . ,Dp — invariant di!erential operators

DKI! — di!erentiated invariants

! = "1 # · · · # "p — invariant volume form

Page 5: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

If the variational problem is G-invariant, so

I[u ] =!

L(x, u(n)) dx =!

P ( . . . DKI! . . . ) !

then its Euler–Lagrange equations admit G as a symmetrygroup, and hence can also be expressed in terms of the di!er-ential invariants:

E(L) $ F ( . . . DKI! . . . ) = 0

Main Problem:

Construct F directly from P .

(P. Gri!ths, I. Anderson )

Page 6: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Planar Euclidean group G = SE(2)

# =uxx

(1 + u2x)3/2

— curvature (di!erential invariant)

ds =#

1 + u2x dx — arc length

D =d

ds=

1#

1 + u2x

d

dx— arc length derivative

Euclidean–invariant variational problem

I[u ] =!

L(x, u(n)) dx =!

P (#,#s,#ss, . . . ) ds

Euler-Lagrange equations

E(L) $ F (#,#s,#ss, . . . ) = 0

Page 7: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Euclidean Curve Examples

Minimal curves (geodesics):

I[u ] =!

ds =! #

1 + u2x dx

E(L) = "# = 0=% straight lines

The Elastica (Euler):

I[u ] =!

12 #

2 ds =! u2

xx dx

(1 + u2x)5/2

E(L) = #ss + 12 #

3 = 0=% elliptic functions

Page 8: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

General Euclidean–invariant variational problem

I[u ] =!

L(x, u(n)) dx =!

P (#,#s,#ss, . . . ) ds

Invariantized Euler–Lagrange expression

E(P ) =!"

n=0

("D)n !P

!#n

D =d

ds

Invariantized Hamiltonian

H(P ) ="

i>j

#i"j ("D)j !P

!#i

" P

Page 9: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

General Euclidean–invariant variational problem

I[u ] =!

L(x, u(n)) dx =!

P (#,#s,#ss, . . . ) ds

Invariantized Euler–Lagrange expression

E(P ) =!"

n=0

("D)n !P

!#n

D =d

ds

Invariantized Hamiltonian

H(P ) ="

i>j

#i"j ("D)j !P

!#i

" P

Page 10: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

General Euclidean–invariant variational problem

I[u ] =!

L(x, u(n)) dx =!

P (#,#s,#ss, . . . ) ds

Invariantized Euler–Lagrange expression

E(P ) =!"

n=0

("D)n !P

!#n

D =d

ds

Invariantized Hamiltonian

H(P ) ="

i>j

#i"j ("D)j !P

!#i

" P

Page 11: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

I[u ] =!

L(x, u(n)) dx =!

P (#,#s,#ss, . . . ) ds

Euclidean–invariant Euler-Lagrange formula

E(L) = (D2 + #2) E(P ) + #H(P ) = 0

The Elastica: I[u ] =!

12 #

2 ds P = 12 #

2

E(P ) = # H(P ) = "P = " 12 #

2

E(L) = (D2 + #2) #+ # (" 12 #

2 )

= #ss + 12 #

3 = 0

Page 12: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation
Page 13: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation
Page 14: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Applications of Moving Frames

• Di!erential geometry

• Equivalence

• Symmetry

• Di!erential invariants

• Rigidity

• Joint invariants and semi-di!erential invariants

• Integral invariants

• Symmetries of di!erential equations

• Factorization of di!erential operators

• Invariant di!erential forms and tensors

Page 15: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

• Identities and syzygies

• Classical invariant theory

• Computer vision

& object recognition

& symmetry detection

& structure from motion

• Invariant variational problems

• Invariant numerical methods

• Poisson geometry & solitons

• Killing tensors in relativity

• Invariants of Lie algebras in quantum mechanics

• Lie pseudo-groups

Page 16: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Moving Frames

G — r-dimensional Lie group acting on M

Jn = Jn(M,p) — nth order jet bundle for

p-dimensional submanifolds N = {u = f(x)} ' M

z(n) = (x, u(n)) = ( . . . xi . . . u!J . . . ) — coordinates on Jn

G acts on Jn by prolongation (chain rule)

Page 17: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Definition.

An nth order moving frame is a G-equivariant map

$ = $(n) : V ' Jn "( G

Equivariance:

$(g(n) · z(n)) =

$%&

%'

g · $(z(n)) left moving frame

$(z(n)) · g"1 right moving frame

Note: $left(z(n)) = $right(z

(n))"1

Page 18: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Theorem. A moving frame exists in a neighborhoodof a point z(n) ) Jn if and only if G acts freelyand regularly near z(n).

• free — the only group element g ) G which fixes one point

z ) M is the identity: g · z = z if and only if g = e.

• locally free — the orbits have the same dimension as G.

• regular — all orbits have the same dimension and intersect

su"ciently small coordinate charts only once

( *+ irrational flow on the torus)

Page 19: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Geometric Construction

z

Oz

Normalization = choice of cross-section to the group orbits

Page 20: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Geometric Construction

z

Oz

K

k

Normalization = choice of cross-section to the group orbits

Page 21: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Geometric Construction

z

Oz

K

k

g = $left(z)

Normalization = choice of cross-section to the group orbits

Page 22: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Geometric Construction

z

Oz

K

k

g = $right(z)

Normalization = choice of cross-section to the group orbits

Page 23: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

The Normalization Construction

1. Write out the explicit formulas for theprolonged group action:

w(n)(g, z(n)) = g(n) · z(n)

=% Implicit di"erentiation

2. From the components of w(n), choose r = dim Gnormalization equations :

w1(g, z(n)) = c1 . . . wr(g, z(n)) = cr

3. Solve the normalization equations for the group parametersg = (g1, . . . , gr):

g = $(z(n)) = $(x, u(n))

The solution is the right moving frame.

Page 24: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

4. Invariantization: substitute the moving frame formulas

g = $(z(n)) = $(x, u(n))

for the group parameters into the un-normalized components ofw(n) to produce a complete system of functionally independentdi!erential invariants:

I(n)(x, u(n)) = %(z(n)) = w(n)($(z(n)), z(n)))

Page 25: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Euclidean plane curves G = SE(2)

Assume the curve is (locally) a graph:

C = {u = f(x)}

Write out the group transformations

y = x cos&" u sin&+ a

v = x cos& + u sin&+ b

()

* w = R z + c

Page 26: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Prolong to Jn via implicit di!erentiationy = x cos&" u sin& + a v = x cos&+ u sin& + b

vy =sin& + ux cos&

cos&" ux sin&vyy =

uxx

(cos&" ux sin&)3

vyyy =(cos& " ux sin& )uxxx " 3u2

xx sin&

(cos& " ux sin& )5

...

Choose a cross-section, or, equivalently a set of r = dimG = 3normalization equations:

y = 0 v = 0 vy = 0

Solve the normalization equations for the group parameters:

& = " tan"1 ux a = "x + uux#

1 + u2x

b =xux " u#

1 + u2x

The result is the right moving frame $ : J1 "( SE(2)

Page 27: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Substitute into the moving frame formulas for the group param-eters into the remaining prolonged transformation formulae toproduce the basic di!erential invariants:

vyy ,"( # =uxx

(1 + u2x)3/2

vyyy ,"(d#

ds=

(1 + u2x)uxxx " 3uxu2

xx

(1 + u2x)3

vyyyy ,"(d2#

ds2+ 3#3 = · · ·

Theorem. All di!erential invariants are functions of thederivatives of curvature with respect to arc length:

#d#

ds

d2#

ds2· · ·

Page 28: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

The invariant di!erential operators and invariant di!erentialforms are also substituting the moving frame formulas forthe group parameters:

Invariant one-form — arc length

dy = (cos&" ux sin&) dx ,"( ds =#

1 + u2x dx

Invariant di!erential operator — arc length derivative

d

dy=

1

cos&" ux sin&

d

dx,"(

d

ds=

1#

1 + u2x

d

dx

Page 29: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Euclidean Curves

x

e1

e 2

Left moving frame +$(x, u(1)) = $(x, u(1))"1

a = x b = u +& = tan"1 ux

R =1

#1 + u2

x

,1 "ux

ux 1

-

= ( t n ) +a =

,xu

-

Page 30: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

InvariantizationThe process of replacing group parameters in transformation

rules by their moving frame formulae is known asinvariantization.

The invariantization I = %(F ) is the unique invariant functionthat agrees with F on the cross-section: I | K = F | K.

Invariantization respects algebraic operations, and providesa canonical projection that maps objects to their invari-antized counterparts.

% :

Functions "( Invariants

Forms "( Invariant Forms

Di!erential

Operators"(

Invariant Di!erential

Operators

Page 31: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Fundamental di!erential invariants = invariantized jet coordinates

Hi(x, u(n)) = %(xi) I!K(x, u(l)) = %(u!

K)

The constant di!erential invariants, coming from the movingframe normalizations, are known as the phantom invariants .The remaining non-constant di!erential invariants are thebasic invariants and form a complete system of functionallyindependent di!erential invariants.

Invariantization of di!erential functions:

% [ F ( . . . xi . . . u!J . . . ) ] = F ( . . . Hi . . . I!

J . . . )

Replacement Theorem:

If J is a di!erential invariant, then %(J) = J .

J( . . . xi . . . u!J . . . ) = J( . . . Hi . . . I!

J . . . )

Page 32: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

The Infinite Jet Bundle

Jet bundles

M = J0 -" J1 -" J2 -" · · ·

Inverse limitJ! = lim

n#!Jn

Local coordinates

z(!) = (x, u(!)) = ( . . . xi . . . u!J . . . )

=% Taylor series

Page 33: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Di!erential Forms

Coframe — basis for the cotangent space T.J!:

• Horizontal one-forms

dx1, . . . , dxp

• Contact (vertical) one-forms

'!J = du!

J "p"

i=1

u!J,i dxi

Intrinsic definition of contact form

' | j!N = 0 /% ' ="

A!J '

!J

Page 34: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

The Variational Bicomplex=% Dedecker, Vinogradov, Tsujishita, I. Anderson, . . .

Bigrading of the di!erential forms on J!:

#. =M

r,s#r,s

r = # horizontal forms

s = # contact forms

Vertical and Horizontal Di!erentials

d = dH + dV

dH : #r,s "( #r+1,s

dV : #r,s "( #r,s+1

Page 35: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Vertical and Horizontal Di!erentials

F (x, u(n)) — di!erential function

dH F =p"

i=1

(DiF ) dxi — total di!erential

dV F ="

!,J

!F

!u!J

'!J — first variation

dH (dxi) = dV (dxi) = 0,

dH ('!J ) =

p"

i=1

dxi # '!J,i dV ('!

J ) = 0

Page 36: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

The Simplest Example

(x, u) ) M = R2

x — independent variable

u — dependent variable

Horizontal formdx

Contact (vertical) forms

' = du " ux dx

'x = dux " uxx dx

'xx = duxx " uxxx dx

...

Page 37: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

' = du " ux dx, 'x = dux " uxx dx, 'xx = duxx " uxxx dx

Di!erential:

dF =!F

!xdx +

!F

!udu +

!F

!ux

dux +!F

!uxx

duxx + · · ·

= (DxF ) dx +!F

!u' +

!F

!ux

'x +!F

!uxx

'xx + · · ·

= dH F + dV F

Total derivative:

DxF =!F

!x+!F

!uux +

!F

!ux

uxx +!F

!uxx

uxxx + · · ·

Page 38: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

The Variational Bicomplex... ... ... ... ...

dV

!dV

!dV

!dV

!#

!

#0,3 dH" #1,3 dH" · · ·dH" #p"1,3 dH" #p,3 $

" F3

dV

!dV

!dV

!dV

!#

!

#0,2 dH" #1,2 dH" · · ·dH" #p"1,2 dH" #p,2 $

" F2

dV

!dV

!dV

!dV

!#

!

#0,1 dH" #1,1 dH" · · ·dH" #p"1,1 dH" #p,1 $

" F1

dV

!dV

!dV

!dV

!

##

##$E

R ( #0,0 dH" #1,0 dH" · · ·dH" #p"1,0 dH" #p,0

conservation laws Lagrangians PDEs (Euler–Lagrange) Helmholtz conditions

Page 39: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

The Variational Bicomplex... ... ... ... ...

dV

!dV

!dV

!dV

!#

!

#0,3 dH" #1,3 dH" · · ·dH" #p"1,3 dH" #p,3 $

" F3

dV

!dV

!dV

!dV

!#

!

#0,2 dH" #1,2 dH" · · ·dH" #p"1,2 dH" #p,2 $

" F2

dV

!dV

!dV

!dV

!#

!

#0,1 dH" #1,1 dH" · · ·dH" #p"1,1 dH" #p,1 $

" F1

dV

!dV

!dV

!dV

!

##

##$E

R ( #0,0 dH" #1,0 dH" · · ·dH" #p"1,0 dH" #p,0

conservation laws Lagrangians PDEs (Euler–Lagrange) Helmholtz conditions

Page 40: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

The Variational Bicomplex... ... ... ... ...

dV

!dV

!dV

!dV

!#

!

#0,3 dH" #1,3 dH" · · ·dH" #p"1,3 dH" #p,3 $

" F3

dV

!dV

!dV

!dV

!#

!

#0,2 dH" #1,2 dH" · · ·dH" #p"1,2 dH" #p,2 $

" F2

dV

!dV

!dV

!dV

!#

!

#0,1 dH" #1,1 dH" · · ·dH" #p"1,1 dH" #p,1 $

" F1

dV

!dV

!dV

!dV

!

##

##$E

R ( #0,0 dH" #1,0 dH" · · ·dH" #p"1,0 dH" #p,0

conservation laws Lagrangians PDEs (Euler–Lagrange) Helmholtz conditions

Page 41: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

The Variational Bicomplex... ... ... ... ...

dV

!dV

!dV

!dV

!#

!

#0,3 dH" #1,3 dH" · · ·dH" #p"1,3 dH" #p,3 $

" F3

dV

!dV

!dV

!dV

!#

!

#0,2 dH" #1,2 dH" · · ·dH" #p"1,2 dH" #p,2 $

" F2

dV

!dV

!dV

!dV

!#

!

#0,1 dH" #1,1 dH" · · ·dH" #p"1,1 dH" #p,1 $

" F1

dV

!dV

!dV

!dV

!

##

##$E

R ( #0,0 dH" #1,0 dH" · · ·dH" #p"1,0 dH" #p,0

conservation laws Lagrangians PDEs (Euler–Lagrange) Helmholtz conditions

Page 42: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

The Variational Bicomplex... ... ... ... ...

dV

!dV

!dV

!dV

!#

!

#0,3 dH" #1,3 dH" · · ·dH" #p"1,3 dH" #p,3 $

" F3

dV

!dV

!dV

!dV

!#

!

#0,2 dH" #1,2 dH" · · ·dH" #p"1,2 dH" #p,2 $

" F2

dV

!dV

!dV

!dV

!#

!

#0,1 dH" #1,1 dH" · · ·dH" #p"1,1 dH" #p,1 $

" F1

dV

!dV

!dV

!dV

!

##

##$E

R ( #0,0 dH" #1,0 dH" · · ·dH" #p"1,0 dH" #p,0

conservation laws Lagrangians PDEs (Euler–Lagrange) Helmholtz conditions

Page 43: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

The Variational Derivative

E = ( $ dV

dV — first variation( — integration by parts = mod out by image of dH

#p,0 "(dV

#p,1 "((

F1 = #p,1/ dH #p"1,1

) = Ldx "("

!,J

!L

!u!J

'!J # dx "(

q"

!=1

E!(L) '! # dx

Variational

problem"(

First

variation"(

Euler–Lagrange

source form

Page 44: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

The Simplest Example: (x, u) ) M = R2

Lagrangian form: ) = L(x, u(n)) dx ) #1,0

First variation — vertical derivative:

d) = dV ) = dV L # dx

=

,!L

!u' +

!L

!ux

'x +!L

!uxx

'xx + · · ·

-

# dx ) #1,1

Integration by parts — compute modulo im dH :

d) ! *) =

,!L

!u" Dx

!L

!ux

+ D2x

!L

!uxx

" · · ·

-

' # dx ) F1

= E(L) ' # dx

=% Euler-Lagrange source form.

Page 45: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

The Simplest Example: (x, u) ) M = R2

Lagrangian form: ) = L(x, u(n)) dx ) #1,0

First variation — vertical derivative:

d) = dV ) = dV L # dx

=

,!L

!u' +

!L

!ux

'x +!L

!uxx

'xx + · · ·

-

# dx ) #1,1

Integration by parts — compute modulo im dH :

d) ! *) =

,!L

!u" Dx

!L

!ux

+ D2x

!L

!uxx

" · · ·

-

' # dx ) F1

= E(L) ' # dx

=% Euler-Lagrange source form.

Page 46: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

The Simplest Example: (x, u) ) M = R2

Lagrangian form: ) = L(x, u(n)) dx ) #1,0

First variation — vertical derivative:

d) = dV ) = dV L # dx

=

,!L

!u' +

!L

!ux

'x +!L

!uxx

'xx + · · ·

-

# dx ) #1,1

Integration by parts — compute modulo im dH :

d) ! *) =

,!L

!u" Dx

!L

!ux

+ D2x

!L

!uxx

" · · ·

-

' # dx ) F1

= E(L) ' # dx

=% Euler-Lagrange source form.

Page 47: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

To analyze invariant variational prob-

lems, invariant conservation laws, etc., we

apply the moving frame invariantization

process to the variational bicomplex:

Page 48: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Di!erential Invariants and

Invariant Di!erential Forms

% — invariantization associated with moving frame $.

• Fundamental di!erential invariants

Hi(x, u(n)) = %(xi) I!K(x, u(n)) = %(u!

K)

• Invariant horizontal forms

+i = %(dxi)

• Invariant contact forms

,!J = %('!

J )

Page 49: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

The Invariant “Quasi–Tricomplex”

Di!erential forms#. =

M

r,s

.#r,s

Di!erentiald = dH + dV + dW

dH : .#r,s "( .#r+1,s

dV : .#r,s "( .#r,s+1

dW : .#r,s "( .#r"1,s+2

Key fact: invariantization and di!erentiation do not commute:

d %(#) *= %(d#)

Page 50: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

The Universal Recurrence Formula

d %(#) = %(d#) +r"

%=1

-% # % [v%(#)]

v1, . . . ,vr — basis for g — infinitesimal generators

-1, . . . , -r — invariantized dual Maurer–Cartan forms

=% uniquely determined by the recurrence formulae for thephantom di!erential invariants

Page 51: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

d %(#) = %(d#) +r"

%=1

-% # % [v%(#)]

. . . All identities, commutation formulae, syzygies, etc.,among di!erential invariants and, more generally,the invariant variational bicomplex follow from thisuniversal formula by letting # range over the basicfunctions and di!erential forms!

. . . Moreover, determining the structure of the di!erentialinvariant algebra and invariant variational bicomplexrequires only linear di!erential algebra, and not anyexplicit formulas for the moving frame, the di!erentialinvariants, the invariant di!erential forms, or the grouptransformations!

Page 52: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Euclidean plane curves

Fundamental normalized di!erential invariants

%(x) = H = 0

%(u) = I0 = 0

%(ux) = I1 = 0

(%%%%)

%%%%*

phantom di!. invs.

%(uxx) = I2 = # %(uxxx) = I3 = #s %(uxxxx) = I4 = #ss + 3#3

In general:

%( F (x, u, ux, uxx, uxxx, uxxxx, . . . )) = F (0, 0, 0,#,#s,#ss + 3#3, . . . )

Page 53: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Invariant arc length form

dy = (cos&" ux sin&) dx " (sin&) '

+ = %(dx) = " + /

=#

1 + u2x dx +

ux#1 + u2

x

'

=% ' = du " ux dx

Invariant contact forms

, = %(') ='

#1 + u2

x

,1 = %('x) =(1 + u2

x) 'x " uxuxx'

(1 + u2x)2

Page 54: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Prolonged infinitesimal generators

v1 = !x, v2 = !u, v3 = "u !x + x !u + (1 + u2x) !ux

+ 3uxuxx !uxx+ · · ·

Basic recurrence formula

d%(F ) = %(dF ) + %(v1(F )) -1 + %(v2(F )) -2 + %(v3(F )) -3

Use phantom invariants

0 = dH = %(dx) + %(v1(x)) -1 + %(v2(x)) -2 + %(v3(x)) -3 = + + -1,

0 = dI0 = %(du) + %(v1(u)) -1 + %(v2(u)) -2 + %(v3(u)) -3 = ,+ -2,

0 = dI1 = %(dux) + %(v1(ux)) -1 + %(v2(ux)) -2 + %(v3(ux)) -3 = #+ + ,1 + -3,

to solve for the Maurer–Cartan forms:

-1 = "+, -2 = ",, -3 = "#+ " ,1.

Page 55: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

-1 = "+, -2 = ",, -3 = "#+ " ,1.

Recurrence formulae:

d# = d%(uxx) = %(duxx) + %(v1(uxx)) -1 + %(v2(uxx)) -2 + %(v3(uxx)) -3

= %(uxxx dx + 'xx) " %(3uxuxx) (#+ + ,1) = I3+ + ,2.

Therefore,D# = #s = I3, dV # = ,2 = (D2 + #2),

where the final formula follows from the contact form recurrence formulae

d, = d%('x) = + # ,1, d,1 = d%(') = + # (,2 " #2,) " #,1 # ,

which imply,1 = D,, ,2 = D,1 + #2 , = (D2 + #2),

Page 56: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Similarly,

d+ = %(d2x) + -1 # %(v1(dx)) + -2 # %(v2(dx)) + -3 # %(v3(dx))

= (#+ + ,1) # %(ux dx + ') = #+ # ,+ ,1 # ,.

In particular,dV + = "#, #+

Key recurrence formulae:

dV # = (D2 + #2), dV + = "# , #+

Page 57: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Plane Curves

Invariant Lagrangian:

+) = L(x, u(n)) dx = P (#,#s, . . .)+

Euler–Lagrange form:dV

+) ! E(L), #+

Invariant Integration by Parts Formula

F dV (DH) #+ ! " (DF ) dV H #+ " (F · DH) dV +

dV+) = dV P #+ + P dV +

="

n

!P

!#n

dV #n #+ + P dV +

! E(P ) dV # #+ + H(P ) dV +

Page 58: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Vertical di!erentiation formulae

dV # = A(,) A — “Eulerian operator”

dV + = B(,) #+ B — “Hamiltonian operator”

dV+) ! E(P ) A(,) #+ + H(P ) B(,) #+

!/A.E(P ) " B.H(P )

0, #+

Invariant Euler-Lagrange equation

A.E(P ) " B.H(P ) = 0

Page 59: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Euclidean Plane Curves

dV # = (D2 + #2),

Eulerian operator

A = D2 + #2 A. = D2 + #2

dV + = "# , #+

Hamiltonian operator

B = "# B. = "#

Euclidean–invariant Euler-Lagrange formula

E(L) = A.E(P ) " B.H(P ) = (D2 + #2) E(P ) + #H(P ).

Page 60: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Invariant Plane Curve Flows

G — Lie group acting on R2

C(t) — parametrized family of plane curves

G–invariant curve flow:

dC

dt= V = I t + J n

• I, J — di!erential invariants

• t — “unit tangent”

• n — “unit normal”

Page 61: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

t, n — basis of the invariant vector fields dual to the invariantone-forms:

0 t ;+ 1 = 1, 0n ;+ 1 = 0,

0 t ;, 1 = 0, 0n ;, 1 = 1.

Ct = V = I t + J n

• The tangential component I t only a!ects the underlyingparametrization of the curve. Thus, we can set I to beanything we like without a!ecting the curve evolution.

• There are two principal choices of tangential component:

Page 62: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Normal Curve Flows

Ct = J n

Examples — Euclidean–invariant curve flows

• Ct = n — geometric optics or grassfire flow;

• Ct = #n — curve shortening flow;

• Ct = #1/3 n — equi-a"ne invariant curve shortening flow:Ct = nequi"a!ne ;

• Ct = #s n — modified Korteweg–deVries flow;

• Ct = #ss n — thermal grooving of metals.

Page 63: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Intrinsic Curve Flows

Theorem. The curve flow generated by

v = I t + J n

preserves arc length if and only if

B(J) + D I = 0.

D — invariant arc length derivative

dV + = B(,) #+

B — invariant Hamiltonian operator

Page 64: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Normal Evolution of Di!erential Invariants

Theorem. Under a normal flow Ct = J n,

!#

!t= A%(J),

!#s

!t= A%s

(J).

Invariant variations:

dV # = A%(,), dV #s = A%s(,).

A% = A — invariant linearization operator of curvature;

A%s= DA% + ##s — invariant linearization operator of #s.

Page 65: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Euclidean–invariant Curve Evolution

Normal flow: Ct = J n

!#

!t= A%(J) = (D2 + #2) J,

!#s

!t= A%s

(J) = (D3 + #2D + 3##s)J.

Warning : For non-intrinsic flows, !t and !s do not commute!

Grassfire flow: J = 1

!#

!t= #2,

!#s

!t= 3##s, . . .

=% caustics

Page 66: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Signature Curves

Definition. The signature curve S ' R2 of a curve C ' R2 is

parametrized by the two lowest order di!erential invariants

S =

1 ,

# ,d#

ds

- 2

' R2

Page 67: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Equivalence and Signature Curves

Theorem. Two curves C and C are equivalent:

C = g · C

if and only if their signature curves are identical:

S = S

=% object recognition

Page 68: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation
Page 69: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation
Page 70: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation
Page 71: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Euclidean Signature Evolution

Evolution of the Euclidean signature curve

#s = $(t,#).

Grassfire flow:!$

!t= 3#$" #2 !$

!#.

Curve shortening flow:

!$

!t= $2$%% " #3$% + 4#2$.

Modified Korteweg-deVries flow:

!$

!t= $3$%%% + 3$2$%$%% + 3#$2.

Page 72: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Canine Left Ventricle Signature

Original Canine HeartMRI Image

Boundary of Left Ventricle

Page 73: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Smoothed Ventricle Signature

10 20 30 40 50 60

20

30

40

50

60

10 20 30 40 50 60

20

30

40

50

60

10 20 30 40 50 60

20

30

40

50

60

-0.15 -0.1 -0.05 0.05 0.1 0.15 0.2

-0.06

-0.04

-0.02

0.02

0.04

0.06

-0.15 -0.1 -0.05 0.05 0.1 0.15 0.2

-0.06

-0.04

-0.02

0.02

0.04

0.06

-0.15 -0.1 -0.05 0.05 0.1 0.15 0.2

-0.06

-0.04

-0.02

0.02

0.04

0.06

Page 74: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Intrinsic Evolution of Di!erential Invariants

Theorem.

Under an arc-length preserving flow,

#t = R(J) where R = A" #sD"1B (.)

In surprisingly many situations, (*) is a well-known integrable

evolution equation, and R is its recursion operator!

=% Hasimoto

=% Langer, Singer, Perline

=% Marı–Be!a, Sanders, Wang

=% Qu, Chou, and many more ...

Page 75: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Euclidean plane curves

G = SE(2) = SO(2) ! R2

dV # = (D2 + #2),, dV + = "# , #+

=% A = D2 + #2, B = "#

R = A" #sD"1B = D2 + #2 + #sD

"1 · #

#t = R(#s) = #sss + 32 #

2#s

=% modified Korteweg-deVries equation

Page 76: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Equi-a"ne plane curves

G = SA(2) = SL(2) ! R2

dV # = A(,), dV + = B(,) #+

A = D4 + 53 #D

2 + 53 #sD + 1

3 #ss + 49 #

2,

B = 13 D

2 " 29 #,

R = A" #sD"1B

= D4 + 53 #D

2 + 43 #sD + 1

3 #ss + 49 #

2 + 29 #sD

"1 · #

#t = R(#s) = #5s + 2##ss + 43 #

2s + +5

9 #2 #s

=% Sawada–Kotera equation

Page 77: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Euclidean space curves

G = SE(3) = SO(3) ! R3

,dV #dV 0

-

= A

,,1

,2

-

dV + = B

,,1

,2

-

#+

A =

3

44445

D2s + (#2 " 02)

20

#D2

s +3#0s " 2#s0

#2Ds +

#0ss " #s0s + 2#30

#2

"20Ds " 0s

1

#D3

s "#s

#2D2

s +#2 " 02

#Ds +

#s02 " 2#00s

#2

6

77778

B = (# 0 )

Page 78: In v a ria n t V a ria tio n a l P ro b le m s In v a ria ...olver/t_/ivfoxt.pdf · In v a ria n t V a ria tio n a l P ro b le m s A ccord in g to L ie, any G Ðinvariant variation

Recursion operator:

R = A"

,#s

0s

-

D"1B

,#t

0t

-

= R

,#s

0s

-

=% vortex filament flow

=% nonlinear Schrodinger equation (Hasimoto)