In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center...

56
ARTICLES https://doi.org/10.1038/s41563-019-0562-6 Quantitative production of butenes from biomass-derived γ-valerolactone catalysed by hetero-atomic MFI zeolite Longfei Lin  1 , Alena M. Sheveleva 1,2 , Ivan da Silva  3 , Christopher M. A. Parlett  4,5,6 , Zhimou Tang 7 , Yueming Liu 7 , Mengtian Fan 1 , Xue Han 1 , Joseph H. Carter 1 , Floriana Tuna 1 , Eric J. L. McInnes  1 , Yongqiang Cheng 8 , Luke L. Daemen 8 , Svemir Rudić 3 , Anibal J. Ramirez-Cuesta  8 , Chiu C. Tang 6 and Sihai Yang  1 * 1 Department of Chemistry and Photon Science Institute, University of Manchester, Manchester, UK. 2 International Tomography Centre SB RAS and Novosibirsk State University, Novosibirsk, Russia. 3 ISIS Facility, STFC, Rutherford Appleton Laboratory, Chilton, UK. 4 School of Chemical Engineering and Analytical Science, University of Manchester, Manchester, UK. 5 University of Manchester at Harwell, Diamond Light Source, Harwell Campus, Didcot, UK. 6 Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK. 7 Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China. 8 The Chemical and Engineering Materials Division (CEMD), Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, USA. *e-mail: [email protected] SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. NATURE MATERIALS | www.nature.com/naturematerials

Transcript of In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center...

Page 1: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

Articleshttpsdoiorg101038s41563-019-0562-6

Quantitative production of butenes from biomass-derived γ-valerolactone catalysed by hetero-atomic MFI zeoliteLongfei Lin   1 Alena M Sheveleva12 Ivan da Silva   3 Christopher M A Parlett   456 Zhimou Tang7 Yueming Liu7 Mengtian Fan1 Xue Han1 Joseph H Carter1 Floriana Tuna1 Eric J L McInnes   1 Yongqiang Cheng8 Luke L Daemen8 Svemir Rudić3 Anibal J Ramirez-Cuesta   8 Chiu C Tang6 and Sihai Yang   1

1Department of Chemistry and Photon Science Institute University of Manchester Manchester UK 2International Tomography Centre SB RAS and Novosibirsk State University Novosibirsk Russia 3ISIS Facility STFC Rutherford Appleton Laboratory Chilton UK 4School of Chemical Engineering and Analytical Science University of Manchester Manchester UK 5University of Manchester at Harwell Diamond Light Source Harwell Campus Didcot UK 6Diamond Light Source Harwell Science and Innovation Campus Didcot UK 7Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai China 8The Chemical and Engineering Materials Division (CEMD) Neutron Sciences Directorate Oak Ridge National Laboratory Oak Ridge TN USA e-mail SihaiYangmanchesteracuk

SUPPLEMENTARY INFORMATION

In the format provided by the authors and unedited

NATuRE MATERIALS | wwwnaturecomnaturematerials

1

Supplementary Information

Quantitative production of butenes from biomass-derived γ-valerolactone

catalysed by hetero-atomic MFI zeolite

Longfei Lin1 Alena M Sheveleva12 Ivan da Silva3 Christopher M A Parlett456 Zhimou Tang7 Yueming

Liu7 Mengtian Fan1 Xue Han1 Joseph H Carter1 Floriana Tuna1 Eric J L McInnes1 Yongqiang Cheng8

Luke L Daemen8 Svemir Rudić3 Anibal J Ramirez-Cuesta8 Chiu C Tang6 and Sihai Yang1

1 School of Chemistry and Photon Science Institute University of Manchester Manchester M13 9PL (UK)

2 International Tomography Center SB RAS and Novosibirsk State University Novosibirsk 630090

(Russia)

3 ISIS Facility STFC Rutherford Appleton Laboratory Chilton Oxfordshire OX11 0QX (UK)

4 School of Chemical Engineering and Analytical Science University of Manchester Manchester M13 9PL

(UK)

5 University of Manchester at Harwell Diamond Light Source Harwell Campus Didcot Oxfordshire

OX11 0DE (UK)

6 Diamond Light Source Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE (UK)

7 Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and

Molecular Engineering East China Normal University Shanghai 200062 (China)

8 The Chemical and Engineering Materials Division (CEMD) Neutron Sciences Directorate Oak Ridge

National Laboratory Oak Ridge TN 37831 (USA)

2

Contents

Supplementary Methods 4

Catalyst characterisation 4

DFT calculations and modelling of the INS spectra 5

Supplementary Notes 6

Interaction between GVL and NbAlH sites 6

Distribution of NbAlH sites 6

Inelastic neutron scattering 8

Supplementary Figures 9

Fig S1 Comparison of PXRD patterns of HZSM-5 NbS-1 and NbAlS-1 (λ = 15406 Aring) 9

Fig S2 SEM images of (a) HZSM-5(0041) (b) NbS-1 (00271) and (c) NbAlS-1(00270041) 10

Fig S3 Characterisation of the acidity of zeolites by Pyridine-IR 11

Fig S4 Characterisation of the acidity of zeolites by NH3-TPD 12

Fig S5 GC-MS results of the products from the conversion of GVL at 320 oC 13

Fig S6 TGA and DSC plots of used catalysts after the conversion of pure GVL at 320 oC 14

Fig S7 TGA plots of used NbAlS-1(00270041) catalysts 15

Fig S8 Comparison of FTIR spectra of NbAlS-1 before and after reaction 16

Fig S9 X-band EPR spectra of NbAlS-1 and post-reaction zeolites activated by γ-irradiation at 77 K 17

Fig S10 XAS results of the fresh and used NbAlS-1(00270041) 18

Fig S11 27Al MAS NMR spectra of fresh and used zeolites 19

Fig S12 Characterisation of the acidity of fresh and used zeolites by NH3-TPD 20

Fig S13 X-band EPR spectra of HZSM-5 and post-reaction zeolites activated by γ-irradiation at 77 K 21

Fig S14 Comparison of SXPD patterns of catalysts before and after adsorption of GVL 22

Fig S15 Comparison of the experimental data and Rietveld refinement for SXPD patterns 23

Fig S16 29Si NMR spectra of HZSM-5 and NbAlS-1 24

Fig S17 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and calculated

INS spectra for 12 types of NbAlH sites 25

Fig S18 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and combination

of calculated INS spectra of different NbAlH sites 26

Fig S19 Schematic view of the procedure of in situ INS experiment and data collection 27

Fig S20 Comparison of the experimental INS spectra of condensed GVL in the solid state (black) and

calculated INS spectra of single GVL molecule (red) 28

Fig S21 Comparison of the experimental and calculated INS spectra of adsorbed GVL molecules on

NbAlS-1 29

Fig S22 View of the INS spectrum for the empty catalysis cell used for this experiment 30

Fig S23 Comparison of the experimental INS spectra for bare and GVL-adsorbed catalyst 31

Fig S24 Comparison of the experimental INS spectra of all butene isomers and reacted GVL at 320 degC32

Supplementary Tables 33

3

Table S1 Textural properties and crystallite sizes of all zeolites used in this study 33

Table S2 Spin-Hamiltonian parameters of radiation induced Nb(IV) and electron hole Al-O-Si defects

from simulation of CW X-band EPR spectra 34

Table S3 Summary of acidity of all zeolites used in this work 35

Table S4 The butenes distribution in equilibrium at 320 degC and the distribution of butene isomers

produced from conversion of 30 GVL at 320 degC over catalysts 36

Table S5 Comparison of the catalytic performance of reported catalysts for the conversion of GVL in

aqueous solution (25-40 wt ) to butenes 37

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1 38

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption 39

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) 40

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) 42

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) 44

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) 46

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms from

the Rietveld refinements of the corresponding SXPD data at 25 degC 48

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio 49

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041) 50

Table S15 Assignment of INS peaks of bare NbAlS-1 51

Table S16 Assignment of INS peaks of GVL 52

Supplementary References 53

4

Supplementary Methods

Catalyst characterisation

Powder X-ray diffraction (PXRD) patterns were recorded on a Philips Xrsquopert X-ray diffractometer (40 kV

and 30 mA) using Cu Kα radiation (λ = 15406 Aring) N2 adsorption was carried out at 77 K on a Micromeritics

3Flex instrument after activating the samples for 10 h under dynamic vacuum at 423 K The crystal

morphology and size were measured by scanning electron microscopy (SEM) on a Quanta FEG 650

microscope The ratios of NbAlSi in the sample were quantified by EDX using multiple regions over a

sample on a Bruker XTrace instrument Thermogravimetric analysis was carried out with a SDTQ600 TA

instrument Samples were heated from room temperature to 800 degC at a rate of 5 degCmin under an air flow

Attenuated Total-Reflection Flourier Transformed Infrared (ATR-FTIR) spectra were collected with Nicolet

iS5 spectrometer Laser Raman spectra were obtained using a Horiba scientific XploRA PLUS Raman

microscope equipped with 1800 groovemm holographic gratings The samples were excited by the 532 nm

line of an Ar+ laser The acidity was measured by temperature-programmed desorption of ammonia (NH3-

TPD) with a Quantachrome Autosorb-1 equipped with a thermal conductivity detector (TCD) Typically 100

mg of sample was pre-treated in helium stream (30 mL minminus1) at 600 degC for 2 h The adsorption of NH3 was

carried out at 50 degC for 1 h The catalyst was flushed with helium at 100 degC for 2 h to remove physisorbed

NH3 from the catalyst surface The TPD profile was recorded at a heating rate of 10 degC min-1 from 100 degC to

600 degC The Broslashnsted and Lewis acid sites of the samples were investigated by FT-IR of adsorbed pyridine

in an in situ cell with CaF2 windows Wafers with a weight of 25 mg and radius of 65 mm were degassed for

1 h under vacuum at 600 degC Then pyridine was admitted and after equilibration the samples were

outgassed for 05 h at increasing temperatures (150 200 250 350 and 450 degC) The spectra were recorded

on a Nicolet iS50 FT-IR spectrometer Solid state 27Al NMR spectra were recorded with a frequency of

10424 MHz a spinning rate of 100 kHz and a recycling delay of 4 s Al(NO3)3 was used as the reference

for chemical shift Solid state 29Si NMR spectra were recorded with a frequency of 7946 MHz a spinning

rate of 100 kHz and a recycling delay of 10 s Tetramethylsilane was used as the reference for chemical

shift

For the EPR spectroscopy the sample was placed in a 28 mm od quartz tube and connected to a

vacuum line Prior to irradiation zeolite materials were activated by pumping at 10-5 Torr for 12 h at 150 ˚C

5

and then sealed under vacuum The samples were exposed to γ-irradiation from a 60Co source at 77 K to a

total dose of 44 MRad at a dose rate of 05 MRad h-1 CW EPR measurements were carried out at X-band

(97 GHz) using a commercial spectrometer Bruker EMX equipped with Oxford Instruments temperature

control system at 77 K EPR spectra were detected with modulation amplitudes of 02 and 1 mT and

microwave powers of ~5 mW were chosen to provide optimum signal intensity without saturation of spectral

lines Simulations of EPR spectra were performed using the EasySpin toolbox (Version 5220)1 for Matlab

DFT calculations and modelling of the INS spectra

Periodic density functional theory (periodic-DFT) calculations were carried out using the plane wave

pseudopotential method as implemented in the CASTEP code23 Exchange and correlation were

approximated using the Perdew-Burke-Ernzerhof (PBE) functional4 Ultra-soft pseudopotentials were

employed to account for the effects of core electrons Tkatchenko-Scheffler dispersion correction5 was used

for van der Waals interactions Energy cutoff for plane-wave basis was 380 eV Phonon frequencies were

obtained by diagonalisation of dynamical matrices computed using finite displacement method The atomic

displacements in each mode that are part of the CASTEP output enable visualization of the modes to aid

assignments and are also all that is required to generate the INS spectrum using the program OCLIMAX67

DFT calculations of the INS spectra for single GVL molecule and adsorbed GVL were carried out which

were used to identify the modes of vibrational features in the experimental INS spectra The calculated INS

spectrum shows the total transitions (up to 10 orders) In addition DFT calculations of the INS spectra for

bare NbAlS-1 were performed to investigate the distribution of NbAlH sites Due to the large number of

configurations involved in these simulations the CP2K code8 based on the mixed Gaussian and plane-wave

scheme9 and the Quickstep module10 were used The calculation used molecularly optimised Double-Zeta-

Valence plus Polarization (DZVP) basis set11 Goedecker-Teter-Hutter pseudopotentials12 and the PBE

exchange correlation functional4 The plane-wave energy cutoff was 400 Ry The DFT-D3 level correction

for dispersion interactions as implemented by Grimme et al13 was applied

6

Supplementary Notes

Interaction between GVL and NbAlH sites

Synchrotron XPD has been successfully applied to study the interaction between guest molecules

and porous materials such as binding of hydrocarbons in porous metal-organic frameworks14 binding of

GVL in ZnZSM-515 and binding of pyridine in HZSM-516 In this study over 3100 hkl reflections were used

for the structural refinement which allowed for extensive structural variables to be refined in a satisfactory

manner It is almost impossible to distinguish between Al and Si (Z=13 and 14 respectively) sites using X-

rays diffraction Although Nb (Z=41) is heavier the low occupancy of Nb precludes the determination of its

precise location in the framework Recently the distribution of active sites in H-ZSM-516 and in ZnZSM-515

has been successfully determined by examining the intermolecular distances and angles between guest

molecules and framework sites For example protonic acid sites of H-ZSM-5 have been located by

examining the atomic distances and angles between pyridines and framework atoms16 GVL can be adsorbed

on Broslashnsted acid sites upon protonation of the C=O group17 while the O in the ring of GVL can be adsorbed

on Nb(V) sites18 Thus the distribution of active sites in NbAlS-1 has been revealed by a detailed

examination of the GVL-NbAlS-1 binding distances particularly that between O1GVL and T sites and

between O2GVL and Ozeolites (see Supplementary Table 12) Importantly the distances between O1GVLI and T8

and between O1GVLII and T6 are shortest in both GVL-adsorbed NbAlS-1 and NbS-1 indicating that Nb sites

are likely located at T8 and T6 positions Similarly the distances between O2GVLI and O25zeolites and that

between O2GVLII and O26zeolite are shortest in both GVL-adsorbed NbAlS-1 and HZSM-5 suggesting that

protonic acid sites are likely located at O25-T9 and O26-T10 centres In addition XAS measurements (Fig

3b) suggest that the Nb pre-edge position is influenced with an apparent blue-shift (~08 eV) for NbAlS-1

upon adsorption of GVL while no such shift is witnessed for NbS-1 This observation reflects the preferred

adsorption geometry within the bifunctional (Al and Nb-containing) zeolite NbAlS-1 consistent with the

crystallographic study

Distribution of NbAlH sites

The 29Si NMR spectra of NbAlS-1(00270041) and HZM-5(0041) show notable difference in the range of

-110 to -90 ppm (Supplementary Fig 16a) Curves are de-convoluted by Guassian and Lorentzian line

shapes The assignments and integration of peak areas are listed in Supplementary Table 13 The (Al+Si)Si

7

ratios calculated from the 29Si NMR data are highly consistent with that obtained from EDX The peak at -98

ppm is absent in the spectrum of HZSM-5(0041) indicating the absence of Si(OSi)2(OAl)2 species

(Supplementary Fig 16b) consistent with previous reports1920 By contrast the peak at -98 ppm is observed

in the NMR spectrum of NbAlS-1(00270041) suggesting the presence of Si(OSi)2(OAl)(ONb) species

(Supplementary Fig 16c and Supplementary Table 13)

Recently the distribution of protons in LTA zeolite has been studied using periodic DFT calculations

and INS2122 The distribution of NbAlH sites in NbAlS-1(00270041) has been further investigated by

combining INS and DFT calculations Four types of possible species ie species I [NbOSiOAl] species II

[NbOSiOSiOAl] species III [NbO(SiO)nAl (n ge 3)] and species IV (isolated Al no Nb around) and twelve

types of NbAlH species in NbAlS-1 have been simulated (Supplementary Table 14) From the synchrotron

XPD and Rietveld Refinement species I and II present in NbAlS-1(00270041) (Fig 4f and 4i) and thus

Nb and Al are positioned at T8 and T9 respectively for species I and at T6 and T10 respectively for

species II for the calculation of corresponding INS spectra The H sites have the same probability to appear

near all four O around Al and are thus attached to O25 O8 O18 O9 O26 O15 O10 and O9 respectively

(NbAlH_1-8 Supplementary Table 14) In species III Nb and Al are not adjacent Nb is positioned at T8 or

T6 and Al is moved to T12 (NbAlH_9) or T7 (NbAlH_10) Since the NbAl ratio is 0027004 325 of

Al are isolated (species IV) The isolated Al is positioned at T2 (NbAlH_11) or T4 (NbAlH_12) All

twelve NbAlH sites are simulated independently by DFT and the calculated INS spectra are compared with

the experimental data of bare NbAlS-1(00270041) (Supplementary Fig 17) As there is an uncertainty on

the position of H the calculated INS spectra are given different weights to assemble the combined spectrum

for NbAlS-1(00270041) Species I and II have the same occupancy (determined by Rietveld Refinement)

and they were given the same weight Based upon the NbAl ratio and 29Si NMR results the weights of all

four species are calculated (Supplementary Table 14) The spectrum of combination 1 is produced by

combining twelve spectra with calculated weights All peaks in combination 1 fit with those in the

experimental data particularly the peaks assigned to -OH in-plane bending and Si-O stretching at 1086 and

1191 cm-1 respectively (Supplementary Fig 18 and Supplementary Table 15) The intensities of peaks at

245-534 cm-1 (assigned to relaxation of zeolite framework and -OH out-of-plane bending in combination 1)

are lower than that of the experimental data because only one unit cell and a simplified model were used and

external SiOH groups are not considered in the simulation Combination 2 is produced without species I and

8

II (Supplementary Fig 18) and a number of peaks (77 157 237 and 317 cm-1) are absent compared with the

experimental data demonstrating the presence of species I and II that promotes the adsorption of GVL in

NbAlS-1 via the ldquochelatingrdquo mechanism

Inelastic neutron scattering

Direct visualisation of the interaction between adsorbed GVL and the active sites is crucial to understand the

molecular details of adsorption activation and ring-open and decarboxylation of GVL into butenes INS is a

powerful neutron spectroscopy technique to investigate the dynamics (particularly for the deformational and

conformational modes) of GVL It has several advantages

INS spectroscopy is sensitive to the vibrations of hydrogen atoms and hydrogen is ten times more

visible than other elements due to its high neutron cross-section

The technique is not subject to any optical selection rules All vibrations are active and in principle

measurable

INS observations are not restricted to the centre of the Brillouin zone (gamma point) as is the case for

optical techniques

INS spectra can be readily and accurately modelled the intensities are proportional to the concentration

of elements in the sample and their cross-sections and the measured INS intensities relate

straightforwardly to the associated displacements of the scattering atom Treatment of background

correction is also straightforward

Neutrons penetrate deeply into materials and pass readily through the walls of metal containers making

neutrons ideal to measure bulk properties of this material (in this case for 11 g catalyst)

INS spectrometers cover the whole range of the molecular vibrational spectrum 0-500 meV (0-4000 cm-

1)

INS data can be collected at low temperature (lt 15 K in this case) where the thermal motion of the

catalyst the adsorbed GVL and the reacted intermediate molecules can be significantly reduced

9

Supplementary Figures

Fig S1 Comparison of PXRD patterns of HZSM-5 NbS-1 and NbAlS-1 (λ = 15406 Aring)

5 10 15 20 25 30 35 40

NbAlS-1(00270041)

NbAlS-1(00400271)

NbS-1(0041)

NbS-1(00271)

HZSM-5(00671)

HZSM-5(0041)

In

tensity (

au

)

2 (degree)

HZSM-5(00271)

10

Fig S2 SEM images of (a) HZSM-5(0041) (b) NbS-1 (00271) and (c) NbAlS-1(00270041)

a

500 nm

b

500 nm

c

500 nm

11

Fig S3 Characterisation of the acidity of zeolites by Pyridine-IR (a) Py-IR spectra after vacuum treatment

at 150 oC Py-IR spectra of (b) HZSM-5(0041) (c) NbS-1(00271) and (d) NbAlS-1(00270041) after

vacuum treatment at variable temperatures The peaks at 1454 and 1545 cm-1 are assigned to the

coordinatively bound pyridine molecules on Lewis acid sites and pyridinium ion on Broslashnsted acid sites

respectively23 Both the coordinatively bound pyridine and pyridinium ion have the vibration peak at 1490

cm-1 23 The Lewis acid band is centred at 1454 cm-1 in the spectra of HZSM-5 while it shifts to 1447 cm-1 in

the spectra of Nb-doped zeolite which is similar to the reported Lewis acid band (centred at 1448 cm-1) in

niobium phosphate24 The decrease of frequency of the band is related to the reduced stability of the pyridine

complex23 which is verified by the desorption experiments b c and d show the Py-IR spectra of HZSM-

5(0041) NbS-1(00271) and NbAlS-1 (00270041) respectively after desorption of pyridine at variable

temperatures With the increase of temperature the peak intensities related to both Lewis and Broslashnsted acid

sites of HZSM-5 decrease slowly Both peaks are visible even after the vacuum treatment at 450 degC (b)

However the intensities of peaks at 1447 cm-1 in the spectra of NbS-1 and NbAlS-1 decreased dramatically

upon increasing temperature and disappeared at 350 degC (c and d) Also the peaks related to Broslashnsted acid

sites on NbAlS-1 samples disappeared even at 250 degC (c and d) This result indicates that the NbAlS-1

samples have only weak Lewis and weak Broslashnsted acid sites entirely consistent with the NH3-TPD results in

Supplementary Fig 4

a b

cd

1420 1440 1460 1480 1500 1520 1540 1560 1580

NbAlS-1(00400271)

NbAlS-1(00270041)

NbS-1(0041)

NbS-1(00271)

HZSM-5(00671)

HZSM-5(0041)

HZSM-5 (00271)

Inte

nsity (

au

)

Wavenumber (cm-1)

1420 1440 1460 1480 1500 1520 1540 1560 1580

Ine

nsity (

au

)

Wavenumber (cm-1)

150 oC

200 oC

250 oC

350 oC

450 oC

1420 1440 1460 1480 1500 1520 1540 1560 1580

Inte

nsity (

au

)

Wavenumber (cm-1)

150 oC

200 oC

250 oC

350 oC

450 oC

1420 1440 1460 1480 1500 1520 1540 1560 1580

Inte

nsity (

au

)

Wavenumber (cm-1)

150 oC

200 oC

250 oC

350 oC

450 oC

12

Fig S4 Characterisation of the acidity of zeolites by NH3-TPD Two peaks at 240 and 435 degC correspond to

NH3 eluted from the weak and strong acid sites respectively25

100 150 200 250 300 350 400 450 500 550 600

Inte

nsity (

au

)

Temperature (oC)

NbAlS-1(00400271)

NbAlS-1(00270041)

NbS-1(0041)

NbS-1(00271)

HZSM-5(00671)

HZSM-5(0041)

HZSM-5(00271)

13

Fig S5 GC-MS results of the products from the conversion of GVL at 320 oC (a) Gas and (b) liquid

products from conversion of pure GVL over HZSM-5(0041) (c) Gas and (d) liquid products from

conversion of pure GVL over NbS-1(00271) (e) Gas and (f) liquid products from conversion of pure GVL

over NbAlS-1(00270041) (g) Gas and (h) liquid products from conversion of 30 GVL over NbAlS-

1(00270041) The water in g is solely from the feeding solution rather than produced from dehydration as

no dehydration products are observed

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

b

d

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

a

c

N2

CO2

C2H4 C2H6 C3H6 C3H8

C4H10

C4H8

H2O

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

N2

CO2

C4H8

H2O

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

fe

Pentenoic

acid isomers

Pentenoic

acid isomers

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

Aromatics

Pentenoic

acid isomers

g h

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

N2

CO2C4H8

N2

CO2

C4H8

H2O

C2H4 C2H6 C3H6

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

14

Fig S6 TGA (black) and DSC (red) plots of used HZSM-5(0041) (a) and NbAlS-1(00270041) (b)

catalysts after the conversion of pure GVL at 320 oC The by-products (eg coke) deposited on the surface

of used HZSM-5(0041) are significantly more stable than those on used NbAlS-1(00270041)

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

-10

-08

-06

-04

-02

00

02

04

06

08

10

500

Hea

t flow

(W

g)

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

-10

-08

-06

-04

-02

00

02

04

06

08

10

430

He

at flow

(W

g)

330

a b

15

Fig S7 TGA plots of used NbAlS-1(00270041) catalysts after the conversion of pure GVL (black) and 30

wt GVL (red) at 320 oC The presence of water in this catalytic system effectively hindered the formation

of by-products on the catalyst surface

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

for 30 GVL feeding

for pure GVL feeding

16

Fig S8 Comparison of FTIR spectra of NbAlS-1 before and after the conversion of 30wt GVL at 320 oC

for 180 h

1400 1300 1200 1100 1000 900 800 700 600

Absorb

ance (

au

)

Wavenumber (cm-1)

NbAlS-1(00270041) used

NbAlS-1(00270041)

971

17

Fig S9 X-band (ca 9 GHz) EPR spectra of NbAlS-1 and post-reaction zeolites activated by γ-irradiation at

77 K (a) wide magnetic field-sweep highlighting the induced Nb(IV) signals in NbAlS-1(00270041) and

the used sample and (b) narrow magnetic field-sweep highlighting the induced electron hole defect Al-O-

Si signals in fresh and used NbAlS-1(00270041) samples

a

b

100 150 200 250 300 350 400 450 500 550

Nb simulation

NbAlS-1(00270041)

used

Inte

nsity (

au

)

NbAlS-1(00270041)

Magnetic field (mT)

300 310 320 330 340 350 360

NbAlS-1(00270041) used

Al simulation

Inte

nsity (

au

)

Magnetic field (mT)

NbAlS-1(00270041)

18

Fig S10 (a) XAS spectra of the fresh and used NbAlS-1(00270041) (b) Phase-corrected k3-weighted

Fourier Transform of the EXAFS spectra for fresh and used NbAlS-1(00270041) The stability of the Nb

active sites within NbAlS-1(00270041) was verified by Nb K edge XAS with both fresh and used

catalysts exhibiting the same pre-edge XANES and EXAFS features

00

04

08

12

16

20

18800 19075 19350 19625 19900

No

rm a

bso

rptio

n (

au

)

Energy (eV)

NbAlS-1(00270041)

0

1

2

3

4

5

6

7

0 2 4 6

χ(R

)(Aring

-4)

Radial distance (Aring)

a b

NbAlS-1(00270041)

NbAlS-1(00270041) used

NbAlS-1(00270041)

used

19

Fig S11 27Al MAS NMR spectra of fresh and used zeolites Chemical shifts at 0 and 55 ppm are assigned to

six-coordinate extra-framework and four-coordinate framework aluminum species respectively26

100 80 60 40 20 0 -20 -40

NbAlS-1(00270041) used

NbAlS-1(00270041)

HZSM-5(0041) used

27Al chemical shift (ppm)

HZSM-5(0041)

20

Fig S12 Characterisation of the acidity of fresh and used zeolites by NH3-TPD

100 150 200 250 300 350 400 450 500 550 600

In

tensity (

au

)

Temperature (oC)

NbAlS-1(00270041) used

NbAlS-1(00270041)

HZSM-5(0041) used

HZSM-5(0041)

21

Fig S13 X-band (ca 9 GHz) EPR spectra of HZSM-5 and post-reaction zeolites activated by γ-irradiation

at 77 K narrow magnetic field-sweep highlighting the induced electron hole defect Al-O-Si signals in

HZSM-5 (0041) and the used sample

300 310 320 330 340 350 360

HZSM-50041) used

Al simulation

Inte

nsity (

au

)

Magnetic field (mT)

HZSM-5(0041)

22

Fig S14 Comparison of SXPD patterns of (a) HZSM-5(0041) (b) NbS-1(00271) and (c) NbAlS-

1(00270041) before and after adsorption of GVL at room temperature [λ = 082487(1) Aring]

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbAlS-1(0027041)

GVLNbAlS-1(0027041)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbS-1(00271)

GVLNbS-1(00271)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

HZSM-5(0041)

GVLHZSM-5(0041)

a

b

c

23

Fig S15 Comparison of the experimental data (black line) and Rietveld refinement (red line) and the

difference between them (grey line) for SXPD patterns of (ab) GVLHZSM-5(0041) (cd) GVLNbS-

1(00271) (ef) GVLNbAlS-1(00270041) at room temperature at a 2θ range of (ace) 3 - 20deg and

(bdf) 20 - 50deg [λ = 082487(1) Aring]

a b

c d

e f

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

24

Fig S16 (a) 29Si NMR spectra of HZSM-5 and NbAlS-1 de-convolution of 29Si NMR spectra of HZSM-5

(b) and NbAlS-1 (c) by Guassian and Lorentzian line shapes

a

b

c

-125 -120 -115 -110 -105 -100 -95 -90 -85

-1023

-1076

-1138

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-4

Cumulative Fitted Peak

-1171

-125 -120 -115 -110 -105 -100 -95 -90 -85

-924-983

-1026

-1057

-1124

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-6

Cumulative Fitted Peak

-1162

-125 -120 -115 -110 -105 -100 -95 -90 -8529

Si chemical shift (ppm)

NbAlS-1(00270041)

HZSM-5(0041)

25

Fig S17 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and calculated INS

spectra for 12 types of NbAlH sites

0 200 400 600 800 1000 1200 1400 1600

1211109876

4

23

5

1

Bare NbAlS-1 (exp)

S(Q

) (a

u)

Neutron energy loss (cm-1)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

26

Fig S18 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and combination of

calculated INS spectra of different NbAlH sites Combination 1 = 3125Site I + 3125Site II +

5Site III + 325Site IV Combination 2 = 675Site III + 325Site IV Site I = 025(NbAlH_1 +

NbAlH_2 + NbAlH_3 + NbAlH_4) Site II = 025(NbAlH_5 + NbAlH_6 + NbAlH_7 +

NbAlH_8) Site III = 05(NbAlH_9 + NbAlH_10) Site IV = 05(NbAlH_11 + NbAlH_12)

Abscissa is scaled down by 097 for combination 1 and 2

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Bare NbAlS-1 (exp)

Combination 1

Combination 2

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

27

Fig S19 Schematic view of the procedure of in situ INS experiment and data collection

Zeolite (Calcined)

Zeolite (activated)

Heating at 450 oC under

He flow for 3 h

Zeolite (Adsorbed)

INS collection 1

Zeolite (Reaction at 280 C)

Adsorption of GVL at 135 oC

Zeolite (Reaction at 300 C)

Zeolite (Reaction at 320 C)

Reaction at 280 oC for 3 min

Reaction at 300 oC for 3 min

Reaction at 320 oC for 3 min

INS collection 2

INS collection 3

INS collection 4

INS collection 5

28

Fig S20 Comparison of the experimental INS spectra of condensed GVL in the solid state (black) and

calculated INS spectra of single GVL molecule (red) The crystal structure of solid GVL is unavailable in the

database

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental GVL

Calculated GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

29

Fig S21 Comparison of the experimental and calculated INS spectra of adsorbed GVL molecules on

NbAlS-1 The structure model derived from SXPD experiments was used for initial DFT modelling where

the positional disorder has been removed in the calculation and this partially accounts for the discrepancies

observed between calculated and experimental INS plots

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental adsorbed GVL

Calculated adsorbed GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

30

Fig S22 View of the INS spectrum for the empty catalysis cell used for this experiment The empty can has

the features below 300 cm-1 and at approximately 457 and 659 cm-1

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Empty can

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

31

Fig S23 Comparison of the experimental INS spectra for bare and GVL-adsorbed catalyst Spectra shown

are after subtraction of the empty cell The INS spectrum of the catalyst on GVL adsorption at 135 degC shows

a significant increase in total intensity demonstrating the binding of GVL to the catalyst sites

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

GVLNbAlS-1(00270041)

Bare NbAlS-1(00270041)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

32

Fig S24 Comparison of the experimental INS spectra of all butene isomers and reacted GVL at 320 degC

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Reaction 320 oC

trans-2-butene

i-butene

1-butene

cis-2-butene

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

33

Supplementary Tables

Table S1 Textural properties (data determined from N2 sorption isotherms at 77 K) and crystallite size (data

determined from SEM) of all zeolites used in this study

Samples ABET (m2 g-1)a Amic (m2 g-1) b Aext (m2 g-1) c Vmic (cm3 g-1) d Vtotal (cm3 g-1) e

Crystallite sizef

(nm)

HZSM-5 (00271) 413 314 99 019 033 200-500

HZSM-5 (0041) 346 259 87 015 028 200-500

HZSM-5 (00671) 348 277 71 016 026 200-500

NbS-1 (00271) 377 284 93 017 029 300-500

NbS-1 (0041) 357 282 75 016 027 300-500

NbAlS-1(00270041) 408 263 145 018 041 300-500

NbAlS-1(00400271) 376 268 108 017 033 300-500

HZSM-5 (0041)g 338 258 80 015 027 200-500

NbAlS-1(00270041)g 396 262 134 018 039 300-500

aBET specific surface area bMicropore surface area cExternal surface area dMicropore volume eTotal pore volume fObtainted from SEM gUsed catalyst

34

Table S2 Spin-Hamiltonian parameters of radiation induced Nb(IV) and electron hole Al-O-Si defects

from simulation of CW X-band EPR spectra in Fig 1 lw is the homogeneous Lorentzian linewidth g and A

are the principle values of the g and hyperfine interaction tensors

Signal Parameters

Electron

Spin

Nuclear

Spin g-tensor g-Strain

A-tensor

(G)

lw

(mT)

Nb defect 12 92 [1935 1935 1866] [004 004 00] [159 159

310] [0 40]

Al defect 12 52 [20012 2007 2045] [00 0003 004] [7 7 -] [00 04]

35

Table S3 Summary of acidity of all zeolites used in this work Data were determined by NH3-TPD and

Pyridine-IR studies

Catalyst Weak acida

(mmol g-1)

Strong acida

(mmol g-1)

Total acida

(mmol g-1)

LB acid

ratiob

HZSM-5(00271) 015 025 04 039

HZSM-5(0041) 024 028 052 037

HZSM-5(00671) 033 03 063 027

NbS-1(00271) 004 0 004 -

NbS-1(0041) 004 0 004 -

NbAlS-1(00270041) 022 0 022 469

NbAlS-1(00400271) 023 0 023 35 aFrom NH3-TPD bFrom Pyridine-IR

36

Table S4 The butenes distribution in equilibrium at 320 degC and the distribution of butene isomers produced

from conversion of 30 GVL at 320 degC over catalysts

Catalyst Distribution ()

i-butene 1-butene trans-2-butene cis-2-butene

Equilibrium27 45 12 27 16

HZSM-5(0041) 44 14 25 17

NbAlS-1(00270041) 18 19 38 25

NbOPO4 15 20 39 26

37

Table S5 Comparison of the catalytic performance of reported catalysts for the conversion of GVL in aqueous solution (25-40 wt ) to butenes

Catalyst Reaction Conditions GVL

concentration

(wt )

GVL

conversion

()

Butene

Yield

(mol )a

Ref

Temperature

(degC)

WHSV

(h-1)

Pressure

(bar)

NbAlS-1(00270041) 320 018 1 30 100 993 this work

SiO2Al2O3 375 09 1 30 97 75 28

HZSM-5(0041) 320 018 1 30 76 232 this work

LaZSM-5 450 1 10 40 gt99 ca 21 15

PdNb2O5b 275 05 14 30d 100 lt16c 29

Zn-AlPO-5 397 077 10 40 65 ca 12 30

H3PO4 240 - - 25 100 12c 31

ZnZSM-5 450 1 10 40 gt99 ca 6 15

AlPO-5 397 077 10 40 2 ca 04 30

aButene yield is calculated by the equation defined in the Method section

bunder H2 atmosphere

cThe product includes both butene and butane d002 M H2SO4 was added in the GVL solution

38

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1

R (Aring)a σ a Amp a CN a

NbAlS-1 (Dry) Nb=O 1680 0017 082 1 Nb-O 2014 0008 082 3 NbAlS-1

Nb=O 1721 0012 078 1

Nb-O 2014 0004 078 3

NbAlS-1+GVL

Nb=O 1943 0003 075 1

Nb-O 2014 0010 075 3

NbS-1

Nb=O 1711 0032 091 1

Nb-O 2014 0005 091 3

NbS-1+GVL

Nb=O 1770 0004 089 1

Nb-O 2014 0014 089 3 aR = Interatomic distance from central scattering atom σ = Debye-Waller factor Amp = amplitude factor

and CN = coordination number

39

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption

Samples GVLHZSM-5(0041) GVLNbS-1(00271) NbAlS-1(00270041) GVLNbAlS-1(00270041)

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma

Chemical formula Al3692Si92308O192 8GVL Nb2524Si93476O192 8GVL Al3599Nb2429Si89972O192 Al3599Nb2429Si89972O192 8GVL

2θ range for refinement (deg) 3 ndash 50 3 ndash 50 3 ndash 50 3 ndash 50

Detector Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals

Number of hkls 3251 3214 3179 3222

Refinement methods Rietveld Rietveld Rietveld Rietveld

a (Aring) 201351(2) 200604(2) 199955(3) 200697(3)

b (Aring) 199852(2) 198995(1) 198333(3) 199150(3)

c (Aring) 134549(2) 134010(1) 133531(2) 134214(2)

V (Aring3) 541428(11) 534957(7) 529553(15) 536437(15)

RwpRexp Rp () 445135013378 463131253497 553133614058 444933763305

Wavelength (Aring) 082487(1) 082487(1) 082487(1) 082487(1)

Gof χ2 1272 1482 1646 1318

40

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) at room

temperature

Species Atom x y z SOF Beq(Aring2) Wyckoff

HZSM-5(0041) Al1 -00732(5) 00570(7) 08366(7) 003846154 100(5) 8d

Al2 01869(6) -00339(5) 03189(8) 003846154 100(5) 8d

Al3 02207(5) -00626(7) 05256(8) 003846154 100(5) 8d

Al4 01210(5) 00590(7) 10220(8) 003846154 100(5) 8d

Al5 -00703(6) -00272(5) 01933(8) 003846154 100(5) 8d

Al6 01859(5) 00593(6) 06679(8) 003846154 100(5) 8d

Al7 -00745(6) 06734(6) 08243(9) 003846154 100(5) 8d

Al8 01956(6) 01297(5) 03114(7) 003846154 100(5) 8d

Al9 02187(5) 01761(5) 05326(8) 003846154 100(5) 8d

Al10 01228(5) 06749(6) 10400(8) 003846154 100(5) 8d

Al11 -00694(6) 01308(6) 01819(9) 003846154 100(5) 8d

Al12 01859(6) 06714(5) 06756(8) 003846154 100(5) 8d

Si1 -00732(5) 00570(7) 08366(7) 09615385 100(5) 8d

Si2 01869(6) -00339(5) 03189(8) 09615385 100(5) 8d

Si3 02207(5) -00626(7) 05256(8) 09615385 100(5) 8d

Si4 01210(5) 00590(7) 10220(8) 09615385 100(5) 8d

Si5 -00703(6) -00272(5) 01933(8) 09615385 100(5) 8d

Si6 01859(5) 00593(6) 06679(8) 09615385 100(5) 8d

Si7 -00745(6) 06734(6) 08243(9) 09615385 100(5) 8d

Si8 01956(6) 01297(5) 03114(7) 09615385 100(5) 8d

Si9 02187(5) 01761(5) 05326(8) 09615385 100(5) 8d

Si10 01228(5) 06749(6) 10400(8) 09615385 100(5) 8d

Si11 -00694(6) 01308(6) 01819(9) 09615385 100(5) 8d

Si12 01859(6) 06714(5) 06756(8) 09615385 100(5) 8d

O1 01189(10) -00643(12) 02762(13) 1 143(9) 8d

O2 01900(11) -00665(10) 04093(13) 1 143(9) 8d

O3 02017(11) 00485(12) 10198(11) 1 143(9) 8d

O4 -00964(9) -00573(13) 10736(15) 1 143(9) 8d

O5 01132(9) 00573(12) 07009(13) 1 143(9) 8d

O6 02544(10) 00574(13) 07592(13) 1 143(9) 8d

O7 01249(11) 01569(12) 02676(15) 1 143(9) 8d

O8 01995(12) 01482(9) 04331(13) 1 143(9) 8d

O9 01968(12) 06607(9) 00500(12) 1 143(9) 8d

O10 -00922(10) 01564(11) 10827(17) 1 143(9) 8d

O11 01123(10) 06498(11) 07436(14) 1 143(9) 8d

O12 02420(11) 06557(12) 07396(15) 1 143(9) 8d

O13 02109(9) 00468(11) 03170(12) 1 143(9) 8d

O14 -00793(8) 00525(13) 01708(13) 1 143(9) 8d

O15 -00850(10) 01327(12) 08874(17) 1 143(9) 8d

O16 -01009(10) 00004(11) 09239(15) 1 143(9) 8d

O17 -01006(10) 06343(12) -00444(14) 1 143(9) 8d

O18 01746(10) 01273(11) 06145(13) 1 143(9) 8d

O19 01980(12) 00019(10) 06091(12) 1 143(9) 8d

O20 02014(13) 06300(11) 05761(13) 1 143(9) 8d

O21 -00054(11) 00405(12) 07595(12) 1 143(9) 8d

O22 -00045(12) 06580(13) 07876(13) 1 143(9) 8d

O23 -00801(15) 075 0861(2) 1 143(9) 4c

O24 01839(17) 075 0648(2) 1 143(9) 4c

O25 02011(18) 025 0563(2) 1 143(9) 4c

O26 00863(13) 075 0143(2) 1 143(9) 4c

41

GVLI O1 -00251(15) 08553(18) -0468(2) 0500(3) 06(4) 8d

O2 -0013(2) 07533(17) -0531(3) 0500(3) 06(4) 8d

C1 00570(11) 08446(12) -05861(14) 0500(3) 06(4) 8d

C2 00466(18) 09175(12) -05663(18) 0500(3) 06(4) 8d

C3 0004(2) 09222(15) -0484(2) 0500(3) 06(4) 8d

C4 00038(13) 08112(15) -05293(19) 0500(3) 06(4) 8d

C5 -0034(3) 09728(19) -0448(3) 0500(3) 06(4) 8d

H1a 00999(11) 08315(15) -05641(17) 0500(3) 07(5) 8d

H1b 00528(13) 08360(13) -06553(15) 0500(3) 07(5) 8d

H2a 0088(2) 09384(14) -0553(2) 0500(3) 07(5) 8d

H2b 0026(2) 09378(15) -0622(2) 0500(3) 07(5) 8d

H3 0038(2) 09204(15) -04313(18) 0500(3) 07(5) 8d

H5a -0043(3) 0965(2) -0380(3) 0500(3) 07(5) 8d

H5b -0011(4) 10138(17) -0454(3) 0500(3) 07(5) 8d

H5c -0074(3) 0975(3) -0485(3) 0500(3) 07(5) 8d

GVLII O1 -03289(15) -0778(2) -02817(19) 0500(4) 06(4) 8d

O2 -04372(14) -0757(2) -02733(16) 0500(4) 06(4) 8d

C1 -03730(11) -07204(15) -04150(12) 0500(4) 06(4) 8d

C2 -02990(11) -0718(2) -04230(16) 0500(4) 06(4) 8d

C3 -02738(13) -0762(3) -0350(2) 0500(4) 06(4) 8d

C4 -03856(13) -07518(18) -03175(14) 0500(4) 06(4) 8d

C5 -02129(14) -0768(4) -0308(3) 0500(4) 06(4) 8d

H1a -03908(13) -07461(16) -04681(13) 0500(3) 07(5) 8d

H1b -03904(14) -06762(15) -04174(16) 0500(3) 07(5) 8d

H2a -02856(13) -0732(2) -04875(17) 0500(3) 07(5) 8d

H2b -02835(15) -0674(2) -04093(19) 0500(3) 07(5) 8d

H3 -0275(2) -0803(3) -0389(3) 0500(3) 07(5) 8d

H5a -0208(2) -0812(4) -0281(3) 0500(3) 07(5) 8d

H5b -01797(13) -0762(4) -0357(3) 0500(3) 07(5) 8d

H5c -02080(14) -0735(4) -0257(3) 0500(3) 07(5) 8d

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 2: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

1

Supplementary Information

Quantitative production of butenes from biomass-derived γ-valerolactone

catalysed by hetero-atomic MFI zeolite

Longfei Lin1 Alena M Sheveleva12 Ivan da Silva3 Christopher M A Parlett456 Zhimou Tang7 Yueming

Liu7 Mengtian Fan1 Xue Han1 Joseph H Carter1 Floriana Tuna1 Eric J L McInnes1 Yongqiang Cheng8

Luke L Daemen8 Svemir Rudić3 Anibal J Ramirez-Cuesta8 Chiu C Tang6 and Sihai Yang1

1 School of Chemistry and Photon Science Institute University of Manchester Manchester M13 9PL (UK)

2 International Tomography Center SB RAS and Novosibirsk State University Novosibirsk 630090

(Russia)

3 ISIS Facility STFC Rutherford Appleton Laboratory Chilton Oxfordshire OX11 0QX (UK)

4 School of Chemical Engineering and Analytical Science University of Manchester Manchester M13 9PL

(UK)

5 University of Manchester at Harwell Diamond Light Source Harwell Campus Didcot Oxfordshire

OX11 0DE (UK)

6 Diamond Light Source Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE (UK)

7 Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and

Molecular Engineering East China Normal University Shanghai 200062 (China)

8 The Chemical and Engineering Materials Division (CEMD) Neutron Sciences Directorate Oak Ridge

National Laboratory Oak Ridge TN 37831 (USA)

2

Contents

Supplementary Methods 4

Catalyst characterisation 4

DFT calculations and modelling of the INS spectra 5

Supplementary Notes 6

Interaction between GVL and NbAlH sites 6

Distribution of NbAlH sites 6

Inelastic neutron scattering 8

Supplementary Figures 9

Fig S1 Comparison of PXRD patterns of HZSM-5 NbS-1 and NbAlS-1 (λ = 15406 Aring) 9

Fig S2 SEM images of (a) HZSM-5(0041) (b) NbS-1 (00271) and (c) NbAlS-1(00270041) 10

Fig S3 Characterisation of the acidity of zeolites by Pyridine-IR 11

Fig S4 Characterisation of the acidity of zeolites by NH3-TPD 12

Fig S5 GC-MS results of the products from the conversion of GVL at 320 oC 13

Fig S6 TGA and DSC plots of used catalysts after the conversion of pure GVL at 320 oC 14

Fig S7 TGA plots of used NbAlS-1(00270041) catalysts 15

Fig S8 Comparison of FTIR spectra of NbAlS-1 before and after reaction 16

Fig S9 X-band EPR spectra of NbAlS-1 and post-reaction zeolites activated by γ-irradiation at 77 K 17

Fig S10 XAS results of the fresh and used NbAlS-1(00270041) 18

Fig S11 27Al MAS NMR spectra of fresh and used zeolites 19

Fig S12 Characterisation of the acidity of fresh and used zeolites by NH3-TPD 20

Fig S13 X-band EPR spectra of HZSM-5 and post-reaction zeolites activated by γ-irradiation at 77 K 21

Fig S14 Comparison of SXPD patterns of catalysts before and after adsorption of GVL 22

Fig S15 Comparison of the experimental data and Rietveld refinement for SXPD patterns 23

Fig S16 29Si NMR spectra of HZSM-5 and NbAlS-1 24

Fig S17 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and calculated

INS spectra for 12 types of NbAlH sites 25

Fig S18 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and combination

of calculated INS spectra of different NbAlH sites 26

Fig S19 Schematic view of the procedure of in situ INS experiment and data collection 27

Fig S20 Comparison of the experimental INS spectra of condensed GVL in the solid state (black) and

calculated INS spectra of single GVL molecule (red) 28

Fig S21 Comparison of the experimental and calculated INS spectra of adsorbed GVL molecules on

NbAlS-1 29

Fig S22 View of the INS spectrum for the empty catalysis cell used for this experiment 30

Fig S23 Comparison of the experimental INS spectra for bare and GVL-adsorbed catalyst 31

Fig S24 Comparison of the experimental INS spectra of all butene isomers and reacted GVL at 320 degC32

Supplementary Tables 33

3

Table S1 Textural properties and crystallite sizes of all zeolites used in this study 33

Table S2 Spin-Hamiltonian parameters of radiation induced Nb(IV) and electron hole Al-O-Si defects

from simulation of CW X-band EPR spectra 34

Table S3 Summary of acidity of all zeolites used in this work 35

Table S4 The butenes distribution in equilibrium at 320 degC and the distribution of butene isomers

produced from conversion of 30 GVL at 320 degC over catalysts 36

Table S5 Comparison of the catalytic performance of reported catalysts for the conversion of GVL in

aqueous solution (25-40 wt ) to butenes 37

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1 38

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption 39

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) 40

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) 42

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) 44

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) 46

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms from

the Rietveld refinements of the corresponding SXPD data at 25 degC 48

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio 49

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041) 50

Table S15 Assignment of INS peaks of bare NbAlS-1 51

Table S16 Assignment of INS peaks of GVL 52

Supplementary References 53

4

Supplementary Methods

Catalyst characterisation

Powder X-ray diffraction (PXRD) patterns were recorded on a Philips Xrsquopert X-ray diffractometer (40 kV

and 30 mA) using Cu Kα radiation (λ = 15406 Aring) N2 adsorption was carried out at 77 K on a Micromeritics

3Flex instrument after activating the samples for 10 h under dynamic vacuum at 423 K The crystal

morphology and size were measured by scanning electron microscopy (SEM) on a Quanta FEG 650

microscope The ratios of NbAlSi in the sample were quantified by EDX using multiple regions over a

sample on a Bruker XTrace instrument Thermogravimetric analysis was carried out with a SDTQ600 TA

instrument Samples were heated from room temperature to 800 degC at a rate of 5 degCmin under an air flow

Attenuated Total-Reflection Flourier Transformed Infrared (ATR-FTIR) spectra were collected with Nicolet

iS5 spectrometer Laser Raman spectra were obtained using a Horiba scientific XploRA PLUS Raman

microscope equipped with 1800 groovemm holographic gratings The samples were excited by the 532 nm

line of an Ar+ laser The acidity was measured by temperature-programmed desorption of ammonia (NH3-

TPD) with a Quantachrome Autosorb-1 equipped with a thermal conductivity detector (TCD) Typically 100

mg of sample was pre-treated in helium stream (30 mL minminus1) at 600 degC for 2 h The adsorption of NH3 was

carried out at 50 degC for 1 h The catalyst was flushed with helium at 100 degC for 2 h to remove physisorbed

NH3 from the catalyst surface The TPD profile was recorded at a heating rate of 10 degC min-1 from 100 degC to

600 degC The Broslashnsted and Lewis acid sites of the samples were investigated by FT-IR of adsorbed pyridine

in an in situ cell with CaF2 windows Wafers with a weight of 25 mg and radius of 65 mm were degassed for

1 h under vacuum at 600 degC Then pyridine was admitted and after equilibration the samples were

outgassed for 05 h at increasing temperatures (150 200 250 350 and 450 degC) The spectra were recorded

on a Nicolet iS50 FT-IR spectrometer Solid state 27Al NMR spectra were recorded with a frequency of

10424 MHz a spinning rate of 100 kHz and a recycling delay of 4 s Al(NO3)3 was used as the reference

for chemical shift Solid state 29Si NMR spectra were recorded with a frequency of 7946 MHz a spinning

rate of 100 kHz and a recycling delay of 10 s Tetramethylsilane was used as the reference for chemical

shift

For the EPR spectroscopy the sample was placed in a 28 mm od quartz tube and connected to a

vacuum line Prior to irradiation zeolite materials were activated by pumping at 10-5 Torr for 12 h at 150 ˚C

5

and then sealed under vacuum The samples were exposed to γ-irradiation from a 60Co source at 77 K to a

total dose of 44 MRad at a dose rate of 05 MRad h-1 CW EPR measurements were carried out at X-band

(97 GHz) using a commercial spectrometer Bruker EMX equipped with Oxford Instruments temperature

control system at 77 K EPR spectra were detected with modulation amplitudes of 02 and 1 mT and

microwave powers of ~5 mW were chosen to provide optimum signal intensity without saturation of spectral

lines Simulations of EPR spectra were performed using the EasySpin toolbox (Version 5220)1 for Matlab

DFT calculations and modelling of the INS spectra

Periodic density functional theory (periodic-DFT) calculations were carried out using the plane wave

pseudopotential method as implemented in the CASTEP code23 Exchange and correlation were

approximated using the Perdew-Burke-Ernzerhof (PBE) functional4 Ultra-soft pseudopotentials were

employed to account for the effects of core electrons Tkatchenko-Scheffler dispersion correction5 was used

for van der Waals interactions Energy cutoff for plane-wave basis was 380 eV Phonon frequencies were

obtained by diagonalisation of dynamical matrices computed using finite displacement method The atomic

displacements in each mode that are part of the CASTEP output enable visualization of the modes to aid

assignments and are also all that is required to generate the INS spectrum using the program OCLIMAX67

DFT calculations of the INS spectra for single GVL molecule and adsorbed GVL were carried out which

were used to identify the modes of vibrational features in the experimental INS spectra The calculated INS

spectrum shows the total transitions (up to 10 orders) In addition DFT calculations of the INS spectra for

bare NbAlS-1 were performed to investigate the distribution of NbAlH sites Due to the large number of

configurations involved in these simulations the CP2K code8 based on the mixed Gaussian and plane-wave

scheme9 and the Quickstep module10 were used The calculation used molecularly optimised Double-Zeta-

Valence plus Polarization (DZVP) basis set11 Goedecker-Teter-Hutter pseudopotentials12 and the PBE

exchange correlation functional4 The plane-wave energy cutoff was 400 Ry The DFT-D3 level correction

for dispersion interactions as implemented by Grimme et al13 was applied

6

Supplementary Notes

Interaction between GVL and NbAlH sites

Synchrotron XPD has been successfully applied to study the interaction between guest molecules

and porous materials such as binding of hydrocarbons in porous metal-organic frameworks14 binding of

GVL in ZnZSM-515 and binding of pyridine in HZSM-516 In this study over 3100 hkl reflections were used

for the structural refinement which allowed for extensive structural variables to be refined in a satisfactory

manner It is almost impossible to distinguish between Al and Si (Z=13 and 14 respectively) sites using X-

rays diffraction Although Nb (Z=41) is heavier the low occupancy of Nb precludes the determination of its

precise location in the framework Recently the distribution of active sites in H-ZSM-516 and in ZnZSM-515

has been successfully determined by examining the intermolecular distances and angles between guest

molecules and framework sites For example protonic acid sites of H-ZSM-5 have been located by

examining the atomic distances and angles between pyridines and framework atoms16 GVL can be adsorbed

on Broslashnsted acid sites upon protonation of the C=O group17 while the O in the ring of GVL can be adsorbed

on Nb(V) sites18 Thus the distribution of active sites in NbAlS-1 has been revealed by a detailed

examination of the GVL-NbAlS-1 binding distances particularly that between O1GVL and T sites and

between O2GVL and Ozeolites (see Supplementary Table 12) Importantly the distances between O1GVLI and T8

and between O1GVLII and T6 are shortest in both GVL-adsorbed NbAlS-1 and NbS-1 indicating that Nb sites

are likely located at T8 and T6 positions Similarly the distances between O2GVLI and O25zeolites and that

between O2GVLII and O26zeolite are shortest in both GVL-adsorbed NbAlS-1 and HZSM-5 suggesting that

protonic acid sites are likely located at O25-T9 and O26-T10 centres In addition XAS measurements (Fig

3b) suggest that the Nb pre-edge position is influenced with an apparent blue-shift (~08 eV) for NbAlS-1

upon adsorption of GVL while no such shift is witnessed for NbS-1 This observation reflects the preferred

adsorption geometry within the bifunctional (Al and Nb-containing) zeolite NbAlS-1 consistent with the

crystallographic study

Distribution of NbAlH sites

The 29Si NMR spectra of NbAlS-1(00270041) and HZM-5(0041) show notable difference in the range of

-110 to -90 ppm (Supplementary Fig 16a) Curves are de-convoluted by Guassian and Lorentzian line

shapes The assignments and integration of peak areas are listed in Supplementary Table 13 The (Al+Si)Si

7

ratios calculated from the 29Si NMR data are highly consistent with that obtained from EDX The peak at -98

ppm is absent in the spectrum of HZSM-5(0041) indicating the absence of Si(OSi)2(OAl)2 species

(Supplementary Fig 16b) consistent with previous reports1920 By contrast the peak at -98 ppm is observed

in the NMR spectrum of NbAlS-1(00270041) suggesting the presence of Si(OSi)2(OAl)(ONb) species

(Supplementary Fig 16c and Supplementary Table 13)

Recently the distribution of protons in LTA zeolite has been studied using periodic DFT calculations

and INS2122 The distribution of NbAlH sites in NbAlS-1(00270041) has been further investigated by

combining INS and DFT calculations Four types of possible species ie species I [NbOSiOAl] species II

[NbOSiOSiOAl] species III [NbO(SiO)nAl (n ge 3)] and species IV (isolated Al no Nb around) and twelve

types of NbAlH species in NbAlS-1 have been simulated (Supplementary Table 14) From the synchrotron

XPD and Rietveld Refinement species I and II present in NbAlS-1(00270041) (Fig 4f and 4i) and thus

Nb and Al are positioned at T8 and T9 respectively for species I and at T6 and T10 respectively for

species II for the calculation of corresponding INS spectra The H sites have the same probability to appear

near all four O around Al and are thus attached to O25 O8 O18 O9 O26 O15 O10 and O9 respectively

(NbAlH_1-8 Supplementary Table 14) In species III Nb and Al are not adjacent Nb is positioned at T8 or

T6 and Al is moved to T12 (NbAlH_9) or T7 (NbAlH_10) Since the NbAl ratio is 0027004 325 of

Al are isolated (species IV) The isolated Al is positioned at T2 (NbAlH_11) or T4 (NbAlH_12) All

twelve NbAlH sites are simulated independently by DFT and the calculated INS spectra are compared with

the experimental data of bare NbAlS-1(00270041) (Supplementary Fig 17) As there is an uncertainty on

the position of H the calculated INS spectra are given different weights to assemble the combined spectrum

for NbAlS-1(00270041) Species I and II have the same occupancy (determined by Rietveld Refinement)

and they were given the same weight Based upon the NbAl ratio and 29Si NMR results the weights of all

four species are calculated (Supplementary Table 14) The spectrum of combination 1 is produced by

combining twelve spectra with calculated weights All peaks in combination 1 fit with those in the

experimental data particularly the peaks assigned to -OH in-plane bending and Si-O stretching at 1086 and

1191 cm-1 respectively (Supplementary Fig 18 and Supplementary Table 15) The intensities of peaks at

245-534 cm-1 (assigned to relaxation of zeolite framework and -OH out-of-plane bending in combination 1)

are lower than that of the experimental data because only one unit cell and a simplified model were used and

external SiOH groups are not considered in the simulation Combination 2 is produced without species I and

8

II (Supplementary Fig 18) and a number of peaks (77 157 237 and 317 cm-1) are absent compared with the

experimental data demonstrating the presence of species I and II that promotes the adsorption of GVL in

NbAlS-1 via the ldquochelatingrdquo mechanism

Inelastic neutron scattering

Direct visualisation of the interaction between adsorbed GVL and the active sites is crucial to understand the

molecular details of adsorption activation and ring-open and decarboxylation of GVL into butenes INS is a

powerful neutron spectroscopy technique to investigate the dynamics (particularly for the deformational and

conformational modes) of GVL It has several advantages

INS spectroscopy is sensitive to the vibrations of hydrogen atoms and hydrogen is ten times more

visible than other elements due to its high neutron cross-section

The technique is not subject to any optical selection rules All vibrations are active and in principle

measurable

INS observations are not restricted to the centre of the Brillouin zone (gamma point) as is the case for

optical techniques

INS spectra can be readily and accurately modelled the intensities are proportional to the concentration

of elements in the sample and their cross-sections and the measured INS intensities relate

straightforwardly to the associated displacements of the scattering atom Treatment of background

correction is also straightforward

Neutrons penetrate deeply into materials and pass readily through the walls of metal containers making

neutrons ideal to measure bulk properties of this material (in this case for 11 g catalyst)

INS spectrometers cover the whole range of the molecular vibrational spectrum 0-500 meV (0-4000 cm-

1)

INS data can be collected at low temperature (lt 15 K in this case) where the thermal motion of the

catalyst the adsorbed GVL and the reacted intermediate molecules can be significantly reduced

9

Supplementary Figures

Fig S1 Comparison of PXRD patterns of HZSM-5 NbS-1 and NbAlS-1 (λ = 15406 Aring)

5 10 15 20 25 30 35 40

NbAlS-1(00270041)

NbAlS-1(00400271)

NbS-1(0041)

NbS-1(00271)

HZSM-5(00671)

HZSM-5(0041)

In

tensity (

au

)

2 (degree)

HZSM-5(00271)

10

Fig S2 SEM images of (a) HZSM-5(0041) (b) NbS-1 (00271) and (c) NbAlS-1(00270041)

a

500 nm

b

500 nm

c

500 nm

11

Fig S3 Characterisation of the acidity of zeolites by Pyridine-IR (a) Py-IR spectra after vacuum treatment

at 150 oC Py-IR spectra of (b) HZSM-5(0041) (c) NbS-1(00271) and (d) NbAlS-1(00270041) after

vacuum treatment at variable temperatures The peaks at 1454 and 1545 cm-1 are assigned to the

coordinatively bound pyridine molecules on Lewis acid sites and pyridinium ion on Broslashnsted acid sites

respectively23 Both the coordinatively bound pyridine and pyridinium ion have the vibration peak at 1490

cm-1 23 The Lewis acid band is centred at 1454 cm-1 in the spectra of HZSM-5 while it shifts to 1447 cm-1 in

the spectra of Nb-doped zeolite which is similar to the reported Lewis acid band (centred at 1448 cm-1) in

niobium phosphate24 The decrease of frequency of the band is related to the reduced stability of the pyridine

complex23 which is verified by the desorption experiments b c and d show the Py-IR spectra of HZSM-

5(0041) NbS-1(00271) and NbAlS-1 (00270041) respectively after desorption of pyridine at variable

temperatures With the increase of temperature the peak intensities related to both Lewis and Broslashnsted acid

sites of HZSM-5 decrease slowly Both peaks are visible even after the vacuum treatment at 450 degC (b)

However the intensities of peaks at 1447 cm-1 in the spectra of NbS-1 and NbAlS-1 decreased dramatically

upon increasing temperature and disappeared at 350 degC (c and d) Also the peaks related to Broslashnsted acid

sites on NbAlS-1 samples disappeared even at 250 degC (c and d) This result indicates that the NbAlS-1

samples have only weak Lewis and weak Broslashnsted acid sites entirely consistent with the NH3-TPD results in

Supplementary Fig 4

a b

cd

1420 1440 1460 1480 1500 1520 1540 1560 1580

NbAlS-1(00400271)

NbAlS-1(00270041)

NbS-1(0041)

NbS-1(00271)

HZSM-5(00671)

HZSM-5(0041)

HZSM-5 (00271)

Inte

nsity (

au

)

Wavenumber (cm-1)

1420 1440 1460 1480 1500 1520 1540 1560 1580

Ine

nsity (

au

)

Wavenumber (cm-1)

150 oC

200 oC

250 oC

350 oC

450 oC

1420 1440 1460 1480 1500 1520 1540 1560 1580

Inte

nsity (

au

)

Wavenumber (cm-1)

150 oC

200 oC

250 oC

350 oC

450 oC

1420 1440 1460 1480 1500 1520 1540 1560 1580

Inte

nsity (

au

)

Wavenumber (cm-1)

150 oC

200 oC

250 oC

350 oC

450 oC

12

Fig S4 Characterisation of the acidity of zeolites by NH3-TPD Two peaks at 240 and 435 degC correspond to

NH3 eluted from the weak and strong acid sites respectively25

100 150 200 250 300 350 400 450 500 550 600

Inte

nsity (

au

)

Temperature (oC)

NbAlS-1(00400271)

NbAlS-1(00270041)

NbS-1(0041)

NbS-1(00271)

HZSM-5(00671)

HZSM-5(0041)

HZSM-5(00271)

13

Fig S5 GC-MS results of the products from the conversion of GVL at 320 oC (a) Gas and (b) liquid

products from conversion of pure GVL over HZSM-5(0041) (c) Gas and (d) liquid products from

conversion of pure GVL over NbS-1(00271) (e) Gas and (f) liquid products from conversion of pure GVL

over NbAlS-1(00270041) (g) Gas and (h) liquid products from conversion of 30 GVL over NbAlS-

1(00270041) The water in g is solely from the feeding solution rather than produced from dehydration as

no dehydration products are observed

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

b

d

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

a

c

N2

CO2

C2H4 C2H6 C3H6 C3H8

C4H10

C4H8

H2O

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

N2

CO2

C4H8

H2O

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

fe

Pentenoic

acid isomers

Pentenoic

acid isomers

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

Aromatics

Pentenoic

acid isomers

g h

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

N2

CO2C4H8

N2

CO2

C4H8

H2O

C2H4 C2H6 C3H6

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

14

Fig S6 TGA (black) and DSC (red) plots of used HZSM-5(0041) (a) and NbAlS-1(00270041) (b)

catalysts after the conversion of pure GVL at 320 oC The by-products (eg coke) deposited on the surface

of used HZSM-5(0041) are significantly more stable than those on used NbAlS-1(00270041)

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

-10

-08

-06

-04

-02

00

02

04

06

08

10

500

Hea

t flow

(W

g)

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

-10

-08

-06

-04

-02

00

02

04

06

08

10

430

He

at flow

(W

g)

330

a b

15

Fig S7 TGA plots of used NbAlS-1(00270041) catalysts after the conversion of pure GVL (black) and 30

wt GVL (red) at 320 oC The presence of water in this catalytic system effectively hindered the formation

of by-products on the catalyst surface

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

for 30 GVL feeding

for pure GVL feeding

16

Fig S8 Comparison of FTIR spectra of NbAlS-1 before and after the conversion of 30wt GVL at 320 oC

for 180 h

1400 1300 1200 1100 1000 900 800 700 600

Absorb

ance (

au

)

Wavenumber (cm-1)

NbAlS-1(00270041) used

NbAlS-1(00270041)

971

17

Fig S9 X-band (ca 9 GHz) EPR spectra of NbAlS-1 and post-reaction zeolites activated by γ-irradiation at

77 K (a) wide magnetic field-sweep highlighting the induced Nb(IV) signals in NbAlS-1(00270041) and

the used sample and (b) narrow magnetic field-sweep highlighting the induced electron hole defect Al-O-

Si signals in fresh and used NbAlS-1(00270041) samples

a

b

100 150 200 250 300 350 400 450 500 550

Nb simulation

NbAlS-1(00270041)

used

Inte

nsity (

au

)

NbAlS-1(00270041)

Magnetic field (mT)

300 310 320 330 340 350 360

NbAlS-1(00270041) used

Al simulation

Inte

nsity (

au

)

Magnetic field (mT)

NbAlS-1(00270041)

18

Fig S10 (a) XAS spectra of the fresh and used NbAlS-1(00270041) (b) Phase-corrected k3-weighted

Fourier Transform of the EXAFS spectra for fresh and used NbAlS-1(00270041) The stability of the Nb

active sites within NbAlS-1(00270041) was verified by Nb K edge XAS with both fresh and used

catalysts exhibiting the same pre-edge XANES and EXAFS features

00

04

08

12

16

20

18800 19075 19350 19625 19900

No

rm a

bso

rptio

n (

au

)

Energy (eV)

NbAlS-1(00270041)

0

1

2

3

4

5

6

7

0 2 4 6

χ(R

)(Aring

-4)

Radial distance (Aring)

a b

NbAlS-1(00270041)

NbAlS-1(00270041) used

NbAlS-1(00270041)

used

19

Fig S11 27Al MAS NMR spectra of fresh and used zeolites Chemical shifts at 0 and 55 ppm are assigned to

six-coordinate extra-framework and four-coordinate framework aluminum species respectively26

100 80 60 40 20 0 -20 -40

NbAlS-1(00270041) used

NbAlS-1(00270041)

HZSM-5(0041) used

27Al chemical shift (ppm)

HZSM-5(0041)

20

Fig S12 Characterisation of the acidity of fresh and used zeolites by NH3-TPD

100 150 200 250 300 350 400 450 500 550 600

In

tensity (

au

)

Temperature (oC)

NbAlS-1(00270041) used

NbAlS-1(00270041)

HZSM-5(0041) used

HZSM-5(0041)

21

Fig S13 X-band (ca 9 GHz) EPR spectra of HZSM-5 and post-reaction zeolites activated by γ-irradiation

at 77 K narrow magnetic field-sweep highlighting the induced electron hole defect Al-O-Si signals in

HZSM-5 (0041) and the used sample

300 310 320 330 340 350 360

HZSM-50041) used

Al simulation

Inte

nsity (

au

)

Magnetic field (mT)

HZSM-5(0041)

22

Fig S14 Comparison of SXPD patterns of (a) HZSM-5(0041) (b) NbS-1(00271) and (c) NbAlS-

1(00270041) before and after adsorption of GVL at room temperature [λ = 082487(1) Aring]

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbAlS-1(0027041)

GVLNbAlS-1(0027041)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbS-1(00271)

GVLNbS-1(00271)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

HZSM-5(0041)

GVLHZSM-5(0041)

a

b

c

23

Fig S15 Comparison of the experimental data (black line) and Rietveld refinement (red line) and the

difference between them (grey line) for SXPD patterns of (ab) GVLHZSM-5(0041) (cd) GVLNbS-

1(00271) (ef) GVLNbAlS-1(00270041) at room temperature at a 2θ range of (ace) 3 - 20deg and

(bdf) 20 - 50deg [λ = 082487(1) Aring]

a b

c d

e f

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

24

Fig S16 (a) 29Si NMR spectra of HZSM-5 and NbAlS-1 de-convolution of 29Si NMR spectra of HZSM-5

(b) and NbAlS-1 (c) by Guassian and Lorentzian line shapes

a

b

c

-125 -120 -115 -110 -105 -100 -95 -90 -85

-1023

-1076

-1138

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-4

Cumulative Fitted Peak

-1171

-125 -120 -115 -110 -105 -100 -95 -90 -85

-924-983

-1026

-1057

-1124

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-6

Cumulative Fitted Peak

-1162

-125 -120 -115 -110 -105 -100 -95 -90 -8529

Si chemical shift (ppm)

NbAlS-1(00270041)

HZSM-5(0041)

25

Fig S17 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and calculated INS

spectra for 12 types of NbAlH sites

0 200 400 600 800 1000 1200 1400 1600

1211109876

4

23

5

1

Bare NbAlS-1 (exp)

S(Q

) (a

u)

Neutron energy loss (cm-1)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

26

Fig S18 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and combination of

calculated INS spectra of different NbAlH sites Combination 1 = 3125Site I + 3125Site II +

5Site III + 325Site IV Combination 2 = 675Site III + 325Site IV Site I = 025(NbAlH_1 +

NbAlH_2 + NbAlH_3 + NbAlH_4) Site II = 025(NbAlH_5 + NbAlH_6 + NbAlH_7 +

NbAlH_8) Site III = 05(NbAlH_9 + NbAlH_10) Site IV = 05(NbAlH_11 + NbAlH_12)

Abscissa is scaled down by 097 for combination 1 and 2

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Bare NbAlS-1 (exp)

Combination 1

Combination 2

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

27

Fig S19 Schematic view of the procedure of in situ INS experiment and data collection

Zeolite (Calcined)

Zeolite (activated)

Heating at 450 oC under

He flow for 3 h

Zeolite (Adsorbed)

INS collection 1

Zeolite (Reaction at 280 C)

Adsorption of GVL at 135 oC

Zeolite (Reaction at 300 C)

Zeolite (Reaction at 320 C)

Reaction at 280 oC for 3 min

Reaction at 300 oC for 3 min

Reaction at 320 oC for 3 min

INS collection 2

INS collection 3

INS collection 4

INS collection 5

28

Fig S20 Comparison of the experimental INS spectra of condensed GVL in the solid state (black) and

calculated INS spectra of single GVL molecule (red) The crystal structure of solid GVL is unavailable in the

database

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental GVL

Calculated GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

29

Fig S21 Comparison of the experimental and calculated INS spectra of adsorbed GVL molecules on

NbAlS-1 The structure model derived from SXPD experiments was used for initial DFT modelling where

the positional disorder has been removed in the calculation and this partially accounts for the discrepancies

observed between calculated and experimental INS plots

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental adsorbed GVL

Calculated adsorbed GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

30

Fig S22 View of the INS spectrum for the empty catalysis cell used for this experiment The empty can has

the features below 300 cm-1 and at approximately 457 and 659 cm-1

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Empty can

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

31

Fig S23 Comparison of the experimental INS spectra for bare and GVL-adsorbed catalyst Spectra shown

are after subtraction of the empty cell The INS spectrum of the catalyst on GVL adsorption at 135 degC shows

a significant increase in total intensity demonstrating the binding of GVL to the catalyst sites

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

GVLNbAlS-1(00270041)

Bare NbAlS-1(00270041)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

32

Fig S24 Comparison of the experimental INS spectra of all butene isomers and reacted GVL at 320 degC

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Reaction 320 oC

trans-2-butene

i-butene

1-butene

cis-2-butene

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

33

Supplementary Tables

Table S1 Textural properties (data determined from N2 sorption isotherms at 77 K) and crystallite size (data

determined from SEM) of all zeolites used in this study

Samples ABET (m2 g-1)a Amic (m2 g-1) b Aext (m2 g-1) c Vmic (cm3 g-1) d Vtotal (cm3 g-1) e

Crystallite sizef

(nm)

HZSM-5 (00271) 413 314 99 019 033 200-500

HZSM-5 (0041) 346 259 87 015 028 200-500

HZSM-5 (00671) 348 277 71 016 026 200-500

NbS-1 (00271) 377 284 93 017 029 300-500

NbS-1 (0041) 357 282 75 016 027 300-500

NbAlS-1(00270041) 408 263 145 018 041 300-500

NbAlS-1(00400271) 376 268 108 017 033 300-500

HZSM-5 (0041)g 338 258 80 015 027 200-500

NbAlS-1(00270041)g 396 262 134 018 039 300-500

aBET specific surface area bMicropore surface area cExternal surface area dMicropore volume eTotal pore volume fObtainted from SEM gUsed catalyst

34

Table S2 Spin-Hamiltonian parameters of radiation induced Nb(IV) and electron hole Al-O-Si defects

from simulation of CW X-band EPR spectra in Fig 1 lw is the homogeneous Lorentzian linewidth g and A

are the principle values of the g and hyperfine interaction tensors

Signal Parameters

Electron

Spin

Nuclear

Spin g-tensor g-Strain

A-tensor

(G)

lw

(mT)

Nb defect 12 92 [1935 1935 1866] [004 004 00] [159 159

310] [0 40]

Al defect 12 52 [20012 2007 2045] [00 0003 004] [7 7 -] [00 04]

35

Table S3 Summary of acidity of all zeolites used in this work Data were determined by NH3-TPD and

Pyridine-IR studies

Catalyst Weak acida

(mmol g-1)

Strong acida

(mmol g-1)

Total acida

(mmol g-1)

LB acid

ratiob

HZSM-5(00271) 015 025 04 039

HZSM-5(0041) 024 028 052 037

HZSM-5(00671) 033 03 063 027

NbS-1(00271) 004 0 004 -

NbS-1(0041) 004 0 004 -

NbAlS-1(00270041) 022 0 022 469

NbAlS-1(00400271) 023 0 023 35 aFrom NH3-TPD bFrom Pyridine-IR

36

Table S4 The butenes distribution in equilibrium at 320 degC and the distribution of butene isomers produced

from conversion of 30 GVL at 320 degC over catalysts

Catalyst Distribution ()

i-butene 1-butene trans-2-butene cis-2-butene

Equilibrium27 45 12 27 16

HZSM-5(0041) 44 14 25 17

NbAlS-1(00270041) 18 19 38 25

NbOPO4 15 20 39 26

37

Table S5 Comparison of the catalytic performance of reported catalysts for the conversion of GVL in aqueous solution (25-40 wt ) to butenes

Catalyst Reaction Conditions GVL

concentration

(wt )

GVL

conversion

()

Butene

Yield

(mol )a

Ref

Temperature

(degC)

WHSV

(h-1)

Pressure

(bar)

NbAlS-1(00270041) 320 018 1 30 100 993 this work

SiO2Al2O3 375 09 1 30 97 75 28

HZSM-5(0041) 320 018 1 30 76 232 this work

LaZSM-5 450 1 10 40 gt99 ca 21 15

PdNb2O5b 275 05 14 30d 100 lt16c 29

Zn-AlPO-5 397 077 10 40 65 ca 12 30

H3PO4 240 - - 25 100 12c 31

ZnZSM-5 450 1 10 40 gt99 ca 6 15

AlPO-5 397 077 10 40 2 ca 04 30

aButene yield is calculated by the equation defined in the Method section

bunder H2 atmosphere

cThe product includes both butene and butane d002 M H2SO4 was added in the GVL solution

38

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1

R (Aring)a σ a Amp a CN a

NbAlS-1 (Dry) Nb=O 1680 0017 082 1 Nb-O 2014 0008 082 3 NbAlS-1

Nb=O 1721 0012 078 1

Nb-O 2014 0004 078 3

NbAlS-1+GVL

Nb=O 1943 0003 075 1

Nb-O 2014 0010 075 3

NbS-1

Nb=O 1711 0032 091 1

Nb-O 2014 0005 091 3

NbS-1+GVL

Nb=O 1770 0004 089 1

Nb-O 2014 0014 089 3 aR = Interatomic distance from central scattering atom σ = Debye-Waller factor Amp = amplitude factor

and CN = coordination number

39

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption

Samples GVLHZSM-5(0041) GVLNbS-1(00271) NbAlS-1(00270041) GVLNbAlS-1(00270041)

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma

Chemical formula Al3692Si92308O192 8GVL Nb2524Si93476O192 8GVL Al3599Nb2429Si89972O192 Al3599Nb2429Si89972O192 8GVL

2θ range for refinement (deg) 3 ndash 50 3 ndash 50 3 ndash 50 3 ndash 50

Detector Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals

Number of hkls 3251 3214 3179 3222

Refinement methods Rietveld Rietveld Rietveld Rietveld

a (Aring) 201351(2) 200604(2) 199955(3) 200697(3)

b (Aring) 199852(2) 198995(1) 198333(3) 199150(3)

c (Aring) 134549(2) 134010(1) 133531(2) 134214(2)

V (Aring3) 541428(11) 534957(7) 529553(15) 536437(15)

RwpRexp Rp () 445135013378 463131253497 553133614058 444933763305

Wavelength (Aring) 082487(1) 082487(1) 082487(1) 082487(1)

Gof χ2 1272 1482 1646 1318

40

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) at room

temperature

Species Atom x y z SOF Beq(Aring2) Wyckoff

HZSM-5(0041) Al1 -00732(5) 00570(7) 08366(7) 003846154 100(5) 8d

Al2 01869(6) -00339(5) 03189(8) 003846154 100(5) 8d

Al3 02207(5) -00626(7) 05256(8) 003846154 100(5) 8d

Al4 01210(5) 00590(7) 10220(8) 003846154 100(5) 8d

Al5 -00703(6) -00272(5) 01933(8) 003846154 100(5) 8d

Al6 01859(5) 00593(6) 06679(8) 003846154 100(5) 8d

Al7 -00745(6) 06734(6) 08243(9) 003846154 100(5) 8d

Al8 01956(6) 01297(5) 03114(7) 003846154 100(5) 8d

Al9 02187(5) 01761(5) 05326(8) 003846154 100(5) 8d

Al10 01228(5) 06749(6) 10400(8) 003846154 100(5) 8d

Al11 -00694(6) 01308(6) 01819(9) 003846154 100(5) 8d

Al12 01859(6) 06714(5) 06756(8) 003846154 100(5) 8d

Si1 -00732(5) 00570(7) 08366(7) 09615385 100(5) 8d

Si2 01869(6) -00339(5) 03189(8) 09615385 100(5) 8d

Si3 02207(5) -00626(7) 05256(8) 09615385 100(5) 8d

Si4 01210(5) 00590(7) 10220(8) 09615385 100(5) 8d

Si5 -00703(6) -00272(5) 01933(8) 09615385 100(5) 8d

Si6 01859(5) 00593(6) 06679(8) 09615385 100(5) 8d

Si7 -00745(6) 06734(6) 08243(9) 09615385 100(5) 8d

Si8 01956(6) 01297(5) 03114(7) 09615385 100(5) 8d

Si9 02187(5) 01761(5) 05326(8) 09615385 100(5) 8d

Si10 01228(5) 06749(6) 10400(8) 09615385 100(5) 8d

Si11 -00694(6) 01308(6) 01819(9) 09615385 100(5) 8d

Si12 01859(6) 06714(5) 06756(8) 09615385 100(5) 8d

O1 01189(10) -00643(12) 02762(13) 1 143(9) 8d

O2 01900(11) -00665(10) 04093(13) 1 143(9) 8d

O3 02017(11) 00485(12) 10198(11) 1 143(9) 8d

O4 -00964(9) -00573(13) 10736(15) 1 143(9) 8d

O5 01132(9) 00573(12) 07009(13) 1 143(9) 8d

O6 02544(10) 00574(13) 07592(13) 1 143(9) 8d

O7 01249(11) 01569(12) 02676(15) 1 143(9) 8d

O8 01995(12) 01482(9) 04331(13) 1 143(9) 8d

O9 01968(12) 06607(9) 00500(12) 1 143(9) 8d

O10 -00922(10) 01564(11) 10827(17) 1 143(9) 8d

O11 01123(10) 06498(11) 07436(14) 1 143(9) 8d

O12 02420(11) 06557(12) 07396(15) 1 143(9) 8d

O13 02109(9) 00468(11) 03170(12) 1 143(9) 8d

O14 -00793(8) 00525(13) 01708(13) 1 143(9) 8d

O15 -00850(10) 01327(12) 08874(17) 1 143(9) 8d

O16 -01009(10) 00004(11) 09239(15) 1 143(9) 8d

O17 -01006(10) 06343(12) -00444(14) 1 143(9) 8d

O18 01746(10) 01273(11) 06145(13) 1 143(9) 8d

O19 01980(12) 00019(10) 06091(12) 1 143(9) 8d

O20 02014(13) 06300(11) 05761(13) 1 143(9) 8d

O21 -00054(11) 00405(12) 07595(12) 1 143(9) 8d

O22 -00045(12) 06580(13) 07876(13) 1 143(9) 8d

O23 -00801(15) 075 0861(2) 1 143(9) 4c

O24 01839(17) 075 0648(2) 1 143(9) 4c

O25 02011(18) 025 0563(2) 1 143(9) 4c

O26 00863(13) 075 0143(2) 1 143(9) 4c

41

GVLI O1 -00251(15) 08553(18) -0468(2) 0500(3) 06(4) 8d

O2 -0013(2) 07533(17) -0531(3) 0500(3) 06(4) 8d

C1 00570(11) 08446(12) -05861(14) 0500(3) 06(4) 8d

C2 00466(18) 09175(12) -05663(18) 0500(3) 06(4) 8d

C3 0004(2) 09222(15) -0484(2) 0500(3) 06(4) 8d

C4 00038(13) 08112(15) -05293(19) 0500(3) 06(4) 8d

C5 -0034(3) 09728(19) -0448(3) 0500(3) 06(4) 8d

H1a 00999(11) 08315(15) -05641(17) 0500(3) 07(5) 8d

H1b 00528(13) 08360(13) -06553(15) 0500(3) 07(5) 8d

H2a 0088(2) 09384(14) -0553(2) 0500(3) 07(5) 8d

H2b 0026(2) 09378(15) -0622(2) 0500(3) 07(5) 8d

H3 0038(2) 09204(15) -04313(18) 0500(3) 07(5) 8d

H5a -0043(3) 0965(2) -0380(3) 0500(3) 07(5) 8d

H5b -0011(4) 10138(17) -0454(3) 0500(3) 07(5) 8d

H5c -0074(3) 0975(3) -0485(3) 0500(3) 07(5) 8d

GVLII O1 -03289(15) -0778(2) -02817(19) 0500(4) 06(4) 8d

O2 -04372(14) -0757(2) -02733(16) 0500(4) 06(4) 8d

C1 -03730(11) -07204(15) -04150(12) 0500(4) 06(4) 8d

C2 -02990(11) -0718(2) -04230(16) 0500(4) 06(4) 8d

C3 -02738(13) -0762(3) -0350(2) 0500(4) 06(4) 8d

C4 -03856(13) -07518(18) -03175(14) 0500(4) 06(4) 8d

C5 -02129(14) -0768(4) -0308(3) 0500(4) 06(4) 8d

H1a -03908(13) -07461(16) -04681(13) 0500(3) 07(5) 8d

H1b -03904(14) -06762(15) -04174(16) 0500(3) 07(5) 8d

H2a -02856(13) -0732(2) -04875(17) 0500(3) 07(5) 8d

H2b -02835(15) -0674(2) -04093(19) 0500(3) 07(5) 8d

H3 -0275(2) -0803(3) -0389(3) 0500(3) 07(5) 8d

H5a -0208(2) -0812(4) -0281(3) 0500(3) 07(5) 8d

H5b -01797(13) -0762(4) -0357(3) 0500(3) 07(5) 8d

H5c -02080(14) -0735(4) -0257(3) 0500(3) 07(5) 8d

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 3: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

2

Contents

Supplementary Methods 4

Catalyst characterisation 4

DFT calculations and modelling of the INS spectra 5

Supplementary Notes 6

Interaction between GVL and NbAlH sites 6

Distribution of NbAlH sites 6

Inelastic neutron scattering 8

Supplementary Figures 9

Fig S1 Comparison of PXRD patterns of HZSM-5 NbS-1 and NbAlS-1 (λ = 15406 Aring) 9

Fig S2 SEM images of (a) HZSM-5(0041) (b) NbS-1 (00271) and (c) NbAlS-1(00270041) 10

Fig S3 Characterisation of the acidity of zeolites by Pyridine-IR 11

Fig S4 Characterisation of the acidity of zeolites by NH3-TPD 12

Fig S5 GC-MS results of the products from the conversion of GVL at 320 oC 13

Fig S6 TGA and DSC plots of used catalysts after the conversion of pure GVL at 320 oC 14

Fig S7 TGA plots of used NbAlS-1(00270041) catalysts 15

Fig S8 Comparison of FTIR spectra of NbAlS-1 before and after reaction 16

Fig S9 X-band EPR spectra of NbAlS-1 and post-reaction zeolites activated by γ-irradiation at 77 K 17

Fig S10 XAS results of the fresh and used NbAlS-1(00270041) 18

Fig S11 27Al MAS NMR spectra of fresh and used zeolites 19

Fig S12 Characterisation of the acidity of fresh and used zeolites by NH3-TPD 20

Fig S13 X-band EPR spectra of HZSM-5 and post-reaction zeolites activated by γ-irradiation at 77 K 21

Fig S14 Comparison of SXPD patterns of catalysts before and after adsorption of GVL 22

Fig S15 Comparison of the experimental data and Rietveld refinement for SXPD patterns 23

Fig S16 29Si NMR spectra of HZSM-5 and NbAlS-1 24

Fig S17 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and calculated

INS spectra for 12 types of NbAlH sites 25

Fig S18 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and combination

of calculated INS spectra of different NbAlH sites 26

Fig S19 Schematic view of the procedure of in situ INS experiment and data collection 27

Fig S20 Comparison of the experimental INS spectra of condensed GVL in the solid state (black) and

calculated INS spectra of single GVL molecule (red) 28

Fig S21 Comparison of the experimental and calculated INS spectra of adsorbed GVL molecules on

NbAlS-1 29

Fig S22 View of the INS spectrum for the empty catalysis cell used for this experiment 30

Fig S23 Comparison of the experimental INS spectra for bare and GVL-adsorbed catalyst 31

Fig S24 Comparison of the experimental INS spectra of all butene isomers and reacted GVL at 320 degC32

Supplementary Tables 33

3

Table S1 Textural properties and crystallite sizes of all zeolites used in this study 33

Table S2 Spin-Hamiltonian parameters of radiation induced Nb(IV) and electron hole Al-O-Si defects

from simulation of CW X-band EPR spectra 34

Table S3 Summary of acidity of all zeolites used in this work 35

Table S4 The butenes distribution in equilibrium at 320 degC and the distribution of butene isomers

produced from conversion of 30 GVL at 320 degC over catalysts 36

Table S5 Comparison of the catalytic performance of reported catalysts for the conversion of GVL in

aqueous solution (25-40 wt ) to butenes 37

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1 38

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption 39

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) 40

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) 42

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) 44

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) 46

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms from

the Rietveld refinements of the corresponding SXPD data at 25 degC 48

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio 49

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041) 50

Table S15 Assignment of INS peaks of bare NbAlS-1 51

Table S16 Assignment of INS peaks of GVL 52

Supplementary References 53

4

Supplementary Methods

Catalyst characterisation

Powder X-ray diffraction (PXRD) patterns were recorded on a Philips Xrsquopert X-ray diffractometer (40 kV

and 30 mA) using Cu Kα radiation (λ = 15406 Aring) N2 adsorption was carried out at 77 K on a Micromeritics

3Flex instrument after activating the samples for 10 h under dynamic vacuum at 423 K The crystal

morphology and size were measured by scanning electron microscopy (SEM) on a Quanta FEG 650

microscope The ratios of NbAlSi in the sample were quantified by EDX using multiple regions over a

sample on a Bruker XTrace instrument Thermogravimetric analysis was carried out with a SDTQ600 TA

instrument Samples were heated from room temperature to 800 degC at a rate of 5 degCmin under an air flow

Attenuated Total-Reflection Flourier Transformed Infrared (ATR-FTIR) spectra were collected with Nicolet

iS5 spectrometer Laser Raman spectra were obtained using a Horiba scientific XploRA PLUS Raman

microscope equipped with 1800 groovemm holographic gratings The samples were excited by the 532 nm

line of an Ar+ laser The acidity was measured by temperature-programmed desorption of ammonia (NH3-

TPD) with a Quantachrome Autosorb-1 equipped with a thermal conductivity detector (TCD) Typically 100

mg of sample was pre-treated in helium stream (30 mL minminus1) at 600 degC for 2 h The adsorption of NH3 was

carried out at 50 degC for 1 h The catalyst was flushed with helium at 100 degC for 2 h to remove physisorbed

NH3 from the catalyst surface The TPD profile was recorded at a heating rate of 10 degC min-1 from 100 degC to

600 degC The Broslashnsted and Lewis acid sites of the samples were investigated by FT-IR of adsorbed pyridine

in an in situ cell with CaF2 windows Wafers with a weight of 25 mg and radius of 65 mm were degassed for

1 h under vacuum at 600 degC Then pyridine was admitted and after equilibration the samples were

outgassed for 05 h at increasing temperatures (150 200 250 350 and 450 degC) The spectra were recorded

on a Nicolet iS50 FT-IR spectrometer Solid state 27Al NMR spectra were recorded with a frequency of

10424 MHz a spinning rate of 100 kHz and a recycling delay of 4 s Al(NO3)3 was used as the reference

for chemical shift Solid state 29Si NMR spectra were recorded with a frequency of 7946 MHz a spinning

rate of 100 kHz and a recycling delay of 10 s Tetramethylsilane was used as the reference for chemical

shift

For the EPR spectroscopy the sample was placed in a 28 mm od quartz tube and connected to a

vacuum line Prior to irradiation zeolite materials were activated by pumping at 10-5 Torr for 12 h at 150 ˚C

5

and then sealed under vacuum The samples were exposed to γ-irradiation from a 60Co source at 77 K to a

total dose of 44 MRad at a dose rate of 05 MRad h-1 CW EPR measurements were carried out at X-band

(97 GHz) using a commercial spectrometer Bruker EMX equipped with Oxford Instruments temperature

control system at 77 K EPR spectra were detected with modulation amplitudes of 02 and 1 mT and

microwave powers of ~5 mW were chosen to provide optimum signal intensity without saturation of spectral

lines Simulations of EPR spectra were performed using the EasySpin toolbox (Version 5220)1 for Matlab

DFT calculations and modelling of the INS spectra

Periodic density functional theory (periodic-DFT) calculations were carried out using the plane wave

pseudopotential method as implemented in the CASTEP code23 Exchange and correlation were

approximated using the Perdew-Burke-Ernzerhof (PBE) functional4 Ultra-soft pseudopotentials were

employed to account for the effects of core electrons Tkatchenko-Scheffler dispersion correction5 was used

for van der Waals interactions Energy cutoff for plane-wave basis was 380 eV Phonon frequencies were

obtained by diagonalisation of dynamical matrices computed using finite displacement method The atomic

displacements in each mode that are part of the CASTEP output enable visualization of the modes to aid

assignments and are also all that is required to generate the INS spectrum using the program OCLIMAX67

DFT calculations of the INS spectra for single GVL molecule and adsorbed GVL were carried out which

were used to identify the modes of vibrational features in the experimental INS spectra The calculated INS

spectrum shows the total transitions (up to 10 orders) In addition DFT calculations of the INS spectra for

bare NbAlS-1 were performed to investigate the distribution of NbAlH sites Due to the large number of

configurations involved in these simulations the CP2K code8 based on the mixed Gaussian and plane-wave

scheme9 and the Quickstep module10 were used The calculation used molecularly optimised Double-Zeta-

Valence plus Polarization (DZVP) basis set11 Goedecker-Teter-Hutter pseudopotentials12 and the PBE

exchange correlation functional4 The plane-wave energy cutoff was 400 Ry The DFT-D3 level correction

for dispersion interactions as implemented by Grimme et al13 was applied

6

Supplementary Notes

Interaction between GVL and NbAlH sites

Synchrotron XPD has been successfully applied to study the interaction between guest molecules

and porous materials such as binding of hydrocarbons in porous metal-organic frameworks14 binding of

GVL in ZnZSM-515 and binding of pyridine in HZSM-516 In this study over 3100 hkl reflections were used

for the structural refinement which allowed for extensive structural variables to be refined in a satisfactory

manner It is almost impossible to distinguish between Al and Si (Z=13 and 14 respectively) sites using X-

rays diffraction Although Nb (Z=41) is heavier the low occupancy of Nb precludes the determination of its

precise location in the framework Recently the distribution of active sites in H-ZSM-516 and in ZnZSM-515

has been successfully determined by examining the intermolecular distances and angles between guest

molecules and framework sites For example protonic acid sites of H-ZSM-5 have been located by

examining the atomic distances and angles between pyridines and framework atoms16 GVL can be adsorbed

on Broslashnsted acid sites upon protonation of the C=O group17 while the O in the ring of GVL can be adsorbed

on Nb(V) sites18 Thus the distribution of active sites in NbAlS-1 has been revealed by a detailed

examination of the GVL-NbAlS-1 binding distances particularly that between O1GVL and T sites and

between O2GVL and Ozeolites (see Supplementary Table 12) Importantly the distances between O1GVLI and T8

and between O1GVLII and T6 are shortest in both GVL-adsorbed NbAlS-1 and NbS-1 indicating that Nb sites

are likely located at T8 and T6 positions Similarly the distances between O2GVLI and O25zeolites and that

between O2GVLII and O26zeolite are shortest in both GVL-adsorbed NbAlS-1 and HZSM-5 suggesting that

protonic acid sites are likely located at O25-T9 and O26-T10 centres In addition XAS measurements (Fig

3b) suggest that the Nb pre-edge position is influenced with an apparent blue-shift (~08 eV) for NbAlS-1

upon adsorption of GVL while no such shift is witnessed for NbS-1 This observation reflects the preferred

adsorption geometry within the bifunctional (Al and Nb-containing) zeolite NbAlS-1 consistent with the

crystallographic study

Distribution of NbAlH sites

The 29Si NMR spectra of NbAlS-1(00270041) and HZM-5(0041) show notable difference in the range of

-110 to -90 ppm (Supplementary Fig 16a) Curves are de-convoluted by Guassian and Lorentzian line

shapes The assignments and integration of peak areas are listed in Supplementary Table 13 The (Al+Si)Si

7

ratios calculated from the 29Si NMR data are highly consistent with that obtained from EDX The peak at -98

ppm is absent in the spectrum of HZSM-5(0041) indicating the absence of Si(OSi)2(OAl)2 species

(Supplementary Fig 16b) consistent with previous reports1920 By contrast the peak at -98 ppm is observed

in the NMR spectrum of NbAlS-1(00270041) suggesting the presence of Si(OSi)2(OAl)(ONb) species

(Supplementary Fig 16c and Supplementary Table 13)

Recently the distribution of protons in LTA zeolite has been studied using periodic DFT calculations

and INS2122 The distribution of NbAlH sites in NbAlS-1(00270041) has been further investigated by

combining INS and DFT calculations Four types of possible species ie species I [NbOSiOAl] species II

[NbOSiOSiOAl] species III [NbO(SiO)nAl (n ge 3)] and species IV (isolated Al no Nb around) and twelve

types of NbAlH species in NbAlS-1 have been simulated (Supplementary Table 14) From the synchrotron

XPD and Rietveld Refinement species I and II present in NbAlS-1(00270041) (Fig 4f and 4i) and thus

Nb and Al are positioned at T8 and T9 respectively for species I and at T6 and T10 respectively for

species II for the calculation of corresponding INS spectra The H sites have the same probability to appear

near all four O around Al and are thus attached to O25 O8 O18 O9 O26 O15 O10 and O9 respectively

(NbAlH_1-8 Supplementary Table 14) In species III Nb and Al are not adjacent Nb is positioned at T8 or

T6 and Al is moved to T12 (NbAlH_9) or T7 (NbAlH_10) Since the NbAl ratio is 0027004 325 of

Al are isolated (species IV) The isolated Al is positioned at T2 (NbAlH_11) or T4 (NbAlH_12) All

twelve NbAlH sites are simulated independently by DFT and the calculated INS spectra are compared with

the experimental data of bare NbAlS-1(00270041) (Supplementary Fig 17) As there is an uncertainty on

the position of H the calculated INS spectra are given different weights to assemble the combined spectrum

for NbAlS-1(00270041) Species I and II have the same occupancy (determined by Rietveld Refinement)

and they were given the same weight Based upon the NbAl ratio and 29Si NMR results the weights of all

four species are calculated (Supplementary Table 14) The spectrum of combination 1 is produced by

combining twelve spectra with calculated weights All peaks in combination 1 fit with those in the

experimental data particularly the peaks assigned to -OH in-plane bending and Si-O stretching at 1086 and

1191 cm-1 respectively (Supplementary Fig 18 and Supplementary Table 15) The intensities of peaks at

245-534 cm-1 (assigned to relaxation of zeolite framework and -OH out-of-plane bending in combination 1)

are lower than that of the experimental data because only one unit cell and a simplified model were used and

external SiOH groups are not considered in the simulation Combination 2 is produced without species I and

8

II (Supplementary Fig 18) and a number of peaks (77 157 237 and 317 cm-1) are absent compared with the

experimental data demonstrating the presence of species I and II that promotes the adsorption of GVL in

NbAlS-1 via the ldquochelatingrdquo mechanism

Inelastic neutron scattering

Direct visualisation of the interaction between adsorbed GVL and the active sites is crucial to understand the

molecular details of adsorption activation and ring-open and decarboxylation of GVL into butenes INS is a

powerful neutron spectroscopy technique to investigate the dynamics (particularly for the deformational and

conformational modes) of GVL It has several advantages

INS spectroscopy is sensitive to the vibrations of hydrogen atoms and hydrogen is ten times more

visible than other elements due to its high neutron cross-section

The technique is not subject to any optical selection rules All vibrations are active and in principle

measurable

INS observations are not restricted to the centre of the Brillouin zone (gamma point) as is the case for

optical techniques

INS spectra can be readily and accurately modelled the intensities are proportional to the concentration

of elements in the sample and their cross-sections and the measured INS intensities relate

straightforwardly to the associated displacements of the scattering atom Treatment of background

correction is also straightforward

Neutrons penetrate deeply into materials and pass readily through the walls of metal containers making

neutrons ideal to measure bulk properties of this material (in this case for 11 g catalyst)

INS spectrometers cover the whole range of the molecular vibrational spectrum 0-500 meV (0-4000 cm-

1)

INS data can be collected at low temperature (lt 15 K in this case) where the thermal motion of the

catalyst the adsorbed GVL and the reacted intermediate molecules can be significantly reduced

9

Supplementary Figures

Fig S1 Comparison of PXRD patterns of HZSM-5 NbS-1 and NbAlS-1 (λ = 15406 Aring)

5 10 15 20 25 30 35 40

NbAlS-1(00270041)

NbAlS-1(00400271)

NbS-1(0041)

NbS-1(00271)

HZSM-5(00671)

HZSM-5(0041)

In

tensity (

au

)

2 (degree)

HZSM-5(00271)

10

Fig S2 SEM images of (a) HZSM-5(0041) (b) NbS-1 (00271) and (c) NbAlS-1(00270041)

a

500 nm

b

500 nm

c

500 nm

11

Fig S3 Characterisation of the acidity of zeolites by Pyridine-IR (a) Py-IR spectra after vacuum treatment

at 150 oC Py-IR spectra of (b) HZSM-5(0041) (c) NbS-1(00271) and (d) NbAlS-1(00270041) after

vacuum treatment at variable temperatures The peaks at 1454 and 1545 cm-1 are assigned to the

coordinatively bound pyridine molecules on Lewis acid sites and pyridinium ion on Broslashnsted acid sites

respectively23 Both the coordinatively bound pyridine and pyridinium ion have the vibration peak at 1490

cm-1 23 The Lewis acid band is centred at 1454 cm-1 in the spectra of HZSM-5 while it shifts to 1447 cm-1 in

the spectra of Nb-doped zeolite which is similar to the reported Lewis acid band (centred at 1448 cm-1) in

niobium phosphate24 The decrease of frequency of the band is related to the reduced stability of the pyridine

complex23 which is verified by the desorption experiments b c and d show the Py-IR spectra of HZSM-

5(0041) NbS-1(00271) and NbAlS-1 (00270041) respectively after desorption of pyridine at variable

temperatures With the increase of temperature the peak intensities related to both Lewis and Broslashnsted acid

sites of HZSM-5 decrease slowly Both peaks are visible even after the vacuum treatment at 450 degC (b)

However the intensities of peaks at 1447 cm-1 in the spectra of NbS-1 and NbAlS-1 decreased dramatically

upon increasing temperature and disappeared at 350 degC (c and d) Also the peaks related to Broslashnsted acid

sites on NbAlS-1 samples disappeared even at 250 degC (c and d) This result indicates that the NbAlS-1

samples have only weak Lewis and weak Broslashnsted acid sites entirely consistent with the NH3-TPD results in

Supplementary Fig 4

a b

cd

1420 1440 1460 1480 1500 1520 1540 1560 1580

NbAlS-1(00400271)

NbAlS-1(00270041)

NbS-1(0041)

NbS-1(00271)

HZSM-5(00671)

HZSM-5(0041)

HZSM-5 (00271)

Inte

nsity (

au

)

Wavenumber (cm-1)

1420 1440 1460 1480 1500 1520 1540 1560 1580

Ine

nsity (

au

)

Wavenumber (cm-1)

150 oC

200 oC

250 oC

350 oC

450 oC

1420 1440 1460 1480 1500 1520 1540 1560 1580

Inte

nsity (

au

)

Wavenumber (cm-1)

150 oC

200 oC

250 oC

350 oC

450 oC

1420 1440 1460 1480 1500 1520 1540 1560 1580

Inte

nsity (

au

)

Wavenumber (cm-1)

150 oC

200 oC

250 oC

350 oC

450 oC

12

Fig S4 Characterisation of the acidity of zeolites by NH3-TPD Two peaks at 240 and 435 degC correspond to

NH3 eluted from the weak and strong acid sites respectively25

100 150 200 250 300 350 400 450 500 550 600

Inte

nsity (

au

)

Temperature (oC)

NbAlS-1(00400271)

NbAlS-1(00270041)

NbS-1(0041)

NbS-1(00271)

HZSM-5(00671)

HZSM-5(0041)

HZSM-5(00271)

13

Fig S5 GC-MS results of the products from the conversion of GVL at 320 oC (a) Gas and (b) liquid

products from conversion of pure GVL over HZSM-5(0041) (c) Gas and (d) liquid products from

conversion of pure GVL over NbS-1(00271) (e) Gas and (f) liquid products from conversion of pure GVL

over NbAlS-1(00270041) (g) Gas and (h) liquid products from conversion of 30 GVL over NbAlS-

1(00270041) The water in g is solely from the feeding solution rather than produced from dehydration as

no dehydration products are observed

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

b

d

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

a

c

N2

CO2

C2H4 C2H6 C3H6 C3H8

C4H10

C4H8

H2O

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

N2

CO2

C4H8

H2O

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

fe

Pentenoic

acid isomers

Pentenoic

acid isomers

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

Aromatics

Pentenoic

acid isomers

g h

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

N2

CO2C4H8

N2

CO2

C4H8

H2O

C2H4 C2H6 C3H6

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

14

Fig S6 TGA (black) and DSC (red) plots of used HZSM-5(0041) (a) and NbAlS-1(00270041) (b)

catalysts after the conversion of pure GVL at 320 oC The by-products (eg coke) deposited on the surface

of used HZSM-5(0041) are significantly more stable than those on used NbAlS-1(00270041)

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

-10

-08

-06

-04

-02

00

02

04

06

08

10

500

Hea

t flow

(W

g)

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

-10

-08

-06

-04

-02

00

02

04

06

08

10

430

He

at flow

(W

g)

330

a b

15

Fig S7 TGA plots of used NbAlS-1(00270041) catalysts after the conversion of pure GVL (black) and 30

wt GVL (red) at 320 oC The presence of water in this catalytic system effectively hindered the formation

of by-products on the catalyst surface

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

for 30 GVL feeding

for pure GVL feeding

16

Fig S8 Comparison of FTIR spectra of NbAlS-1 before and after the conversion of 30wt GVL at 320 oC

for 180 h

1400 1300 1200 1100 1000 900 800 700 600

Absorb

ance (

au

)

Wavenumber (cm-1)

NbAlS-1(00270041) used

NbAlS-1(00270041)

971

17

Fig S9 X-band (ca 9 GHz) EPR spectra of NbAlS-1 and post-reaction zeolites activated by γ-irradiation at

77 K (a) wide magnetic field-sweep highlighting the induced Nb(IV) signals in NbAlS-1(00270041) and

the used sample and (b) narrow magnetic field-sweep highlighting the induced electron hole defect Al-O-

Si signals in fresh and used NbAlS-1(00270041) samples

a

b

100 150 200 250 300 350 400 450 500 550

Nb simulation

NbAlS-1(00270041)

used

Inte

nsity (

au

)

NbAlS-1(00270041)

Magnetic field (mT)

300 310 320 330 340 350 360

NbAlS-1(00270041) used

Al simulation

Inte

nsity (

au

)

Magnetic field (mT)

NbAlS-1(00270041)

18

Fig S10 (a) XAS spectra of the fresh and used NbAlS-1(00270041) (b) Phase-corrected k3-weighted

Fourier Transform of the EXAFS spectra for fresh and used NbAlS-1(00270041) The stability of the Nb

active sites within NbAlS-1(00270041) was verified by Nb K edge XAS with both fresh and used

catalysts exhibiting the same pre-edge XANES and EXAFS features

00

04

08

12

16

20

18800 19075 19350 19625 19900

No

rm a

bso

rptio

n (

au

)

Energy (eV)

NbAlS-1(00270041)

0

1

2

3

4

5

6

7

0 2 4 6

χ(R

)(Aring

-4)

Radial distance (Aring)

a b

NbAlS-1(00270041)

NbAlS-1(00270041) used

NbAlS-1(00270041)

used

19

Fig S11 27Al MAS NMR spectra of fresh and used zeolites Chemical shifts at 0 and 55 ppm are assigned to

six-coordinate extra-framework and four-coordinate framework aluminum species respectively26

100 80 60 40 20 0 -20 -40

NbAlS-1(00270041) used

NbAlS-1(00270041)

HZSM-5(0041) used

27Al chemical shift (ppm)

HZSM-5(0041)

20

Fig S12 Characterisation of the acidity of fresh and used zeolites by NH3-TPD

100 150 200 250 300 350 400 450 500 550 600

In

tensity (

au

)

Temperature (oC)

NbAlS-1(00270041) used

NbAlS-1(00270041)

HZSM-5(0041) used

HZSM-5(0041)

21

Fig S13 X-band (ca 9 GHz) EPR spectra of HZSM-5 and post-reaction zeolites activated by γ-irradiation

at 77 K narrow magnetic field-sweep highlighting the induced electron hole defect Al-O-Si signals in

HZSM-5 (0041) and the used sample

300 310 320 330 340 350 360

HZSM-50041) used

Al simulation

Inte

nsity (

au

)

Magnetic field (mT)

HZSM-5(0041)

22

Fig S14 Comparison of SXPD patterns of (a) HZSM-5(0041) (b) NbS-1(00271) and (c) NbAlS-

1(00270041) before and after adsorption of GVL at room temperature [λ = 082487(1) Aring]

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbAlS-1(0027041)

GVLNbAlS-1(0027041)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbS-1(00271)

GVLNbS-1(00271)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

HZSM-5(0041)

GVLHZSM-5(0041)

a

b

c

23

Fig S15 Comparison of the experimental data (black line) and Rietveld refinement (red line) and the

difference between them (grey line) for SXPD patterns of (ab) GVLHZSM-5(0041) (cd) GVLNbS-

1(00271) (ef) GVLNbAlS-1(00270041) at room temperature at a 2θ range of (ace) 3 - 20deg and

(bdf) 20 - 50deg [λ = 082487(1) Aring]

a b

c d

e f

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

24

Fig S16 (a) 29Si NMR spectra of HZSM-5 and NbAlS-1 de-convolution of 29Si NMR spectra of HZSM-5

(b) and NbAlS-1 (c) by Guassian and Lorentzian line shapes

a

b

c

-125 -120 -115 -110 -105 -100 -95 -90 -85

-1023

-1076

-1138

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-4

Cumulative Fitted Peak

-1171

-125 -120 -115 -110 -105 -100 -95 -90 -85

-924-983

-1026

-1057

-1124

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-6

Cumulative Fitted Peak

-1162

-125 -120 -115 -110 -105 -100 -95 -90 -8529

Si chemical shift (ppm)

NbAlS-1(00270041)

HZSM-5(0041)

25

Fig S17 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and calculated INS

spectra for 12 types of NbAlH sites

0 200 400 600 800 1000 1200 1400 1600

1211109876

4

23

5

1

Bare NbAlS-1 (exp)

S(Q

) (a

u)

Neutron energy loss (cm-1)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

26

Fig S18 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and combination of

calculated INS spectra of different NbAlH sites Combination 1 = 3125Site I + 3125Site II +

5Site III + 325Site IV Combination 2 = 675Site III + 325Site IV Site I = 025(NbAlH_1 +

NbAlH_2 + NbAlH_3 + NbAlH_4) Site II = 025(NbAlH_5 + NbAlH_6 + NbAlH_7 +

NbAlH_8) Site III = 05(NbAlH_9 + NbAlH_10) Site IV = 05(NbAlH_11 + NbAlH_12)

Abscissa is scaled down by 097 for combination 1 and 2

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Bare NbAlS-1 (exp)

Combination 1

Combination 2

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

27

Fig S19 Schematic view of the procedure of in situ INS experiment and data collection

Zeolite (Calcined)

Zeolite (activated)

Heating at 450 oC under

He flow for 3 h

Zeolite (Adsorbed)

INS collection 1

Zeolite (Reaction at 280 C)

Adsorption of GVL at 135 oC

Zeolite (Reaction at 300 C)

Zeolite (Reaction at 320 C)

Reaction at 280 oC for 3 min

Reaction at 300 oC for 3 min

Reaction at 320 oC for 3 min

INS collection 2

INS collection 3

INS collection 4

INS collection 5

28

Fig S20 Comparison of the experimental INS spectra of condensed GVL in the solid state (black) and

calculated INS spectra of single GVL molecule (red) The crystal structure of solid GVL is unavailable in the

database

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental GVL

Calculated GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

29

Fig S21 Comparison of the experimental and calculated INS spectra of adsorbed GVL molecules on

NbAlS-1 The structure model derived from SXPD experiments was used for initial DFT modelling where

the positional disorder has been removed in the calculation and this partially accounts for the discrepancies

observed between calculated and experimental INS plots

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental adsorbed GVL

Calculated adsorbed GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

30

Fig S22 View of the INS spectrum for the empty catalysis cell used for this experiment The empty can has

the features below 300 cm-1 and at approximately 457 and 659 cm-1

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Empty can

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

31

Fig S23 Comparison of the experimental INS spectra for bare and GVL-adsorbed catalyst Spectra shown

are after subtraction of the empty cell The INS spectrum of the catalyst on GVL adsorption at 135 degC shows

a significant increase in total intensity demonstrating the binding of GVL to the catalyst sites

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

GVLNbAlS-1(00270041)

Bare NbAlS-1(00270041)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

32

Fig S24 Comparison of the experimental INS spectra of all butene isomers and reacted GVL at 320 degC

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Reaction 320 oC

trans-2-butene

i-butene

1-butene

cis-2-butene

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

33

Supplementary Tables

Table S1 Textural properties (data determined from N2 sorption isotherms at 77 K) and crystallite size (data

determined from SEM) of all zeolites used in this study

Samples ABET (m2 g-1)a Amic (m2 g-1) b Aext (m2 g-1) c Vmic (cm3 g-1) d Vtotal (cm3 g-1) e

Crystallite sizef

(nm)

HZSM-5 (00271) 413 314 99 019 033 200-500

HZSM-5 (0041) 346 259 87 015 028 200-500

HZSM-5 (00671) 348 277 71 016 026 200-500

NbS-1 (00271) 377 284 93 017 029 300-500

NbS-1 (0041) 357 282 75 016 027 300-500

NbAlS-1(00270041) 408 263 145 018 041 300-500

NbAlS-1(00400271) 376 268 108 017 033 300-500

HZSM-5 (0041)g 338 258 80 015 027 200-500

NbAlS-1(00270041)g 396 262 134 018 039 300-500

aBET specific surface area bMicropore surface area cExternal surface area dMicropore volume eTotal pore volume fObtainted from SEM gUsed catalyst

34

Table S2 Spin-Hamiltonian parameters of radiation induced Nb(IV) and electron hole Al-O-Si defects

from simulation of CW X-band EPR spectra in Fig 1 lw is the homogeneous Lorentzian linewidth g and A

are the principle values of the g and hyperfine interaction tensors

Signal Parameters

Electron

Spin

Nuclear

Spin g-tensor g-Strain

A-tensor

(G)

lw

(mT)

Nb defect 12 92 [1935 1935 1866] [004 004 00] [159 159

310] [0 40]

Al defect 12 52 [20012 2007 2045] [00 0003 004] [7 7 -] [00 04]

35

Table S3 Summary of acidity of all zeolites used in this work Data were determined by NH3-TPD and

Pyridine-IR studies

Catalyst Weak acida

(mmol g-1)

Strong acida

(mmol g-1)

Total acida

(mmol g-1)

LB acid

ratiob

HZSM-5(00271) 015 025 04 039

HZSM-5(0041) 024 028 052 037

HZSM-5(00671) 033 03 063 027

NbS-1(00271) 004 0 004 -

NbS-1(0041) 004 0 004 -

NbAlS-1(00270041) 022 0 022 469

NbAlS-1(00400271) 023 0 023 35 aFrom NH3-TPD bFrom Pyridine-IR

36

Table S4 The butenes distribution in equilibrium at 320 degC and the distribution of butene isomers produced

from conversion of 30 GVL at 320 degC over catalysts

Catalyst Distribution ()

i-butene 1-butene trans-2-butene cis-2-butene

Equilibrium27 45 12 27 16

HZSM-5(0041) 44 14 25 17

NbAlS-1(00270041) 18 19 38 25

NbOPO4 15 20 39 26

37

Table S5 Comparison of the catalytic performance of reported catalysts for the conversion of GVL in aqueous solution (25-40 wt ) to butenes

Catalyst Reaction Conditions GVL

concentration

(wt )

GVL

conversion

()

Butene

Yield

(mol )a

Ref

Temperature

(degC)

WHSV

(h-1)

Pressure

(bar)

NbAlS-1(00270041) 320 018 1 30 100 993 this work

SiO2Al2O3 375 09 1 30 97 75 28

HZSM-5(0041) 320 018 1 30 76 232 this work

LaZSM-5 450 1 10 40 gt99 ca 21 15

PdNb2O5b 275 05 14 30d 100 lt16c 29

Zn-AlPO-5 397 077 10 40 65 ca 12 30

H3PO4 240 - - 25 100 12c 31

ZnZSM-5 450 1 10 40 gt99 ca 6 15

AlPO-5 397 077 10 40 2 ca 04 30

aButene yield is calculated by the equation defined in the Method section

bunder H2 atmosphere

cThe product includes both butene and butane d002 M H2SO4 was added in the GVL solution

38

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1

R (Aring)a σ a Amp a CN a

NbAlS-1 (Dry) Nb=O 1680 0017 082 1 Nb-O 2014 0008 082 3 NbAlS-1

Nb=O 1721 0012 078 1

Nb-O 2014 0004 078 3

NbAlS-1+GVL

Nb=O 1943 0003 075 1

Nb-O 2014 0010 075 3

NbS-1

Nb=O 1711 0032 091 1

Nb-O 2014 0005 091 3

NbS-1+GVL

Nb=O 1770 0004 089 1

Nb-O 2014 0014 089 3 aR = Interatomic distance from central scattering atom σ = Debye-Waller factor Amp = amplitude factor

and CN = coordination number

39

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption

Samples GVLHZSM-5(0041) GVLNbS-1(00271) NbAlS-1(00270041) GVLNbAlS-1(00270041)

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma

Chemical formula Al3692Si92308O192 8GVL Nb2524Si93476O192 8GVL Al3599Nb2429Si89972O192 Al3599Nb2429Si89972O192 8GVL

2θ range for refinement (deg) 3 ndash 50 3 ndash 50 3 ndash 50 3 ndash 50

Detector Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals

Number of hkls 3251 3214 3179 3222

Refinement methods Rietveld Rietveld Rietveld Rietveld

a (Aring) 201351(2) 200604(2) 199955(3) 200697(3)

b (Aring) 199852(2) 198995(1) 198333(3) 199150(3)

c (Aring) 134549(2) 134010(1) 133531(2) 134214(2)

V (Aring3) 541428(11) 534957(7) 529553(15) 536437(15)

RwpRexp Rp () 445135013378 463131253497 553133614058 444933763305

Wavelength (Aring) 082487(1) 082487(1) 082487(1) 082487(1)

Gof χ2 1272 1482 1646 1318

40

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) at room

temperature

Species Atom x y z SOF Beq(Aring2) Wyckoff

HZSM-5(0041) Al1 -00732(5) 00570(7) 08366(7) 003846154 100(5) 8d

Al2 01869(6) -00339(5) 03189(8) 003846154 100(5) 8d

Al3 02207(5) -00626(7) 05256(8) 003846154 100(5) 8d

Al4 01210(5) 00590(7) 10220(8) 003846154 100(5) 8d

Al5 -00703(6) -00272(5) 01933(8) 003846154 100(5) 8d

Al6 01859(5) 00593(6) 06679(8) 003846154 100(5) 8d

Al7 -00745(6) 06734(6) 08243(9) 003846154 100(5) 8d

Al8 01956(6) 01297(5) 03114(7) 003846154 100(5) 8d

Al9 02187(5) 01761(5) 05326(8) 003846154 100(5) 8d

Al10 01228(5) 06749(6) 10400(8) 003846154 100(5) 8d

Al11 -00694(6) 01308(6) 01819(9) 003846154 100(5) 8d

Al12 01859(6) 06714(5) 06756(8) 003846154 100(5) 8d

Si1 -00732(5) 00570(7) 08366(7) 09615385 100(5) 8d

Si2 01869(6) -00339(5) 03189(8) 09615385 100(5) 8d

Si3 02207(5) -00626(7) 05256(8) 09615385 100(5) 8d

Si4 01210(5) 00590(7) 10220(8) 09615385 100(5) 8d

Si5 -00703(6) -00272(5) 01933(8) 09615385 100(5) 8d

Si6 01859(5) 00593(6) 06679(8) 09615385 100(5) 8d

Si7 -00745(6) 06734(6) 08243(9) 09615385 100(5) 8d

Si8 01956(6) 01297(5) 03114(7) 09615385 100(5) 8d

Si9 02187(5) 01761(5) 05326(8) 09615385 100(5) 8d

Si10 01228(5) 06749(6) 10400(8) 09615385 100(5) 8d

Si11 -00694(6) 01308(6) 01819(9) 09615385 100(5) 8d

Si12 01859(6) 06714(5) 06756(8) 09615385 100(5) 8d

O1 01189(10) -00643(12) 02762(13) 1 143(9) 8d

O2 01900(11) -00665(10) 04093(13) 1 143(9) 8d

O3 02017(11) 00485(12) 10198(11) 1 143(9) 8d

O4 -00964(9) -00573(13) 10736(15) 1 143(9) 8d

O5 01132(9) 00573(12) 07009(13) 1 143(9) 8d

O6 02544(10) 00574(13) 07592(13) 1 143(9) 8d

O7 01249(11) 01569(12) 02676(15) 1 143(9) 8d

O8 01995(12) 01482(9) 04331(13) 1 143(9) 8d

O9 01968(12) 06607(9) 00500(12) 1 143(9) 8d

O10 -00922(10) 01564(11) 10827(17) 1 143(9) 8d

O11 01123(10) 06498(11) 07436(14) 1 143(9) 8d

O12 02420(11) 06557(12) 07396(15) 1 143(9) 8d

O13 02109(9) 00468(11) 03170(12) 1 143(9) 8d

O14 -00793(8) 00525(13) 01708(13) 1 143(9) 8d

O15 -00850(10) 01327(12) 08874(17) 1 143(9) 8d

O16 -01009(10) 00004(11) 09239(15) 1 143(9) 8d

O17 -01006(10) 06343(12) -00444(14) 1 143(9) 8d

O18 01746(10) 01273(11) 06145(13) 1 143(9) 8d

O19 01980(12) 00019(10) 06091(12) 1 143(9) 8d

O20 02014(13) 06300(11) 05761(13) 1 143(9) 8d

O21 -00054(11) 00405(12) 07595(12) 1 143(9) 8d

O22 -00045(12) 06580(13) 07876(13) 1 143(9) 8d

O23 -00801(15) 075 0861(2) 1 143(9) 4c

O24 01839(17) 075 0648(2) 1 143(9) 4c

O25 02011(18) 025 0563(2) 1 143(9) 4c

O26 00863(13) 075 0143(2) 1 143(9) 4c

41

GVLI O1 -00251(15) 08553(18) -0468(2) 0500(3) 06(4) 8d

O2 -0013(2) 07533(17) -0531(3) 0500(3) 06(4) 8d

C1 00570(11) 08446(12) -05861(14) 0500(3) 06(4) 8d

C2 00466(18) 09175(12) -05663(18) 0500(3) 06(4) 8d

C3 0004(2) 09222(15) -0484(2) 0500(3) 06(4) 8d

C4 00038(13) 08112(15) -05293(19) 0500(3) 06(4) 8d

C5 -0034(3) 09728(19) -0448(3) 0500(3) 06(4) 8d

H1a 00999(11) 08315(15) -05641(17) 0500(3) 07(5) 8d

H1b 00528(13) 08360(13) -06553(15) 0500(3) 07(5) 8d

H2a 0088(2) 09384(14) -0553(2) 0500(3) 07(5) 8d

H2b 0026(2) 09378(15) -0622(2) 0500(3) 07(5) 8d

H3 0038(2) 09204(15) -04313(18) 0500(3) 07(5) 8d

H5a -0043(3) 0965(2) -0380(3) 0500(3) 07(5) 8d

H5b -0011(4) 10138(17) -0454(3) 0500(3) 07(5) 8d

H5c -0074(3) 0975(3) -0485(3) 0500(3) 07(5) 8d

GVLII O1 -03289(15) -0778(2) -02817(19) 0500(4) 06(4) 8d

O2 -04372(14) -0757(2) -02733(16) 0500(4) 06(4) 8d

C1 -03730(11) -07204(15) -04150(12) 0500(4) 06(4) 8d

C2 -02990(11) -0718(2) -04230(16) 0500(4) 06(4) 8d

C3 -02738(13) -0762(3) -0350(2) 0500(4) 06(4) 8d

C4 -03856(13) -07518(18) -03175(14) 0500(4) 06(4) 8d

C5 -02129(14) -0768(4) -0308(3) 0500(4) 06(4) 8d

H1a -03908(13) -07461(16) -04681(13) 0500(3) 07(5) 8d

H1b -03904(14) -06762(15) -04174(16) 0500(3) 07(5) 8d

H2a -02856(13) -0732(2) -04875(17) 0500(3) 07(5) 8d

H2b -02835(15) -0674(2) -04093(19) 0500(3) 07(5) 8d

H3 -0275(2) -0803(3) -0389(3) 0500(3) 07(5) 8d

H5a -0208(2) -0812(4) -0281(3) 0500(3) 07(5) 8d

H5b -01797(13) -0762(4) -0357(3) 0500(3) 07(5) 8d

H5c -02080(14) -0735(4) -0257(3) 0500(3) 07(5) 8d

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 4: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

3

Table S1 Textural properties and crystallite sizes of all zeolites used in this study 33

Table S2 Spin-Hamiltonian parameters of radiation induced Nb(IV) and electron hole Al-O-Si defects

from simulation of CW X-band EPR spectra 34

Table S3 Summary of acidity of all zeolites used in this work 35

Table S4 The butenes distribution in equilibrium at 320 degC and the distribution of butene isomers

produced from conversion of 30 GVL at 320 degC over catalysts 36

Table S5 Comparison of the catalytic performance of reported catalysts for the conversion of GVL in

aqueous solution (25-40 wt ) to butenes 37

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1 38

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption 39

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) 40

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) 42

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) 44

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) 46

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms from

the Rietveld refinements of the corresponding SXPD data at 25 degC 48

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio 49

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041) 50

Table S15 Assignment of INS peaks of bare NbAlS-1 51

Table S16 Assignment of INS peaks of GVL 52

Supplementary References 53

4

Supplementary Methods

Catalyst characterisation

Powder X-ray diffraction (PXRD) patterns were recorded on a Philips Xrsquopert X-ray diffractometer (40 kV

and 30 mA) using Cu Kα radiation (λ = 15406 Aring) N2 adsorption was carried out at 77 K on a Micromeritics

3Flex instrument after activating the samples for 10 h under dynamic vacuum at 423 K The crystal

morphology and size were measured by scanning electron microscopy (SEM) on a Quanta FEG 650

microscope The ratios of NbAlSi in the sample were quantified by EDX using multiple regions over a

sample on a Bruker XTrace instrument Thermogravimetric analysis was carried out with a SDTQ600 TA

instrument Samples were heated from room temperature to 800 degC at a rate of 5 degCmin under an air flow

Attenuated Total-Reflection Flourier Transformed Infrared (ATR-FTIR) spectra were collected with Nicolet

iS5 spectrometer Laser Raman spectra were obtained using a Horiba scientific XploRA PLUS Raman

microscope equipped with 1800 groovemm holographic gratings The samples were excited by the 532 nm

line of an Ar+ laser The acidity was measured by temperature-programmed desorption of ammonia (NH3-

TPD) with a Quantachrome Autosorb-1 equipped with a thermal conductivity detector (TCD) Typically 100

mg of sample was pre-treated in helium stream (30 mL minminus1) at 600 degC for 2 h The adsorption of NH3 was

carried out at 50 degC for 1 h The catalyst was flushed with helium at 100 degC for 2 h to remove physisorbed

NH3 from the catalyst surface The TPD profile was recorded at a heating rate of 10 degC min-1 from 100 degC to

600 degC The Broslashnsted and Lewis acid sites of the samples were investigated by FT-IR of adsorbed pyridine

in an in situ cell with CaF2 windows Wafers with a weight of 25 mg and radius of 65 mm were degassed for

1 h under vacuum at 600 degC Then pyridine was admitted and after equilibration the samples were

outgassed for 05 h at increasing temperatures (150 200 250 350 and 450 degC) The spectra were recorded

on a Nicolet iS50 FT-IR spectrometer Solid state 27Al NMR spectra were recorded with a frequency of

10424 MHz a spinning rate of 100 kHz and a recycling delay of 4 s Al(NO3)3 was used as the reference

for chemical shift Solid state 29Si NMR spectra were recorded with a frequency of 7946 MHz a spinning

rate of 100 kHz and a recycling delay of 10 s Tetramethylsilane was used as the reference for chemical

shift

For the EPR spectroscopy the sample was placed in a 28 mm od quartz tube and connected to a

vacuum line Prior to irradiation zeolite materials were activated by pumping at 10-5 Torr for 12 h at 150 ˚C

5

and then sealed under vacuum The samples were exposed to γ-irradiation from a 60Co source at 77 K to a

total dose of 44 MRad at a dose rate of 05 MRad h-1 CW EPR measurements were carried out at X-band

(97 GHz) using a commercial spectrometer Bruker EMX equipped with Oxford Instruments temperature

control system at 77 K EPR spectra were detected with modulation amplitudes of 02 and 1 mT and

microwave powers of ~5 mW were chosen to provide optimum signal intensity without saturation of spectral

lines Simulations of EPR spectra were performed using the EasySpin toolbox (Version 5220)1 for Matlab

DFT calculations and modelling of the INS spectra

Periodic density functional theory (periodic-DFT) calculations were carried out using the plane wave

pseudopotential method as implemented in the CASTEP code23 Exchange and correlation were

approximated using the Perdew-Burke-Ernzerhof (PBE) functional4 Ultra-soft pseudopotentials were

employed to account for the effects of core electrons Tkatchenko-Scheffler dispersion correction5 was used

for van der Waals interactions Energy cutoff for plane-wave basis was 380 eV Phonon frequencies were

obtained by diagonalisation of dynamical matrices computed using finite displacement method The atomic

displacements in each mode that are part of the CASTEP output enable visualization of the modes to aid

assignments and are also all that is required to generate the INS spectrum using the program OCLIMAX67

DFT calculations of the INS spectra for single GVL molecule and adsorbed GVL were carried out which

were used to identify the modes of vibrational features in the experimental INS spectra The calculated INS

spectrum shows the total transitions (up to 10 orders) In addition DFT calculations of the INS spectra for

bare NbAlS-1 were performed to investigate the distribution of NbAlH sites Due to the large number of

configurations involved in these simulations the CP2K code8 based on the mixed Gaussian and plane-wave

scheme9 and the Quickstep module10 were used The calculation used molecularly optimised Double-Zeta-

Valence plus Polarization (DZVP) basis set11 Goedecker-Teter-Hutter pseudopotentials12 and the PBE

exchange correlation functional4 The plane-wave energy cutoff was 400 Ry The DFT-D3 level correction

for dispersion interactions as implemented by Grimme et al13 was applied

6

Supplementary Notes

Interaction between GVL and NbAlH sites

Synchrotron XPD has been successfully applied to study the interaction between guest molecules

and porous materials such as binding of hydrocarbons in porous metal-organic frameworks14 binding of

GVL in ZnZSM-515 and binding of pyridine in HZSM-516 In this study over 3100 hkl reflections were used

for the structural refinement which allowed for extensive structural variables to be refined in a satisfactory

manner It is almost impossible to distinguish between Al and Si (Z=13 and 14 respectively) sites using X-

rays diffraction Although Nb (Z=41) is heavier the low occupancy of Nb precludes the determination of its

precise location in the framework Recently the distribution of active sites in H-ZSM-516 and in ZnZSM-515

has been successfully determined by examining the intermolecular distances and angles between guest

molecules and framework sites For example protonic acid sites of H-ZSM-5 have been located by

examining the atomic distances and angles between pyridines and framework atoms16 GVL can be adsorbed

on Broslashnsted acid sites upon protonation of the C=O group17 while the O in the ring of GVL can be adsorbed

on Nb(V) sites18 Thus the distribution of active sites in NbAlS-1 has been revealed by a detailed

examination of the GVL-NbAlS-1 binding distances particularly that between O1GVL and T sites and

between O2GVL and Ozeolites (see Supplementary Table 12) Importantly the distances between O1GVLI and T8

and between O1GVLII and T6 are shortest in both GVL-adsorbed NbAlS-1 and NbS-1 indicating that Nb sites

are likely located at T8 and T6 positions Similarly the distances between O2GVLI and O25zeolites and that

between O2GVLII and O26zeolite are shortest in both GVL-adsorbed NbAlS-1 and HZSM-5 suggesting that

protonic acid sites are likely located at O25-T9 and O26-T10 centres In addition XAS measurements (Fig

3b) suggest that the Nb pre-edge position is influenced with an apparent blue-shift (~08 eV) for NbAlS-1

upon adsorption of GVL while no such shift is witnessed for NbS-1 This observation reflects the preferred

adsorption geometry within the bifunctional (Al and Nb-containing) zeolite NbAlS-1 consistent with the

crystallographic study

Distribution of NbAlH sites

The 29Si NMR spectra of NbAlS-1(00270041) and HZM-5(0041) show notable difference in the range of

-110 to -90 ppm (Supplementary Fig 16a) Curves are de-convoluted by Guassian and Lorentzian line

shapes The assignments and integration of peak areas are listed in Supplementary Table 13 The (Al+Si)Si

7

ratios calculated from the 29Si NMR data are highly consistent with that obtained from EDX The peak at -98

ppm is absent in the spectrum of HZSM-5(0041) indicating the absence of Si(OSi)2(OAl)2 species

(Supplementary Fig 16b) consistent with previous reports1920 By contrast the peak at -98 ppm is observed

in the NMR spectrum of NbAlS-1(00270041) suggesting the presence of Si(OSi)2(OAl)(ONb) species

(Supplementary Fig 16c and Supplementary Table 13)

Recently the distribution of protons in LTA zeolite has been studied using periodic DFT calculations

and INS2122 The distribution of NbAlH sites in NbAlS-1(00270041) has been further investigated by

combining INS and DFT calculations Four types of possible species ie species I [NbOSiOAl] species II

[NbOSiOSiOAl] species III [NbO(SiO)nAl (n ge 3)] and species IV (isolated Al no Nb around) and twelve

types of NbAlH species in NbAlS-1 have been simulated (Supplementary Table 14) From the synchrotron

XPD and Rietveld Refinement species I and II present in NbAlS-1(00270041) (Fig 4f and 4i) and thus

Nb and Al are positioned at T8 and T9 respectively for species I and at T6 and T10 respectively for

species II for the calculation of corresponding INS spectra The H sites have the same probability to appear

near all four O around Al and are thus attached to O25 O8 O18 O9 O26 O15 O10 and O9 respectively

(NbAlH_1-8 Supplementary Table 14) In species III Nb and Al are not adjacent Nb is positioned at T8 or

T6 and Al is moved to T12 (NbAlH_9) or T7 (NbAlH_10) Since the NbAl ratio is 0027004 325 of

Al are isolated (species IV) The isolated Al is positioned at T2 (NbAlH_11) or T4 (NbAlH_12) All

twelve NbAlH sites are simulated independently by DFT and the calculated INS spectra are compared with

the experimental data of bare NbAlS-1(00270041) (Supplementary Fig 17) As there is an uncertainty on

the position of H the calculated INS spectra are given different weights to assemble the combined spectrum

for NbAlS-1(00270041) Species I and II have the same occupancy (determined by Rietveld Refinement)

and they were given the same weight Based upon the NbAl ratio and 29Si NMR results the weights of all

four species are calculated (Supplementary Table 14) The spectrum of combination 1 is produced by

combining twelve spectra with calculated weights All peaks in combination 1 fit with those in the

experimental data particularly the peaks assigned to -OH in-plane bending and Si-O stretching at 1086 and

1191 cm-1 respectively (Supplementary Fig 18 and Supplementary Table 15) The intensities of peaks at

245-534 cm-1 (assigned to relaxation of zeolite framework and -OH out-of-plane bending in combination 1)

are lower than that of the experimental data because only one unit cell and a simplified model were used and

external SiOH groups are not considered in the simulation Combination 2 is produced without species I and

8

II (Supplementary Fig 18) and a number of peaks (77 157 237 and 317 cm-1) are absent compared with the

experimental data demonstrating the presence of species I and II that promotes the adsorption of GVL in

NbAlS-1 via the ldquochelatingrdquo mechanism

Inelastic neutron scattering

Direct visualisation of the interaction between adsorbed GVL and the active sites is crucial to understand the

molecular details of adsorption activation and ring-open and decarboxylation of GVL into butenes INS is a

powerful neutron spectroscopy technique to investigate the dynamics (particularly for the deformational and

conformational modes) of GVL It has several advantages

INS spectroscopy is sensitive to the vibrations of hydrogen atoms and hydrogen is ten times more

visible than other elements due to its high neutron cross-section

The technique is not subject to any optical selection rules All vibrations are active and in principle

measurable

INS observations are not restricted to the centre of the Brillouin zone (gamma point) as is the case for

optical techniques

INS spectra can be readily and accurately modelled the intensities are proportional to the concentration

of elements in the sample and their cross-sections and the measured INS intensities relate

straightforwardly to the associated displacements of the scattering atom Treatment of background

correction is also straightforward

Neutrons penetrate deeply into materials and pass readily through the walls of metal containers making

neutrons ideal to measure bulk properties of this material (in this case for 11 g catalyst)

INS spectrometers cover the whole range of the molecular vibrational spectrum 0-500 meV (0-4000 cm-

1)

INS data can be collected at low temperature (lt 15 K in this case) where the thermal motion of the

catalyst the adsorbed GVL and the reacted intermediate molecules can be significantly reduced

9

Supplementary Figures

Fig S1 Comparison of PXRD patterns of HZSM-5 NbS-1 and NbAlS-1 (λ = 15406 Aring)

5 10 15 20 25 30 35 40

NbAlS-1(00270041)

NbAlS-1(00400271)

NbS-1(0041)

NbS-1(00271)

HZSM-5(00671)

HZSM-5(0041)

In

tensity (

au

)

2 (degree)

HZSM-5(00271)

10

Fig S2 SEM images of (a) HZSM-5(0041) (b) NbS-1 (00271) and (c) NbAlS-1(00270041)

a

500 nm

b

500 nm

c

500 nm

11

Fig S3 Characterisation of the acidity of zeolites by Pyridine-IR (a) Py-IR spectra after vacuum treatment

at 150 oC Py-IR spectra of (b) HZSM-5(0041) (c) NbS-1(00271) and (d) NbAlS-1(00270041) after

vacuum treatment at variable temperatures The peaks at 1454 and 1545 cm-1 are assigned to the

coordinatively bound pyridine molecules on Lewis acid sites and pyridinium ion on Broslashnsted acid sites

respectively23 Both the coordinatively bound pyridine and pyridinium ion have the vibration peak at 1490

cm-1 23 The Lewis acid band is centred at 1454 cm-1 in the spectra of HZSM-5 while it shifts to 1447 cm-1 in

the spectra of Nb-doped zeolite which is similar to the reported Lewis acid band (centred at 1448 cm-1) in

niobium phosphate24 The decrease of frequency of the band is related to the reduced stability of the pyridine

complex23 which is verified by the desorption experiments b c and d show the Py-IR spectra of HZSM-

5(0041) NbS-1(00271) and NbAlS-1 (00270041) respectively after desorption of pyridine at variable

temperatures With the increase of temperature the peak intensities related to both Lewis and Broslashnsted acid

sites of HZSM-5 decrease slowly Both peaks are visible even after the vacuum treatment at 450 degC (b)

However the intensities of peaks at 1447 cm-1 in the spectra of NbS-1 and NbAlS-1 decreased dramatically

upon increasing temperature and disappeared at 350 degC (c and d) Also the peaks related to Broslashnsted acid

sites on NbAlS-1 samples disappeared even at 250 degC (c and d) This result indicates that the NbAlS-1

samples have only weak Lewis and weak Broslashnsted acid sites entirely consistent with the NH3-TPD results in

Supplementary Fig 4

a b

cd

1420 1440 1460 1480 1500 1520 1540 1560 1580

NbAlS-1(00400271)

NbAlS-1(00270041)

NbS-1(0041)

NbS-1(00271)

HZSM-5(00671)

HZSM-5(0041)

HZSM-5 (00271)

Inte

nsity (

au

)

Wavenumber (cm-1)

1420 1440 1460 1480 1500 1520 1540 1560 1580

Ine

nsity (

au

)

Wavenumber (cm-1)

150 oC

200 oC

250 oC

350 oC

450 oC

1420 1440 1460 1480 1500 1520 1540 1560 1580

Inte

nsity (

au

)

Wavenumber (cm-1)

150 oC

200 oC

250 oC

350 oC

450 oC

1420 1440 1460 1480 1500 1520 1540 1560 1580

Inte

nsity (

au

)

Wavenumber (cm-1)

150 oC

200 oC

250 oC

350 oC

450 oC

12

Fig S4 Characterisation of the acidity of zeolites by NH3-TPD Two peaks at 240 and 435 degC correspond to

NH3 eluted from the weak and strong acid sites respectively25

100 150 200 250 300 350 400 450 500 550 600

Inte

nsity (

au

)

Temperature (oC)

NbAlS-1(00400271)

NbAlS-1(00270041)

NbS-1(0041)

NbS-1(00271)

HZSM-5(00671)

HZSM-5(0041)

HZSM-5(00271)

13

Fig S5 GC-MS results of the products from the conversion of GVL at 320 oC (a) Gas and (b) liquid

products from conversion of pure GVL over HZSM-5(0041) (c) Gas and (d) liquid products from

conversion of pure GVL over NbS-1(00271) (e) Gas and (f) liquid products from conversion of pure GVL

over NbAlS-1(00270041) (g) Gas and (h) liquid products from conversion of 30 GVL over NbAlS-

1(00270041) The water in g is solely from the feeding solution rather than produced from dehydration as

no dehydration products are observed

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

b

d

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

a

c

N2

CO2

C2H4 C2H6 C3H6 C3H8

C4H10

C4H8

H2O

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

N2

CO2

C4H8

H2O

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

fe

Pentenoic

acid isomers

Pentenoic

acid isomers

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

Aromatics

Pentenoic

acid isomers

g h

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

N2

CO2C4H8

N2

CO2

C4H8

H2O

C2H4 C2H6 C3H6

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

14

Fig S6 TGA (black) and DSC (red) plots of used HZSM-5(0041) (a) and NbAlS-1(00270041) (b)

catalysts after the conversion of pure GVL at 320 oC The by-products (eg coke) deposited on the surface

of used HZSM-5(0041) are significantly more stable than those on used NbAlS-1(00270041)

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

-10

-08

-06

-04

-02

00

02

04

06

08

10

500

Hea

t flow

(W

g)

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

-10

-08

-06

-04

-02

00

02

04

06

08

10

430

He

at flow

(W

g)

330

a b

15

Fig S7 TGA plots of used NbAlS-1(00270041) catalysts after the conversion of pure GVL (black) and 30

wt GVL (red) at 320 oC The presence of water in this catalytic system effectively hindered the formation

of by-products on the catalyst surface

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

for 30 GVL feeding

for pure GVL feeding

16

Fig S8 Comparison of FTIR spectra of NbAlS-1 before and after the conversion of 30wt GVL at 320 oC

for 180 h

1400 1300 1200 1100 1000 900 800 700 600

Absorb

ance (

au

)

Wavenumber (cm-1)

NbAlS-1(00270041) used

NbAlS-1(00270041)

971

17

Fig S9 X-band (ca 9 GHz) EPR spectra of NbAlS-1 and post-reaction zeolites activated by γ-irradiation at

77 K (a) wide magnetic field-sweep highlighting the induced Nb(IV) signals in NbAlS-1(00270041) and

the used sample and (b) narrow magnetic field-sweep highlighting the induced electron hole defect Al-O-

Si signals in fresh and used NbAlS-1(00270041) samples

a

b

100 150 200 250 300 350 400 450 500 550

Nb simulation

NbAlS-1(00270041)

used

Inte

nsity (

au

)

NbAlS-1(00270041)

Magnetic field (mT)

300 310 320 330 340 350 360

NbAlS-1(00270041) used

Al simulation

Inte

nsity (

au

)

Magnetic field (mT)

NbAlS-1(00270041)

18

Fig S10 (a) XAS spectra of the fresh and used NbAlS-1(00270041) (b) Phase-corrected k3-weighted

Fourier Transform of the EXAFS spectra for fresh and used NbAlS-1(00270041) The stability of the Nb

active sites within NbAlS-1(00270041) was verified by Nb K edge XAS with both fresh and used

catalysts exhibiting the same pre-edge XANES and EXAFS features

00

04

08

12

16

20

18800 19075 19350 19625 19900

No

rm a

bso

rptio

n (

au

)

Energy (eV)

NbAlS-1(00270041)

0

1

2

3

4

5

6

7

0 2 4 6

χ(R

)(Aring

-4)

Radial distance (Aring)

a b

NbAlS-1(00270041)

NbAlS-1(00270041) used

NbAlS-1(00270041)

used

19

Fig S11 27Al MAS NMR spectra of fresh and used zeolites Chemical shifts at 0 and 55 ppm are assigned to

six-coordinate extra-framework and four-coordinate framework aluminum species respectively26

100 80 60 40 20 0 -20 -40

NbAlS-1(00270041) used

NbAlS-1(00270041)

HZSM-5(0041) used

27Al chemical shift (ppm)

HZSM-5(0041)

20

Fig S12 Characterisation of the acidity of fresh and used zeolites by NH3-TPD

100 150 200 250 300 350 400 450 500 550 600

In

tensity (

au

)

Temperature (oC)

NbAlS-1(00270041) used

NbAlS-1(00270041)

HZSM-5(0041) used

HZSM-5(0041)

21

Fig S13 X-band (ca 9 GHz) EPR spectra of HZSM-5 and post-reaction zeolites activated by γ-irradiation

at 77 K narrow magnetic field-sweep highlighting the induced electron hole defect Al-O-Si signals in

HZSM-5 (0041) and the used sample

300 310 320 330 340 350 360

HZSM-50041) used

Al simulation

Inte

nsity (

au

)

Magnetic field (mT)

HZSM-5(0041)

22

Fig S14 Comparison of SXPD patterns of (a) HZSM-5(0041) (b) NbS-1(00271) and (c) NbAlS-

1(00270041) before and after adsorption of GVL at room temperature [λ = 082487(1) Aring]

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbAlS-1(0027041)

GVLNbAlS-1(0027041)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbS-1(00271)

GVLNbS-1(00271)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

HZSM-5(0041)

GVLHZSM-5(0041)

a

b

c

23

Fig S15 Comparison of the experimental data (black line) and Rietveld refinement (red line) and the

difference between them (grey line) for SXPD patterns of (ab) GVLHZSM-5(0041) (cd) GVLNbS-

1(00271) (ef) GVLNbAlS-1(00270041) at room temperature at a 2θ range of (ace) 3 - 20deg and

(bdf) 20 - 50deg [λ = 082487(1) Aring]

a b

c d

e f

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

24

Fig S16 (a) 29Si NMR spectra of HZSM-5 and NbAlS-1 de-convolution of 29Si NMR spectra of HZSM-5

(b) and NbAlS-1 (c) by Guassian and Lorentzian line shapes

a

b

c

-125 -120 -115 -110 -105 -100 -95 -90 -85

-1023

-1076

-1138

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-4

Cumulative Fitted Peak

-1171

-125 -120 -115 -110 -105 -100 -95 -90 -85

-924-983

-1026

-1057

-1124

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-6

Cumulative Fitted Peak

-1162

-125 -120 -115 -110 -105 -100 -95 -90 -8529

Si chemical shift (ppm)

NbAlS-1(00270041)

HZSM-5(0041)

25

Fig S17 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and calculated INS

spectra for 12 types of NbAlH sites

0 200 400 600 800 1000 1200 1400 1600

1211109876

4

23

5

1

Bare NbAlS-1 (exp)

S(Q

) (a

u)

Neutron energy loss (cm-1)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

26

Fig S18 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and combination of

calculated INS spectra of different NbAlH sites Combination 1 = 3125Site I + 3125Site II +

5Site III + 325Site IV Combination 2 = 675Site III + 325Site IV Site I = 025(NbAlH_1 +

NbAlH_2 + NbAlH_3 + NbAlH_4) Site II = 025(NbAlH_5 + NbAlH_6 + NbAlH_7 +

NbAlH_8) Site III = 05(NbAlH_9 + NbAlH_10) Site IV = 05(NbAlH_11 + NbAlH_12)

Abscissa is scaled down by 097 for combination 1 and 2

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Bare NbAlS-1 (exp)

Combination 1

Combination 2

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

27

Fig S19 Schematic view of the procedure of in situ INS experiment and data collection

Zeolite (Calcined)

Zeolite (activated)

Heating at 450 oC under

He flow for 3 h

Zeolite (Adsorbed)

INS collection 1

Zeolite (Reaction at 280 C)

Adsorption of GVL at 135 oC

Zeolite (Reaction at 300 C)

Zeolite (Reaction at 320 C)

Reaction at 280 oC for 3 min

Reaction at 300 oC for 3 min

Reaction at 320 oC for 3 min

INS collection 2

INS collection 3

INS collection 4

INS collection 5

28

Fig S20 Comparison of the experimental INS spectra of condensed GVL in the solid state (black) and

calculated INS spectra of single GVL molecule (red) The crystal structure of solid GVL is unavailable in the

database

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental GVL

Calculated GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

29

Fig S21 Comparison of the experimental and calculated INS spectra of adsorbed GVL molecules on

NbAlS-1 The structure model derived from SXPD experiments was used for initial DFT modelling where

the positional disorder has been removed in the calculation and this partially accounts for the discrepancies

observed between calculated and experimental INS plots

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental adsorbed GVL

Calculated adsorbed GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

30

Fig S22 View of the INS spectrum for the empty catalysis cell used for this experiment The empty can has

the features below 300 cm-1 and at approximately 457 and 659 cm-1

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Empty can

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

31

Fig S23 Comparison of the experimental INS spectra for bare and GVL-adsorbed catalyst Spectra shown

are after subtraction of the empty cell The INS spectrum of the catalyst on GVL adsorption at 135 degC shows

a significant increase in total intensity demonstrating the binding of GVL to the catalyst sites

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

GVLNbAlS-1(00270041)

Bare NbAlS-1(00270041)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

32

Fig S24 Comparison of the experimental INS spectra of all butene isomers and reacted GVL at 320 degC

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Reaction 320 oC

trans-2-butene

i-butene

1-butene

cis-2-butene

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

33

Supplementary Tables

Table S1 Textural properties (data determined from N2 sorption isotherms at 77 K) and crystallite size (data

determined from SEM) of all zeolites used in this study

Samples ABET (m2 g-1)a Amic (m2 g-1) b Aext (m2 g-1) c Vmic (cm3 g-1) d Vtotal (cm3 g-1) e

Crystallite sizef

(nm)

HZSM-5 (00271) 413 314 99 019 033 200-500

HZSM-5 (0041) 346 259 87 015 028 200-500

HZSM-5 (00671) 348 277 71 016 026 200-500

NbS-1 (00271) 377 284 93 017 029 300-500

NbS-1 (0041) 357 282 75 016 027 300-500

NbAlS-1(00270041) 408 263 145 018 041 300-500

NbAlS-1(00400271) 376 268 108 017 033 300-500

HZSM-5 (0041)g 338 258 80 015 027 200-500

NbAlS-1(00270041)g 396 262 134 018 039 300-500

aBET specific surface area bMicropore surface area cExternal surface area dMicropore volume eTotal pore volume fObtainted from SEM gUsed catalyst

34

Table S2 Spin-Hamiltonian parameters of radiation induced Nb(IV) and electron hole Al-O-Si defects

from simulation of CW X-band EPR spectra in Fig 1 lw is the homogeneous Lorentzian linewidth g and A

are the principle values of the g and hyperfine interaction tensors

Signal Parameters

Electron

Spin

Nuclear

Spin g-tensor g-Strain

A-tensor

(G)

lw

(mT)

Nb defect 12 92 [1935 1935 1866] [004 004 00] [159 159

310] [0 40]

Al defect 12 52 [20012 2007 2045] [00 0003 004] [7 7 -] [00 04]

35

Table S3 Summary of acidity of all zeolites used in this work Data were determined by NH3-TPD and

Pyridine-IR studies

Catalyst Weak acida

(mmol g-1)

Strong acida

(mmol g-1)

Total acida

(mmol g-1)

LB acid

ratiob

HZSM-5(00271) 015 025 04 039

HZSM-5(0041) 024 028 052 037

HZSM-5(00671) 033 03 063 027

NbS-1(00271) 004 0 004 -

NbS-1(0041) 004 0 004 -

NbAlS-1(00270041) 022 0 022 469

NbAlS-1(00400271) 023 0 023 35 aFrom NH3-TPD bFrom Pyridine-IR

36

Table S4 The butenes distribution in equilibrium at 320 degC and the distribution of butene isomers produced

from conversion of 30 GVL at 320 degC over catalysts

Catalyst Distribution ()

i-butene 1-butene trans-2-butene cis-2-butene

Equilibrium27 45 12 27 16

HZSM-5(0041) 44 14 25 17

NbAlS-1(00270041) 18 19 38 25

NbOPO4 15 20 39 26

37

Table S5 Comparison of the catalytic performance of reported catalysts for the conversion of GVL in aqueous solution (25-40 wt ) to butenes

Catalyst Reaction Conditions GVL

concentration

(wt )

GVL

conversion

()

Butene

Yield

(mol )a

Ref

Temperature

(degC)

WHSV

(h-1)

Pressure

(bar)

NbAlS-1(00270041) 320 018 1 30 100 993 this work

SiO2Al2O3 375 09 1 30 97 75 28

HZSM-5(0041) 320 018 1 30 76 232 this work

LaZSM-5 450 1 10 40 gt99 ca 21 15

PdNb2O5b 275 05 14 30d 100 lt16c 29

Zn-AlPO-5 397 077 10 40 65 ca 12 30

H3PO4 240 - - 25 100 12c 31

ZnZSM-5 450 1 10 40 gt99 ca 6 15

AlPO-5 397 077 10 40 2 ca 04 30

aButene yield is calculated by the equation defined in the Method section

bunder H2 atmosphere

cThe product includes both butene and butane d002 M H2SO4 was added in the GVL solution

38

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1

R (Aring)a σ a Amp a CN a

NbAlS-1 (Dry) Nb=O 1680 0017 082 1 Nb-O 2014 0008 082 3 NbAlS-1

Nb=O 1721 0012 078 1

Nb-O 2014 0004 078 3

NbAlS-1+GVL

Nb=O 1943 0003 075 1

Nb-O 2014 0010 075 3

NbS-1

Nb=O 1711 0032 091 1

Nb-O 2014 0005 091 3

NbS-1+GVL

Nb=O 1770 0004 089 1

Nb-O 2014 0014 089 3 aR = Interatomic distance from central scattering atom σ = Debye-Waller factor Amp = amplitude factor

and CN = coordination number

39

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption

Samples GVLHZSM-5(0041) GVLNbS-1(00271) NbAlS-1(00270041) GVLNbAlS-1(00270041)

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma

Chemical formula Al3692Si92308O192 8GVL Nb2524Si93476O192 8GVL Al3599Nb2429Si89972O192 Al3599Nb2429Si89972O192 8GVL

2θ range for refinement (deg) 3 ndash 50 3 ndash 50 3 ndash 50 3 ndash 50

Detector Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals

Number of hkls 3251 3214 3179 3222

Refinement methods Rietveld Rietveld Rietveld Rietveld

a (Aring) 201351(2) 200604(2) 199955(3) 200697(3)

b (Aring) 199852(2) 198995(1) 198333(3) 199150(3)

c (Aring) 134549(2) 134010(1) 133531(2) 134214(2)

V (Aring3) 541428(11) 534957(7) 529553(15) 536437(15)

RwpRexp Rp () 445135013378 463131253497 553133614058 444933763305

Wavelength (Aring) 082487(1) 082487(1) 082487(1) 082487(1)

Gof χ2 1272 1482 1646 1318

40

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) at room

temperature

Species Atom x y z SOF Beq(Aring2) Wyckoff

HZSM-5(0041) Al1 -00732(5) 00570(7) 08366(7) 003846154 100(5) 8d

Al2 01869(6) -00339(5) 03189(8) 003846154 100(5) 8d

Al3 02207(5) -00626(7) 05256(8) 003846154 100(5) 8d

Al4 01210(5) 00590(7) 10220(8) 003846154 100(5) 8d

Al5 -00703(6) -00272(5) 01933(8) 003846154 100(5) 8d

Al6 01859(5) 00593(6) 06679(8) 003846154 100(5) 8d

Al7 -00745(6) 06734(6) 08243(9) 003846154 100(5) 8d

Al8 01956(6) 01297(5) 03114(7) 003846154 100(5) 8d

Al9 02187(5) 01761(5) 05326(8) 003846154 100(5) 8d

Al10 01228(5) 06749(6) 10400(8) 003846154 100(5) 8d

Al11 -00694(6) 01308(6) 01819(9) 003846154 100(5) 8d

Al12 01859(6) 06714(5) 06756(8) 003846154 100(5) 8d

Si1 -00732(5) 00570(7) 08366(7) 09615385 100(5) 8d

Si2 01869(6) -00339(5) 03189(8) 09615385 100(5) 8d

Si3 02207(5) -00626(7) 05256(8) 09615385 100(5) 8d

Si4 01210(5) 00590(7) 10220(8) 09615385 100(5) 8d

Si5 -00703(6) -00272(5) 01933(8) 09615385 100(5) 8d

Si6 01859(5) 00593(6) 06679(8) 09615385 100(5) 8d

Si7 -00745(6) 06734(6) 08243(9) 09615385 100(5) 8d

Si8 01956(6) 01297(5) 03114(7) 09615385 100(5) 8d

Si9 02187(5) 01761(5) 05326(8) 09615385 100(5) 8d

Si10 01228(5) 06749(6) 10400(8) 09615385 100(5) 8d

Si11 -00694(6) 01308(6) 01819(9) 09615385 100(5) 8d

Si12 01859(6) 06714(5) 06756(8) 09615385 100(5) 8d

O1 01189(10) -00643(12) 02762(13) 1 143(9) 8d

O2 01900(11) -00665(10) 04093(13) 1 143(9) 8d

O3 02017(11) 00485(12) 10198(11) 1 143(9) 8d

O4 -00964(9) -00573(13) 10736(15) 1 143(9) 8d

O5 01132(9) 00573(12) 07009(13) 1 143(9) 8d

O6 02544(10) 00574(13) 07592(13) 1 143(9) 8d

O7 01249(11) 01569(12) 02676(15) 1 143(9) 8d

O8 01995(12) 01482(9) 04331(13) 1 143(9) 8d

O9 01968(12) 06607(9) 00500(12) 1 143(9) 8d

O10 -00922(10) 01564(11) 10827(17) 1 143(9) 8d

O11 01123(10) 06498(11) 07436(14) 1 143(9) 8d

O12 02420(11) 06557(12) 07396(15) 1 143(9) 8d

O13 02109(9) 00468(11) 03170(12) 1 143(9) 8d

O14 -00793(8) 00525(13) 01708(13) 1 143(9) 8d

O15 -00850(10) 01327(12) 08874(17) 1 143(9) 8d

O16 -01009(10) 00004(11) 09239(15) 1 143(9) 8d

O17 -01006(10) 06343(12) -00444(14) 1 143(9) 8d

O18 01746(10) 01273(11) 06145(13) 1 143(9) 8d

O19 01980(12) 00019(10) 06091(12) 1 143(9) 8d

O20 02014(13) 06300(11) 05761(13) 1 143(9) 8d

O21 -00054(11) 00405(12) 07595(12) 1 143(9) 8d

O22 -00045(12) 06580(13) 07876(13) 1 143(9) 8d

O23 -00801(15) 075 0861(2) 1 143(9) 4c

O24 01839(17) 075 0648(2) 1 143(9) 4c

O25 02011(18) 025 0563(2) 1 143(9) 4c

O26 00863(13) 075 0143(2) 1 143(9) 4c

41

GVLI O1 -00251(15) 08553(18) -0468(2) 0500(3) 06(4) 8d

O2 -0013(2) 07533(17) -0531(3) 0500(3) 06(4) 8d

C1 00570(11) 08446(12) -05861(14) 0500(3) 06(4) 8d

C2 00466(18) 09175(12) -05663(18) 0500(3) 06(4) 8d

C3 0004(2) 09222(15) -0484(2) 0500(3) 06(4) 8d

C4 00038(13) 08112(15) -05293(19) 0500(3) 06(4) 8d

C5 -0034(3) 09728(19) -0448(3) 0500(3) 06(4) 8d

H1a 00999(11) 08315(15) -05641(17) 0500(3) 07(5) 8d

H1b 00528(13) 08360(13) -06553(15) 0500(3) 07(5) 8d

H2a 0088(2) 09384(14) -0553(2) 0500(3) 07(5) 8d

H2b 0026(2) 09378(15) -0622(2) 0500(3) 07(5) 8d

H3 0038(2) 09204(15) -04313(18) 0500(3) 07(5) 8d

H5a -0043(3) 0965(2) -0380(3) 0500(3) 07(5) 8d

H5b -0011(4) 10138(17) -0454(3) 0500(3) 07(5) 8d

H5c -0074(3) 0975(3) -0485(3) 0500(3) 07(5) 8d

GVLII O1 -03289(15) -0778(2) -02817(19) 0500(4) 06(4) 8d

O2 -04372(14) -0757(2) -02733(16) 0500(4) 06(4) 8d

C1 -03730(11) -07204(15) -04150(12) 0500(4) 06(4) 8d

C2 -02990(11) -0718(2) -04230(16) 0500(4) 06(4) 8d

C3 -02738(13) -0762(3) -0350(2) 0500(4) 06(4) 8d

C4 -03856(13) -07518(18) -03175(14) 0500(4) 06(4) 8d

C5 -02129(14) -0768(4) -0308(3) 0500(4) 06(4) 8d

H1a -03908(13) -07461(16) -04681(13) 0500(3) 07(5) 8d

H1b -03904(14) -06762(15) -04174(16) 0500(3) 07(5) 8d

H2a -02856(13) -0732(2) -04875(17) 0500(3) 07(5) 8d

H2b -02835(15) -0674(2) -04093(19) 0500(3) 07(5) 8d

H3 -0275(2) -0803(3) -0389(3) 0500(3) 07(5) 8d

H5a -0208(2) -0812(4) -0281(3) 0500(3) 07(5) 8d

H5b -01797(13) -0762(4) -0357(3) 0500(3) 07(5) 8d

H5c -02080(14) -0735(4) -0257(3) 0500(3) 07(5) 8d

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 5: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

4

Supplementary Methods

Catalyst characterisation

Powder X-ray diffraction (PXRD) patterns were recorded on a Philips Xrsquopert X-ray diffractometer (40 kV

and 30 mA) using Cu Kα radiation (λ = 15406 Aring) N2 adsorption was carried out at 77 K on a Micromeritics

3Flex instrument after activating the samples for 10 h under dynamic vacuum at 423 K The crystal

morphology and size were measured by scanning electron microscopy (SEM) on a Quanta FEG 650

microscope The ratios of NbAlSi in the sample were quantified by EDX using multiple regions over a

sample on a Bruker XTrace instrument Thermogravimetric analysis was carried out with a SDTQ600 TA

instrument Samples were heated from room temperature to 800 degC at a rate of 5 degCmin under an air flow

Attenuated Total-Reflection Flourier Transformed Infrared (ATR-FTIR) spectra were collected with Nicolet

iS5 spectrometer Laser Raman spectra were obtained using a Horiba scientific XploRA PLUS Raman

microscope equipped with 1800 groovemm holographic gratings The samples were excited by the 532 nm

line of an Ar+ laser The acidity was measured by temperature-programmed desorption of ammonia (NH3-

TPD) with a Quantachrome Autosorb-1 equipped with a thermal conductivity detector (TCD) Typically 100

mg of sample was pre-treated in helium stream (30 mL minminus1) at 600 degC for 2 h The adsorption of NH3 was

carried out at 50 degC for 1 h The catalyst was flushed with helium at 100 degC for 2 h to remove physisorbed

NH3 from the catalyst surface The TPD profile was recorded at a heating rate of 10 degC min-1 from 100 degC to

600 degC The Broslashnsted and Lewis acid sites of the samples were investigated by FT-IR of adsorbed pyridine

in an in situ cell with CaF2 windows Wafers with a weight of 25 mg and radius of 65 mm were degassed for

1 h under vacuum at 600 degC Then pyridine was admitted and after equilibration the samples were

outgassed for 05 h at increasing temperatures (150 200 250 350 and 450 degC) The spectra were recorded

on a Nicolet iS50 FT-IR spectrometer Solid state 27Al NMR spectra were recorded with a frequency of

10424 MHz a spinning rate of 100 kHz and a recycling delay of 4 s Al(NO3)3 was used as the reference

for chemical shift Solid state 29Si NMR spectra were recorded with a frequency of 7946 MHz a spinning

rate of 100 kHz and a recycling delay of 10 s Tetramethylsilane was used as the reference for chemical

shift

For the EPR spectroscopy the sample was placed in a 28 mm od quartz tube and connected to a

vacuum line Prior to irradiation zeolite materials were activated by pumping at 10-5 Torr for 12 h at 150 ˚C

5

and then sealed under vacuum The samples were exposed to γ-irradiation from a 60Co source at 77 K to a

total dose of 44 MRad at a dose rate of 05 MRad h-1 CW EPR measurements were carried out at X-band

(97 GHz) using a commercial spectrometer Bruker EMX equipped with Oxford Instruments temperature

control system at 77 K EPR spectra were detected with modulation amplitudes of 02 and 1 mT and

microwave powers of ~5 mW were chosen to provide optimum signal intensity without saturation of spectral

lines Simulations of EPR spectra were performed using the EasySpin toolbox (Version 5220)1 for Matlab

DFT calculations and modelling of the INS spectra

Periodic density functional theory (periodic-DFT) calculations were carried out using the plane wave

pseudopotential method as implemented in the CASTEP code23 Exchange and correlation were

approximated using the Perdew-Burke-Ernzerhof (PBE) functional4 Ultra-soft pseudopotentials were

employed to account for the effects of core electrons Tkatchenko-Scheffler dispersion correction5 was used

for van der Waals interactions Energy cutoff for plane-wave basis was 380 eV Phonon frequencies were

obtained by diagonalisation of dynamical matrices computed using finite displacement method The atomic

displacements in each mode that are part of the CASTEP output enable visualization of the modes to aid

assignments and are also all that is required to generate the INS spectrum using the program OCLIMAX67

DFT calculations of the INS spectra for single GVL molecule and adsorbed GVL were carried out which

were used to identify the modes of vibrational features in the experimental INS spectra The calculated INS

spectrum shows the total transitions (up to 10 orders) In addition DFT calculations of the INS spectra for

bare NbAlS-1 were performed to investigate the distribution of NbAlH sites Due to the large number of

configurations involved in these simulations the CP2K code8 based on the mixed Gaussian and plane-wave

scheme9 and the Quickstep module10 were used The calculation used molecularly optimised Double-Zeta-

Valence plus Polarization (DZVP) basis set11 Goedecker-Teter-Hutter pseudopotentials12 and the PBE

exchange correlation functional4 The plane-wave energy cutoff was 400 Ry The DFT-D3 level correction

for dispersion interactions as implemented by Grimme et al13 was applied

6

Supplementary Notes

Interaction between GVL and NbAlH sites

Synchrotron XPD has been successfully applied to study the interaction between guest molecules

and porous materials such as binding of hydrocarbons in porous metal-organic frameworks14 binding of

GVL in ZnZSM-515 and binding of pyridine in HZSM-516 In this study over 3100 hkl reflections were used

for the structural refinement which allowed for extensive structural variables to be refined in a satisfactory

manner It is almost impossible to distinguish between Al and Si (Z=13 and 14 respectively) sites using X-

rays diffraction Although Nb (Z=41) is heavier the low occupancy of Nb precludes the determination of its

precise location in the framework Recently the distribution of active sites in H-ZSM-516 and in ZnZSM-515

has been successfully determined by examining the intermolecular distances and angles between guest

molecules and framework sites For example protonic acid sites of H-ZSM-5 have been located by

examining the atomic distances and angles between pyridines and framework atoms16 GVL can be adsorbed

on Broslashnsted acid sites upon protonation of the C=O group17 while the O in the ring of GVL can be adsorbed

on Nb(V) sites18 Thus the distribution of active sites in NbAlS-1 has been revealed by a detailed

examination of the GVL-NbAlS-1 binding distances particularly that between O1GVL and T sites and

between O2GVL and Ozeolites (see Supplementary Table 12) Importantly the distances between O1GVLI and T8

and between O1GVLII and T6 are shortest in both GVL-adsorbed NbAlS-1 and NbS-1 indicating that Nb sites

are likely located at T8 and T6 positions Similarly the distances between O2GVLI and O25zeolites and that

between O2GVLII and O26zeolite are shortest in both GVL-adsorbed NbAlS-1 and HZSM-5 suggesting that

protonic acid sites are likely located at O25-T9 and O26-T10 centres In addition XAS measurements (Fig

3b) suggest that the Nb pre-edge position is influenced with an apparent blue-shift (~08 eV) for NbAlS-1

upon adsorption of GVL while no such shift is witnessed for NbS-1 This observation reflects the preferred

adsorption geometry within the bifunctional (Al and Nb-containing) zeolite NbAlS-1 consistent with the

crystallographic study

Distribution of NbAlH sites

The 29Si NMR spectra of NbAlS-1(00270041) and HZM-5(0041) show notable difference in the range of

-110 to -90 ppm (Supplementary Fig 16a) Curves are de-convoluted by Guassian and Lorentzian line

shapes The assignments and integration of peak areas are listed in Supplementary Table 13 The (Al+Si)Si

7

ratios calculated from the 29Si NMR data are highly consistent with that obtained from EDX The peak at -98

ppm is absent in the spectrum of HZSM-5(0041) indicating the absence of Si(OSi)2(OAl)2 species

(Supplementary Fig 16b) consistent with previous reports1920 By contrast the peak at -98 ppm is observed

in the NMR spectrum of NbAlS-1(00270041) suggesting the presence of Si(OSi)2(OAl)(ONb) species

(Supplementary Fig 16c and Supplementary Table 13)

Recently the distribution of protons in LTA zeolite has been studied using periodic DFT calculations

and INS2122 The distribution of NbAlH sites in NbAlS-1(00270041) has been further investigated by

combining INS and DFT calculations Four types of possible species ie species I [NbOSiOAl] species II

[NbOSiOSiOAl] species III [NbO(SiO)nAl (n ge 3)] and species IV (isolated Al no Nb around) and twelve

types of NbAlH species in NbAlS-1 have been simulated (Supplementary Table 14) From the synchrotron

XPD and Rietveld Refinement species I and II present in NbAlS-1(00270041) (Fig 4f and 4i) and thus

Nb and Al are positioned at T8 and T9 respectively for species I and at T6 and T10 respectively for

species II for the calculation of corresponding INS spectra The H sites have the same probability to appear

near all four O around Al and are thus attached to O25 O8 O18 O9 O26 O15 O10 and O9 respectively

(NbAlH_1-8 Supplementary Table 14) In species III Nb and Al are not adjacent Nb is positioned at T8 or

T6 and Al is moved to T12 (NbAlH_9) or T7 (NbAlH_10) Since the NbAl ratio is 0027004 325 of

Al are isolated (species IV) The isolated Al is positioned at T2 (NbAlH_11) or T4 (NbAlH_12) All

twelve NbAlH sites are simulated independently by DFT and the calculated INS spectra are compared with

the experimental data of bare NbAlS-1(00270041) (Supplementary Fig 17) As there is an uncertainty on

the position of H the calculated INS spectra are given different weights to assemble the combined spectrum

for NbAlS-1(00270041) Species I and II have the same occupancy (determined by Rietveld Refinement)

and they were given the same weight Based upon the NbAl ratio and 29Si NMR results the weights of all

four species are calculated (Supplementary Table 14) The spectrum of combination 1 is produced by

combining twelve spectra with calculated weights All peaks in combination 1 fit with those in the

experimental data particularly the peaks assigned to -OH in-plane bending and Si-O stretching at 1086 and

1191 cm-1 respectively (Supplementary Fig 18 and Supplementary Table 15) The intensities of peaks at

245-534 cm-1 (assigned to relaxation of zeolite framework and -OH out-of-plane bending in combination 1)

are lower than that of the experimental data because only one unit cell and a simplified model were used and

external SiOH groups are not considered in the simulation Combination 2 is produced without species I and

8

II (Supplementary Fig 18) and a number of peaks (77 157 237 and 317 cm-1) are absent compared with the

experimental data demonstrating the presence of species I and II that promotes the adsorption of GVL in

NbAlS-1 via the ldquochelatingrdquo mechanism

Inelastic neutron scattering

Direct visualisation of the interaction between adsorbed GVL and the active sites is crucial to understand the

molecular details of adsorption activation and ring-open and decarboxylation of GVL into butenes INS is a

powerful neutron spectroscopy technique to investigate the dynamics (particularly for the deformational and

conformational modes) of GVL It has several advantages

INS spectroscopy is sensitive to the vibrations of hydrogen atoms and hydrogen is ten times more

visible than other elements due to its high neutron cross-section

The technique is not subject to any optical selection rules All vibrations are active and in principle

measurable

INS observations are not restricted to the centre of the Brillouin zone (gamma point) as is the case for

optical techniques

INS spectra can be readily and accurately modelled the intensities are proportional to the concentration

of elements in the sample and their cross-sections and the measured INS intensities relate

straightforwardly to the associated displacements of the scattering atom Treatment of background

correction is also straightforward

Neutrons penetrate deeply into materials and pass readily through the walls of metal containers making

neutrons ideal to measure bulk properties of this material (in this case for 11 g catalyst)

INS spectrometers cover the whole range of the molecular vibrational spectrum 0-500 meV (0-4000 cm-

1)

INS data can be collected at low temperature (lt 15 K in this case) where the thermal motion of the

catalyst the adsorbed GVL and the reacted intermediate molecules can be significantly reduced

9

Supplementary Figures

Fig S1 Comparison of PXRD patterns of HZSM-5 NbS-1 and NbAlS-1 (λ = 15406 Aring)

5 10 15 20 25 30 35 40

NbAlS-1(00270041)

NbAlS-1(00400271)

NbS-1(0041)

NbS-1(00271)

HZSM-5(00671)

HZSM-5(0041)

In

tensity (

au

)

2 (degree)

HZSM-5(00271)

10

Fig S2 SEM images of (a) HZSM-5(0041) (b) NbS-1 (00271) and (c) NbAlS-1(00270041)

a

500 nm

b

500 nm

c

500 nm

11

Fig S3 Characterisation of the acidity of zeolites by Pyridine-IR (a) Py-IR spectra after vacuum treatment

at 150 oC Py-IR spectra of (b) HZSM-5(0041) (c) NbS-1(00271) and (d) NbAlS-1(00270041) after

vacuum treatment at variable temperatures The peaks at 1454 and 1545 cm-1 are assigned to the

coordinatively bound pyridine molecules on Lewis acid sites and pyridinium ion on Broslashnsted acid sites

respectively23 Both the coordinatively bound pyridine and pyridinium ion have the vibration peak at 1490

cm-1 23 The Lewis acid band is centred at 1454 cm-1 in the spectra of HZSM-5 while it shifts to 1447 cm-1 in

the spectra of Nb-doped zeolite which is similar to the reported Lewis acid band (centred at 1448 cm-1) in

niobium phosphate24 The decrease of frequency of the band is related to the reduced stability of the pyridine

complex23 which is verified by the desorption experiments b c and d show the Py-IR spectra of HZSM-

5(0041) NbS-1(00271) and NbAlS-1 (00270041) respectively after desorption of pyridine at variable

temperatures With the increase of temperature the peak intensities related to both Lewis and Broslashnsted acid

sites of HZSM-5 decrease slowly Both peaks are visible even after the vacuum treatment at 450 degC (b)

However the intensities of peaks at 1447 cm-1 in the spectra of NbS-1 and NbAlS-1 decreased dramatically

upon increasing temperature and disappeared at 350 degC (c and d) Also the peaks related to Broslashnsted acid

sites on NbAlS-1 samples disappeared even at 250 degC (c and d) This result indicates that the NbAlS-1

samples have only weak Lewis and weak Broslashnsted acid sites entirely consistent with the NH3-TPD results in

Supplementary Fig 4

a b

cd

1420 1440 1460 1480 1500 1520 1540 1560 1580

NbAlS-1(00400271)

NbAlS-1(00270041)

NbS-1(0041)

NbS-1(00271)

HZSM-5(00671)

HZSM-5(0041)

HZSM-5 (00271)

Inte

nsity (

au

)

Wavenumber (cm-1)

1420 1440 1460 1480 1500 1520 1540 1560 1580

Ine

nsity (

au

)

Wavenumber (cm-1)

150 oC

200 oC

250 oC

350 oC

450 oC

1420 1440 1460 1480 1500 1520 1540 1560 1580

Inte

nsity (

au

)

Wavenumber (cm-1)

150 oC

200 oC

250 oC

350 oC

450 oC

1420 1440 1460 1480 1500 1520 1540 1560 1580

Inte

nsity (

au

)

Wavenumber (cm-1)

150 oC

200 oC

250 oC

350 oC

450 oC

12

Fig S4 Characterisation of the acidity of zeolites by NH3-TPD Two peaks at 240 and 435 degC correspond to

NH3 eluted from the weak and strong acid sites respectively25

100 150 200 250 300 350 400 450 500 550 600

Inte

nsity (

au

)

Temperature (oC)

NbAlS-1(00400271)

NbAlS-1(00270041)

NbS-1(0041)

NbS-1(00271)

HZSM-5(00671)

HZSM-5(0041)

HZSM-5(00271)

13

Fig S5 GC-MS results of the products from the conversion of GVL at 320 oC (a) Gas and (b) liquid

products from conversion of pure GVL over HZSM-5(0041) (c) Gas and (d) liquid products from

conversion of pure GVL over NbS-1(00271) (e) Gas and (f) liquid products from conversion of pure GVL

over NbAlS-1(00270041) (g) Gas and (h) liquid products from conversion of 30 GVL over NbAlS-

1(00270041) The water in g is solely from the feeding solution rather than produced from dehydration as

no dehydration products are observed

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

b

d

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

a

c

N2

CO2

C2H4 C2H6 C3H6 C3H8

C4H10

C4H8

H2O

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

N2

CO2

C4H8

H2O

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

fe

Pentenoic

acid isomers

Pentenoic

acid isomers

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

Aromatics

Pentenoic

acid isomers

g h

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

N2

CO2C4H8

N2

CO2

C4H8

H2O

C2H4 C2H6 C3H6

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

14

Fig S6 TGA (black) and DSC (red) plots of used HZSM-5(0041) (a) and NbAlS-1(00270041) (b)

catalysts after the conversion of pure GVL at 320 oC The by-products (eg coke) deposited on the surface

of used HZSM-5(0041) are significantly more stable than those on used NbAlS-1(00270041)

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

-10

-08

-06

-04

-02

00

02

04

06

08

10

500

Hea

t flow

(W

g)

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

-10

-08

-06

-04

-02

00

02

04

06

08

10

430

He

at flow

(W

g)

330

a b

15

Fig S7 TGA plots of used NbAlS-1(00270041) catalysts after the conversion of pure GVL (black) and 30

wt GVL (red) at 320 oC The presence of water in this catalytic system effectively hindered the formation

of by-products on the catalyst surface

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

for 30 GVL feeding

for pure GVL feeding

16

Fig S8 Comparison of FTIR spectra of NbAlS-1 before and after the conversion of 30wt GVL at 320 oC

for 180 h

1400 1300 1200 1100 1000 900 800 700 600

Absorb

ance (

au

)

Wavenumber (cm-1)

NbAlS-1(00270041) used

NbAlS-1(00270041)

971

17

Fig S9 X-band (ca 9 GHz) EPR spectra of NbAlS-1 and post-reaction zeolites activated by γ-irradiation at

77 K (a) wide magnetic field-sweep highlighting the induced Nb(IV) signals in NbAlS-1(00270041) and

the used sample and (b) narrow magnetic field-sweep highlighting the induced electron hole defect Al-O-

Si signals in fresh and used NbAlS-1(00270041) samples

a

b

100 150 200 250 300 350 400 450 500 550

Nb simulation

NbAlS-1(00270041)

used

Inte

nsity (

au

)

NbAlS-1(00270041)

Magnetic field (mT)

300 310 320 330 340 350 360

NbAlS-1(00270041) used

Al simulation

Inte

nsity (

au

)

Magnetic field (mT)

NbAlS-1(00270041)

18

Fig S10 (a) XAS spectra of the fresh and used NbAlS-1(00270041) (b) Phase-corrected k3-weighted

Fourier Transform of the EXAFS spectra for fresh and used NbAlS-1(00270041) The stability of the Nb

active sites within NbAlS-1(00270041) was verified by Nb K edge XAS with both fresh and used

catalysts exhibiting the same pre-edge XANES and EXAFS features

00

04

08

12

16

20

18800 19075 19350 19625 19900

No

rm a

bso

rptio

n (

au

)

Energy (eV)

NbAlS-1(00270041)

0

1

2

3

4

5

6

7

0 2 4 6

χ(R

)(Aring

-4)

Radial distance (Aring)

a b

NbAlS-1(00270041)

NbAlS-1(00270041) used

NbAlS-1(00270041)

used

19

Fig S11 27Al MAS NMR spectra of fresh and used zeolites Chemical shifts at 0 and 55 ppm are assigned to

six-coordinate extra-framework and four-coordinate framework aluminum species respectively26

100 80 60 40 20 0 -20 -40

NbAlS-1(00270041) used

NbAlS-1(00270041)

HZSM-5(0041) used

27Al chemical shift (ppm)

HZSM-5(0041)

20

Fig S12 Characterisation of the acidity of fresh and used zeolites by NH3-TPD

100 150 200 250 300 350 400 450 500 550 600

In

tensity (

au

)

Temperature (oC)

NbAlS-1(00270041) used

NbAlS-1(00270041)

HZSM-5(0041) used

HZSM-5(0041)

21

Fig S13 X-band (ca 9 GHz) EPR spectra of HZSM-5 and post-reaction zeolites activated by γ-irradiation

at 77 K narrow magnetic field-sweep highlighting the induced electron hole defect Al-O-Si signals in

HZSM-5 (0041) and the used sample

300 310 320 330 340 350 360

HZSM-50041) used

Al simulation

Inte

nsity (

au

)

Magnetic field (mT)

HZSM-5(0041)

22

Fig S14 Comparison of SXPD patterns of (a) HZSM-5(0041) (b) NbS-1(00271) and (c) NbAlS-

1(00270041) before and after adsorption of GVL at room temperature [λ = 082487(1) Aring]

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbAlS-1(0027041)

GVLNbAlS-1(0027041)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbS-1(00271)

GVLNbS-1(00271)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

HZSM-5(0041)

GVLHZSM-5(0041)

a

b

c

23

Fig S15 Comparison of the experimental data (black line) and Rietveld refinement (red line) and the

difference between them (grey line) for SXPD patterns of (ab) GVLHZSM-5(0041) (cd) GVLNbS-

1(00271) (ef) GVLNbAlS-1(00270041) at room temperature at a 2θ range of (ace) 3 - 20deg and

(bdf) 20 - 50deg [λ = 082487(1) Aring]

a b

c d

e f

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

24

Fig S16 (a) 29Si NMR spectra of HZSM-5 and NbAlS-1 de-convolution of 29Si NMR spectra of HZSM-5

(b) and NbAlS-1 (c) by Guassian and Lorentzian line shapes

a

b

c

-125 -120 -115 -110 -105 -100 -95 -90 -85

-1023

-1076

-1138

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-4

Cumulative Fitted Peak

-1171

-125 -120 -115 -110 -105 -100 -95 -90 -85

-924-983

-1026

-1057

-1124

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-6

Cumulative Fitted Peak

-1162

-125 -120 -115 -110 -105 -100 -95 -90 -8529

Si chemical shift (ppm)

NbAlS-1(00270041)

HZSM-5(0041)

25

Fig S17 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and calculated INS

spectra for 12 types of NbAlH sites

0 200 400 600 800 1000 1200 1400 1600

1211109876

4

23

5

1

Bare NbAlS-1 (exp)

S(Q

) (a

u)

Neutron energy loss (cm-1)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

26

Fig S18 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and combination of

calculated INS spectra of different NbAlH sites Combination 1 = 3125Site I + 3125Site II +

5Site III + 325Site IV Combination 2 = 675Site III + 325Site IV Site I = 025(NbAlH_1 +

NbAlH_2 + NbAlH_3 + NbAlH_4) Site II = 025(NbAlH_5 + NbAlH_6 + NbAlH_7 +

NbAlH_8) Site III = 05(NbAlH_9 + NbAlH_10) Site IV = 05(NbAlH_11 + NbAlH_12)

Abscissa is scaled down by 097 for combination 1 and 2

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Bare NbAlS-1 (exp)

Combination 1

Combination 2

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

27

Fig S19 Schematic view of the procedure of in situ INS experiment and data collection

Zeolite (Calcined)

Zeolite (activated)

Heating at 450 oC under

He flow for 3 h

Zeolite (Adsorbed)

INS collection 1

Zeolite (Reaction at 280 C)

Adsorption of GVL at 135 oC

Zeolite (Reaction at 300 C)

Zeolite (Reaction at 320 C)

Reaction at 280 oC for 3 min

Reaction at 300 oC for 3 min

Reaction at 320 oC for 3 min

INS collection 2

INS collection 3

INS collection 4

INS collection 5

28

Fig S20 Comparison of the experimental INS spectra of condensed GVL in the solid state (black) and

calculated INS spectra of single GVL molecule (red) The crystal structure of solid GVL is unavailable in the

database

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental GVL

Calculated GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

29

Fig S21 Comparison of the experimental and calculated INS spectra of adsorbed GVL molecules on

NbAlS-1 The structure model derived from SXPD experiments was used for initial DFT modelling where

the positional disorder has been removed in the calculation and this partially accounts for the discrepancies

observed between calculated and experimental INS plots

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental adsorbed GVL

Calculated adsorbed GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

30

Fig S22 View of the INS spectrum for the empty catalysis cell used for this experiment The empty can has

the features below 300 cm-1 and at approximately 457 and 659 cm-1

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Empty can

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

31

Fig S23 Comparison of the experimental INS spectra for bare and GVL-adsorbed catalyst Spectra shown

are after subtraction of the empty cell The INS spectrum of the catalyst on GVL adsorption at 135 degC shows

a significant increase in total intensity demonstrating the binding of GVL to the catalyst sites

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

GVLNbAlS-1(00270041)

Bare NbAlS-1(00270041)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

32

Fig S24 Comparison of the experimental INS spectra of all butene isomers and reacted GVL at 320 degC

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Reaction 320 oC

trans-2-butene

i-butene

1-butene

cis-2-butene

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

33

Supplementary Tables

Table S1 Textural properties (data determined from N2 sorption isotherms at 77 K) and crystallite size (data

determined from SEM) of all zeolites used in this study

Samples ABET (m2 g-1)a Amic (m2 g-1) b Aext (m2 g-1) c Vmic (cm3 g-1) d Vtotal (cm3 g-1) e

Crystallite sizef

(nm)

HZSM-5 (00271) 413 314 99 019 033 200-500

HZSM-5 (0041) 346 259 87 015 028 200-500

HZSM-5 (00671) 348 277 71 016 026 200-500

NbS-1 (00271) 377 284 93 017 029 300-500

NbS-1 (0041) 357 282 75 016 027 300-500

NbAlS-1(00270041) 408 263 145 018 041 300-500

NbAlS-1(00400271) 376 268 108 017 033 300-500

HZSM-5 (0041)g 338 258 80 015 027 200-500

NbAlS-1(00270041)g 396 262 134 018 039 300-500

aBET specific surface area bMicropore surface area cExternal surface area dMicropore volume eTotal pore volume fObtainted from SEM gUsed catalyst

34

Table S2 Spin-Hamiltonian parameters of radiation induced Nb(IV) and electron hole Al-O-Si defects

from simulation of CW X-band EPR spectra in Fig 1 lw is the homogeneous Lorentzian linewidth g and A

are the principle values of the g and hyperfine interaction tensors

Signal Parameters

Electron

Spin

Nuclear

Spin g-tensor g-Strain

A-tensor

(G)

lw

(mT)

Nb defect 12 92 [1935 1935 1866] [004 004 00] [159 159

310] [0 40]

Al defect 12 52 [20012 2007 2045] [00 0003 004] [7 7 -] [00 04]

35

Table S3 Summary of acidity of all zeolites used in this work Data were determined by NH3-TPD and

Pyridine-IR studies

Catalyst Weak acida

(mmol g-1)

Strong acida

(mmol g-1)

Total acida

(mmol g-1)

LB acid

ratiob

HZSM-5(00271) 015 025 04 039

HZSM-5(0041) 024 028 052 037

HZSM-5(00671) 033 03 063 027

NbS-1(00271) 004 0 004 -

NbS-1(0041) 004 0 004 -

NbAlS-1(00270041) 022 0 022 469

NbAlS-1(00400271) 023 0 023 35 aFrom NH3-TPD bFrom Pyridine-IR

36

Table S4 The butenes distribution in equilibrium at 320 degC and the distribution of butene isomers produced

from conversion of 30 GVL at 320 degC over catalysts

Catalyst Distribution ()

i-butene 1-butene trans-2-butene cis-2-butene

Equilibrium27 45 12 27 16

HZSM-5(0041) 44 14 25 17

NbAlS-1(00270041) 18 19 38 25

NbOPO4 15 20 39 26

37

Table S5 Comparison of the catalytic performance of reported catalysts for the conversion of GVL in aqueous solution (25-40 wt ) to butenes

Catalyst Reaction Conditions GVL

concentration

(wt )

GVL

conversion

()

Butene

Yield

(mol )a

Ref

Temperature

(degC)

WHSV

(h-1)

Pressure

(bar)

NbAlS-1(00270041) 320 018 1 30 100 993 this work

SiO2Al2O3 375 09 1 30 97 75 28

HZSM-5(0041) 320 018 1 30 76 232 this work

LaZSM-5 450 1 10 40 gt99 ca 21 15

PdNb2O5b 275 05 14 30d 100 lt16c 29

Zn-AlPO-5 397 077 10 40 65 ca 12 30

H3PO4 240 - - 25 100 12c 31

ZnZSM-5 450 1 10 40 gt99 ca 6 15

AlPO-5 397 077 10 40 2 ca 04 30

aButene yield is calculated by the equation defined in the Method section

bunder H2 atmosphere

cThe product includes both butene and butane d002 M H2SO4 was added in the GVL solution

38

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1

R (Aring)a σ a Amp a CN a

NbAlS-1 (Dry) Nb=O 1680 0017 082 1 Nb-O 2014 0008 082 3 NbAlS-1

Nb=O 1721 0012 078 1

Nb-O 2014 0004 078 3

NbAlS-1+GVL

Nb=O 1943 0003 075 1

Nb-O 2014 0010 075 3

NbS-1

Nb=O 1711 0032 091 1

Nb-O 2014 0005 091 3

NbS-1+GVL

Nb=O 1770 0004 089 1

Nb-O 2014 0014 089 3 aR = Interatomic distance from central scattering atom σ = Debye-Waller factor Amp = amplitude factor

and CN = coordination number

39

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption

Samples GVLHZSM-5(0041) GVLNbS-1(00271) NbAlS-1(00270041) GVLNbAlS-1(00270041)

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma

Chemical formula Al3692Si92308O192 8GVL Nb2524Si93476O192 8GVL Al3599Nb2429Si89972O192 Al3599Nb2429Si89972O192 8GVL

2θ range for refinement (deg) 3 ndash 50 3 ndash 50 3 ndash 50 3 ndash 50

Detector Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals

Number of hkls 3251 3214 3179 3222

Refinement methods Rietveld Rietveld Rietveld Rietveld

a (Aring) 201351(2) 200604(2) 199955(3) 200697(3)

b (Aring) 199852(2) 198995(1) 198333(3) 199150(3)

c (Aring) 134549(2) 134010(1) 133531(2) 134214(2)

V (Aring3) 541428(11) 534957(7) 529553(15) 536437(15)

RwpRexp Rp () 445135013378 463131253497 553133614058 444933763305

Wavelength (Aring) 082487(1) 082487(1) 082487(1) 082487(1)

Gof χ2 1272 1482 1646 1318

40

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) at room

temperature

Species Atom x y z SOF Beq(Aring2) Wyckoff

HZSM-5(0041) Al1 -00732(5) 00570(7) 08366(7) 003846154 100(5) 8d

Al2 01869(6) -00339(5) 03189(8) 003846154 100(5) 8d

Al3 02207(5) -00626(7) 05256(8) 003846154 100(5) 8d

Al4 01210(5) 00590(7) 10220(8) 003846154 100(5) 8d

Al5 -00703(6) -00272(5) 01933(8) 003846154 100(5) 8d

Al6 01859(5) 00593(6) 06679(8) 003846154 100(5) 8d

Al7 -00745(6) 06734(6) 08243(9) 003846154 100(5) 8d

Al8 01956(6) 01297(5) 03114(7) 003846154 100(5) 8d

Al9 02187(5) 01761(5) 05326(8) 003846154 100(5) 8d

Al10 01228(5) 06749(6) 10400(8) 003846154 100(5) 8d

Al11 -00694(6) 01308(6) 01819(9) 003846154 100(5) 8d

Al12 01859(6) 06714(5) 06756(8) 003846154 100(5) 8d

Si1 -00732(5) 00570(7) 08366(7) 09615385 100(5) 8d

Si2 01869(6) -00339(5) 03189(8) 09615385 100(5) 8d

Si3 02207(5) -00626(7) 05256(8) 09615385 100(5) 8d

Si4 01210(5) 00590(7) 10220(8) 09615385 100(5) 8d

Si5 -00703(6) -00272(5) 01933(8) 09615385 100(5) 8d

Si6 01859(5) 00593(6) 06679(8) 09615385 100(5) 8d

Si7 -00745(6) 06734(6) 08243(9) 09615385 100(5) 8d

Si8 01956(6) 01297(5) 03114(7) 09615385 100(5) 8d

Si9 02187(5) 01761(5) 05326(8) 09615385 100(5) 8d

Si10 01228(5) 06749(6) 10400(8) 09615385 100(5) 8d

Si11 -00694(6) 01308(6) 01819(9) 09615385 100(5) 8d

Si12 01859(6) 06714(5) 06756(8) 09615385 100(5) 8d

O1 01189(10) -00643(12) 02762(13) 1 143(9) 8d

O2 01900(11) -00665(10) 04093(13) 1 143(9) 8d

O3 02017(11) 00485(12) 10198(11) 1 143(9) 8d

O4 -00964(9) -00573(13) 10736(15) 1 143(9) 8d

O5 01132(9) 00573(12) 07009(13) 1 143(9) 8d

O6 02544(10) 00574(13) 07592(13) 1 143(9) 8d

O7 01249(11) 01569(12) 02676(15) 1 143(9) 8d

O8 01995(12) 01482(9) 04331(13) 1 143(9) 8d

O9 01968(12) 06607(9) 00500(12) 1 143(9) 8d

O10 -00922(10) 01564(11) 10827(17) 1 143(9) 8d

O11 01123(10) 06498(11) 07436(14) 1 143(9) 8d

O12 02420(11) 06557(12) 07396(15) 1 143(9) 8d

O13 02109(9) 00468(11) 03170(12) 1 143(9) 8d

O14 -00793(8) 00525(13) 01708(13) 1 143(9) 8d

O15 -00850(10) 01327(12) 08874(17) 1 143(9) 8d

O16 -01009(10) 00004(11) 09239(15) 1 143(9) 8d

O17 -01006(10) 06343(12) -00444(14) 1 143(9) 8d

O18 01746(10) 01273(11) 06145(13) 1 143(9) 8d

O19 01980(12) 00019(10) 06091(12) 1 143(9) 8d

O20 02014(13) 06300(11) 05761(13) 1 143(9) 8d

O21 -00054(11) 00405(12) 07595(12) 1 143(9) 8d

O22 -00045(12) 06580(13) 07876(13) 1 143(9) 8d

O23 -00801(15) 075 0861(2) 1 143(9) 4c

O24 01839(17) 075 0648(2) 1 143(9) 4c

O25 02011(18) 025 0563(2) 1 143(9) 4c

O26 00863(13) 075 0143(2) 1 143(9) 4c

41

GVLI O1 -00251(15) 08553(18) -0468(2) 0500(3) 06(4) 8d

O2 -0013(2) 07533(17) -0531(3) 0500(3) 06(4) 8d

C1 00570(11) 08446(12) -05861(14) 0500(3) 06(4) 8d

C2 00466(18) 09175(12) -05663(18) 0500(3) 06(4) 8d

C3 0004(2) 09222(15) -0484(2) 0500(3) 06(4) 8d

C4 00038(13) 08112(15) -05293(19) 0500(3) 06(4) 8d

C5 -0034(3) 09728(19) -0448(3) 0500(3) 06(4) 8d

H1a 00999(11) 08315(15) -05641(17) 0500(3) 07(5) 8d

H1b 00528(13) 08360(13) -06553(15) 0500(3) 07(5) 8d

H2a 0088(2) 09384(14) -0553(2) 0500(3) 07(5) 8d

H2b 0026(2) 09378(15) -0622(2) 0500(3) 07(5) 8d

H3 0038(2) 09204(15) -04313(18) 0500(3) 07(5) 8d

H5a -0043(3) 0965(2) -0380(3) 0500(3) 07(5) 8d

H5b -0011(4) 10138(17) -0454(3) 0500(3) 07(5) 8d

H5c -0074(3) 0975(3) -0485(3) 0500(3) 07(5) 8d

GVLII O1 -03289(15) -0778(2) -02817(19) 0500(4) 06(4) 8d

O2 -04372(14) -0757(2) -02733(16) 0500(4) 06(4) 8d

C1 -03730(11) -07204(15) -04150(12) 0500(4) 06(4) 8d

C2 -02990(11) -0718(2) -04230(16) 0500(4) 06(4) 8d

C3 -02738(13) -0762(3) -0350(2) 0500(4) 06(4) 8d

C4 -03856(13) -07518(18) -03175(14) 0500(4) 06(4) 8d

C5 -02129(14) -0768(4) -0308(3) 0500(4) 06(4) 8d

H1a -03908(13) -07461(16) -04681(13) 0500(3) 07(5) 8d

H1b -03904(14) -06762(15) -04174(16) 0500(3) 07(5) 8d

H2a -02856(13) -0732(2) -04875(17) 0500(3) 07(5) 8d

H2b -02835(15) -0674(2) -04093(19) 0500(3) 07(5) 8d

H3 -0275(2) -0803(3) -0389(3) 0500(3) 07(5) 8d

H5a -0208(2) -0812(4) -0281(3) 0500(3) 07(5) 8d

H5b -01797(13) -0762(4) -0357(3) 0500(3) 07(5) 8d

H5c -02080(14) -0735(4) -0257(3) 0500(3) 07(5) 8d

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 6: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

5

and then sealed under vacuum The samples were exposed to γ-irradiation from a 60Co source at 77 K to a

total dose of 44 MRad at a dose rate of 05 MRad h-1 CW EPR measurements were carried out at X-band

(97 GHz) using a commercial spectrometer Bruker EMX equipped with Oxford Instruments temperature

control system at 77 K EPR spectra were detected with modulation amplitudes of 02 and 1 mT and

microwave powers of ~5 mW were chosen to provide optimum signal intensity without saturation of spectral

lines Simulations of EPR spectra were performed using the EasySpin toolbox (Version 5220)1 for Matlab

DFT calculations and modelling of the INS spectra

Periodic density functional theory (periodic-DFT) calculations were carried out using the plane wave

pseudopotential method as implemented in the CASTEP code23 Exchange and correlation were

approximated using the Perdew-Burke-Ernzerhof (PBE) functional4 Ultra-soft pseudopotentials were

employed to account for the effects of core electrons Tkatchenko-Scheffler dispersion correction5 was used

for van der Waals interactions Energy cutoff for plane-wave basis was 380 eV Phonon frequencies were

obtained by diagonalisation of dynamical matrices computed using finite displacement method The atomic

displacements in each mode that are part of the CASTEP output enable visualization of the modes to aid

assignments and are also all that is required to generate the INS spectrum using the program OCLIMAX67

DFT calculations of the INS spectra for single GVL molecule and adsorbed GVL were carried out which

were used to identify the modes of vibrational features in the experimental INS spectra The calculated INS

spectrum shows the total transitions (up to 10 orders) In addition DFT calculations of the INS spectra for

bare NbAlS-1 were performed to investigate the distribution of NbAlH sites Due to the large number of

configurations involved in these simulations the CP2K code8 based on the mixed Gaussian and plane-wave

scheme9 and the Quickstep module10 were used The calculation used molecularly optimised Double-Zeta-

Valence plus Polarization (DZVP) basis set11 Goedecker-Teter-Hutter pseudopotentials12 and the PBE

exchange correlation functional4 The plane-wave energy cutoff was 400 Ry The DFT-D3 level correction

for dispersion interactions as implemented by Grimme et al13 was applied

6

Supplementary Notes

Interaction between GVL and NbAlH sites

Synchrotron XPD has been successfully applied to study the interaction between guest molecules

and porous materials such as binding of hydrocarbons in porous metal-organic frameworks14 binding of

GVL in ZnZSM-515 and binding of pyridine in HZSM-516 In this study over 3100 hkl reflections were used

for the structural refinement which allowed for extensive structural variables to be refined in a satisfactory

manner It is almost impossible to distinguish between Al and Si (Z=13 and 14 respectively) sites using X-

rays diffraction Although Nb (Z=41) is heavier the low occupancy of Nb precludes the determination of its

precise location in the framework Recently the distribution of active sites in H-ZSM-516 and in ZnZSM-515

has been successfully determined by examining the intermolecular distances and angles between guest

molecules and framework sites For example protonic acid sites of H-ZSM-5 have been located by

examining the atomic distances and angles between pyridines and framework atoms16 GVL can be adsorbed

on Broslashnsted acid sites upon protonation of the C=O group17 while the O in the ring of GVL can be adsorbed

on Nb(V) sites18 Thus the distribution of active sites in NbAlS-1 has been revealed by a detailed

examination of the GVL-NbAlS-1 binding distances particularly that between O1GVL and T sites and

between O2GVL and Ozeolites (see Supplementary Table 12) Importantly the distances between O1GVLI and T8

and between O1GVLII and T6 are shortest in both GVL-adsorbed NbAlS-1 and NbS-1 indicating that Nb sites

are likely located at T8 and T6 positions Similarly the distances between O2GVLI and O25zeolites and that

between O2GVLII and O26zeolite are shortest in both GVL-adsorbed NbAlS-1 and HZSM-5 suggesting that

protonic acid sites are likely located at O25-T9 and O26-T10 centres In addition XAS measurements (Fig

3b) suggest that the Nb pre-edge position is influenced with an apparent blue-shift (~08 eV) for NbAlS-1

upon adsorption of GVL while no such shift is witnessed for NbS-1 This observation reflects the preferred

adsorption geometry within the bifunctional (Al and Nb-containing) zeolite NbAlS-1 consistent with the

crystallographic study

Distribution of NbAlH sites

The 29Si NMR spectra of NbAlS-1(00270041) and HZM-5(0041) show notable difference in the range of

-110 to -90 ppm (Supplementary Fig 16a) Curves are de-convoluted by Guassian and Lorentzian line

shapes The assignments and integration of peak areas are listed in Supplementary Table 13 The (Al+Si)Si

7

ratios calculated from the 29Si NMR data are highly consistent with that obtained from EDX The peak at -98

ppm is absent in the spectrum of HZSM-5(0041) indicating the absence of Si(OSi)2(OAl)2 species

(Supplementary Fig 16b) consistent with previous reports1920 By contrast the peak at -98 ppm is observed

in the NMR spectrum of NbAlS-1(00270041) suggesting the presence of Si(OSi)2(OAl)(ONb) species

(Supplementary Fig 16c and Supplementary Table 13)

Recently the distribution of protons in LTA zeolite has been studied using periodic DFT calculations

and INS2122 The distribution of NbAlH sites in NbAlS-1(00270041) has been further investigated by

combining INS and DFT calculations Four types of possible species ie species I [NbOSiOAl] species II

[NbOSiOSiOAl] species III [NbO(SiO)nAl (n ge 3)] and species IV (isolated Al no Nb around) and twelve

types of NbAlH species in NbAlS-1 have been simulated (Supplementary Table 14) From the synchrotron

XPD and Rietveld Refinement species I and II present in NbAlS-1(00270041) (Fig 4f and 4i) and thus

Nb and Al are positioned at T8 and T9 respectively for species I and at T6 and T10 respectively for

species II for the calculation of corresponding INS spectra The H sites have the same probability to appear

near all four O around Al and are thus attached to O25 O8 O18 O9 O26 O15 O10 and O9 respectively

(NbAlH_1-8 Supplementary Table 14) In species III Nb and Al are not adjacent Nb is positioned at T8 or

T6 and Al is moved to T12 (NbAlH_9) or T7 (NbAlH_10) Since the NbAl ratio is 0027004 325 of

Al are isolated (species IV) The isolated Al is positioned at T2 (NbAlH_11) or T4 (NbAlH_12) All

twelve NbAlH sites are simulated independently by DFT and the calculated INS spectra are compared with

the experimental data of bare NbAlS-1(00270041) (Supplementary Fig 17) As there is an uncertainty on

the position of H the calculated INS spectra are given different weights to assemble the combined spectrum

for NbAlS-1(00270041) Species I and II have the same occupancy (determined by Rietveld Refinement)

and they were given the same weight Based upon the NbAl ratio and 29Si NMR results the weights of all

four species are calculated (Supplementary Table 14) The spectrum of combination 1 is produced by

combining twelve spectra with calculated weights All peaks in combination 1 fit with those in the

experimental data particularly the peaks assigned to -OH in-plane bending and Si-O stretching at 1086 and

1191 cm-1 respectively (Supplementary Fig 18 and Supplementary Table 15) The intensities of peaks at

245-534 cm-1 (assigned to relaxation of zeolite framework and -OH out-of-plane bending in combination 1)

are lower than that of the experimental data because only one unit cell and a simplified model were used and

external SiOH groups are not considered in the simulation Combination 2 is produced without species I and

8

II (Supplementary Fig 18) and a number of peaks (77 157 237 and 317 cm-1) are absent compared with the

experimental data demonstrating the presence of species I and II that promotes the adsorption of GVL in

NbAlS-1 via the ldquochelatingrdquo mechanism

Inelastic neutron scattering

Direct visualisation of the interaction between adsorbed GVL and the active sites is crucial to understand the

molecular details of adsorption activation and ring-open and decarboxylation of GVL into butenes INS is a

powerful neutron spectroscopy technique to investigate the dynamics (particularly for the deformational and

conformational modes) of GVL It has several advantages

INS spectroscopy is sensitive to the vibrations of hydrogen atoms and hydrogen is ten times more

visible than other elements due to its high neutron cross-section

The technique is not subject to any optical selection rules All vibrations are active and in principle

measurable

INS observations are not restricted to the centre of the Brillouin zone (gamma point) as is the case for

optical techniques

INS spectra can be readily and accurately modelled the intensities are proportional to the concentration

of elements in the sample and their cross-sections and the measured INS intensities relate

straightforwardly to the associated displacements of the scattering atom Treatment of background

correction is also straightforward

Neutrons penetrate deeply into materials and pass readily through the walls of metal containers making

neutrons ideal to measure bulk properties of this material (in this case for 11 g catalyst)

INS spectrometers cover the whole range of the molecular vibrational spectrum 0-500 meV (0-4000 cm-

1)

INS data can be collected at low temperature (lt 15 K in this case) where the thermal motion of the

catalyst the adsorbed GVL and the reacted intermediate molecules can be significantly reduced

9

Supplementary Figures

Fig S1 Comparison of PXRD patterns of HZSM-5 NbS-1 and NbAlS-1 (λ = 15406 Aring)

5 10 15 20 25 30 35 40

NbAlS-1(00270041)

NbAlS-1(00400271)

NbS-1(0041)

NbS-1(00271)

HZSM-5(00671)

HZSM-5(0041)

In

tensity (

au

)

2 (degree)

HZSM-5(00271)

10

Fig S2 SEM images of (a) HZSM-5(0041) (b) NbS-1 (00271) and (c) NbAlS-1(00270041)

a

500 nm

b

500 nm

c

500 nm

11

Fig S3 Characterisation of the acidity of zeolites by Pyridine-IR (a) Py-IR spectra after vacuum treatment

at 150 oC Py-IR spectra of (b) HZSM-5(0041) (c) NbS-1(00271) and (d) NbAlS-1(00270041) after

vacuum treatment at variable temperatures The peaks at 1454 and 1545 cm-1 are assigned to the

coordinatively bound pyridine molecules on Lewis acid sites and pyridinium ion on Broslashnsted acid sites

respectively23 Both the coordinatively bound pyridine and pyridinium ion have the vibration peak at 1490

cm-1 23 The Lewis acid band is centred at 1454 cm-1 in the spectra of HZSM-5 while it shifts to 1447 cm-1 in

the spectra of Nb-doped zeolite which is similar to the reported Lewis acid band (centred at 1448 cm-1) in

niobium phosphate24 The decrease of frequency of the band is related to the reduced stability of the pyridine

complex23 which is verified by the desorption experiments b c and d show the Py-IR spectra of HZSM-

5(0041) NbS-1(00271) and NbAlS-1 (00270041) respectively after desorption of pyridine at variable

temperatures With the increase of temperature the peak intensities related to both Lewis and Broslashnsted acid

sites of HZSM-5 decrease slowly Both peaks are visible even after the vacuum treatment at 450 degC (b)

However the intensities of peaks at 1447 cm-1 in the spectra of NbS-1 and NbAlS-1 decreased dramatically

upon increasing temperature and disappeared at 350 degC (c and d) Also the peaks related to Broslashnsted acid

sites on NbAlS-1 samples disappeared even at 250 degC (c and d) This result indicates that the NbAlS-1

samples have only weak Lewis and weak Broslashnsted acid sites entirely consistent with the NH3-TPD results in

Supplementary Fig 4

a b

cd

1420 1440 1460 1480 1500 1520 1540 1560 1580

NbAlS-1(00400271)

NbAlS-1(00270041)

NbS-1(0041)

NbS-1(00271)

HZSM-5(00671)

HZSM-5(0041)

HZSM-5 (00271)

Inte

nsity (

au

)

Wavenumber (cm-1)

1420 1440 1460 1480 1500 1520 1540 1560 1580

Ine

nsity (

au

)

Wavenumber (cm-1)

150 oC

200 oC

250 oC

350 oC

450 oC

1420 1440 1460 1480 1500 1520 1540 1560 1580

Inte

nsity (

au

)

Wavenumber (cm-1)

150 oC

200 oC

250 oC

350 oC

450 oC

1420 1440 1460 1480 1500 1520 1540 1560 1580

Inte

nsity (

au

)

Wavenumber (cm-1)

150 oC

200 oC

250 oC

350 oC

450 oC

12

Fig S4 Characterisation of the acidity of zeolites by NH3-TPD Two peaks at 240 and 435 degC correspond to

NH3 eluted from the weak and strong acid sites respectively25

100 150 200 250 300 350 400 450 500 550 600

Inte

nsity (

au

)

Temperature (oC)

NbAlS-1(00400271)

NbAlS-1(00270041)

NbS-1(0041)

NbS-1(00271)

HZSM-5(00671)

HZSM-5(0041)

HZSM-5(00271)

13

Fig S5 GC-MS results of the products from the conversion of GVL at 320 oC (a) Gas and (b) liquid

products from conversion of pure GVL over HZSM-5(0041) (c) Gas and (d) liquid products from

conversion of pure GVL over NbS-1(00271) (e) Gas and (f) liquid products from conversion of pure GVL

over NbAlS-1(00270041) (g) Gas and (h) liquid products from conversion of 30 GVL over NbAlS-

1(00270041) The water in g is solely from the feeding solution rather than produced from dehydration as

no dehydration products are observed

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

b

d

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

a

c

N2

CO2

C2H4 C2H6 C3H6 C3H8

C4H10

C4H8

H2O

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

N2

CO2

C4H8

H2O

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

fe

Pentenoic

acid isomers

Pentenoic

acid isomers

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

Aromatics

Pentenoic

acid isomers

g h

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

N2

CO2C4H8

N2

CO2

C4H8

H2O

C2H4 C2H6 C3H6

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

14

Fig S6 TGA (black) and DSC (red) plots of used HZSM-5(0041) (a) and NbAlS-1(00270041) (b)

catalysts after the conversion of pure GVL at 320 oC The by-products (eg coke) deposited on the surface

of used HZSM-5(0041) are significantly more stable than those on used NbAlS-1(00270041)

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

-10

-08

-06

-04

-02

00

02

04

06

08

10

500

Hea

t flow

(W

g)

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

-10

-08

-06

-04

-02

00

02

04

06

08

10

430

He

at flow

(W

g)

330

a b

15

Fig S7 TGA plots of used NbAlS-1(00270041) catalysts after the conversion of pure GVL (black) and 30

wt GVL (red) at 320 oC The presence of water in this catalytic system effectively hindered the formation

of by-products on the catalyst surface

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

for 30 GVL feeding

for pure GVL feeding

16

Fig S8 Comparison of FTIR spectra of NbAlS-1 before and after the conversion of 30wt GVL at 320 oC

for 180 h

1400 1300 1200 1100 1000 900 800 700 600

Absorb

ance (

au

)

Wavenumber (cm-1)

NbAlS-1(00270041) used

NbAlS-1(00270041)

971

17

Fig S9 X-band (ca 9 GHz) EPR spectra of NbAlS-1 and post-reaction zeolites activated by γ-irradiation at

77 K (a) wide magnetic field-sweep highlighting the induced Nb(IV) signals in NbAlS-1(00270041) and

the used sample and (b) narrow magnetic field-sweep highlighting the induced electron hole defect Al-O-

Si signals in fresh and used NbAlS-1(00270041) samples

a

b

100 150 200 250 300 350 400 450 500 550

Nb simulation

NbAlS-1(00270041)

used

Inte

nsity (

au

)

NbAlS-1(00270041)

Magnetic field (mT)

300 310 320 330 340 350 360

NbAlS-1(00270041) used

Al simulation

Inte

nsity (

au

)

Magnetic field (mT)

NbAlS-1(00270041)

18

Fig S10 (a) XAS spectra of the fresh and used NbAlS-1(00270041) (b) Phase-corrected k3-weighted

Fourier Transform of the EXAFS spectra for fresh and used NbAlS-1(00270041) The stability of the Nb

active sites within NbAlS-1(00270041) was verified by Nb K edge XAS with both fresh and used

catalysts exhibiting the same pre-edge XANES and EXAFS features

00

04

08

12

16

20

18800 19075 19350 19625 19900

No

rm a

bso

rptio

n (

au

)

Energy (eV)

NbAlS-1(00270041)

0

1

2

3

4

5

6

7

0 2 4 6

χ(R

)(Aring

-4)

Radial distance (Aring)

a b

NbAlS-1(00270041)

NbAlS-1(00270041) used

NbAlS-1(00270041)

used

19

Fig S11 27Al MAS NMR spectra of fresh and used zeolites Chemical shifts at 0 and 55 ppm are assigned to

six-coordinate extra-framework and four-coordinate framework aluminum species respectively26

100 80 60 40 20 0 -20 -40

NbAlS-1(00270041) used

NbAlS-1(00270041)

HZSM-5(0041) used

27Al chemical shift (ppm)

HZSM-5(0041)

20

Fig S12 Characterisation of the acidity of fresh and used zeolites by NH3-TPD

100 150 200 250 300 350 400 450 500 550 600

In

tensity (

au

)

Temperature (oC)

NbAlS-1(00270041) used

NbAlS-1(00270041)

HZSM-5(0041) used

HZSM-5(0041)

21

Fig S13 X-band (ca 9 GHz) EPR spectra of HZSM-5 and post-reaction zeolites activated by γ-irradiation

at 77 K narrow magnetic field-sweep highlighting the induced electron hole defect Al-O-Si signals in

HZSM-5 (0041) and the used sample

300 310 320 330 340 350 360

HZSM-50041) used

Al simulation

Inte

nsity (

au

)

Magnetic field (mT)

HZSM-5(0041)

22

Fig S14 Comparison of SXPD patterns of (a) HZSM-5(0041) (b) NbS-1(00271) and (c) NbAlS-

1(00270041) before and after adsorption of GVL at room temperature [λ = 082487(1) Aring]

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbAlS-1(0027041)

GVLNbAlS-1(0027041)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbS-1(00271)

GVLNbS-1(00271)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

HZSM-5(0041)

GVLHZSM-5(0041)

a

b

c

23

Fig S15 Comparison of the experimental data (black line) and Rietveld refinement (red line) and the

difference between them (grey line) for SXPD patterns of (ab) GVLHZSM-5(0041) (cd) GVLNbS-

1(00271) (ef) GVLNbAlS-1(00270041) at room temperature at a 2θ range of (ace) 3 - 20deg and

(bdf) 20 - 50deg [λ = 082487(1) Aring]

a b

c d

e f

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

24

Fig S16 (a) 29Si NMR spectra of HZSM-5 and NbAlS-1 de-convolution of 29Si NMR spectra of HZSM-5

(b) and NbAlS-1 (c) by Guassian and Lorentzian line shapes

a

b

c

-125 -120 -115 -110 -105 -100 -95 -90 -85

-1023

-1076

-1138

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-4

Cumulative Fitted Peak

-1171

-125 -120 -115 -110 -105 -100 -95 -90 -85

-924-983

-1026

-1057

-1124

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-6

Cumulative Fitted Peak

-1162

-125 -120 -115 -110 -105 -100 -95 -90 -8529

Si chemical shift (ppm)

NbAlS-1(00270041)

HZSM-5(0041)

25

Fig S17 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and calculated INS

spectra for 12 types of NbAlH sites

0 200 400 600 800 1000 1200 1400 1600

1211109876

4

23

5

1

Bare NbAlS-1 (exp)

S(Q

) (a

u)

Neutron energy loss (cm-1)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

26

Fig S18 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and combination of

calculated INS spectra of different NbAlH sites Combination 1 = 3125Site I + 3125Site II +

5Site III + 325Site IV Combination 2 = 675Site III + 325Site IV Site I = 025(NbAlH_1 +

NbAlH_2 + NbAlH_3 + NbAlH_4) Site II = 025(NbAlH_5 + NbAlH_6 + NbAlH_7 +

NbAlH_8) Site III = 05(NbAlH_9 + NbAlH_10) Site IV = 05(NbAlH_11 + NbAlH_12)

Abscissa is scaled down by 097 for combination 1 and 2

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Bare NbAlS-1 (exp)

Combination 1

Combination 2

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

27

Fig S19 Schematic view of the procedure of in situ INS experiment and data collection

Zeolite (Calcined)

Zeolite (activated)

Heating at 450 oC under

He flow for 3 h

Zeolite (Adsorbed)

INS collection 1

Zeolite (Reaction at 280 C)

Adsorption of GVL at 135 oC

Zeolite (Reaction at 300 C)

Zeolite (Reaction at 320 C)

Reaction at 280 oC for 3 min

Reaction at 300 oC for 3 min

Reaction at 320 oC for 3 min

INS collection 2

INS collection 3

INS collection 4

INS collection 5

28

Fig S20 Comparison of the experimental INS spectra of condensed GVL in the solid state (black) and

calculated INS spectra of single GVL molecule (red) The crystal structure of solid GVL is unavailable in the

database

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental GVL

Calculated GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

29

Fig S21 Comparison of the experimental and calculated INS spectra of adsorbed GVL molecules on

NbAlS-1 The structure model derived from SXPD experiments was used for initial DFT modelling where

the positional disorder has been removed in the calculation and this partially accounts for the discrepancies

observed between calculated and experimental INS plots

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental adsorbed GVL

Calculated adsorbed GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

30

Fig S22 View of the INS spectrum for the empty catalysis cell used for this experiment The empty can has

the features below 300 cm-1 and at approximately 457 and 659 cm-1

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Empty can

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

31

Fig S23 Comparison of the experimental INS spectra for bare and GVL-adsorbed catalyst Spectra shown

are after subtraction of the empty cell The INS spectrum of the catalyst on GVL adsorption at 135 degC shows

a significant increase in total intensity demonstrating the binding of GVL to the catalyst sites

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

GVLNbAlS-1(00270041)

Bare NbAlS-1(00270041)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

32

Fig S24 Comparison of the experimental INS spectra of all butene isomers and reacted GVL at 320 degC

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Reaction 320 oC

trans-2-butene

i-butene

1-butene

cis-2-butene

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

33

Supplementary Tables

Table S1 Textural properties (data determined from N2 sorption isotherms at 77 K) and crystallite size (data

determined from SEM) of all zeolites used in this study

Samples ABET (m2 g-1)a Amic (m2 g-1) b Aext (m2 g-1) c Vmic (cm3 g-1) d Vtotal (cm3 g-1) e

Crystallite sizef

(nm)

HZSM-5 (00271) 413 314 99 019 033 200-500

HZSM-5 (0041) 346 259 87 015 028 200-500

HZSM-5 (00671) 348 277 71 016 026 200-500

NbS-1 (00271) 377 284 93 017 029 300-500

NbS-1 (0041) 357 282 75 016 027 300-500

NbAlS-1(00270041) 408 263 145 018 041 300-500

NbAlS-1(00400271) 376 268 108 017 033 300-500

HZSM-5 (0041)g 338 258 80 015 027 200-500

NbAlS-1(00270041)g 396 262 134 018 039 300-500

aBET specific surface area bMicropore surface area cExternal surface area dMicropore volume eTotal pore volume fObtainted from SEM gUsed catalyst

34

Table S2 Spin-Hamiltonian parameters of radiation induced Nb(IV) and electron hole Al-O-Si defects

from simulation of CW X-band EPR spectra in Fig 1 lw is the homogeneous Lorentzian linewidth g and A

are the principle values of the g and hyperfine interaction tensors

Signal Parameters

Electron

Spin

Nuclear

Spin g-tensor g-Strain

A-tensor

(G)

lw

(mT)

Nb defect 12 92 [1935 1935 1866] [004 004 00] [159 159

310] [0 40]

Al defect 12 52 [20012 2007 2045] [00 0003 004] [7 7 -] [00 04]

35

Table S3 Summary of acidity of all zeolites used in this work Data were determined by NH3-TPD and

Pyridine-IR studies

Catalyst Weak acida

(mmol g-1)

Strong acida

(mmol g-1)

Total acida

(mmol g-1)

LB acid

ratiob

HZSM-5(00271) 015 025 04 039

HZSM-5(0041) 024 028 052 037

HZSM-5(00671) 033 03 063 027

NbS-1(00271) 004 0 004 -

NbS-1(0041) 004 0 004 -

NbAlS-1(00270041) 022 0 022 469

NbAlS-1(00400271) 023 0 023 35 aFrom NH3-TPD bFrom Pyridine-IR

36

Table S4 The butenes distribution in equilibrium at 320 degC and the distribution of butene isomers produced

from conversion of 30 GVL at 320 degC over catalysts

Catalyst Distribution ()

i-butene 1-butene trans-2-butene cis-2-butene

Equilibrium27 45 12 27 16

HZSM-5(0041) 44 14 25 17

NbAlS-1(00270041) 18 19 38 25

NbOPO4 15 20 39 26

37

Table S5 Comparison of the catalytic performance of reported catalysts for the conversion of GVL in aqueous solution (25-40 wt ) to butenes

Catalyst Reaction Conditions GVL

concentration

(wt )

GVL

conversion

()

Butene

Yield

(mol )a

Ref

Temperature

(degC)

WHSV

(h-1)

Pressure

(bar)

NbAlS-1(00270041) 320 018 1 30 100 993 this work

SiO2Al2O3 375 09 1 30 97 75 28

HZSM-5(0041) 320 018 1 30 76 232 this work

LaZSM-5 450 1 10 40 gt99 ca 21 15

PdNb2O5b 275 05 14 30d 100 lt16c 29

Zn-AlPO-5 397 077 10 40 65 ca 12 30

H3PO4 240 - - 25 100 12c 31

ZnZSM-5 450 1 10 40 gt99 ca 6 15

AlPO-5 397 077 10 40 2 ca 04 30

aButene yield is calculated by the equation defined in the Method section

bunder H2 atmosphere

cThe product includes both butene and butane d002 M H2SO4 was added in the GVL solution

38

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1

R (Aring)a σ a Amp a CN a

NbAlS-1 (Dry) Nb=O 1680 0017 082 1 Nb-O 2014 0008 082 3 NbAlS-1

Nb=O 1721 0012 078 1

Nb-O 2014 0004 078 3

NbAlS-1+GVL

Nb=O 1943 0003 075 1

Nb-O 2014 0010 075 3

NbS-1

Nb=O 1711 0032 091 1

Nb-O 2014 0005 091 3

NbS-1+GVL

Nb=O 1770 0004 089 1

Nb-O 2014 0014 089 3 aR = Interatomic distance from central scattering atom σ = Debye-Waller factor Amp = amplitude factor

and CN = coordination number

39

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption

Samples GVLHZSM-5(0041) GVLNbS-1(00271) NbAlS-1(00270041) GVLNbAlS-1(00270041)

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma

Chemical formula Al3692Si92308O192 8GVL Nb2524Si93476O192 8GVL Al3599Nb2429Si89972O192 Al3599Nb2429Si89972O192 8GVL

2θ range for refinement (deg) 3 ndash 50 3 ndash 50 3 ndash 50 3 ndash 50

Detector Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals

Number of hkls 3251 3214 3179 3222

Refinement methods Rietveld Rietveld Rietveld Rietveld

a (Aring) 201351(2) 200604(2) 199955(3) 200697(3)

b (Aring) 199852(2) 198995(1) 198333(3) 199150(3)

c (Aring) 134549(2) 134010(1) 133531(2) 134214(2)

V (Aring3) 541428(11) 534957(7) 529553(15) 536437(15)

RwpRexp Rp () 445135013378 463131253497 553133614058 444933763305

Wavelength (Aring) 082487(1) 082487(1) 082487(1) 082487(1)

Gof χ2 1272 1482 1646 1318

40

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) at room

temperature

Species Atom x y z SOF Beq(Aring2) Wyckoff

HZSM-5(0041) Al1 -00732(5) 00570(7) 08366(7) 003846154 100(5) 8d

Al2 01869(6) -00339(5) 03189(8) 003846154 100(5) 8d

Al3 02207(5) -00626(7) 05256(8) 003846154 100(5) 8d

Al4 01210(5) 00590(7) 10220(8) 003846154 100(5) 8d

Al5 -00703(6) -00272(5) 01933(8) 003846154 100(5) 8d

Al6 01859(5) 00593(6) 06679(8) 003846154 100(5) 8d

Al7 -00745(6) 06734(6) 08243(9) 003846154 100(5) 8d

Al8 01956(6) 01297(5) 03114(7) 003846154 100(5) 8d

Al9 02187(5) 01761(5) 05326(8) 003846154 100(5) 8d

Al10 01228(5) 06749(6) 10400(8) 003846154 100(5) 8d

Al11 -00694(6) 01308(6) 01819(9) 003846154 100(5) 8d

Al12 01859(6) 06714(5) 06756(8) 003846154 100(5) 8d

Si1 -00732(5) 00570(7) 08366(7) 09615385 100(5) 8d

Si2 01869(6) -00339(5) 03189(8) 09615385 100(5) 8d

Si3 02207(5) -00626(7) 05256(8) 09615385 100(5) 8d

Si4 01210(5) 00590(7) 10220(8) 09615385 100(5) 8d

Si5 -00703(6) -00272(5) 01933(8) 09615385 100(5) 8d

Si6 01859(5) 00593(6) 06679(8) 09615385 100(5) 8d

Si7 -00745(6) 06734(6) 08243(9) 09615385 100(5) 8d

Si8 01956(6) 01297(5) 03114(7) 09615385 100(5) 8d

Si9 02187(5) 01761(5) 05326(8) 09615385 100(5) 8d

Si10 01228(5) 06749(6) 10400(8) 09615385 100(5) 8d

Si11 -00694(6) 01308(6) 01819(9) 09615385 100(5) 8d

Si12 01859(6) 06714(5) 06756(8) 09615385 100(5) 8d

O1 01189(10) -00643(12) 02762(13) 1 143(9) 8d

O2 01900(11) -00665(10) 04093(13) 1 143(9) 8d

O3 02017(11) 00485(12) 10198(11) 1 143(9) 8d

O4 -00964(9) -00573(13) 10736(15) 1 143(9) 8d

O5 01132(9) 00573(12) 07009(13) 1 143(9) 8d

O6 02544(10) 00574(13) 07592(13) 1 143(9) 8d

O7 01249(11) 01569(12) 02676(15) 1 143(9) 8d

O8 01995(12) 01482(9) 04331(13) 1 143(9) 8d

O9 01968(12) 06607(9) 00500(12) 1 143(9) 8d

O10 -00922(10) 01564(11) 10827(17) 1 143(9) 8d

O11 01123(10) 06498(11) 07436(14) 1 143(9) 8d

O12 02420(11) 06557(12) 07396(15) 1 143(9) 8d

O13 02109(9) 00468(11) 03170(12) 1 143(9) 8d

O14 -00793(8) 00525(13) 01708(13) 1 143(9) 8d

O15 -00850(10) 01327(12) 08874(17) 1 143(9) 8d

O16 -01009(10) 00004(11) 09239(15) 1 143(9) 8d

O17 -01006(10) 06343(12) -00444(14) 1 143(9) 8d

O18 01746(10) 01273(11) 06145(13) 1 143(9) 8d

O19 01980(12) 00019(10) 06091(12) 1 143(9) 8d

O20 02014(13) 06300(11) 05761(13) 1 143(9) 8d

O21 -00054(11) 00405(12) 07595(12) 1 143(9) 8d

O22 -00045(12) 06580(13) 07876(13) 1 143(9) 8d

O23 -00801(15) 075 0861(2) 1 143(9) 4c

O24 01839(17) 075 0648(2) 1 143(9) 4c

O25 02011(18) 025 0563(2) 1 143(9) 4c

O26 00863(13) 075 0143(2) 1 143(9) 4c

41

GVLI O1 -00251(15) 08553(18) -0468(2) 0500(3) 06(4) 8d

O2 -0013(2) 07533(17) -0531(3) 0500(3) 06(4) 8d

C1 00570(11) 08446(12) -05861(14) 0500(3) 06(4) 8d

C2 00466(18) 09175(12) -05663(18) 0500(3) 06(4) 8d

C3 0004(2) 09222(15) -0484(2) 0500(3) 06(4) 8d

C4 00038(13) 08112(15) -05293(19) 0500(3) 06(4) 8d

C5 -0034(3) 09728(19) -0448(3) 0500(3) 06(4) 8d

H1a 00999(11) 08315(15) -05641(17) 0500(3) 07(5) 8d

H1b 00528(13) 08360(13) -06553(15) 0500(3) 07(5) 8d

H2a 0088(2) 09384(14) -0553(2) 0500(3) 07(5) 8d

H2b 0026(2) 09378(15) -0622(2) 0500(3) 07(5) 8d

H3 0038(2) 09204(15) -04313(18) 0500(3) 07(5) 8d

H5a -0043(3) 0965(2) -0380(3) 0500(3) 07(5) 8d

H5b -0011(4) 10138(17) -0454(3) 0500(3) 07(5) 8d

H5c -0074(3) 0975(3) -0485(3) 0500(3) 07(5) 8d

GVLII O1 -03289(15) -0778(2) -02817(19) 0500(4) 06(4) 8d

O2 -04372(14) -0757(2) -02733(16) 0500(4) 06(4) 8d

C1 -03730(11) -07204(15) -04150(12) 0500(4) 06(4) 8d

C2 -02990(11) -0718(2) -04230(16) 0500(4) 06(4) 8d

C3 -02738(13) -0762(3) -0350(2) 0500(4) 06(4) 8d

C4 -03856(13) -07518(18) -03175(14) 0500(4) 06(4) 8d

C5 -02129(14) -0768(4) -0308(3) 0500(4) 06(4) 8d

H1a -03908(13) -07461(16) -04681(13) 0500(3) 07(5) 8d

H1b -03904(14) -06762(15) -04174(16) 0500(3) 07(5) 8d

H2a -02856(13) -0732(2) -04875(17) 0500(3) 07(5) 8d

H2b -02835(15) -0674(2) -04093(19) 0500(3) 07(5) 8d

H3 -0275(2) -0803(3) -0389(3) 0500(3) 07(5) 8d

H5a -0208(2) -0812(4) -0281(3) 0500(3) 07(5) 8d

H5b -01797(13) -0762(4) -0357(3) 0500(3) 07(5) 8d

H5c -02080(14) -0735(4) -0257(3) 0500(3) 07(5) 8d

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 7: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

6

Supplementary Notes

Interaction between GVL and NbAlH sites

Synchrotron XPD has been successfully applied to study the interaction between guest molecules

and porous materials such as binding of hydrocarbons in porous metal-organic frameworks14 binding of

GVL in ZnZSM-515 and binding of pyridine in HZSM-516 In this study over 3100 hkl reflections were used

for the structural refinement which allowed for extensive structural variables to be refined in a satisfactory

manner It is almost impossible to distinguish between Al and Si (Z=13 and 14 respectively) sites using X-

rays diffraction Although Nb (Z=41) is heavier the low occupancy of Nb precludes the determination of its

precise location in the framework Recently the distribution of active sites in H-ZSM-516 and in ZnZSM-515

has been successfully determined by examining the intermolecular distances and angles between guest

molecules and framework sites For example protonic acid sites of H-ZSM-5 have been located by

examining the atomic distances and angles between pyridines and framework atoms16 GVL can be adsorbed

on Broslashnsted acid sites upon protonation of the C=O group17 while the O in the ring of GVL can be adsorbed

on Nb(V) sites18 Thus the distribution of active sites in NbAlS-1 has been revealed by a detailed

examination of the GVL-NbAlS-1 binding distances particularly that between O1GVL and T sites and

between O2GVL and Ozeolites (see Supplementary Table 12) Importantly the distances between O1GVLI and T8

and between O1GVLII and T6 are shortest in both GVL-adsorbed NbAlS-1 and NbS-1 indicating that Nb sites

are likely located at T8 and T6 positions Similarly the distances between O2GVLI and O25zeolites and that

between O2GVLII and O26zeolite are shortest in both GVL-adsorbed NbAlS-1 and HZSM-5 suggesting that

protonic acid sites are likely located at O25-T9 and O26-T10 centres In addition XAS measurements (Fig

3b) suggest that the Nb pre-edge position is influenced with an apparent blue-shift (~08 eV) for NbAlS-1

upon adsorption of GVL while no such shift is witnessed for NbS-1 This observation reflects the preferred

adsorption geometry within the bifunctional (Al and Nb-containing) zeolite NbAlS-1 consistent with the

crystallographic study

Distribution of NbAlH sites

The 29Si NMR spectra of NbAlS-1(00270041) and HZM-5(0041) show notable difference in the range of

-110 to -90 ppm (Supplementary Fig 16a) Curves are de-convoluted by Guassian and Lorentzian line

shapes The assignments and integration of peak areas are listed in Supplementary Table 13 The (Al+Si)Si

7

ratios calculated from the 29Si NMR data are highly consistent with that obtained from EDX The peak at -98

ppm is absent in the spectrum of HZSM-5(0041) indicating the absence of Si(OSi)2(OAl)2 species

(Supplementary Fig 16b) consistent with previous reports1920 By contrast the peak at -98 ppm is observed

in the NMR spectrum of NbAlS-1(00270041) suggesting the presence of Si(OSi)2(OAl)(ONb) species

(Supplementary Fig 16c and Supplementary Table 13)

Recently the distribution of protons in LTA zeolite has been studied using periodic DFT calculations

and INS2122 The distribution of NbAlH sites in NbAlS-1(00270041) has been further investigated by

combining INS and DFT calculations Four types of possible species ie species I [NbOSiOAl] species II

[NbOSiOSiOAl] species III [NbO(SiO)nAl (n ge 3)] and species IV (isolated Al no Nb around) and twelve

types of NbAlH species in NbAlS-1 have been simulated (Supplementary Table 14) From the synchrotron

XPD and Rietveld Refinement species I and II present in NbAlS-1(00270041) (Fig 4f and 4i) and thus

Nb and Al are positioned at T8 and T9 respectively for species I and at T6 and T10 respectively for

species II for the calculation of corresponding INS spectra The H sites have the same probability to appear

near all four O around Al and are thus attached to O25 O8 O18 O9 O26 O15 O10 and O9 respectively

(NbAlH_1-8 Supplementary Table 14) In species III Nb and Al are not adjacent Nb is positioned at T8 or

T6 and Al is moved to T12 (NbAlH_9) or T7 (NbAlH_10) Since the NbAl ratio is 0027004 325 of

Al are isolated (species IV) The isolated Al is positioned at T2 (NbAlH_11) or T4 (NbAlH_12) All

twelve NbAlH sites are simulated independently by DFT and the calculated INS spectra are compared with

the experimental data of bare NbAlS-1(00270041) (Supplementary Fig 17) As there is an uncertainty on

the position of H the calculated INS spectra are given different weights to assemble the combined spectrum

for NbAlS-1(00270041) Species I and II have the same occupancy (determined by Rietveld Refinement)

and they were given the same weight Based upon the NbAl ratio and 29Si NMR results the weights of all

four species are calculated (Supplementary Table 14) The spectrum of combination 1 is produced by

combining twelve spectra with calculated weights All peaks in combination 1 fit with those in the

experimental data particularly the peaks assigned to -OH in-plane bending and Si-O stretching at 1086 and

1191 cm-1 respectively (Supplementary Fig 18 and Supplementary Table 15) The intensities of peaks at

245-534 cm-1 (assigned to relaxation of zeolite framework and -OH out-of-plane bending in combination 1)

are lower than that of the experimental data because only one unit cell and a simplified model were used and

external SiOH groups are not considered in the simulation Combination 2 is produced without species I and

8

II (Supplementary Fig 18) and a number of peaks (77 157 237 and 317 cm-1) are absent compared with the

experimental data demonstrating the presence of species I and II that promotes the adsorption of GVL in

NbAlS-1 via the ldquochelatingrdquo mechanism

Inelastic neutron scattering

Direct visualisation of the interaction between adsorbed GVL and the active sites is crucial to understand the

molecular details of adsorption activation and ring-open and decarboxylation of GVL into butenes INS is a

powerful neutron spectroscopy technique to investigate the dynamics (particularly for the deformational and

conformational modes) of GVL It has several advantages

INS spectroscopy is sensitive to the vibrations of hydrogen atoms and hydrogen is ten times more

visible than other elements due to its high neutron cross-section

The technique is not subject to any optical selection rules All vibrations are active and in principle

measurable

INS observations are not restricted to the centre of the Brillouin zone (gamma point) as is the case for

optical techniques

INS spectra can be readily and accurately modelled the intensities are proportional to the concentration

of elements in the sample and their cross-sections and the measured INS intensities relate

straightforwardly to the associated displacements of the scattering atom Treatment of background

correction is also straightforward

Neutrons penetrate deeply into materials and pass readily through the walls of metal containers making

neutrons ideal to measure bulk properties of this material (in this case for 11 g catalyst)

INS spectrometers cover the whole range of the molecular vibrational spectrum 0-500 meV (0-4000 cm-

1)

INS data can be collected at low temperature (lt 15 K in this case) where the thermal motion of the

catalyst the adsorbed GVL and the reacted intermediate molecules can be significantly reduced

9

Supplementary Figures

Fig S1 Comparison of PXRD patterns of HZSM-5 NbS-1 and NbAlS-1 (λ = 15406 Aring)

5 10 15 20 25 30 35 40

NbAlS-1(00270041)

NbAlS-1(00400271)

NbS-1(0041)

NbS-1(00271)

HZSM-5(00671)

HZSM-5(0041)

In

tensity (

au

)

2 (degree)

HZSM-5(00271)

10

Fig S2 SEM images of (a) HZSM-5(0041) (b) NbS-1 (00271) and (c) NbAlS-1(00270041)

a

500 nm

b

500 nm

c

500 nm

11

Fig S3 Characterisation of the acidity of zeolites by Pyridine-IR (a) Py-IR spectra after vacuum treatment

at 150 oC Py-IR spectra of (b) HZSM-5(0041) (c) NbS-1(00271) and (d) NbAlS-1(00270041) after

vacuum treatment at variable temperatures The peaks at 1454 and 1545 cm-1 are assigned to the

coordinatively bound pyridine molecules on Lewis acid sites and pyridinium ion on Broslashnsted acid sites

respectively23 Both the coordinatively bound pyridine and pyridinium ion have the vibration peak at 1490

cm-1 23 The Lewis acid band is centred at 1454 cm-1 in the spectra of HZSM-5 while it shifts to 1447 cm-1 in

the spectra of Nb-doped zeolite which is similar to the reported Lewis acid band (centred at 1448 cm-1) in

niobium phosphate24 The decrease of frequency of the band is related to the reduced stability of the pyridine

complex23 which is verified by the desorption experiments b c and d show the Py-IR spectra of HZSM-

5(0041) NbS-1(00271) and NbAlS-1 (00270041) respectively after desorption of pyridine at variable

temperatures With the increase of temperature the peak intensities related to both Lewis and Broslashnsted acid

sites of HZSM-5 decrease slowly Both peaks are visible even after the vacuum treatment at 450 degC (b)

However the intensities of peaks at 1447 cm-1 in the spectra of NbS-1 and NbAlS-1 decreased dramatically

upon increasing temperature and disappeared at 350 degC (c and d) Also the peaks related to Broslashnsted acid

sites on NbAlS-1 samples disappeared even at 250 degC (c and d) This result indicates that the NbAlS-1

samples have only weak Lewis and weak Broslashnsted acid sites entirely consistent with the NH3-TPD results in

Supplementary Fig 4

a b

cd

1420 1440 1460 1480 1500 1520 1540 1560 1580

NbAlS-1(00400271)

NbAlS-1(00270041)

NbS-1(0041)

NbS-1(00271)

HZSM-5(00671)

HZSM-5(0041)

HZSM-5 (00271)

Inte

nsity (

au

)

Wavenumber (cm-1)

1420 1440 1460 1480 1500 1520 1540 1560 1580

Ine

nsity (

au

)

Wavenumber (cm-1)

150 oC

200 oC

250 oC

350 oC

450 oC

1420 1440 1460 1480 1500 1520 1540 1560 1580

Inte

nsity (

au

)

Wavenumber (cm-1)

150 oC

200 oC

250 oC

350 oC

450 oC

1420 1440 1460 1480 1500 1520 1540 1560 1580

Inte

nsity (

au

)

Wavenumber (cm-1)

150 oC

200 oC

250 oC

350 oC

450 oC

12

Fig S4 Characterisation of the acidity of zeolites by NH3-TPD Two peaks at 240 and 435 degC correspond to

NH3 eluted from the weak and strong acid sites respectively25

100 150 200 250 300 350 400 450 500 550 600

Inte

nsity (

au

)

Temperature (oC)

NbAlS-1(00400271)

NbAlS-1(00270041)

NbS-1(0041)

NbS-1(00271)

HZSM-5(00671)

HZSM-5(0041)

HZSM-5(00271)

13

Fig S5 GC-MS results of the products from the conversion of GVL at 320 oC (a) Gas and (b) liquid

products from conversion of pure GVL over HZSM-5(0041) (c) Gas and (d) liquid products from

conversion of pure GVL over NbS-1(00271) (e) Gas and (f) liquid products from conversion of pure GVL

over NbAlS-1(00270041) (g) Gas and (h) liquid products from conversion of 30 GVL over NbAlS-

1(00270041) The water in g is solely from the feeding solution rather than produced from dehydration as

no dehydration products are observed

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

b

d

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

a

c

N2

CO2

C2H4 C2H6 C3H6 C3H8

C4H10

C4H8

H2O

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

N2

CO2

C4H8

H2O

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

fe

Pentenoic

acid isomers

Pentenoic

acid isomers

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

Aromatics

Pentenoic

acid isomers

g h

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

N2

CO2C4H8

N2

CO2

C4H8

H2O

C2H4 C2H6 C3H6

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

14

Fig S6 TGA (black) and DSC (red) plots of used HZSM-5(0041) (a) and NbAlS-1(00270041) (b)

catalysts after the conversion of pure GVL at 320 oC The by-products (eg coke) deposited on the surface

of used HZSM-5(0041) are significantly more stable than those on used NbAlS-1(00270041)

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

-10

-08

-06

-04

-02

00

02

04

06

08

10

500

Hea

t flow

(W

g)

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

-10

-08

-06

-04

-02

00

02

04

06

08

10

430

He

at flow

(W

g)

330

a b

15

Fig S7 TGA plots of used NbAlS-1(00270041) catalysts after the conversion of pure GVL (black) and 30

wt GVL (red) at 320 oC The presence of water in this catalytic system effectively hindered the formation

of by-products on the catalyst surface

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

for 30 GVL feeding

for pure GVL feeding

16

Fig S8 Comparison of FTIR spectra of NbAlS-1 before and after the conversion of 30wt GVL at 320 oC

for 180 h

1400 1300 1200 1100 1000 900 800 700 600

Absorb

ance (

au

)

Wavenumber (cm-1)

NbAlS-1(00270041) used

NbAlS-1(00270041)

971

17

Fig S9 X-band (ca 9 GHz) EPR spectra of NbAlS-1 and post-reaction zeolites activated by γ-irradiation at

77 K (a) wide magnetic field-sweep highlighting the induced Nb(IV) signals in NbAlS-1(00270041) and

the used sample and (b) narrow magnetic field-sweep highlighting the induced electron hole defect Al-O-

Si signals in fresh and used NbAlS-1(00270041) samples

a

b

100 150 200 250 300 350 400 450 500 550

Nb simulation

NbAlS-1(00270041)

used

Inte

nsity (

au

)

NbAlS-1(00270041)

Magnetic field (mT)

300 310 320 330 340 350 360

NbAlS-1(00270041) used

Al simulation

Inte

nsity (

au

)

Magnetic field (mT)

NbAlS-1(00270041)

18

Fig S10 (a) XAS spectra of the fresh and used NbAlS-1(00270041) (b) Phase-corrected k3-weighted

Fourier Transform of the EXAFS spectra for fresh and used NbAlS-1(00270041) The stability of the Nb

active sites within NbAlS-1(00270041) was verified by Nb K edge XAS with both fresh and used

catalysts exhibiting the same pre-edge XANES and EXAFS features

00

04

08

12

16

20

18800 19075 19350 19625 19900

No

rm a

bso

rptio

n (

au

)

Energy (eV)

NbAlS-1(00270041)

0

1

2

3

4

5

6

7

0 2 4 6

χ(R

)(Aring

-4)

Radial distance (Aring)

a b

NbAlS-1(00270041)

NbAlS-1(00270041) used

NbAlS-1(00270041)

used

19

Fig S11 27Al MAS NMR spectra of fresh and used zeolites Chemical shifts at 0 and 55 ppm are assigned to

six-coordinate extra-framework and four-coordinate framework aluminum species respectively26

100 80 60 40 20 0 -20 -40

NbAlS-1(00270041) used

NbAlS-1(00270041)

HZSM-5(0041) used

27Al chemical shift (ppm)

HZSM-5(0041)

20

Fig S12 Characterisation of the acidity of fresh and used zeolites by NH3-TPD

100 150 200 250 300 350 400 450 500 550 600

In

tensity (

au

)

Temperature (oC)

NbAlS-1(00270041) used

NbAlS-1(00270041)

HZSM-5(0041) used

HZSM-5(0041)

21

Fig S13 X-band (ca 9 GHz) EPR spectra of HZSM-5 and post-reaction zeolites activated by γ-irradiation

at 77 K narrow magnetic field-sweep highlighting the induced electron hole defect Al-O-Si signals in

HZSM-5 (0041) and the used sample

300 310 320 330 340 350 360

HZSM-50041) used

Al simulation

Inte

nsity (

au

)

Magnetic field (mT)

HZSM-5(0041)

22

Fig S14 Comparison of SXPD patterns of (a) HZSM-5(0041) (b) NbS-1(00271) and (c) NbAlS-

1(00270041) before and after adsorption of GVL at room temperature [λ = 082487(1) Aring]

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbAlS-1(0027041)

GVLNbAlS-1(0027041)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbS-1(00271)

GVLNbS-1(00271)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

HZSM-5(0041)

GVLHZSM-5(0041)

a

b

c

23

Fig S15 Comparison of the experimental data (black line) and Rietveld refinement (red line) and the

difference between them (grey line) for SXPD patterns of (ab) GVLHZSM-5(0041) (cd) GVLNbS-

1(00271) (ef) GVLNbAlS-1(00270041) at room temperature at a 2θ range of (ace) 3 - 20deg and

(bdf) 20 - 50deg [λ = 082487(1) Aring]

a b

c d

e f

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

24

Fig S16 (a) 29Si NMR spectra of HZSM-5 and NbAlS-1 de-convolution of 29Si NMR spectra of HZSM-5

(b) and NbAlS-1 (c) by Guassian and Lorentzian line shapes

a

b

c

-125 -120 -115 -110 -105 -100 -95 -90 -85

-1023

-1076

-1138

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-4

Cumulative Fitted Peak

-1171

-125 -120 -115 -110 -105 -100 -95 -90 -85

-924-983

-1026

-1057

-1124

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-6

Cumulative Fitted Peak

-1162

-125 -120 -115 -110 -105 -100 -95 -90 -8529

Si chemical shift (ppm)

NbAlS-1(00270041)

HZSM-5(0041)

25

Fig S17 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and calculated INS

spectra for 12 types of NbAlH sites

0 200 400 600 800 1000 1200 1400 1600

1211109876

4

23

5

1

Bare NbAlS-1 (exp)

S(Q

) (a

u)

Neutron energy loss (cm-1)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

26

Fig S18 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and combination of

calculated INS spectra of different NbAlH sites Combination 1 = 3125Site I + 3125Site II +

5Site III + 325Site IV Combination 2 = 675Site III + 325Site IV Site I = 025(NbAlH_1 +

NbAlH_2 + NbAlH_3 + NbAlH_4) Site II = 025(NbAlH_5 + NbAlH_6 + NbAlH_7 +

NbAlH_8) Site III = 05(NbAlH_9 + NbAlH_10) Site IV = 05(NbAlH_11 + NbAlH_12)

Abscissa is scaled down by 097 for combination 1 and 2

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Bare NbAlS-1 (exp)

Combination 1

Combination 2

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

27

Fig S19 Schematic view of the procedure of in situ INS experiment and data collection

Zeolite (Calcined)

Zeolite (activated)

Heating at 450 oC under

He flow for 3 h

Zeolite (Adsorbed)

INS collection 1

Zeolite (Reaction at 280 C)

Adsorption of GVL at 135 oC

Zeolite (Reaction at 300 C)

Zeolite (Reaction at 320 C)

Reaction at 280 oC for 3 min

Reaction at 300 oC for 3 min

Reaction at 320 oC for 3 min

INS collection 2

INS collection 3

INS collection 4

INS collection 5

28

Fig S20 Comparison of the experimental INS spectra of condensed GVL in the solid state (black) and

calculated INS spectra of single GVL molecule (red) The crystal structure of solid GVL is unavailable in the

database

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental GVL

Calculated GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

29

Fig S21 Comparison of the experimental and calculated INS spectra of adsorbed GVL molecules on

NbAlS-1 The structure model derived from SXPD experiments was used for initial DFT modelling where

the positional disorder has been removed in the calculation and this partially accounts for the discrepancies

observed between calculated and experimental INS plots

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental adsorbed GVL

Calculated adsorbed GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

30

Fig S22 View of the INS spectrum for the empty catalysis cell used for this experiment The empty can has

the features below 300 cm-1 and at approximately 457 and 659 cm-1

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Empty can

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

31

Fig S23 Comparison of the experimental INS spectra for bare and GVL-adsorbed catalyst Spectra shown

are after subtraction of the empty cell The INS spectrum of the catalyst on GVL adsorption at 135 degC shows

a significant increase in total intensity demonstrating the binding of GVL to the catalyst sites

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

GVLNbAlS-1(00270041)

Bare NbAlS-1(00270041)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

32

Fig S24 Comparison of the experimental INS spectra of all butene isomers and reacted GVL at 320 degC

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Reaction 320 oC

trans-2-butene

i-butene

1-butene

cis-2-butene

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

33

Supplementary Tables

Table S1 Textural properties (data determined from N2 sorption isotherms at 77 K) and crystallite size (data

determined from SEM) of all zeolites used in this study

Samples ABET (m2 g-1)a Amic (m2 g-1) b Aext (m2 g-1) c Vmic (cm3 g-1) d Vtotal (cm3 g-1) e

Crystallite sizef

(nm)

HZSM-5 (00271) 413 314 99 019 033 200-500

HZSM-5 (0041) 346 259 87 015 028 200-500

HZSM-5 (00671) 348 277 71 016 026 200-500

NbS-1 (00271) 377 284 93 017 029 300-500

NbS-1 (0041) 357 282 75 016 027 300-500

NbAlS-1(00270041) 408 263 145 018 041 300-500

NbAlS-1(00400271) 376 268 108 017 033 300-500

HZSM-5 (0041)g 338 258 80 015 027 200-500

NbAlS-1(00270041)g 396 262 134 018 039 300-500

aBET specific surface area bMicropore surface area cExternal surface area dMicropore volume eTotal pore volume fObtainted from SEM gUsed catalyst

34

Table S2 Spin-Hamiltonian parameters of radiation induced Nb(IV) and electron hole Al-O-Si defects

from simulation of CW X-band EPR spectra in Fig 1 lw is the homogeneous Lorentzian linewidth g and A

are the principle values of the g and hyperfine interaction tensors

Signal Parameters

Electron

Spin

Nuclear

Spin g-tensor g-Strain

A-tensor

(G)

lw

(mT)

Nb defect 12 92 [1935 1935 1866] [004 004 00] [159 159

310] [0 40]

Al defect 12 52 [20012 2007 2045] [00 0003 004] [7 7 -] [00 04]

35

Table S3 Summary of acidity of all zeolites used in this work Data were determined by NH3-TPD and

Pyridine-IR studies

Catalyst Weak acida

(mmol g-1)

Strong acida

(mmol g-1)

Total acida

(mmol g-1)

LB acid

ratiob

HZSM-5(00271) 015 025 04 039

HZSM-5(0041) 024 028 052 037

HZSM-5(00671) 033 03 063 027

NbS-1(00271) 004 0 004 -

NbS-1(0041) 004 0 004 -

NbAlS-1(00270041) 022 0 022 469

NbAlS-1(00400271) 023 0 023 35 aFrom NH3-TPD bFrom Pyridine-IR

36

Table S4 The butenes distribution in equilibrium at 320 degC and the distribution of butene isomers produced

from conversion of 30 GVL at 320 degC over catalysts

Catalyst Distribution ()

i-butene 1-butene trans-2-butene cis-2-butene

Equilibrium27 45 12 27 16

HZSM-5(0041) 44 14 25 17

NbAlS-1(00270041) 18 19 38 25

NbOPO4 15 20 39 26

37

Table S5 Comparison of the catalytic performance of reported catalysts for the conversion of GVL in aqueous solution (25-40 wt ) to butenes

Catalyst Reaction Conditions GVL

concentration

(wt )

GVL

conversion

()

Butene

Yield

(mol )a

Ref

Temperature

(degC)

WHSV

(h-1)

Pressure

(bar)

NbAlS-1(00270041) 320 018 1 30 100 993 this work

SiO2Al2O3 375 09 1 30 97 75 28

HZSM-5(0041) 320 018 1 30 76 232 this work

LaZSM-5 450 1 10 40 gt99 ca 21 15

PdNb2O5b 275 05 14 30d 100 lt16c 29

Zn-AlPO-5 397 077 10 40 65 ca 12 30

H3PO4 240 - - 25 100 12c 31

ZnZSM-5 450 1 10 40 gt99 ca 6 15

AlPO-5 397 077 10 40 2 ca 04 30

aButene yield is calculated by the equation defined in the Method section

bunder H2 atmosphere

cThe product includes both butene and butane d002 M H2SO4 was added in the GVL solution

38

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1

R (Aring)a σ a Amp a CN a

NbAlS-1 (Dry) Nb=O 1680 0017 082 1 Nb-O 2014 0008 082 3 NbAlS-1

Nb=O 1721 0012 078 1

Nb-O 2014 0004 078 3

NbAlS-1+GVL

Nb=O 1943 0003 075 1

Nb-O 2014 0010 075 3

NbS-1

Nb=O 1711 0032 091 1

Nb-O 2014 0005 091 3

NbS-1+GVL

Nb=O 1770 0004 089 1

Nb-O 2014 0014 089 3 aR = Interatomic distance from central scattering atom σ = Debye-Waller factor Amp = amplitude factor

and CN = coordination number

39

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption

Samples GVLHZSM-5(0041) GVLNbS-1(00271) NbAlS-1(00270041) GVLNbAlS-1(00270041)

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma

Chemical formula Al3692Si92308O192 8GVL Nb2524Si93476O192 8GVL Al3599Nb2429Si89972O192 Al3599Nb2429Si89972O192 8GVL

2θ range for refinement (deg) 3 ndash 50 3 ndash 50 3 ndash 50 3 ndash 50

Detector Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals

Number of hkls 3251 3214 3179 3222

Refinement methods Rietveld Rietveld Rietveld Rietveld

a (Aring) 201351(2) 200604(2) 199955(3) 200697(3)

b (Aring) 199852(2) 198995(1) 198333(3) 199150(3)

c (Aring) 134549(2) 134010(1) 133531(2) 134214(2)

V (Aring3) 541428(11) 534957(7) 529553(15) 536437(15)

RwpRexp Rp () 445135013378 463131253497 553133614058 444933763305

Wavelength (Aring) 082487(1) 082487(1) 082487(1) 082487(1)

Gof χ2 1272 1482 1646 1318

40

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) at room

temperature

Species Atom x y z SOF Beq(Aring2) Wyckoff

HZSM-5(0041) Al1 -00732(5) 00570(7) 08366(7) 003846154 100(5) 8d

Al2 01869(6) -00339(5) 03189(8) 003846154 100(5) 8d

Al3 02207(5) -00626(7) 05256(8) 003846154 100(5) 8d

Al4 01210(5) 00590(7) 10220(8) 003846154 100(5) 8d

Al5 -00703(6) -00272(5) 01933(8) 003846154 100(5) 8d

Al6 01859(5) 00593(6) 06679(8) 003846154 100(5) 8d

Al7 -00745(6) 06734(6) 08243(9) 003846154 100(5) 8d

Al8 01956(6) 01297(5) 03114(7) 003846154 100(5) 8d

Al9 02187(5) 01761(5) 05326(8) 003846154 100(5) 8d

Al10 01228(5) 06749(6) 10400(8) 003846154 100(5) 8d

Al11 -00694(6) 01308(6) 01819(9) 003846154 100(5) 8d

Al12 01859(6) 06714(5) 06756(8) 003846154 100(5) 8d

Si1 -00732(5) 00570(7) 08366(7) 09615385 100(5) 8d

Si2 01869(6) -00339(5) 03189(8) 09615385 100(5) 8d

Si3 02207(5) -00626(7) 05256(8) 09615385 100(5) 8d

Si4 01210(5) 00590(7) 10220(8) 09615385 100(5) 8d

Si5 -00703(6) -00272(5) 01933(8) 09615385 100(5) 8d

Si6 01859(5) 00593(6) 06679(8) 09615385 100(5) 8d

Si7 -00745(6) 06734(6) 08243(9) 09615385 100(5) 8d

Si8 01956(6) 01297(5) 03114(7) 09615385 100(5) 8d

Si9 02187(5) 01761(5) 05326(8) 09615385 100(5) 8d

Si10 01228(5) 06749(6) 10400(8) 09615385 100(5) 8d

Si11 -00694(6) 01308(6) 01819(9) 09615385 100(5) 8d

Si12 01859(6) 06714(5) 06756(8) 09615385 100(5) 8d

O1 01189(10) -00643(12) 02762(13) 1 143(9) 8d

O2 01900(11) -00665(10) 04093(13) 1 143(9) 8d

O3 02017(11) 00485(12) 10198(11) 1 143(9) 8d

O4 -00964(9) -00573(13) 10736(15) 1 143(9) 8d

O5 01132(9) 00573(12) 07009(13) 1 143(9) 8d

O6 02544(10) 00574(13) 07592(13) 1 143(9) 8d

O7 01249(11) 01569(12) 02676(15) 1 143(9) 8d

O8 01995(12) 01482(9) 04331(13) 1 143(9) 8d

O9 01968(12) 06607(9) 00500(12) 1 143(9) 8d

O10 -00922(10) 01564(11) 10827(17) 1 143(9) 8d

O11 01123(10) 06498(11) 07436(14) 1 143(9) 8d

O12 02420(11) 06557(12) 07396(15) 1 143(9) 8d

O13 02109(9) 00468(11) 03170(12) 1 143(9) 8d

O14 -00793(8) 00525(13) 01708(13) 1 143(9) 8d

O15 -00850(10) 01327(12) 08874(17) 1 143(9) 8d

O16 -01009(10) 00004(11) 09239(15) 1 143(9) 8d

O17 -01006(10) 06343(12) -00444(14) 1 143(9) 8d

O18 01746(10) 01273(11) 06145(13) 1 143(9) 8d

O19 01980(12) 00019(10) 06091(12) 1 143(9) 8d

O20 02014(13) 06300(11) 05761(13) 1 143(9) 8d

O21 -00054(11) 00405(12) 07595(12) 1 143(9) 8d

O22 -00045(12) 06580(13) 07876(13) 1 143(9) 8d

O23 -00801(15) 075 0861(2) 1 143(9) 4c

O24 01839(17) 075 0648(2) 1 143(9) 4c

O25 02011(18) 025 0563(2) 1 143(9) 4c

O26 00863(13) 075 0143(2) 1 143(9) 4c

41

GVLI O1 -00251(15) 08553(18) -0468(2) 0500(3) 06(4) 8d

O2 -0013(2) 07533(17) -0531(3) 0500(3) 06(4) 8d

C1 00570(11) 08446(12) -05861(14) 0500(3) 06(4) 8d

C2 00466(18) 09175(12) -05663(18) 0500(3) 06(4) 8d

C3 0004(2) 09222(15) -0484(2) 0500(3) 06(4) 8d

C4 00038(13) 08112(15) -05293(19) 0500(3) 06(4) 8d

C5 -0034(3) 09728(19) -0448(3) 0500(3) 06(4) 8d

H1a 00999(11) 08315(15) -05641(17) 0500(3) 07(5) 8d

H1b 00528(13) 08360(13) -06553(15) 0500(3) 07(5) 8d

H2a 0088(2) 09384(14) -0553(2) 0500(3) 07(5) 8d

H2b 0026(2) 09378(15) -0622(2) 0500(3) 07(5) 8d

H3 0038(2) 09204(15) -04313(18) 0500(3) 07(5) 8d

H5a -0043(3) 0965(2) -0380(3) 0500(3) 07(5) 8d

H5b -0011(4) 10138(17) -0454(3) 0500(3) 07(5) 8d

H5c -0074(3) 0975(3) -0485(3) 0500(3) 07(5) 8d

GVLII O1 -03289(15) -0778(2) -02817(19) 0500(4) 06(4) 8d

O2 -04372(14) -0757(2) -02733(16) 0500(4) 06(4) 8d

C1 -03730(11) -07204(15) -04150(12) 0500(4) 06(4) 8d

C2 -02990(11) -0718(2) -04230(16) 0500(4) 06(4) 8d

C3 -02738(13) -0762(3) -0350(2) 0500(4) 06(4) 8d

C4 -03856(13) -07518(18) -03175(14) 0500(4) 06(4) 8d

C5 -02129(14) -0768(4) -0308(3) 0500(4) 06(4) 8d

H1a -03908(13) -07461(16) -04681(13) 0500(3) 07(5) 8d

H1b -03904(14) -06762(15) -04174(16) 0500(3) 07(5) 8d

H2a -02856(13) -0732(2) -04875(17) 0500(3) 07(5) 8d

H2b -02835(15) -0674(2) -04093(19) 0500(3) 07(5) 8d

H3 -0275(2) -0803(3) -0389(3) 0500(3) 07(5) 8d

H5a -0208(2) -0812(4) -0281(3) 0500(3) 07(5) 8d

H5b -01797(13) -0762(4) -0357(3) 0500(3) 07(5) 8d

H5c -02080(14) -0735(4) -0257(3) 0500(3) 07(5) 8d

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 8: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

7

ratios calculated from the 29Si NMR data are highly consistent with that obtained from EDX The peak at -98

ppm is absent in the spectrum of HZSM-5(0041) indicating the absence of Si(OSi)2(OAl)2 species

(Supplementary Fig 16b) consistent with previous reports1920 By contrast the peak at -98 ppm is observed

in the NMR spectrum of NbAlS-1(00270041) suggesting the presence of Si(OSi)2(OAl)(ONb) species

(Supplementary Fig 16c and Supplementary Table 13)

Recently the distribution of protons in LTA zeolite has been studied using periodic DFT calculations

and INS2122 The distribution of NbAlH sites in NbAlS-1(00270041) has been further investigated by

combining INS and DFT calculations Four types of possible species ie species I [NbOSiOAl] species II

[NbOSiOSiOAl] species III [NbO(SiO)nAl (n ge 3)] and species IV (isolated Al no Nb around) and twelve

types of NbAlH species in NbAlS-1 have been simulated (Supplementary Table 14) From the synchrotron

XPD and Rietveld Refinement species I and II present in NbAlS-1(00270041) (Fig 4f and 4i) and thus

Nb and Al are positioned at T8 and T9 respectively for species I and at T6 and T10 respectively for

species II for the calculation of corresponding INS spectra The H sites have the same probability to appear

near all four O around Al and are thus attached to O25 O8 O18 O9 O26 O15 O10 and O9 respectively

(NbAlH_1-8 Supplementary Table 14) In species III Nb and Al are not adjacent Nb is positioned at T8 or

T6 and Al is moved to T12 (NbAlH_9) or T7 (NbAlH_10) Since the NbAl ratio is 0027004 325 of

Al are isolated (species IV) The isolated Al is positioned at T2 (NbAlH_11) or T4 (NbAlH_12) All

twelve NbAlH sites are simulated independently by DFT and the calculated INS spectra are compared with

the experimental data of bare NbAlS-1(00270041) (Supplementary Fig 17) As there is an uncertainty on

the position of H the calculated INS spectra are given different weights to assemble the combined spectrum

for NbAlS-1(00270041) Species I and II have the same occupancy (determined by Rietveld Refinement)

and they were given the same weight Based upon the NbAl ratio and 29Si NMR results the weights of all

four species are calculated (Supplementary Table 14) The spectrum of combination 1 is produced by

combining twelve spectra with calculated weights All peaks in combination 1 fit with those in the

experimental data particularly the peaks assigned to -OH in-plane bending and Si-O stretching at 1086 and

1191 cm-1 respectively (Supplementary Fig 18 and Supplementary Table 15) The intensities of peaks at

245-534 cm-1 (assigned to relaxation of zeolite framework and -OH out-of-plane bending in combination 1)

are lower than that of the experimental data because only one unit cell and a simplified model were used and

external SiOH groups are not considered in the simulation Combination 2 is produced without species I and

8

II (Supplementary Fig 18) and a number of peaks (77 157 237 and 317 cm-1) are absent compared with the

experimental data demonstrating the presence of species I and II that promotes the adsorption of GVL in

NbAlS-1 via the ldquochelatingrdquo mechanism

Inelastic neutron scattering

Direct visualisation of the interaction between adsorbed GVL and the active sites is crucial to understand the

molecular details of adsorption activation and ring-open and decarboxylation of GVL into butenes INS is a

powerful neutron spectroscopy technique to investigate the dynamics (particularly for the deformational and

conformational modes) of GVL It has several advantages

INS spectroscopy is sensitive to the vibrations of hydrogen atoms and hydrogen is ten times more

visible than other elements due to its high neutron cross-section

The technique is not subject to any optical selection rules All vibrations are active and in principle

measurable

INS observations are not restricted to the centre of the Brillouin zone (gamma point) as is the case for

optical techniques

INS spectra can be readily and accurately modelled the intensities are proportional to the concentration

of elements in the sample and their cross-sections and the measured INS intensities relate

straightforwardly to the associated displacements of the scattering atom Treatment of background

correction is also straightforward

Neutrons penetrate deeply into materials and pass readily through the walls of metal containers making

neutrons ideal to measure bulk properties of this material (in this case for 11 g catalyst)

INS spectrometers cover the whole range of the molecular vibrational spectrum 0-500 meV (0-4000 cm-

1)

INS data can be collected at low temperature (lt 15 K in this case) where the thermal motion of the

catalyst the adsorbed GVL and the reacted intermediate molecules can be significantly reduced

9

Supplementary Figures

Fig S1 Comparison of PXRD patterns of HZSM-5 NbS-1 and NbAlS-1 (λ = 15406 Aring)

5 10 15 20 25 30 35 40

NbAlS-1(00270041)

NbAlS-1(00400271)

NbS-1(0041)

NbS-1(00271)

HZSM-5(00671)

HZSM-5(0041)

In

tensity (

au

)

2 (degree)

HZSM-5(00271)

10

Fig S2 SEM images of (a) HZSM-5(0041) (b) NbS-1 (00271) and (c) NbAlS-1(00270041)

a

500 nm

b

500 nm

c

500 nm

11

Fig S3 Characterisation of the acidity of zeolites by Pyridine-IR (a) Py-IR spectra after vacuum treatment

at 150 oC Py-IR spectra of (b) HZSM-5(0041) (c) NbS-1(00271) and (d) NbAlS-1(00270041) after

vacuum treatment at variable temperatures The peaks at 1454 and 1545 cm-1 are assigned to the

coordinatively bound pyridine molecules on Lewis acid sites and pyridinium ion on Broslashnsted acid sites

respectively23 Both the coordinatively bound pyridine and pyridinium ion have the vibration peak at 1490

cm-1 23 The Lewis acid band is centred at 1454 cm-1 in the spectra of HZSM-5 while it shifts to 1447 cm-1 in

the spectra of Nb-doped zeolite which is similar to the reported Lewis acid band (centred at 1448 cm-1) in

niobium phosphate24 The decrease of frequency of the band is related to the reduced stability of the pyridine

complex23 which is verified by the desorption experiments b c and d show the Py-IR spectra of HZSM-

5(0041) NbS-1(00271) and NbAlS-1 (00270041) respectively after desorption of pyridine at variable

temperatures With the increase of temperature the peak intensities related to both Lewis and Broslashnsted acid

sites of HZSM-5 decrease slowly Both peaks are visible even after the vacuum treatment at 450 degC (b)

However the intensities of peaks at 1447 cm-1 in the spectra of NbS-1 and NbAlS-1 decreased dramatically

upon increasing temperature and disappeared at 350 degC (c and d) Also the peaks related to Broslashnsted acid

sites on NbAlS-1 samples disappeared even at 250 degC (c and d) This result indicates that the NbAlS-1

samples have only weak Lewis and weak Broslashnsted acid sites entirely consistent with the NH3-TPD results in

Supplementary Fig 4

a b

cd

1420 1440 1460 1480 1500 1520 1540 1560 1580

NbAlS-1(00400271)

NbAlS-1(00270041)

NbS-1(0041)

NbS-1(00271)

HZSM-5(00671)

HZSM-5(0041)

HZSM-5 (00271)

Inte

nsity (

au

)

Wavenumber (cm-1)

1420 1440 1460 1480 1500 1520 1540 1560 1580

Ine

nsity (

au

)

Wavenumber (cm-1)

150 oC

200 oC

250 oC

350 oC

450 oC

1420 1440 1460 1480 1500 1520 1540 1560 1580

Inte

nsity (

au

)

Wavenumber (cm-1)

150 oC

200 oC

250 oC

350 oC

450 oC

1420 1440 1460 1480 1500 1520 1540 1560 1580

Inte

nsity (

au

)

Wavenumber (cm-1)

150 oC

200 oC

250 oC

350 oC

450 oC

12

Fig S4 Characterisation of the acidity of zeolites by NH3-TPD Two peaks at 240 and 435 degC correspond to

NH3 eluted from the weak and strong acid sites respectively25

100 150 200 250 300 350 400 450 500 550 600

Inte

nsity (

au

)

Temperature (oC)

NbAlS-1(00400271)

NbAlS-1(00270041)

NbS-1(0041)

NbS-1(00271)

HZSM-5(00671)

HZSM-5(0041)

HZSM-5(00271)

13

Fig S5 GC-MS results of the products from the conversion of GVL at 320 oC (a) Gas and (b) liquid

products from conversion of pure GVL over HZSM-5(0041) (c) Gas and (d) liquid products from

conversion of pure GVL over NbS-1(00271) (e) Gas and (f) liquid products from conversion of pure GVL

over NbAlS-1(00270041) (g) Gas and (h) liquid products from conversion of 30 GVL over NbAlS-

1(00270041) The water in g is solely from the feeding solution rather than produced from dehydration as

no dehydration products are observed

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

b

d

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

a

c

N2

CO2

C2H4 C2H6 C3H6 C3H8

C4H10

C4H8

H2O

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

N2

CO2

C4H8

H2O

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

fe

Pentenoic

acid isomers

Pentenoic

acid isomers

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

Aromatics

Pentenoic

acid isomers

g h

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

N2

CO2C4H8

N2

CO2

C4H8

H2O

C2H4 C2H6 C3H6

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

14

Fig S6 TGA (black) and DSC (red) plots of used HZSM-5(0041) (a) and NbAlS-1(00270041) (b)

catalysts after the conversion of pure GVL at 320 oC The by-products (eg coke) deposited on the surface

of used HZSM-5(0041) are significantly more stable than those on used NbAlS-1(00270041)

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

-10

-08

-06

-04

-02

00

02

04

06

08

10

500

Hea

t flow

(W

g)

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

-10

-08

-06

-04

-02

00

02

04

06

08

10

430

He

at flow

(W

g)

330

a b

15

Fig S7 TGA plots of used NbAlS-1(00270041) catalysts after the conversion of pure GVL (black) and 30

wt GVL (red) at 320 oC The presence of water in this catalytic system effectively hindered the formation

of by-products on the catalyst surface

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

for 30 GVL feeding

for pure GVL feeding

16

Fig S8 Comparison of FTIR spectra of NbAlS-1 before and after the conversion of 30wt GVL at 320 oC

for 180 h

1400 1300 1200 1100 1000 900 800 700 600

Absorb

ance (

au

)

Wavenumber (cm-1)

NbAlS-1(00270041) used

NbAlS-1(00270041)

971

17

Fig S9 X-band (ca 9 GHz) EPR spectra of NbAlS-1 and post-reaction zeolites activated by γ-irradiation at

77 K (a) wide magnetic field-sweep highlighting the induced Nb(IV) signals in NbAlS-1(00270041) and

the used sample and (b) narrow magnetic field-sweep highlighting the induced electron hole defect Al-O-

Si signals in fresh and used NbAlS-1(00270041) samples

a

b

100 150 200 250 300 350 400 450 500 550

Nb simulation

NbAlS-1(00270041)

used

Inte

nsity (

au

)

NbAlS-1(00270041)

Magnetic field (mT)

300 310 320 330 340 350 360

NbAlS-1(00270041) used

Al simulation

Inte

nsity (

au

)

Magnetic field (mT)

NbAlS-1(00270041)

18

Fig S10 (a) XAS spectra of the fresh and used NbAlS-1(00270041) (b) Phase-corrected k3-weighted

Fourier Transform of the EXAFS spectra for fresh and used NbAlS-1(00270041) The stability of the Nb

active sites within NbAlS-1(00270041) was verified by Nb K edge XAS with both fresh and used

catalysts exhibiting the same pre-edge XANES and EXAFS features

00

04

08

12

16

20

18800 19075 19350 19625 19900

No

rm a

bso

rptio

n (

au

)

Energy (eV)

NbAlS-1(00270041)

0

1

2

3

4

5

6

7

0 2 4 6

χ(R

)(Aring

-4)

Radial distance (Aring)

a b

NbAlS-1(00270041)

NbAlS-1(00270041) used

NbAlS-1(00270041)

used

19

Fig S11 27Al MAS NMR spectra of fresh and used zeolites Chemical shifts at 0 and 55 ppm are assigned to

six-coordinate extra-framework and four-coordinate framework aluminum species respectively26

100 80 60 40 20 0 -20 -40

NbAlS-1(00270041) used

NbAlS-1(00270041)

HZSM-5(0041) used

27Al chemical shift (ppm)

HZSM-5(0041)

20

Fig S12 Characterisation of the acidity of fresh and used zeolites by NH3-TPD

100 150 200 250 300 350 400 450 500 550 600

In

tensity (

au

)

Temperature (oC)

NbAlS-1(00270041) used

NbAlS-1(00270041)

HZSM-5(0041) used

HZSM-5(0041)

21

Fig S13 X-band (ca 9 GHz) EPR spectra of HZSM-5 and post-reaction zeolites activated by γ-irradiation

at 77 K narrow magnetic field-sweep highlighting the induced electron hole defect Al-O-Si signals in

HZSM-5 (0041) and the used sample

300 310 320 330 340 350 360

HZSM-50041) used

Al simulation

Inte

nsity (

au

)

Magnetic field (mT)

HZSM-5(0041)

22

Fig S14 Comparison of SXPD patterns of (a) HZSM-5(0041) (b) NbS-1(00271) and (c) NbAlS-

1(00270041) before and after adsorption of GVL at room temperature [λ = 082487(1) Aring]

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbAlS-1(0027041)

GVLNbAlS-1(0027041)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbS-1(00271)

GVLNbS-1(00271)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

HZSM-5(0041)

GVLHZSM-5(0041)

a

b

c

23

Fig S15 Comparison of the experimental data (black line) and Rietveld refinement (red line) and the

difference between them (grey line) for SXPD patterns of (ab) GVLHZSM-5(0041) (cd) GVLNbS-

1(00271) (ef) GVLNbAlS-1(00270041) at room temperature at a 2θ range of (ace) 3 - 20deg and

(bdf) 20 - 50deg [λ = 082487(1) Aring]

a b

c d

e f

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

24

Fig S16 (a) 29Si NMR spectra of HZSM-5 and NbAlS-1 de-convolution of 29Si NMR spectra of HZSM-5

(b) and NbAlS-1 (c) by Guassian and Lorentzian line shapes

a

b

c

-125 -120 -115 -110 -105 -100 -95 -90 -85

-1023

-1076

-1138

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-4

Cumulative Fitted Peak

-1171

-125 -120 -115 -110 -105 -100 -95 -90 -85

-924-983

-1026

-1057

-1124

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-6

Cumulative Fitted Peak

-1162

-125 -120 -115 -110 -105 -100 -95 -90 -8529

Si chemical shift (ppm)

NbAlS-1(00270041)

HZSM-5(0041)

25

Fig S17 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and calculated INS

spectra for 12 types of NbAlH sites

0 200 400 600 800 1000 1200 1400 1600

1211109876

4

23

5

1

Bare NbAlS-1 (exp)

S(Q

) (a

u)

Neutron energy loss (cm-1)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

26

Fig S18 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and combination of

calculated INS spectra of different NbAlH sites Combination 1 = 3125Site I + 3125Site II +

5Site III + 325Site IV Combination 2 = 675Site III + 325Site IV Site I = 025(NbAlH_1 +

NbAlH_2 + NbAlH_3 + NbAlH_4) Site II = 025(NbAlH_5 + NbAlH_6 + NbAlH_7 +

NbAlH_8) Site III = 05(NbAlH_9 + NbAlH_10) Site IV = 05(NbAlH_11 + NbAlH_12)

Abscissa is scaled down by 097 for combination 1 and 2

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Bare NbAlS-1 (exp)

Combination 1

Combination 2

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

27

Fig S19 Schematic view of the procedure of in situ INS experiment and data collection

Zeolite (Calcined)

Zeolite (activated)

Heating at 450 oC under

He flow for 3 h

Zeolite (Adsorbed)

INS collection 1

Zeolite (Reaction at 280 C)

Adsorption of GVL at 135 oC

Zeolite (Reaction at 300 C)

Zeolite (Reaction at 320 C)

Reaction at 280 oC for 3 min

Reaction at 300 oC for 3 min

Reaction at 320 oC for 3 min

INS collection 2

INS collection 3

INS collection 4

INS collection 5

28

Fig S20 Comparison of the experimental INS spectra of condensed GVL in the solid state (black) and

calculated INS spectra of single GVL molecule (red) The crystal structure of solid GVL is unavailable in the

database

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental GVL

Calculated GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

29

Fig S21 Comparison of the experimental and calculated INS spectra of adsorbed GVL molecules on

NbAlS-1 The structure model derived from SXPD experiments was used for initial DFT modelling where

the positional disorder has been removed in the calculation and this partially accounts for the discrepancies

observed between calculated and experimental INS plots

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental adsorbed GVL

Calculated adsorbed GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

30

Fig S22 View of the INS spectrum for the empty catalysis cell used for this experiment The empty can has

the features below 300 cm-1 and at approximately 457 and 659 cm-1

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Empty can

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

31

Fig S23 Comparison of the experimental INS spectra for bare and GVL-adsorbed catalyst Spectra shown

are after subtraction of the empty cell The INS spectrum of the catalyst on GVL adsorption at 135 degC shows

a significant increase in total intensity demonstrating the binding of GVL to the catalyst sites

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

GVLNbAlS-1(00270041)

Bare NbAlS-1(00270041)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

32

Fig S24 Comparison of the experimental INS spectra of all butene isomers and reacted GVL at 320 degC

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Reaction 320 oC

trans-2-butene

i-butene

1-butene

cis-2-butene

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

33

Supplementary Tables

Table S1 Textural properties (data determined from N2 sorption isotherms at 77 K) and crystallite size (data

determined from SEM) of all zeolites used in this study

Samples ABET (m2 g-1)a Amic (m2 g-1) b Aext (m2 g-1) c Vmic (cm3 g-1) d Vtotal (cm3 g-1) e

Crystallite sizef

(nm)

HZSM-5 (00271) 413 314 99 019 033 200-500

HZSM-5 (0041) 346 259 87 015 028 200-500

HZSM-5 (00671) 348 277 71 016 026 200-500

NbS-1 (00271) 377 284 93 017 029 300-500

NbS-1 (0041) 357 282 75 016 027 300-500

NbAlS-1(00270041) 408 263 145 018 041 300-500

NbAlS-1(00400271) 376 268 108 017 033 300-500

HZSM-5 (0041)g 338 258 80 015 027 200-500

NbAlS-1(00270041)g 396 262 134 018 039 300-500

aBET specific surface area bMicropore surface area cExternal surface area dMicropore volume eTotal pore volume fObtainted from SEM gUsed catalyst

34

Table S2 Spin-Hamiltonian parameters of radiation induced Nb(IV) and electron hole Al-O-Si defects

from simulation of CW X-band EPR spectra in Fig 1 lw is the homogeneous Lorentzian linewidth g and A

are the principle values of the g and hyperfine interaction tensors

Signal Parameters

Electron

Spin

Nuclear

Spin g-tensor g-Strain

A-tensor

(G)

lw

(mT)

Nb defect 12 92 [1935 1935 1866] [004 004 00] [159 159

310] [0 40]

Al defect 12 52 [20012 2007 2045] [00 0003 004] [7 7 -] [00 04]

35

Table S3 Summary of acidity of all zeolites used in this work Data were determined by NH3-TPD and

Pyridine-IR studies

Catalyst Weak acida

(mmol g-1)

Strong acida

(mmol g-1)

Total acida

(mmol g-1)

LB acid

ratiob

HZSM-5(00271) 015 025 04 039

HZSM-5(0041) 024 028 052 037

HZSM-5(00671) 033 03 063 027

NbS-1(00271) 004 0 004 -

NbS-1(0041) 004 0 004 -

NbAlS-1(00270041) 022 0 022 469

NbAlS-1(00400271) 023 0 023 35 aFrom NH3-TPD bFrom Pyridine-IR

36

Table S4 The butenes distribution in equilibrium at 320 degC and the distribution of butene isomers produced

from conversion of 30 GVL at 320 degC over catalysts

Catalyst Distribution ()

i-butene 1-butene trans-2-butene cis-2-butene

Equilibrium27 45 12 27 16

HZSM-5(0041) 44 14 25 17

NbAlS-1(00270041) 18 19 38 25

NbOPO4 15 20 39 26

37

Table S5 Comparison of the catalytic performance of reported catalysts for the conversion of GVL in aqueous solution (25-40 wt ) to butenes

Catalyst Reaction Conditions GVL

concentration

(wt )

GVL

conversion

()

Butene

Yield

(mol )a

Ref

Temperature

(degC)

WHSV

(h-1)

Pressure

(bar)

NbAlS-1(00270041) 320 018 1 30 100 993 this work

SiO2Al2O3 375 09 1 30 97 75 28

HZSM-5(0041) 320 018 1 30 76 232 this work

LaZSM-5 450 1 10 40 gt99 ca 21 15

PdNb2O5b 275 05 14 30d 100 lt16c 29

Zn-AlPO-5 397 077 10 40 65 ca 12 30

H3PO4 240 - - 25 100 12c 31

ZnZSM-5 450 1 10 40 gt99 ca 6 15

AlPO-5 397 077 10 40 2 ca 04 30

aButene yield is calculated by the equation defined in the Method section

bunder H2 atmosphere

cThe product includes both butene and butane d002 M H2SO4 was added in the GVL solution

38

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1

R (Aring)a σ a Amp a CN a

NbAlS-1 (Dry) Nb=O 1680 0017 082 1 Nb-O 2014 0008 082 3 NbAlS-1

Nb=O 1721 0012 078 1

Nb-O 2014 0004 078 3

NbAlS-1+GVL

Nb=O 1943 0003 075 1

Nb-O 2014 0010 075 3

NbS-1

Nb=O 1711 0032 091 1

Nb-O 2014 0005 091 3

NbS-1+GVL

Nb=O 1770 0004 089 1

Nb-O 2014 0014 089 3 aR = Interatomic distance from central scattering atom σ = Debye-Waller factor Amp = amplitude factor

and CN = coordination number

39

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption

Samples GVLHZSM-5(0041) GVLNbS-1(00271) NbAlS-1(00270041) GVLNbAlS-1(00270041)

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma

Chemical formula Al3692Si92308O192 8GVL Nb2524Si93476O192 8GVL Al3599Nb2429Si89972O192 Al3599Nb2429Si89972O192 8GVL

2θ range for refinement (deg) 3 ndash 50 3 ndash 50 3 ndash 50 3 ndash 50

Detector Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals

Number of hkls 3251 3214 3179 3222

Refinement methods Rietveld Rietveld Rietveld Rietveld

a (Aring) 201351(2) 200604(2) 199955(3) 200697(3)

b (Aring) 199852(2) 198995(1) 198333(3) 199150(3)

c (Aring) 134549(2) 134010(1) 133531(2) 134214(2)

V (Aring3) 541428(11) 534957(7) 529553(15) 536437(15)

RwpRexp Rp () 445135013378 463131253497 553133614058 444933763305

Wavelength (Aring) 082487(1) 082487(1) 082487(1) 082487(1)

Gof χ2 1272 1482 1646 1318

40

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) at room

temperature

Species Atom x y z SOF Beq(Aring2) Wyckoff

HZSM-5(0041) Al1 -00732(5) 00570(7) 08366(7) 003846154 100(5) 8d

Al2 01869(6) -00339(5) 03189(8) 003846154 100(5) 8d

Al3 02207(5) -00626(7) 05256(8) 003846154 100(5) 8d

Al4 01210(5) 00590(7) 10220(8) 003846154 100(5) 8d

Al5 -00703(6) -00272(5) 01933(8) 003846154 100(5) 8d

Al6 01859(5) 00593(6) 06679(8) 003846154 100(5) 8d

Al7 -00745(6) 06734(6) 08243(9) 003846154 100(5) 8d

Al8 01956(6) 01297(5) 03114(7) 003846154 100(5) 8d

Al9 02187(5) 01761(5) 05326(8) 003846154 100(5) 8d

Al10 01228(5) 06749(6) 10400(8) 003846154 100(5) 8d

Al11 -00694(6) 01308(6) 01819(9) 003846154 100(5) 8d

Al12 01859(6) 06714(5) 06756(8) 003846154 100(5) 8d

Si1 -00732(5) 00570(7) 08366(7) 09615385 100(5) 8d

Si2 01869(6) -00339(5) 03189(8) 09615385 100(5) 8d

Si3 02207(5) -00626(7) 05256(8) 09615385 100(5) 8d

Si4 01210(5) 00590(7) 10220(8) 09615385 100(5) 8d

Si5 -00703(6) -00272(5) 01933(8) 09615385 100(5) 8d

Si6 01859(5) 00593(6) 06679(8) 09615385 100(5) 8d

Si7 -00745(6) 06734(6) 08243(9) 09615385 100(5) 8d

Si8 01956(6) 01297(5) 03114(7) 09615385 100(5) 8d

Si9 02187(5) 01761(5) 05326(8) 09615385 100(5) 8d

Si10 01228(5) 06749(6) 10400(8) 09615385 100(5) 8d

Si11 -00694(6) 01308(6) 01819(9) 09615385 100(5) 8d

Si12 01859(6) 06714(5) 06756(8) 09615385 100(5) 8d

O1 01189(10) -00643(12) 02762(13) 1 143(9) 8d

O2 01900(11) -00665(10) 04093(13) 1 143(9) 8d

O3 02017(11) 00485(12) 10198(11) 1 143(9) 8d

O4 -00964(9) -00573(13) 10736(15) 1 143(9) 8d

O5 01132(9) 00573(12) 07009(13) 1 143(9) 8d

O6 02544(10) 00574(13) 07592(13) 1 143(9) 8d

O7 01249(11) 01569(12) 02676(15) 1 143(9) 8d

O8 01995(12) 01482(9) 04331(13) 1 143(9) 8d

O9 01968(12) 06607(9) 00500(12) 1 143(9) 8d

O10 -00922(10) 01564(11) 10827(17) 1 143(9) 8d

O11 01123(10) 06498(11) 07436(14) 1 143(9) 8d

O12 02420(11) 06557(12) 07396(15) 1 143(9) 8d

O13 02109(9) 00468(11) 03170(12) 1 143(9) 8d

O14 -00793(8) 00525(13) 01708(13) 1 143(9) 8d

O15 -00850(10) 01327(12) 08874(17) 1 143(9) 8d

O16 -01009(10) 00004(11) 09239(15) 1 143(9) 8d

O17 -01006(10) 06343(12) -00444(14) 1 143(9) 8d

O18 01746(10) 01273(11) 06145(13) 1 143(9) 8d

O19 01980(12) 00019(10) 06091(12) 1 143(9) 8d

O20 02014(13) 06300(11) 05761(13) 1 143(9) 8d

O21 -00054(11) 00405(12) 07595(12) 1 143(9) 8d

O22 -00045(12) 06580(13) 07876(13) 1 143(9) 8d

O23 -00801(15) 075 0861(2) 1 143(9) 4c

O24 01839(17) 075 0648(2) 1 143(9) 4c

O25 02011(18) 025 0563(2) 1 143(9) 4c

O26 00863(13) 075 0143(2) 1 143(9) 4c

41

GVLI O1 -00251(15) 08553(18) -0468(2) 0500(3) 06(4) 8d

O2 -0013(2) 07533(17) -0531(3) 0500(3) 06(4) 8d

C1 00570(11) 08446(12) -05861(14) 0500(3) 06(4) 8d

C2 00466(18) 09175(12) -05663(18) 0500(3) 06(4) 8d

C3 0004(2) 09222(15) -0484(2) 0500(3) 06(4) 8d

C4 00038(13) 08112(15) -05293(19) 0500(3) 06(4) 8d

C5 -0034(3) 09728(19) -0448(3) 0500(3) 06(4) 8d

H1a 00999(11) 08315(15) -05641(17) 0500(3) 07(5) 8d

H1b 00528(13) 08360(13) -06553(15) 0500(3) 07(5) 8d

H2a 0088(2) 09384(14) -0553(2) 0500(3) 07(5) 8d

H2b 0026(2) 09378(15) -0622(2) 0500(3) 07(5) 8d

H3 0038(2) 09204(15) -04313(18) 0500(3) 07(5) 8d

H5a -0043(3) 0965(2) -0380(3) 0500(3) 07(5) 8d

H5b -0011(4) 10138(17) -0454(3) 0500(3) 07(5) 8d

H5c -0074(3) 0975(3) -0485(3) 0500(3) 07(5) 8d

GVLII O1 -03289(15) -0778(2) -02817(19) 0500(4) 06(4) 8d

O2 -04372(14) -0757(2) -02733(16) 0500(4) 06(4) 8d

C1 -03730(11) -07204(15) -04150(12) 0500(4) 06(4) 8d

C2 -02990(11) -0718(2) -04230(16) 0500(4) 06(4) 8d

C3 -02738(13) -0762(3) -0350(2) 0500(4) 06(4) 8d

C4 -03856(13) -07518(18) -03175(14) 0500(4) 06(4) 8d

C5 -02129(14) -0768(4) -0308(3) 0500(4) 06(4) 8d

H1a -03908(13) -07461(16) -04681(13) 0500(3) 07(5) 8d

H1b -03904(14) -06762(15) -04174(16) 0500(3) 07(5) 8d

H2a -02856(13) -0732(2) -04875(17) 0500(3) 07(5) 8d

H2b -02835(15) -0674(2) -04093(19) 0500(3) 07(5) 8d

H3 -0275(2) -0803(3) -0389(3) 0500(3) 07(5) 8d

H5a -0208(2) -0812(4) -0281(3) 0500(3) 07(5) 8d

H5b -01797(13) -0762(4) -0357(3) 0500(3) 07(5) 8d

H5c -02080(14) -0735(4) -0257(3) 0500(3) 07(5) 8d

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 9: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

8

II (Supplementary Fig 18) and a number of peaks (77 157 237 and 317 cm-1) are absent compared with the

experimental data demonstrating the presence of species I and II that promotes the adsorption of GVL in

NbAlS-1 via the ldquochelatingrdquo mechanism

Inelastic neutron scattering

Direct visualisation of the interaction between adsorbed GVL and the active sites is crucial to understand the

molecular details of adsorption activation and ring-open and decarboxylation of GVL into butenes INS is a

powerful neutron spectroscopy technique to investigate the dynamics (particularly for the deformational and

conformational modes) of GVL It has several advantages

INS spectroscopy is sensitive to the vibrations of hydrogen atoms and hydrogen is ten times more

visible than other elements due to its high neutron cross-section

The technique is not subject to any optical selection rules All vibrations are active and in principle

measurable

INS observations are not restricted to the centre of the Brillouin zone (gamma point) as is the case for

optical techniques

INS spectra can be readily and accurately modelled the intensities are proportional to the concentration

of elements in the sample and their cross-sections and the measured INS intensities relate

straightforwardly to the associated displacements of the scattering atom Treatment of background

correction is also straightforward

Neutrons penetrate deeply into materials and pass readily through the walls of metal containers making

neutrons ideal to measure bulk properties of this material (in this case for 11 g catalyst)

INS spectrometers cover the whole range of the molecular vibrational spectrum 0-500 meV (0-4000 cm-

1)

INS data can be collected at low temperature (lt 15 K in this case) where the thermal motion of the

catalyst the adsorbed GVL and the reacted intermediate molecules can be significantly reduced

9

Supplementary Figures

Fig S1 Comparison of PXRD patterns of HZSM-5 NbS-1 and NbAlS-1 (λ = 15406 Aring)

5 10 15 20 25 30 35 40

NbAlS-1(00270041)

NbAlS-1(00400271)

NbS-1(0041)

NbS-1(00271)

HZSM-5(00671)

HZSM-5(0041)

In

tensity (

au

)

2 (degree)

HZSM-5(00271)

10

Fig S2 SEM images of (a) HZSM-5(0041) (b) NbS-1 (00271) and (c) NbAlS-1(00270041)

a

500 nm

b

500 nm

c

500 nm

11

Fig S3 Characterisation of the acidity of zeolites by Pyridine-IR (a) Py-IR spectra after vacuum treatment

at 150 oC Py-IR spectra of (b) HZSM-5(0041) (c) NbS-1(00271) and (d) NbAlS-1(00270041) after

vacuum treatment at variable temperatures The peaks at 1454 and 1545 cm-1 are assigned to the

coordinatively bound pyridine molecules on Lewis acid sites and pyridinium ion on Broslashnsted acid sites

respectively23 Both the coordinatively bound pyridine and pyridinium ion have the vibration peak at 1490

cm-1 23 The Lewis acid band is centred at 1454 cm-1 in the spectra of HZSM-5 while it shifts to 1447 cm-1 in

the spectra of Nb-doped zeolite which is similar to the reported Lewis acid band (centred at 1448 cm-1) in

niobium phosphate24 The decrease of frequency of the band is related to the reduced stability of the pyridine

complex23 which is verified by the desorption experiments b c and d show the Py-IR spectra of HZSM-

5(0041) NbS-1(00271) and NbAlS-1 (00270041) respectively after desorption of pyridine at variable

temperatures With the increase of temperature the peak intensities related to both Lewis and Broslashnsted acid

sites of HZSM-5 decrease slowly Both peaks are visible even after the vacuum treatment at 450 degC (b)

However the intensities of peaks at 1447 cm-1 in the spectra of NbS-1 and NbAlS-1 decreased dramatically

upon increasing temperature and disappeared at 350 degC (c and d) Also the peaks related to Broslashnsted acid

sites on NbAlS-1 samples disappeared even at 250 degC (c and d) This result indicates that the NbAlS-1

samples have only weak Lewis and weak Broslashnsted acid sites entirely consistent with the NH3-TPD results in

Supplementary Fig 4

a b

cd

1420 1440 1460 1480 1500 1520 1540 1560 1580

NbAlS-1(00400271)

NbAlS-1(00270041)

NbS-1(0041)

NbS-1(00271)

HZSM-5(00671)

HZSM-5(0041)

HZSM-5 (00271)

Inte

nsity (

au

)

Wavenumber (cm-1)

1420 1440 1460 1480 1500 1520 1540 1560 1580

Ine

nsity (

au

)

Wavenumber (cm-1)

150 oC

200 oC

250 oC

350 oC

450 oC

1420 1440 1460 1480 1500 1520 1540 1560 1580

Inte

nsity (

au

)

Wavenumber (cm-1)

150 oC

200 oC

250 oC

350 oC

450 oC

1420 1440 1460 1480 1500 1520 1540 1560 1580

Inte

nsity (

au

)

Wavenumber (cm-1)

150 oC

200 oC

250 oC

350 oC

450 oC

12

Fig S4 Characterisation of the acidity of zeolites by NH3-TPD Two peaks at 240 and 435 degC correspond to

NH3 eluted from the weak and strong acid sites respectively25

100 150 200 250 300 350 400 450 500 550 600

Inte

nsity (

au

)

Temperature (oC)

NbAlS-1(00400271)

NbAlS-1(00270041)

NbS-1(0041)

NbS-1(00271)

HZSM-5(00671)

HZSM-5(0041)

HZSM-5(00271)

13

Fig S5 GC-MS results of the products from the conversion of GVL at 320 oC (a) Gas and (b) liquid

products from conversion of pure GVL over HZSM-5(0041) (c) Gas and (d) liquid products from

conversion of pure GVL over NbS-1(00271) (e) Gas and (f) liquid products from conversion of pure GVL

over NbAlS-1(00270041) (g) Gas and (h) liquid products from conversion of 30 GVL over NbAlS-

1(00270041) The water in g is solely from the feeding solution rather than produced from dehydration as

no dehydration products are observed

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

b

d

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

a

c

N2

CO2

C2H4 C2H6 C3H6 C3H8

C4H10

C4H8

H2O

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

N2

CO2

C4H8

H2O

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

fe

Pentenoic

acid isomers

Pentenoic

acid isomers

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

Aromatics

Pentenoic

acid isomers

g h

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

N2

CO2C4H8

N2

CO2

C4H8

H2O

C2H4 C2H6 C3H6

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

14

Fig S6 TGA (black) and DSC (red) plots of used HZSM-5(0041) (a) and NbAlS-1(00270041) (b)

catalysts after the conversion of pure GVL at 320 oC The by-products (eg coke) deposited on the surface

of used HZSM-5(0041) are significantly more stable than those on used NbAlS-1(00270041)

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

-10

-08

-06

-04

-02

00

02

04

06

08

10

500

Hea

t flow

(W

g)

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

-10

-08

-06

-04

-02

00

02

04

06

08

10

430

He

at flow

(W

g)

330

a b

15

Fig S7 TGA plots of used NbAlS-1(00270041) catalysts after the conversion of pure GVL (black) and 30

wt GVL (red) at 320 oC The presence of water in this catalytic system effectively hindered the formation

of by-products on the catalyst surface

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

for 30 GVL feeding

for pure GVL feeding

16

Fig S8 Comparison of FTIR spectra of NbAlS-1 before and after the conversion of 30wt GVL at 320 oC

for 180 h

1400 1300 1200 1100 1000 900 800 700 600

Absorb

ance (

au

)

Wavenumber (cm-1)

NbAlS-1(00270041) used

NbAlS-1(00270041)

971

17

Fig S9 X-band (ca 9 GHz) EPR spectra of NbAlS-1 and post-reaction zeolites activated by γ-irradiation at

77 K (a) wide magnetic field-sweep highlighting the induced Nb(IV) signals in NbAlS-1(00270041) and

the used sample and (b) narrow magnetic field-sweep highlighting the induced electron hole defect Al-O-

Si signals in fresh and used NbAlS-1(00270041) samples

a

b

100 150 200 250 300 350 400 450 500 550

Nb simulation

NbAlS-1(00270041)

used

Inte

nsity (

au

)

NbAlS-1(00270041)

Magnetic field (mT)

300 310 320 330 340 350 360

NbAlS-1(00270041) used

Al simulation

Inte

nsity (

au

)

Magnetic field (mT)

NbAlS-1(00270041)

18

Fig S10 (a) XAS spectra of the fresh and used NbAlS-1(00270041) (b) Phase-corrected k3-weighted

Fourier Transform of the EXAFS spectra for fresh and used NbAlS-1(00270041) The stability of the Nb

active sites within NbAlS-1(00270041) was verified by Nb K edge XAS with both fresh and used

catalysts exhibiting the same pre-edge XANES and EXAFS features

00

04

08

12

16

20

18800 19075 19350 19625 19900

No

rm a

bso

rptio

n (

au

)

Energy (eV)

NbAlS-1(00270041)

0

1

2

3

4

5

6

7

0 2 4 6

χ(R

)(Aring

-4)

Radial distance (Aring)

a b

NbAlS-1(00270041)

NbAlS-1(00270041) used

NbAlS-1(00270041)

used

19

Fig S11 27Al MAS NMR spectra of fresh and used zeolites Chemical shifts at 0 and 55 ppm are assigned to

six-coordinate extra-framework and four-coordinate framework aluminum species respectively26

100 80 60 40 20 0 -20 -40

NbAlS-1(00270041) used

NbAlS-1(00270041)

HZSM-5(0041) used

27Al chemical shift (ppm)

HZSM-5(0041)

20

Fig S12 Characterisation of the acidity of fresh and used zeolites by NH3-TPD

100 150 200 250 300 350 400 450 500 550 600

In

tensity (

au

)

Temperature (oC)

NbAlS-1(00270041) used

NbAlS-1(00270041)

HZSM-5(0041) used

HZSM-5(0041)

21

Fig S13 X-band (ca 9 GHz) EPR spectra of HZSM-5 and post-reaction zeolites activated by γ-irradiation

at 77 K narrow magnetic field-sweep highlighting the induced electron hole defect Al-O-Si signals in

HZSM-5 (0041) and the used sample

300 310 320 330 340 350 360

HZSM-50041) used

Al simulation

Inte

nsity (

au

)

Magnetic field (mT)

HZSM-5(0041)

22

Fig S14 Comparison of SXPD patterns of (a) HZSM-5(0041) (b) NbS-1(00271) and (c) NbAlS-

1(00270041) before and after adsorption of GVL at room temperature [λ = 082487(1) Aring]

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbAlS-1(0027041)

GVLNbAlS-1(0027041)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbS-1(00271)

GVLNbS-1(00271)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

HZSM-5(0041)

GVLHZSM-5(0041)

a

b

c

23

Fig S15 Comparison of the experimental data (black line) and Rietveld refinement (red line) and the

difference between them (grey line) for SXPD patterns of (ab) GVLHZSM-5(0041) (cd) GVLNbS-

1(00271) (ef) GVLNbAlS-1(00270041) at room temperature at a 2θ range of (ace) 3 - 20deg and

(bdf) 20 - 50deg [λ = 082487(1) Aring]

a b

c d

e f

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

24

Fig S16 (a) 29Si NMR spectra of HZSM-5 and NbAlS-1 de-convolution of 29Si NMR spectra of HZSM-5

(b) and NbAlS-1 (c) by Guassian and Lorentzian line shapes

a

b

c

-125 -120 -115 -110 -105 -100 -95 -90 -85

-1023

-1076

-1138

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-4

Cumulative Fitted Peak

-1171

-125 -120 -115 -110 -105 -100 -95 -90 -85

-924-983

-1026

-1057

-1124

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-6

Cumulative Fitted Peak

-1162

-125 -120 -115 -110 -105 -100 -95 -90 -8529

Si chemical shift (ppm)

NbAlS-1(00270041)

HZSM-5(0041)

25

Fig S17 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and calculated INS

spectra for 12 types of NbAlH sites

0 200 400 600 800 1000 1200 1400 1600

1211109876

4

23

5

1

Bare NbAlS-1 (exp)

S(Q

) (a

u)

Neutron energy loss (cm-1)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

26

Fig S18 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and combination of

calculated INS spectra of different NbAlH sites Combination 1 = 3125Site I + 3125Site II +

5Site III + 325Site IV Combination 2 = 675Site III + 325Site IV Site I = 025(NbAlH_1 +

NbAlH_2 + NbAlH_3 + NbAlH_4) Site II = 025(NbAlH_5 + NbAlH_6 + NbAlH_7 +

NbAlH_8) Site III = 05(NbAlH_9 + NbAlH_10) Site IV = 05(NbAlH_11 + NbAlH_12)

Abscissa is scaled down by 097 for combination 1 and 2

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Bare NbAlS-1 (exp)

Combination 1

Combination 2

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

27

Fig S19 Schematic view of the procedure of in situ INS experiment and data collection

Zeolite (Calcined)

Zeolite (activated)

Heating at 450 oC under

He flow for 3 h

Zeolite (Adsorbed)

INS collection 1

Zeolite (Reaction at 280 C)

Adsorption of GVL at 135 oC

Zeolite (Reaction at 300 C)

Zeolite (Reaction at 320 C)

Reaction at 280 oC for 3 min

Reaction at 300 oC for 3 min

Reaction at 320 oC for 3 min

INS collection 2

INS collection 3

INS collection 4

INS collection 5

28

Fig S20 Comparison of the experimental INS spectra of condensed GVL in the solid state (black) and

calculated INS spectra of single GVL molecule (red) The crystal structure of solid GVL is unavailable in the

database

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental GVL

Calculated GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

29

Fig S21 Comparison of the experimental and calculated INS spectra of adsorbed GVL molecules on

NbAlS-1 The structure model derived from SXPD experiments was used for initial DFT modelling where

the positional disorder has been removed in the calculation and this partially accounts for the discrepancies

observed between calculated and experimental INS plots

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental adsorbed GVL

Calculated adsorbed GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

30

Fig S22 View of the INS spectrum for the empty catalysis cell used for this experiment The empty can has

the features below 300 cm-1 and at approximately 457 and 659 cm-1

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Empty can

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

31

Fig S23 Comparison of the experimental INS spectra for bare and GVL-adsorbed catalyst Spectra shown

are after subtraction of the empty cell The INS spectrum of the catalyst on GVL adsorption at 135 degC shows

a significant increase in total intensity demonstrating the binding of GVL to the catalyst sites

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

GVLNbAlS-1(00270041)

Bare NbAlS-1(00270041)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

32

Fig S24 Comparison of the experimental INS spectra of all butene isomers and reacted GVL at 320 degC

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Reaction 320 oC

trans-2-butene

i-butene

1-butene

cis-2-butene

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

33

Supplementary Tables

Table S1 Textural properties (data determined from N2 sorption isotherms at 77 K) and crystallite size (data

determined from SEM) of all zeolites used in this study

Samples ABET (m2 g-1)a Amic (m2 g-1) b Aext (m2 g-1) c Vmic (cm3 g-1) d Vtotal (cm3 g-1) e

Crystallite sizef

(nm)

HZSM-5 (00271) 413 314 99 019 033 200-500

HZSM-5 (0041) 346 259 87 015 028 200-500

HZSM-5 (00671) 348 277 71 016 026 200-500

NbS-1 (00271) 377 284 93 017 029 300-500

NbS-1 (0041) 357 282 75 016 027 300-500

NbAlS-1(00270041) 408 263 145 018 041 300-500

NbAlS-1(00400271) 376 268 108 017 033 300-500

HZSM-5 (0041)g 338 258 80 015 027 200-500

NbAlS-1(00270041)g 396 262 134 018 039 300-500

aBET specific surface area bMicropore surface area cExternal surface area dMicropore volume eTotal pore volume fObtainted from SEM gUsed catalyst

34

Table S2 Spin-Hamiltonian parameters of radiation induced Nb(IV) and electron hole Al-O-Si defects

from simulation of CW X-band EPR spectra in Fig 1 lw is the homogeneous Lorentzian linewidth g and A

are the principle values of the g and hyperfine interaction tensors

Signal Parameters

Electron

Spin

Nuclear

Spin g-tensor g-Strain

A-tensor

(G)

lw

(mT)

Nb defect 12 92 [1935 1935 1866] [004 004 00] [159 159

310] [0 40]

Al defect 12 52 [20012 2007 2045] [00 0003 004] [7 7 -] [00 04]

35

Table S3 Summary of acidity of all zeolites used in this work Data were determined by NH3-TPD and

Pyridine-IR studies

Catalyst Weak acida

(mmol g-1)

Strong acida

(mmol g-1)

Total acida

(mmol g-1)

LB acid

ratiob

HZSM-5(00271) 015 025 04 039

HZSM-5(0041) 024 028 052 037

HZSM-5(00671) 033 03 063 027

NbS-1(00271) 004 0 004 -

NbS-1(0041) 004 0 004 -

NbAlS-1(00270041) 022 0 022 469

NbAlS-1(00400271) 023 0 023 35 aFrom NH3-TPD bFrom Pyridine-IR

36

Table S4 The butenes distribution in equilibrium at 320 degC and the distribution of butene isomers produced

from conversion of 30 GVL at 320 degC over catalysts

Catalyst Distribution ()

i-butene 1-butene trans-2-butene cis-2-butene

Equilibrium27 45 12 27 16

HZSM-5(0041) 44 14 25 17

NbAlS-1(00270041) 18 19 38 25

NbOPO4 15 20 39 26

37

Table S5 Comparison of the catalytic performance of reported catalysts for the conversion of GVL in aqueous solution (25-40 wt ) to butenes

Catalyst Reaction Conditions GVL

concentration

(wt )

GVL

conversion

()

Butene

Yield

(mol )a

Ref

Temperature

(degC)

WHSV

(h-1)

Pressure

(bar)

NbAlS-1(00270041) 320 018 1 30 100 993 this work

SiO2Al2O3 375 09 1 30 97 75 28

HZSM-5(0041) 320 018 1 30 76 232 this work

LaZSM-5 450 1 10 40 gt99 ca 21 15

PdNb2O5b 275 05 14 30d 100 lt16c 29

Zn-AlPO-5 397 077 10 40 65 ca 12 30

H3PO4 240 - - 25 100 12c 31

ZnZSM-5 450 1 10 40 gt99 ca 6 15

AlPO-5 397 077 10 40 2 ca 04 30

aButene yield is calculated by the equation defined in the Method section

bunder H2 atmosphere

cThe product includes both butene and butane d002 M H2SO4 was added in the GVL solution

38

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1

R (Aring)a σ a Amp a CN a

NbAlS-1 (Dry) Nb=O 1680 0017 082 1 Nb-O 2014 0008 082 3 NbAlS-1

Nb=O 1721 0012 078 1

Nb-O 2014 0004 078 3

NbAlS-1+GVL

Nb=O 1943 0003 075 1

Nb-O 2014 0010 075 3

NbS-1

Nb=O 1711 0032 091 1

Nb-O 2014 0005 091 3

NbS-1+GVL

Nb=O 1770 0004 089 1

Nb-O 2014 0014 089 3 aR = Interatomic distance from central scattering atom σ = Debye-Waller factor Amp = amplitude factor

and CN = coordination number

39

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption

Samples GVLHZSM-5(0041) GVLNbS-1(00271) NbAlS-1(00270041) GVLNbAlS-1(00270041)

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma

Chemical formula Al3692Si92308O192 8GVL Nb2524Si93476O192 8GVL Al3599Nb2429Si89972O192 Al3599Nb2429Si89972O192 8GVL

2θ range for refinement (deg) 3 ndash 50 3 ndash 50 3 ndash 50 3 ndash 50

Detector Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals

Number of hkls 3251 3214 3179 3222

Refinement methods Rietveld Rietveld Rietveld Rietveld

a (Aring) 201351(2) 200604(2) 199955(3) 200697(3)

b (Aring) 199852(2) 198995(1) 198333(3) 199150(3)

c (Aring) 134549(2) 134010(1) 133531(2) 134214(2)

V (Aring3) 541428(11) 534957(7) 529553(15) 536437(15)

RwpRexp Rp () 445135013378 463131253497 553133614058 444933763305

Wavelength (Aring) 082487(1) 082487(1) 082487(1) 082487(1)

Gof χ2 1272 1482 1646 1318

40

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) at room

temperature

Species Atom x y z SOF Beq(Aring2) Wyckoff

HZSM-5(0041) Al1 -00732(5) 00570(7) 08366(7) 003846154 100(5) 8d

Al2 01869(6) -00339(5) 03189(8) 003846154 100(5) 8d

Al3 02207(5) -00626(7) 05256(8) 003846154 100(5) 8d

Al4 01210(5) 00590(7) 10220(8) 003846154 100(5) 8d

Al5 -00703(6) -00272(5) 01933(8) 003846154 100(5) 8d

Al6 01859(5) 00593(6) 06679(8) 003846154 100(5) 8d

Al7 -00745(6) 06734(6) 08243(9) 003846154 100(5) 8d

Al8 01956(6) 01297(5) 03114(7) 003846154 100(5) 8d

Al9 02187(5) 01761(5) 05326(8) 003846154 100(5) 8d

Al10 01228(5) 06749(6) 10400(8) 003846154 100(5) 8d

Al11 -00694(6) 01308(6) 01819(9) 003846154 100(5) 8d

Al12 01859(6) 06714(5) 06756(8) 003846154 100(5) 8d

Si1 -00732(5) 00570(7) 08366(7) 09615385 100(5) 8d

Si2 01869(6) -00339(5) 03189(8) 09615385 100(5) 8d

Si3 02207(5) -00626(7) 05256(8) 09615385 100(5) 8d

Si4 01210(5) 00590(7) 10220(8) 09615385 100(5) 8d

Si5 -00703(6) -00272(5) 01933(8) 09615385 100(5) 8d

Si6 01859(5) 00593(6) 06679(8) 09615385 100(5) 8d

Si7 -00745(6) 06734(6) 08243(9) 09615385 100(5) 8d

Si8 01956(6) 01297(5) 03114(7) 09615385 100(5) 8d

Si9 02187(5) 01761(5) 05326(8) 09615385 100(5) 8d

Si10 01228(5) 06749(6) 10400(8) 09615385 100(5) 8d

Si11 -00694(6) 01308(6) 01819(9) 09615385 100(5) 8d

Si12 01859(6) 06714(5) 06756(8) 09615385 100(5) 8d

O1 01189(10) -00643(12) 02762(13) 1 143(9) 8d

O2 01900(11) -00665(10) 04093(13) 1 143(9) 8d

O3 02017(11) 00485(12) 10198(11) 1 143(9) 8d

O4 -00964(9) -00573(13) 10736(15) 1 143(9) 8d

O5 01132(9) 00573(12) 07009(13) 1 143(9) 8d

O6 02544(10) 00574(13) 07592(13) 1 143(9) 8d

O7 01249(11) 01569(12) 02676(15) 1 143(9) 8d

O8 01995(12) 01482(9) 04331(13) 1 143(9) 8d

O9 01968(12) 06607(9) 00500(12) 1 143(9) 8d

O10 -00922(10) 01564(11) 10827(17) 1 143(9) 8d

O11 01123(10) 06498(11) 07436(14) 1 143(9) 8d

O12 02420(11) 06557(12) 07396(15) 1 143(9) 8d

O13 02109(9) 00468(11) 03170(12) 1 143(9) 8d

O14 -00793(8) 00525(13) 01708(13) 1 143(9) 8d

O15 -00850(10) 01327(12) 08874(17) 1 143(9) 8d

O16 -01009(10) 00004(11) 09239(15) 1 143(9) 8d

O17 -01006(10) 06343(12) -00444(14) 1 143(9) 8d

O18 01746(10) 01273(11) 06145(13) 1 143(9) 8d

O19 01980(12) 00019(10) 06091(12) 1 143(9) 8d

O20 02014(13) 06300(11) 05761(13) 1 143(9) 8d

O21 -00054(11) 00405(12) 07595(12) 1 143(9) 8d

O22 -00045(12) 06580(13) 07876(13) 1 143(9) 8d

O23 -00801(15) 075 0861(2) 1 143(9) 4c

O24 01839(17) 075 0648(2) 1 143(9) 4c

O25 02011(18) 025 0563(2) 1 143(9) 4c

O26 00863(13) 075 0143(2) 1 143(9) 4c

41

GVLI O1 -00251(15) 08553(18) -0468(2) 0500(3) 06(4) 8d

O2 -0013(2) 07533(17) -0531(3) 0500(3) 06(4) 8d

C1 00570(11) 08446(12) -05861(14) 0500(3) 06(4) 8d

C2 00466(18) 09175(12) -05663(18) 0500(3) 06(4) 8d

C3 0004(2) 09222(15) -0484(2) 0500(3) 06(4) 8d

C4 00038(13) 08112(15) -05293(19) 0500(3) 06(4) 8d

C5 -0034(3) 09728(19) -0448(3) 0500(3) 06(4) 8d

H1a 00999(11) 08315(15) -05641(17) 0500(3) 07(5) 8d

H1b 00528(13) 08360(13) -06553(15) 0500(3) 07(5) 8d

H2a 0088(2) 09384(14) -0553(2) 0500(3) 07(5) 8d

H2b 0026(2) 09378(15) -0622(2) 0500(3) 07(5) 8d

H3 0038(2) 09204(15) -04313(18) 0500(3) 07(5) 8d

H5a -0043(3) 0965(2) -0380(3) 0500(3) 07(5) 8d

H5b -0011(4) 10138(17) -0454(3) 0500(3) 07(5) 8d

H5c -0074(3) 0975(3) -0485(3) 0500(3) 07(5) 8d

GVLII O1 -03289(15) -0778(2) -02817(19) 0500(4) 06(4) 8d

O2 -04372(14) -0757(2) -02733(16) 0500(4) 06(4) 8d

C1 -03730(11) -07204(15) -04150(12) 0500(4) 06(4) 8d

C2 -02990(11) -0718(2) -04230(16) 0500(4) 06(4) 8d

C3 -02738(13) -0762(3) -0350(2) 0500(4) 06(4) 8d

C4 -03856(13) -07518(18) -03175(14) 0500(4) 06(4) 8d

C5 -02129(14) -0768(4) -0308(3) 0500(4) 06(4) 8d

H1a -03908(13) -07461(16) -04681(13) 0500(3) 07(5) 8d

H1b -03904(14) -06762(15) -04174(16) 0500(3) 07(5) 8d

H2a -02856(13) -0732(2) -04875(17) 0500(3) 07(5) 8d

H2b -02835(15) -0674(2) -04093(19) 0500(3) 07(5) 8d

H3 -0275(2) -0803(3) -0389(3) 0500(3) 07(5) 8d

H5a -0208(2) -0812(4) -0281(3) 0500(3) 07(5) 8d

H5b -01797(13) -0762(4) -0357(3) 0500(3) 07(5) 8d

H5c -02080(14) -0735(4) -0257(3) 0500(3) 07(5) 8d

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 10: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

9

Supplementary Figures

Fig S1 Comparison of PXRD patterns of HZSM-5 NbS-1 and NbAlS-1 (λ = 15406 Aring)

5 10 15 20 25 30 35 40

NbAlS-1(00270041)

NbAlS-1(00400271)

NbS-1(0041)

NbS-1(00271)

HZSM-5(00671)

HZSM-5(0041)

In

tensity (

au

)

2 (degree)

HZSM-5(00271)

10

Fig S2 SEM images of (a) HZSM-5(0041) (b) NbS-1 (00271) and (c) NbAlS-1(00270041)

a

500 nm

b

500 nm

c

500 nm

11

Fig S3 Characterisation of the acidity of zeolites by Pyridine-IR (a) Py-IR spectra after vacuum treatment

at 150 oC Py-IR spectra of (b) HZSM-5(0041) (c) NbS-1(00271) and (d) NbAlS-1(00270041) after

vacuum treatment at variable temperatures The peaks at 1454 and 1545 cm-1 are assigned to the

coordinatively bound pyridine molecules on Lewis acid sites and pyridinium ion on Broslashnsted acid sites

respectively23 Both the coordinatively bound pyridine and pyridinium ion have the vibration peak at 1490

cm-1 23 The Lewis acid band is centred at 1454 cm-1 in the spectra of HZSM-5 while it shifts to 1447 cm-1 in

the spectra of Nb-doped zeolite which is similar to the reported Lewis acid band (centred at 1448 cm-1) in

niobium phosphate24 The decrease of frequency of the band is related to the reduced stability of the pyridine

complex23 which is verified by the desorption experiments b c and d show the Py-IR spectra of HZSM-

5(0041) NbS-1(00271) and NbAlS-1 (00270041) respectively after desorption of pyridine at variable

temperatures With the increase of temperature the peak intensities related to both Lewis and Broslashnsted acid

sites of HZSM-5 decrease slowly Both peaks are visible even after the vacuum treatment at 450 degC (b)

However the intensities of peaks at 1447 cm-1 in the spectra of NbS-1 and NbAlS-1 decreased dramatically

upon increasing temperature and disappeared at 350 degC (c and d) Also the peaks related to Broslashnsted acid

sites on NbAlS-1 samples disappeared even at 250 degC (c and d) This result indicates that the NbAlS-1

samples have only weak Lewis and weak Broslashnsted acid sites entirely consistent with the NH3-TPD results in

Supplementary Fig 4

a b

cd

1420 1440 1460 1480 1500 1520 1540 1560 1580

NbAlS-1(00400271)

NbAlS-1(00270041)

NbS-1(0041)

NbS-1(00271)

HZSM-5(00671)

HZSM-5(0041)

HZSM-5 (00271)

Inte

nsity (

au

)

Wavenumber (cm-1)

1420 1440 1460 1480 1500 1520 1540 1560 1580

Ine

nsity (

au

)

Wavenumber (cm-1)

150 oC

200 oC

250 oC

350 oC

450 oC

1420 1440 1460 1480 1500 1520 1540 1560 1580

Inte

nsity (

au

)

Wavenumber (cm-1)

150 oC

200 oC

250 oC

350 oC

450 oC

1420 1440 1460 1480 1500 1520 1540 1560 1580

Inte

nsity (

au

)

Wavenumber (cm-1)

150 oC

200 oC

250 oC

350 oC

450 oC

12

Fig S4 Characterisation of the acidity of zeolites by NH3-TPD Two peaks at 240 and 435 degC correspond to

NH3 eluted from the weak and strong acid sites respectively25

100 150 200 250 300 350 400 450 500 550 600

Inte

nsity (

au

)

Temperature (oC)

NbAlS-1(00400271)

NbAlS-1(00270041)

NbS-1(0041)

NbS-1(00271)

HZSM-5(00671)

HZSM-5(0041)

HZSM-5(00271)

13

Fig S5 GC-MS results of the products from the conversion of GVL at 320 oC (a) Gas and (b) liquid

products from conversion of pure GVL over HZSM-5(0041) (c) Gas and (d) liquid products from

conversion of pure GVL over NbS-1(00271) (e) Gas and (f) liquid products from conversion of pure GVL

over NbAlS-1(00270041) (g) Gas and (h) liquid products from conversion of 30 GVL over NbAlS-

1(00270041) The water in g is solely from the feeding solution rather than produced from dehydration as

no dehydration products are observed

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

b

d

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

a

c

N2

CO2

C2H4 C2H6 C3H6 C3H8

C4H10

C4H8

H2O

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

N2

CO2

C4H8

H2O

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

fe

Pentenoic

acid isomers

Pentenoic

acid isomers

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

Aromatics

Pentenoic

acid isomers

g h

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

N2

CO2C4H8

N2

CO2

C4H8

H2O

C2H4 C2H6 C3H6

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

14

Fig S6 TGA (black) and DSC (red) plots of used HZSM-5(0041) (a) and NbAlS-1(00270041) (b)

catalysts after the conversion of pure GVL at 320 oC The by-products (eg coke) deposited on the surface

of used HZSM-5(0041) are significantly more stable than those on used NbAlS-1(00270041)

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

-10

-08

-06

-04

-02

00

02

04

06

08

10

500

Hea

t flow

(W

g)

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

-10

-08

-06

-04

-02

00

02

04

06

08

10

430

He

at flow

(W

g)

330

a b

15

Fig S7 TGA plots of used NbAlS-1(00270041) catalysts after the conversion of pure GVL (black) and 30

wt GVL (red) at 320 oC The presence of water in this catalytic system effectively hindered the formation

of by-products on the catalyst surface

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

for 30 GVL feeding

for pure GVL feeding

16

Fig S8 Comparison of FTIR spectra of NbAlS-1 before and after the conversion of 30wt GVL at 320 oC

for 180 h

1400 1300 1200 1100 1000 900 800 700 600

Absorb

ance (

au

)

Wavenumber (cm-1)

NbAlS-1(00270041) used

NbAlS-1(00270041)

971

17

Fig S9 X-band (ca 9 GHz) EPR spectra of NbAlS-1 and post-reaction zeolites activated by γ-irradiation at

77 K (a) wide magnetic field-sweep highlighting the induced Nb(IV) signals in NbAlS-1(00270041) and

the used sample and (b) narrow magnetic field-sweep highlighting the induced electron hole defect Al-O-

Si signals in fresh and used NbAlS-1(00270041) samples

a

b

100 150 200 250 300 350 400 450 500 550

Nb simulation

NbAlS-1(00270041)

used

Inte

nsity (

au

)

NbAlS-1(00270041)

Magnetic field (mT)

300 310 320 330 340 350 360

NbAlS-1(00270041) used

Al simulation

Inte

nsity (

au

)

Magnetic field (mT)

NbAlS-1(00270041)

18

Fig S10 (a) XAS spectra of the fresh and used NbAlS-1(00270041) (b) Phase-corrected k3-weighted

Fourier Transform of the EXAFS spectra for fresh and used NbAlS-1(00270041) The stability of the Nb

active sites within NbAlS-1(00270041) was verified by Nb K edge XAS with both fresh and used

catalysts exhibiting the same pre-edge XANES and EXAFS features

00

04

08

12

16

20

18800 19075 19350 19625 19900

No

rm a

bso

rptio

n (

au

)

Energy (eV)

NbAlS-1(00270041)

0

1

2

3

4

5

6

7

0 2 4 6

χ(R

)(Aring

-4)

Radial distance (Aring)

a b

NbAlS-1(00270041)

NbAlS-1(00270041) used

NbAlS-1(00270041)

used

19

Fig S11 27Al MAS NMR spectra of fresh and used zeolites Chemical shifts at 0 and 55 ppm are assigned to

six-coordinate extra-framework and four-coordinate framework aluminum species respectively26

100 80 60 40 20 0 -20 -40

NbAlS-1(00270041) used

NbAlS-1(00270041)

HZSM-5(0041) used

27Al chemical shift (ppm)

HZSM-5(0041)

20

Fig S12 Characterisation of the acidity of fresh and used zeolites by NH3-TPD

100 150 200 250 300 350 400 450 500 550 600

In

tensity (

au

)

Temperature (oC)

NbAlS-1(00270041) used

NbAlS-1(00270041)

HZSM-5(0041) used

HZSM-5(0041)

21

Fig S13 X-band (ca 9 GHz) EPR spectra of HZSM-5 and post-reaction zeolites activated by γ-irradiation

at 77 K narrow magnetic field-sweep highlighting the induced electron hole defect Al-O-Si signals in

HZSM-5 (0041) and the used sample

300 310 320 330 340 350 360

HZSM-50041) used

Al simulation

Inte

nsity (

au

)

Magnetic field (mT)

HZSM-5(0041)

22

Fig S14 Comparison of SXPD patterns of (a) HZSM-5(0041) (b) NbS-1(00271) and (c) NbAlS-

1(00270041) before and after adsorption of GVL at room temperature [λ = 082487(1) Aring]

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbAlS-1(0027041)

GVLNbAlS-1(0027041)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbS-1(00271)

GVLNbS-1(00271)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

HZSM-5(0041)

GVLHZSM-5(0041)

a

b

c

23

Fig S15 Comparison of the experimental data (black line) and Rietveld refinement (red line) and the

difference between them (grey line) for SXPD patterns of (ab) GVLHZSM-5(0041) (cd) GVLNbS-

1(00271) (ef) GVLNbAlS-1(00270041) at room temperature at a 2θ range of (ace) 3 - 20deg and

(bdf) 20 - 50deg [λ = 082487(1) Aring]

a b

c d

e f

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

24

Fig S16 (a) 29Si NMR spectra of HZSM-5 and NbAlS-1 de-convolution of 29Si NMR spectra of HZSM-5

(b) and NbAlS-1 (c) by Guassian and Lorentzian line shapes

a

b

c

-125 -120 -115 -110 -105 -100 -95 -90 -85

-1023

-1076

-1138

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-4

Cumulative Fitted Peak

-1171

-125 -120 -115 -110 -105 -100 -95 -90 -85

-924-983

-1026

-1057

-1124

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-6

Cumulative Fitted Peak

-1162

-125 -120 -115 -110 -105 -100 -95 -90 -8529

Si chemical shift (ppm)

NbAlS-1(00270041)

HZSM-5(0041)

25

Fig S17 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and calculated INS

spectra for 12 types of NbAlH sites

0 200 400 600 800 1000 1200 1400 1600

1211109876

4

23

5

1

Bare NbAlS-1 (exp)

S(Q

) (a

u)

Neutron energy loss (cm-1)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

26

Fig S18 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and combination of

calculated INS spectra of different NbAlH sites Combination 1 = 3125Site I + 3125Site II +

5Site III + 325Site IV Combination 2 = 675Site III + 325Site IV Site I = 025(NbAlH_1 +

NbAlH_2 + NbAlH_3 + NbAlH_4) Site II = 025(NbAlH_5 + NbAlH_6 + NbAlH_7 +

NbAlH_8) Site III = 05(NbAlH_9 + NbAlH_10) Site IV = 05(NbAlH_11 + NbAlH_12)

Abscissa is scaled down by 097 for combination 1 and 2

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Bare NbAlS-1 (exp)

Combination 1

Combination 2

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

27

Fig S19 Schematic view of the procedure of in situ INS experiment and data collection

Zeolite (Calcined)

Zeolite (activated)

Heating at 450 oC under

He flow for 3 h

Zeolite (Adsorbed)

INS collection 1

Zeolite (Reaction at 280 C)

Adsorption of GVL at 135 oC

Zeolite (Reaction at 300 C)

Zeolite (Reaction at 320 C)

Reaction at 280 oC for 3 min

Reaction at 300 oC for 3 min

Reaction at 320 oC for 3 min

INS collection 2

INS collection 3

INS collection 4

INS collection 5

28

Fig S20 Comparison of the experimental INS spectra of condensed GVL in the solid state (black) and

calculated INS spectra of single GVL molecule (red) The crystal structure of solid GVL is unavailable in the

database

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental GVL

Calculated GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

29

Fig S21 Comparison of the experimental and calculated INS spectra of adsorbed GVL molecules on

NbAlS-1 The structure model derived from SXPD experiments was used for initial DFT modelling where

the positional disorder has been removed in the calculation and this partially accounts for the discrepancies

observed between calculated and experimental INS plots

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental adsorbed GVL

Calculated adsorbed GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

30

Fig S22 View of the INS spectrum for the empty catalysis cell used for this experiment The empty can has

the features below 300 cm-1 and at approximately 457 and 659 cm-1

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Empty can

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

31

Fig S23 Comparison of the experimental INS spectra for bare and GVL-adsorbed catalyst Spectra shown

are after subtraction of the empty cell The INS spectrum of the catalyst on GVL adsorption at 135 degC shows

a significant increase in total intensity demonstrating the binding of GVL to the catalyst sites

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

GVLNbAlS-1(00270041)

Bare NbAlS-1(00270041)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

32

Fig S24 Comparison of the experimental INS spectra of all butene isomers and reacted GVL at 320 degC

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Reaction 320 oC

trans-2-butene

i-butene

1-butene

cis-2-butene

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

33

Supplementary Tables

Table S1 Textural properties (data determined from N2 sorption isotherms at 77 K) and crystallite size (data

determined from SEM) of all zeolites used in this study

Samples ABET (m2 g-1)a Amic (m2 g-1) b Aext (m2 g-1) c Vmic (cm3 g-1) d Vtotal (cm3 g-1) e

Crystallite sizef

(nm)

HZSM-5 (00271) 413 314 99 019 033 200-500

HZSM-5 (0041) 346 259 87 015 028 200-500

HZSM-5 (00671) 348 277 71 016 026 200-500

NbS-1 (00271) 377 284 93 017 029 300-500

NbS-1 (0041) 357 282 75 016 027 300-500

NbAlS-1(00270041) 408 263 145 018 041 300-500

NbAlS-1(00400271) 376 268 108 017 033 300-500

HZSM-5 (0041)g 338 258 80 015 027 200-500

NbAlS-1(00270041)g 396 262 134 018 039 300-500

aBET specific surface area bMicropore surface area cExternal surface area dMicropore volume eTotal pore volume fObtainted from SEM gUsed catalyst

34

Table S2 Spin-Hamiltonian parameters of radiation induced Nb(IV) and electron hole Al-O-Si defects

from simulation of CW X-band EPR spectra in Fig 1 lw is the homogeneous Lorentzian linewidth g and A

are the principle values of the g and hyperfine interaction tensors

Signal Parameters

Electron

Spin

Nuclear

Spin g-tensor g-Strain

A-tensor

(G)

lw

(mT)

Nb defect 12 92 [1935 1935 1866] [004 004 00] [159 159

310] [0 40]

Al defect 12 52 [20012 2007 2045] [00 0003 004] [7 7 -] [00 04]

35

Table S3 Summary of acidity of all zeolites used in this work Data were determined by NH3-TPD and

Pyridine-IR studies

Catalyst Weak acida

(mmol g-1)

Strong acida

(mmol g-1)

Total acida

(mmol g-1)

LB acid

ratiob

HZSM-5(00271) 015 025 04 039

HZSM-5(0041) 024 028 052 037

HZSM-5(00671) 033 03 063 027

NbS-1(00271) 004 0 004 -

NbS-1(0041) 004 0 004 -

NbAlS-1(00270041) 022 0 022 469

NbAlS-1(00400271) 023 0 023 35 aFrom NH3-TPD bFrom Pyridine-IR

36

Table S4 The butenes distribution in equilibrium at 320 degC and the distribution of butene isomers produced

from conversion of 30 GVL at 320 degC over catalysts

Catalyst Distribution ()

i-butene 1-butene trans-2-butene cis-2-butene

Equilibrium27 45 12 27 16

HZSM-5(0041) 44 14 25 17

NbAlS-1(00270041) 18 19 38 25

NbOPO4 15 20 39 26

37

Table S5 Comparison of the catalytic performance of reported catalysts for the conversion of GVL in aqueous solution (25-40 wt ) to butenes

Catalyst Reaction Conditions GVL

concentration

(wt )

GVL

conversion

()

Butene

Yield

(mol )a

Ref

Temperature

(degC)

WHSV

(h-1)

Pressure

(bar)

NbAlS-1(00270041) 320 018 1 30 100 993 this work

SiO2Al2O3 375 09 1 30 97 75 28

HZSM-5(0041) 320 018 1 30 76 232 this work

LaZSM-5 450 1 10 40 gt99 ca 21 15

PdNb2O5b 275 05 14 30d 100 lt16c 29

Zn-AlPO-5 397 077 10 40 65 ca 12 30

H3PO4 240 - - 25 100 12c 31

ZnZSM-5 450 1 10 40 gt99 ca 6 15

AlPO-5 397 077 10 40 2 ca 04 30

aButene yield is calculated by the equation defined in the Method section

bunder H2 atmosphere

cThe product includes both butene and butane d002 M H2SO4 was added in the GVL solution

38

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1

R (Aring)a σ a Amp a CN a

NbAlS-1 (Dry) Nb=O 1680 0017 082 1 Nb-O 2014 0008 082 3 NbAlS-1

Nb=O 1721 0012 078 1

Nb-O 2014 0004 078 3

NbAlS-1+GVL

Nb=O 1943 0003 075 1

Nb-O 2014 0010 075 3

NbS-1

Nb=O 1711 0032 091 1

Nb-O 2014 0005 091 3

NbS-1+GVL

Nb=O 1770 0004 089 1

Nb-O 2014 0014 089 3 aR = Interatomic distance from central scattering atom σ = Debye-Waller factor Amp = amplitude factor

and CN = coordination number

39

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption

Samples GVLHZSM-5(0041) GVLNbS-1(00271) NbAlS-1(00270041) GVLNbAlS-1(00270041)

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma

Chemical formula Al3692Si92308O192 8GVL Nb2524Si93476O192 8GVL Al3599Nb2429Si89972O192 Al3599Nb2429Si89972O192 8GVL

2θ range for refinement (deg) 3 ndash 50 3 ndash 50 3 ndash 50 3 ndash 50

Detector Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals

Number of hkls 3251 3214 3179 3222

Refinement methods Rietveld Rietveld Rietveld Rietveld

a (Aring) 201351(2) 200604(2) 199955(3) 200697(3)

b (Aring) 199852(2) 198995(1) 198333(3) 199150(3)

c (Aring) 134549(2) 134010(1) 133531(2) 134214(2)

V (Aring3) 541428(11) 534957(7) 529553(15) 536437(15)

RwpRexp Rp () 445135013378 463131253497 553133614058 444933763305

Wavelength (Aring) 082487(1) 082487(1) 082487(1) 082487(1)

Gof χ2 1272 1482 1646 1318

40

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) at room

temperature

Species Atom x y z SOF Beq(Aring2) Wyckoff

HZSM-5(0041) Al1 -00732(5) 00570(7) 08366(7) 003846154 100(5) 8d

Al2 01869(6) -00339(5) 03189(8) 003846154 100(5) 8d

Al3 02207(5) -00626(7) 05256(8) 003846154 100(5) 8d

Al4 01210(5) 00590(7) 10220(8) 003846154 100(5) 8d

Al5 -00703(6) -00272(5) 01933(8) 003846154 100(5) 8d

Al6 01859(5) 00593(6) 06679(8) 003846154 100(5) 8d

Al7 -00745(6) 06734(6) 08243(9) 003846154 100(5) 8d

Al8 01956(6) 01297(5) 03114(7) 003846154 100(5) 8d

Al9 02187(5) 01761(5) 05326(8) 003846154 100(5) 8d

Al10 01228(5) 06749(6) 10400(8) 003846154 100(5) 8d

Al11 -00694(6) 01308(6) 01819(9) 003846154 100(5) 8d

Al12 01859(6) 06714(5) 06756(8) 003846154 100(5) 8d

Si1 -00732(5) 00570(7) 08366(7) 09615385 100(5) 8d

Si2 01869(6) -00339(5) 03189(8) 09615385 100(5) 8d

Si3 02207(5) -00626(7) 05256(8) 09615385 100(5) 8d

Si4 01210(5) 00590(7) 10220(8) 09615385 100(5) 8d

Si5 -00703(6) -00272(5) 01933(8) 09615385 100(5) 8d

Si6 01859(5) 00593(6) 06679(8) 09615385 100(5) 8d

Si7 -00745(6) 06734(6) 08243(9) 09615385 100(5) 8d

Si8 01956(6) 01297(5) 03114(7) 09615385 100(5) 8d

Si9 02187(5) 01761(5) 05326(8) 09615385 100(5) 8d

Si10 01228(5) 06749(6) 10400(8) 09615385 100(5) 8d

Si11 -00694(6) 01308(6) 01819(9) 09615385 100(5) 8d

Si12 01859(6) 06714(5) 06756(8) 09615385 100(5) 8d

O1 01189(10) -00643(12) 02762(13) 1 143(9) 8d

O2 01900(11) -00665(10) 04093(13) 1 143(9) 8d

O3 02017(11) 00485(12) 10198(11) 1 143(9) 8d

O4 -00964(9) -00573(13) 10736(15) 1 143(9) 8d

O5 01132(9) 00573(12) 07009(13) 1 143(9) 8d

O6 02544(10) 00574(13) 07592(13) 1 143(9) 8d

O7 01249(11) 01569(12) 02676(15) 1 143(9) 8d

O8 01995(12) 01482(9) 04331(13) 1 143(9) 8d

O9 01968(12) 06607(9) 00500(12) 1 143(9) 8d

O10 -00922(10) 01564(11) 10827(17) 1 143(9) 8d

O11 01123(10) 06498(11) 07436(14) 1 143(9) 8d

O12 02420(11) 06557(12) 07396(15) 1 143(9) 8d

O13 02109(9) 00468(11) 03170(12) 1 143(9) 8d

O14 -00793(8) 00525(13) 01708(13) 1 143(9) 8d

O15 -00850(10) 01327(12) 08874(17) 1 143(9) 8d

O16 -01009(10) 00004(11) 09239(15) 1 143(9) 8d

O17 -01006(10) 06343(12) -00444(14) 1 143(9) 8d

O18 01746(10) 01273(11) 06145(13) 1 143(9) 8d

O19 01980(12) 00019(10) 06091(12) 1 143(9) 8d

O20 02014(13) 06300(11) 05761(13) 1 143(9) 8d

O21 -00054(11) 00405(12) 07595(12) 1 143(9) 8d

O22 -00045(12) 06580(13) 07876(13) 1 143(9) 8d

O23 -00801(15) 075 0861(2) 1 143(9) 4c

O24 01839(17) 075 0648(2) 1 143(9) 4c

O25 02011(18) 025 0563(2) 1 143(9) 4c

O26 00863(13) 075 0143(2) 1 143(9) 4c

41

GVLI O1 -00251(15) 08553(18) -0468(2) 0500(3) 06(4) 8d

O2 -0013(2) 07533(17) -0531(3) 0500(3) 06(4) 8d

C1 00570(11) 08446(12) -05861(14) 0500(3) 06(4) 8d

C2 00466(18) 09175(12) -05663(18) 0500(3) 06(4) 8d

C3 0004(2) 09222(15) -0484(2) 0500(3) 06(4) 8d

C4 00038(13) 08112(15) -05293(19) 0500(3) 06(4) 8d

C5 -0034(3) 09728(19) -0448(3) 0500(3) 06(4) 8d

H1a 00999(11) 08315(15) -05641(17) 0500(3) 07(5) 8d

H1b 00528(13) 08360(13) -06553(15) 0500(3) 07(5) 8d

H2a 0088(2) 09384(14) -0553(2) 0500(3) 07(5) 8d

H2b 0026(2) 09378(15) -0622(2) 0500(3) 07(5) 8d

H3 0038(2) 09204(15) -04313(18) 0500(3) 07(5) 8d

H5a -0043(3) 0965(2) -0380(3) 0500(3) 07(5) 8d

H5b -0011(4) 10138(17) -0454(3) 0500(3) 07(5) 8d

H5c -0074(3) 0975(3) -0485(3) 0500(3) 07(5) 8d

GVLII O1 -03289(15) -0778(2) -02817(19) 0500(4) 06(4) 8d

O2 -04372(14) -0757(2) -02733(16) 0500(4) 06(4) 8d

C1 -03730(11) -07204(15) -04150(12) 0500(4) 06(4) 8d

C2 -02990(11) -0718(2) -04230(16) 0500(4) 06(4) 8d

C3 -02738(13) -0762(3) -0350(2) 0500(4) 06(4) 8d

C4 -03856(13) -07518(18) -03175(14) 0500(4) 06(4) 8d

C5 -02129(14) -0768(4) -0308(3) 0500(4) 06(4) 8d

H1a -03908(13) -07461(16) -04681(13) 0500(3) 07(5) 8d

H1b -03904(14) -06762(15) -04174(16) 0500(3) 07(5) 8d

H2a -02856(13) -0732(2) -04875(17) 0500(3) 07(5) 8d

H2b -02835(15) -0674(2) -04093(19) 0500(3) 07(5) 8d

H3 -0275(2) -0803(3) -0389(3) 0500(3) 07(5) 8d

H5a -0208(2) -0812(4) -0281(3) 0500(3) 07(5) 8d

H5b -01797(13) -0762(4) -0357(3) 0500(3) 07(5) 8d

H5c -02080(14) -0735(4) -0257(3) 0500(3) 07(5) 8d

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 11: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

10

Fig S2 SEM images of (a) HZSM-5(0041) (b) NbS-1 (00271) and (c) NbAlS-1(00270041)

a

500 nm

b

500 nm

c

500 nm

11

Fig S3 Characterisation of the acidity of zeolites by Pyridine-IR (a) Py-IR spectra after vacuum treatment

at 150 oC Py-IR spectra of (b) HZSM-5(0041) (c) NbS-1(00271) and (d) NbAlS-1(00270041) after

vacuum treatment at variable temperatures The peaks at 1454 and 1545 cm-1 are assigned to the

coordinatively bound pyridine molecules on Lewis acid sites and pyridinium ion on Broslashnsted acid sites

respectively23 Both the coordinatively bound pyridine and pyridinium ion have the vibration peak at 1490

cm-1 23 The Lewis acid band is centred at 1454 cm-1 in the spectra of HZSM-5 while it shifts to 1447 cm-1 in

the spectra of Nb-doped zeolite which is similar to the reported Lewis acid band (centred at 1448 cm-1) in

niobium phosphate24 The decrease of frequency of the band is related to the reduced stability of the pyridine

complex23 which is verified by the desorption experiments b c and d show the Py-IR spectra of HZSM-

5(0041) NbS-1(00271) and NbAlS-1 (00270041) respectively after desorption of pyridine at variable

temperatures With the increase of temperature the peak intensities related to both Lewis and Broslashnsted acid

sites of HZSM-5 decrease slowly Both peaks are visible even after the vacuum treatment at 450 degC (b)

However the intensities of peaks at 1447 cm-1 in the spectra of NbS-1 and NbAlS-1 decreased dramatically

upon increasing temperature and disappeared at 350 degC (c and d) Also the peaks related to Broslashnsted acid

sites on NbAlS-1 samples disappeared even at 250 degC (c and d) This result indicates that the NbAlS-1

samples have only weak Lewis and weak Broslashnsted acid sites entirely consistent with the NH3-TPD results in

Supplementary Fig 4

a b

cd

1420 1440 1460 1480 1500 1520 1540 1560 1580

NbAlS-1(00400271)

NbAlS-1(00270041)

NbS-1(0041)

NbS-1(00271)

HZSM-5(00671)

HZSM-5(0041)

HZSM-5 (00271)

Inte

nsity (

au

)

Wavenumber (cm-1)

1420 1440 1460 1480 1500 1520 1540 1560 1580

Ine

nsity (

au

)

Wavenumber (cm-1)

150 oC

200 oC

250 oC

350 oC

450 oC

1420 1440 1460 1480 1500 1520 1540 1560 1580

Inte

nsity (

au

)

Wavenumber (cm-1)

150 oC

200 oC

250 oC

350 oC

450 oC

1420 1440 1460 1480 1500 1520 1540 1560 1580

Inte

nsity (

au

)

Wavenumber (cm-1)

150 oC

200 oC

250 oC

350 oC

450 oC

12

Fig S4 Characterisation of the acidity of zeolites by NH3-TPD Two peaks at 240 and 435 degC correspond to

NH3 eluted from the weak and strong acid sites respectively25

100 150 200 250 300 350 400 450 500 550 600

Inte

nsity (

au

)

Temperature (oC)

NbAlS-1(00400271)

NbAlS-1(00270041)

NbS-1(0041)

NbS-1(00271)

HZSM-5(00671)

HZSM-5(0041)

HZSM-5(00271)

13

Fig S5 GC-MS results of the products from the conversion of GVL at 320 oC (a) Gas and (b) liquid

products from conversion of pure GVL over HZSM-5(0041) (c) Gas and (d) liquid products from

conversion of pure GVL over NbS-1(00271) (e) Gas and (f) liquid products from conversion of pure GVL

over NbAlS-1(00270041) (g) Gas and (h) liquid products from conversion of 30 GVL over NbAlS-

1(00270041) The water in g is solely from the feeding solution rather than produced from dehydration as

no dehydration products are observed

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

b

d

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

a

c

N2

CO2

C2H4 C2H6 C3H6 C3H8

C4H10

C4H8

H2O

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

N2

CO2

C4H8

H2O

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

fe

Pentenoic

acid isomers

Pentenoic

acid isomers

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

Aromatics

Pentenoic

acid isomers

g h

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

N2

CO2C4H8

N2

CO2

C4H8

H2O

C2H4 C2H6 C3H6

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

14

Fig S6 TGA (black) and DSC (red) plots of used HZSM-5(0041) (a) and NbAlS-1(00270041) (b)

catalysts after the conversion of pure GVL at 320 oC The by-products (eg coke) deposited on the surface

of used HZSM-5(0041) are significantly more stable than those on used NbAlS-1(00270041)

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

-10

-08

-06

-04

-02

00

02

04

06

08

10

500

Hea

t flow

(W

g)

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

-10

-08

-06

-04

-02

00

02

04

06

08

10

430

He

at flow

(W

g)

330

a b

15

Fig S7 TGA plots of used NbAlS-1(00270041) catalysts after the conversion of pure GVL (black) and 30

wt GVL (red) at 320 oC The presence of water in this catalytic system effectively hindered the formation

of by-products on the catalyst surface

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

for 30 GVL feeding

for pure GVL feeding

16

Fig S8 Comparison of FTIR spectra of NbAlS-1 before and after the conversion of 30wt GVL at 320 oC

for 180 h

1400 1300 1200 1100 1000 900 800 700 600

Absorb

ance (

au

)

Wavenumber (cm-1)

NbAlS-1(00270041) used

NbAlS-1(00270041)

971

17

Fig S9 X-band (ca 9 GHz) EPR spectra of NbAlS-1 and post-reaction zeolites activated by γ-irradiation at

77 K (a) wide magnetic field-sweep highlighting the induced Nb(IV) signals in NbAlS-1(00270041) and

the used sample and (b) narrow magnetic field-sweep highlighting the induced electron hole defect Al-O-

Si signals in fresh and used NbAlS-1(00270041) samples

a

b

100 150 200 250 300 350 400 450 500 550

Nb simulation

NbAlS-1(00270041)

used

Inte

nsity (

au

)

NbAlS-1(00270041)

Magnetic field (mT)

300 310 320 330 340 350 360

NbAlS-1(00270041) used

Al simulation

Inte

nsity (

au

)

Magnetic field (mT)

NbAlS-1(00270041)

18

Fig S10 (a) XAS spectra of the fresh and used NbAlS-1(00270041) (b) Phase-corrected k3-weighted

Fourier Transform of the EXAFS spectra for fresh and used NbAlS-1(00270041) The stability of the Nb

active sites within NbAlS-1(00270041) was verified by Nb K edge XAS with both fresh and used

catalysts exhibiting the same pre-edge XANES and EXAFS features

00

04

08

12

16

20

18800 19075 19350 19625 19900

No

rm a

bso

rptio

n (

au

)

Energy (eV)

NbAlS-1(00270041)

0

1

2

3

4

5

6

7

0 2 4 6

χ(R

)(Aring

-4)

Radial distance (Aring)

a b

NbAlS-1(00270041)

NbAlS-1(00270041) used

NbAlS-1(00270041)

used

19

Fig S11 27Al MAS NMR spectra of fresh and used zeolites Chemical shifts at 0 and 55 ppm are assigned to

six-coordinate extra-framework and four-coordinate framework aluminum species respectively26

100 80 60 40 20 0 -20 -40

NbAlS-1(00270041) used

NbAlS-1(00270041)

HZSM-5(0041) used

27Al chemical shift (ppm)

HZSM-5(0041)

20

Fig S12 Characterisation of the acidity of fresh and used zeolites by NH3-TPD

100 150 200 250 300 350 400 450 500 550 600

In

tensity (

au

)

Temperature (oC)

NbAlS-1(00270041) used

NbAlS-1(00270041)

HZSM-5(0041) used

HZSM-5(0041)

21

Fig S13 X-band (ca 9 GHz) EPR spectra of HZSM-5 and post-reaction zeolites activated by γ-irradiation

at 77 K narrow magnetic field-sweep highlighting the induced electron hole defect Al-O-Si signals in

HZSM-5 (0041) and the used sample

300 310 320 330 340 350 360

HZSM-50041) used

Al simulation

Inte

nsity (

au

)

Magnetic field (mT)

HZSM-5(0041)

22

Fig S14 Comparison of SXPD patterns of (a) HZSM-5(0041) (b) NbS-1(00271) and (c) NbAlS-

1(00270041) before and after adsorption of GVL at room temperature [λ = 082487(1) Aring]

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbAlS-1(0027041)

GVLNbAlS-1(0027041)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbS-1(00271)

GVLNbS-1(00271)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

HZSM-5(0041)

GVLHZSM-5(0041)

a

b

c

23

Fig S15 Comparison of the experimental data (black line) and Rietveld refinement (red line) and the

difference between them (grey line) for SXPD patterns of (ab) GVLHZSM-5(0041) (cd) GVLNbS-

1(00271) (ef) GVLNbAlS-1(00270041) at room temperature at a 2θ range of (ace) 3 - 20deg and

(bdf) 20 - 50deg [λ = 082487(1) Aring]

a b

c d

e f

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

24

Fig S16 (a) 29Si NMR spectra of HZSM-5 and NbAlS-1 de-convolution of 29Si NMR spectra of HZSM-5

(b) and NbAlS-1 (c) by Guassian and Lorentzian line shapes

a

b

c

-125 -120 -115 -110 -105 -100 -95 -90 -85

-1023

-1076

-1138

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-4

Cumulative Fitted Peak

-1171

-125 -120 -115 -110 -105 -100 -95 -90 -85

-924-983

-1026

-1057

-1124

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-6

Cumulative Fitted Peak

-1162

-125 -120 -115 -110 -105 -100 -95 -90 -8529

Si chemical shift (ppm)

NbAlS-1(00270041)

HZSM-5(0041)

25

Fig S17 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and calculated INS

spectra for 12 types of NbAlH sites

0 200 400 600 800 1000 1200 1400 1600

1211109876

4

23

5

1

Bare NbAlS-1 (exp)

S(Q

) (a

u)

Neutron energy loss (cm-1)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

26

Fig S18 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and combination of

calculated INS spectra of different NbAlH sites Combination 1 = 3125Site I + 3125Site II +

5Site III + 325Site IV Combination 2 = 675Site III + 325Site IV Site I = 025(NbAlH_1 +

NbAlH_2 + NbAlH_3 + NbAlH_4) Site II = 025(NbAlH_5 + NbAlH_6 + NbAlH_7 +

NbAlH_8) Site III = 05(NbAlH_9 + NbAlH_10) Site IV = 05(NbAlH_11 + NbAlH_12)

Abscissa is scaled down by 097 for combination 1 and 2

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Bare NbAlS-1 (exp)

Combination 1

Combination 2

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

27

Fig S19 Schematic view of the procedure of in situ INS experiment and data collection

Zeolite (Calcined)

Zeolite (activated)

Heating at 450 oC under

He flow for 3 h

Zeolite (Adsorbed)

INS collection 1

Zeolite (Reaction at 280 C)

Adsorption of GVL at 135 oC

Zeolite (Reaction at 300 C)

Zeolite (Reaction at 320 C)

Reaction at 280 oC for 3 min

Reaction at 300 oC for 3 min

Reaction at 320 oC for 3 min

INS collection 2

INS collection 3

INS collection 4

INS collection 5

28

Fig S20 Comparison of the experimental INS spectra of condensed GVL in the solid state (black) and

calculated INS spectra of single GVL molecule (red) The crystal structure of solid GVL is unavailable in the

database

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental GVL

Calculated GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

29

Fig S21 Comparison of the experimental and calculated INS spectra of adsorbed GVL molecules on

NbAlS-1 The structure model derived from SXPD experiments was used for initial DFT modelling where

the positional disorder has been removed in the calculation and this partially accounts for the discrepancies

observed between calculated and experimental INS plots

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental adsorbed GVL

Calculated adsorbed GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

30

Fig S22 View of the INS spectrum for the empty catalysis cell used for this experiment The empty can has

the features below 300 cm-1 and at approximately 457 and 659 cm-1

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Empty can

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

31

Fig S23 Comparison of the experimental INS spectra for bare and GVL-adsorbed catalyst Spectra shown

are after subtraction of the empty cell The INS spectrum of the catalyst on GVL adsorption at 135 degC shows

a significant increase in total intensity demonstrating the binding of GVL to the catalyst sites

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

GVLNbAlS-1(00270041)

Bare NbAlS-1(00270041)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

32

Fig S24 Comparison of the experimental INS spectra of all butene isomers and reacted GVL at 320 degC

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Reaction 320 oC

trans-2-butene

i-butene

1-butene

cis-2-butene

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

33

Supplementary Tables

Table S1 Textural properties (data determined from N2 sorption isotherms at 77 K) and crystallite size (data

determined from SEM) of all zeolites used in this study

Samples ABET (m2 g-1)a Amic (m2 g-1) b Aext (m2 g-1) c Vmic (cm3 g-1) d Vtotal (cm3 g-1) e

Crystallite sizef

(nm)

HZSM-5 (00271) 413 314 99 019 033 200-500

HZSM-5 (0041) 346 259 87 015 028 200-500

HZSM-5 (00671) 348 277 71 016 026 200-500

NbS-1 (00271) 377 284 93 017 029 300-500

NbS-1 (0041) 357 282 75 016 027 300-500

NbAlS-1(00270041) 408 263 145 018 041 300-500

NbAlS-1(00400271) 376 268 108 017 033 300-500

HZSM-5 (0041)g 338 258 80 015 027 200-500

NbAlS-1(00270041)g 396 262 134 018 039 300-500

aBET specific surface area bMicropore surface area cExternal surface area dMicropore volume eTotal pore volume fObtainted from SEM gUsed catalyst

34

Table S2 Spin-Hamiltonian parameters of radiation induced Nb(IV) and electron hole Al-O-Si defects

from simulation of CW X-band EPR spectra in Fig 1 lw is the homogeneous Lorentzian linewidth g and A

are the principle values of the g and hyperfine interaction tensors

Signal Parameters

Electron

Spin

Nuclear

Spin g-tensor g-Strain

A-tensor

(G)

lw

(mT)

Nb defect 12 92 [1935 1935 1866] [004 004 00] [159 159

310] [0 40]

Al defect 12 52 [20012 2007 2045] [00 0003 004] [7 7 -] [00 04]

35

Table S3 Summary of acidity of all zeolites used in this work Data were determined by NH3-TPD and

Pyridine-IR studies

Catalyst Weak acida

(mmol g-1)

Strong acida

(mmol g-1)

Total acida

(mmol g-1)

LB acid

ratiob

HZSM-5(00271) 015 025 04 039

HZSM-5(0041) 024 028 052 037

HZSM-5(00671) 033 03 063 027

NbS-1(00271) 004 0 004 -

NbS-1(0041) 004 0 004 -

NbAlS-1(00270041) 022 0 022 469

NbAlS-1(00400271) 023 0 023 35 aFrom NH3-TPD bFrom Pyridine-IR

36

Table S4 The butenes distribution in equilibrium at 320 degC and the distribution of butene isomers produced

from conversion of 30 GVL at 320 degC over catalysts

Catalyst Distribution ()

i-butene 1-butene trans-2-butene cis-2-butene

Equilibrium27 45 12 27 16

HZSM-5(0041) 44 14 25 17

NbAlS-1(00270041) 18 19 38 25

NbOPO4 15 20 39 26

37

Table S5 Comparison of the catalytic performance of reported catalysts for the conversion of GVL in aqueous solution (25-40 wt ) to butenes

Catalyst Reaction Conditions GVL

concentration

(wt )

GVL

conversion

()

Butene

Yield

(mol )a

Ref

Temperature

(degC)

WHSV

(h-1)

Pressure

(bar)

NbAlS-1(00270041) 320 018 1 30 100 993 this work

SiO2Al2O3 375 09 1 30 97 75 28

HZSM-5(0041) 320 018 1 30 76 232 this work

LaZSM-5 450 1 10 40 gt99 ca 21 15

PdNb2O5b 275 05 14 30d 100 lt16c 29

Zn-AlPO-5 397 077 10 40 65 ca 12 30

H3PO4 240 - - 25 100 12c 31

ZnZSM-5 450 1 10 40 gt99 ca 6 15

AlPO-5 397 077 10 40 2 ca 04 30

aButene yield is calculated by the equation defined in the Method section

bunder H2 atmosphere

cThe product includes both butene and butane d002 M H2SO4 was added in the GVL solution

38

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1

R (Aring)a σ a Amp a CN a

NbAlS-1 (Dry) Nb=O 1680 0017 082 1 Nb-O 2014 0008 082 3 NbAlS-1

Nb=O 1721 0012 078 1

Nb-O 2014 0004 078 3

NbAlS-1+GVL

Nb=O 1943 0003 075 1

Nb-O 2014 0010 075 3

NbS-1

Nb=O 1711 0032 091 1

Nb-O 2014 0005 091 3

NbS-1+GVL

Nb=O 1770 0004 089 1

Nb-O 2014 0014 089 3 aR = Interatomic distance from central scattering atom σ = Debye-Waller factor Amp = amplitude factor

and CN = coordination number

39

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption

Samples GVLHZSM-5(0041) GVLNbS-1(00271) NbAlS-1(00270041) GVLNbAlS-1(00270041)

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma

Chemical formula Al3692Si92308O192 8GVL Nb2524Si93476O192 8GVL Al3599Nb2429Si89972O192 Al3599Nb2429Si89972O192 8GVL

2θ range for refinement (deg) 3 ndash 50 3 ndash 50 3 ndash 50 3 ndash 50

Detector Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals

Number of hkls 3251 3214 3179 3222

Refinement methods Rietveld Rietveld Rietveld Rietveld

a (Aring) 201351(2) 200604(2) 199955(3) 200697(3)

b (Aring) 199852(2) 198995(1) 198333(3) 199150(3)

c (Aring) 134549(2) 134010(1) 133531(2) 134214(2)

V (Aring3) 541428(11) 534957(7) 529553(15) 536437(15)

RwpRexp Rp () 445135013378 463131253497 553133614058 444933763305

Wavelength (Aring) 082487(1) 082487(1) 082487(1) 082487(1)

Gof χ2 1272 1482 1646 1318

40

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) at room

temperature

Species Atom x y z SOF Beq(Aring2) Wyckoff

HZSM-5(0041) Al1 -00732(5) 00570(7) 08366(7) 003846154 100(5) 8d

Al2 01869(6) -00339(5) 03189(8) 003846154 100(5) 8d

Al3 02207(5) -00626(7) 05256(8) 003846154 100(5) 8d

Al4 01210(5) 00590(7) 10220(8) 003846154 100(5) 8d

Al5 -00703(6) -00272(5) 01933(8) 003846154 100(5) 8d

Al6 01859(5) 00593(6) 06679(8) 003846154 100(5) 8d

Al7 -00745(6) 06734(6) 08243(9) 003846154 100(5) 8d

Al8 01956(6) 01297(5) 03114(7) 003846154 100(5) 8d

Al9 02187(5) 01761(5) 05326(8) 003846154 100(5) 8d

Al10 01228(5) 06749(6) 10400(8) 003846154 100(5) 8d

Al11 -00694(6) 01308(6) 01819(9) 003846154 100(5) 8d

Al12 01859(6) 06714(5) 06756(8) 003846154 100(5) 8d

Si1 -00732(5) 00570(7) 08366(7) 09615385 100(5) 8d

Si2 01869(6) -00339(5) 03189(8) 09615385 100(5) 8d

Si3 02207(5) -00626(7) 05256(8) 09615385 100(5) 8d

Si4 01210(5) 00590(7) 10220(8) 09615385 100(5) 8d

Si5 -00703(6) -00272(5) 01933(8) 09615385 100(5) 8d

Si6 01859(5) 00593(6) 06679(8) 09615385 100(5) 8d

Si7 -00745(6) 06734(6) 08243(9) 09615385 100(5) 8d

Si8 01956(6) 01297(5) 03114(7) 09615385 100(5) 8d

Si9 02187(5) 01761(5) 05326(8) 09615385 100(5) 8d

Si10 01228(5) 06749(6) 10400(8) 09615385 100(5) 8d

Si11 -00694(6) 01308(6) 01819(9) 09615385 100(5) 8d

Si12 01859(6) 06714(5) 06756(8) 09615385 100(5) 8d

O1 01189(10) -00643(12) 02762(13) 1 143(9) 8d

O2 01900(11) -00665(10) 04093(13) 1 143(9) 8d

O3 02017(11) 00485(12) 10198(11) 1 143(9) 8d

O4 -00964(9) -00573(13) 10736(15) 1 143(9) 8d

O5 01132(9) 00573(12) 07009(13) 1 143(9) 8d

O6 02544(10) 00574(13) 07592(13) 1 143(9) 8d

O7 01249(11) 01569(12) 02676(15) 1 143(9) 8d

O8 01995(12) 01482(9) 04331(13) 1 143(9) 8d

O9 01968(12) 06607(9) 00500(12) 1 143(9) 8d

O10 -00922(10) 01564(11) 10827(17) 1 143(9) 8d

O11 01123(10) 06498(11) 07436(14) 1 143(9) 8d

O12 02420(11) 06557(12) 07396(15) 1 143(9) 8d

O13 02109(9) 00468(11) 03170(12) 1 143(9) 8d

O14 -00793(8) 00525(13) 01708(13) 1 143(9) 8d

O15 -00850(10) 01327(12) 08874(17) 1 143(9) 8d

O16 -01009(10) 00004(11) 09239(15) 1 143(9) 8d

O17 -01006(10) 06343(12) -00444(14) 1 143(9) 8d

O18 01746(10) 01273(11) 06145(13) 1 143(9) 8d

O19 01980(12) 00019(10) 06091(12) 1 143(9) 8d

O20 02014(13) 06300(11) 05761(13) 1 143(9) 8d

O21 -00054(11) 00405(12) 07595(12) 1 143(9) 8d

O22 -00045(12) 06580(13) 07876(13) 1 143(9) 8d

O23 -00801(15) 075 0861(2) 1 143(9) 4c

O24 01839(17) 075 0648(2) 1 143(9) 4c

O25 02011(18) 025 0563(2) 1 143(9) 4c

O26 00863(13) 075 0143(2) 1 143(9) 4c

41

GVLI O1 -00251(15) 08553(18) -0468(2) 0500(3) 06(4) 8d

O2 -0013(2) 07533(17) -0531(3) 0500(3) 06(4) 8d

C1 00570(11) 08446(12) -05861(14) 0500(3) 06(4) 8d

C2 00466(18) 09175(12) -05663(18) 0500(3) 06(4) 8d

C3 0004(2) 09222(15) -0484(2) 0500(3) 06(4) 8d

C4 00038(13) 08112(15) -05293(19) 0500(3) 06(4) 8d

C5 -0034(3) 09728(19) -0448(3) 0500(3) 06(4) 8d

H1a 00999(11) 08315(15) -05641(17) 0500(3) 07(5) 8d

H1b 00528(13) 08360(13) -06553(15) 0500(3) 07(5) 8d

H2a 0088(2) 09384(14) -0553(2) 0500(3) 07(5) 8d

H2b 0026(2) 09378(15) -0622(2) 0500(3) 07(5) 8d

H3 0038(2) 09204(15) -04313(18) 0500(3) 07(5) 8d

H5a -0043(3) 0965(2) -0380(3) 0500(3) 07(5) 8d

H5b -0011(4) 10138(17) -0454(3) 0500(3) 07(5) 8d

H5c -0074(3) 0975(3) -0485(3) 0500(3) 07(5) 8d

GVLII O1 -03289(15) -0778(2) -02817(19) 0500(4) 06(4) 8d

O2 -04372(14) -0757(2) -02733(16) 0500(4) 06(4) 8d

C1 -03730(11) -07204(15) -04150(12) 0500(4) 06(4) 8d

C2 -02990(11) -0718(2) -04230(16) 0500(4) 06(4) 8d

C3 -02738(13) -0762(3) -0350(2) 0500(4) 06(4) 8d

C4 -03856(13) -07518(18) -03175(14) 0500(4) 06(4) 8d

C5 -02129(14) -0768(4) -0308(3) 0500(4) 06(4) 8d

H1a -03908(13) -07461(16) -04681(13) 0500(3) 07(5) 8d

H1b -03904(14) -06762(15) -04174(16) 0500(3) 07(5) 8d

H2a -02856(13) -0732(2) -04875(17) 0500(3) 07(5) 8d

H2b -02835(15) -0674(2) -04093(19) 0500(3) 07(5) 8d

H3 -0275(2) -0803(3) -0389(3) 0500(3) 07(5) 8d

H5a -0208(2) -0812(4) -0281(3) 0500(3) 07(5) 8d

H5b -01797(13) -0762(4) -0357(3) 0500(3) 07(5) 8d

H5c -02080(14) -0735(4) -0257(3) 0500(3) 07(5) 8d

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 12: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

11

Fig S3 Characterisation of the acidity of zeolites by Pyridine-IR (a) Py-IR spectra after vacuum treatment

at 150 oC Py-IR spectra of (b) HZSM-5(0041) (c) NbS-1(00271) and (d) NbAlS-1(00270041) after

vacuum treatment at variable temperatures The peaks at 1454 and 1545 cm-1 are assigned to the

coordinatively bound pyridine molecules on Lewis acid sites and pyridinium ion on Broslashnsted acid sites

respectively23 Both the coordinatively bound pyridine and pyridinium ion have the vibration peak at 1490

cm-1 23 The Lewis acid band is centred at 1454 cm-1 in the spectra of HZSM-5 while it shifts to 1447 cm-1 in

the spectra of Nb-doped zeolite which is similar to the reported Lewis acid band (centred at 1448 cm-1) in

niobium phosphate24 The decrease of frequency of the band is related to the reduced stability of the pyridine

complex23 which is verified by the desorption experiments b c and d show the Py-IR spectra of HZSM-

5(0041) NbS-1(00271) and NbAlS-1 (00270041) respectively after desorption of pyridine at variable

temperatures With the increase of temperature the peak intensities related to both Lewis and Broslashnsted acid

sites of HZSM-5 decrease slowly Both peaks are visible even after the vacuum treatment at 450 degC (b)

However the intensities of peaks at 1447 cm-1 in the spectra of NbS-1 and NbAlS-1 decreased dramatically

upon increasing temperature and disappeared at 350 degC (c and d) Also the peaks related to Broslashnsted acid

sites on NbAlS-1 samples disappeared even at 250 degC (c and d) This result indicates that the NbAlS-1

samples have only weak Lewis and weak Broslashnsted acid sites entirely consistent with the NH3-TPD results in

Supplementary Fig 4

a b

cd

1420 1440 1460 1480 1500 1520 1540 1560 1580

NbAlS-1(00400271)

NbAlS-1(00270041)

NbS-1(0041)

NbS-1(00271)

HZSM-5(00671)

HZSM-5(0041)

HZSM-5 (00271)

Inte

nsity (

au

)

Wavenumber (cm-1)

1420 1440 1460 1480 1500 1520 1540 1560 1580

Ine

nsity (

au

)

Wavenumber (cm-1)

150 oC

200 oC

250 oC

350 oC

450 oC

1420 1440 1460 1480 1500 1520 1540 1560 1580

Inte

nsity (

au

)

Wavenumber (cm-1)

150 oC

200 oC

250 oC

350 oC

450 oC

1420 1440 1460 1480 1500 1520 1540 1560 1580

Inte

nsity (

au

)

Wavenumber (cm-1)

150 oC

200 oC

250 oC

350 oC

450 oC

12

Fig S4 Characterisation of the acidity of zeolites by NH3-TPD Two peaks at 240 and 435 degC correspond to

NH3 eluted from the weak and strong acid sites respectively25

100 150 200 250 300 350 400 450 500 550 600

Inte

nsity (

au

)

Temperature (oC)

NbAlS-1(00400271)

NbAlS-1(00270041)

NbS-1(0041)

NbS-1(00271)

HZSM-5(00671)

HZSM-5(0041)

HZSM-5(00271)

13

Fig S5 GC-MS results of the products from the conversion of GVL at 320 oC (a) Gas and (b) liquid

products from conversion of pure GVL over HZSM-5(0041) (c) Gas and (d) liquid products from

conversion of pure GVL over NbS-1(00271) (e) Gas and (f) liquid products from conversion of pure GVL

over NbAlS-1(00270041) (g) Gas and (h) liquid products from conversion of 30 GVL over NbAlS-

1(00270041) The water in g is solely from the feeding solution rather than produced from dehydration as

no dehydration products are observed

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

b

d

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

a

c

N2

CO2

C2H4 C2H6 C3H6 C3H8

C4H10

C4H8

H2O

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

N2

CO2

C4H8

H2O

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

fe

Pentenoic

acid isomers

Pentenoic

acid isomers

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

Aromatics

Pentenoic

acid isomers

g h

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

N2

CO2C4H8

N2

CO2

C4H8

H2O

C2H4 C2H6 C3H6

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

14

Fig S6 TGA (black) and DSC (red) plots of used HZSM-5(0041) (a) and NbAlS-1(00270041) (b)

catalysts after the conversion of pure GVL at 320 oC The by-products (eg coke) deposited on the surface

of used HZSM-5(0041) are significantly more stable than those on used NbAlS-1(00270041)

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

-10

-08

-06

-04

-02

00

02

04

06

08

10

500

Hea

t flow

(W

g)

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

-10

-08

-06

-04

-02

00

02

04

06

08

10

430

He

at flow

(W

g)

330

a b

15

Fig S7 TGA plots of used NbAlS-1(00270041) catalysts after the conversion of pure GVL (black) and 30

wt GVL (red) at 320 oC The presence of water in this catalytic system effectively hindered the formation

of by-products on the catalyst surface

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

for 30 GVL feeding

for pure GVL feeding

16

Fig S8 Comparison of FTIR spectra of NbAlS-1 before and after the conversion of 30wt GVL at 320 oC

for 180 h

1400 1300 1200 1100 1000 900 800 700 600

Absorb

ance (

au

)

Wavenumber (cm-1)

NbAlS-1(00270041) used

NbAlS-1(00270041)

971

17

Fig S9 X-band (ca 9 GHz) EPR spectra of NbAlS-1 and post-reaction zeolites activated by γ-irradiation at

77 K (a) wide magnetic field-sweep highlighting the induced Nb(IV) signals in NbAlS-1(00270041) and

the used sample and (b) narrow magnetic field-sweep highlighting the induced electron hole defect Al-O-

Si signals in fresh and used NbAlS-1(00270041) samples

a

b

100 150 200 250 300 350 400 450 500 550

Nb simulation

NbAlS-1(00270041)

used

Inte

nsity (

au

)

NbAlS-1(00270041)

Magnetic field (mT)

300 310 320 330 340 350 360

NbAlS-1(00270041) used

Al simulation

Inte

nsity (

au

)

Magnetic field (mT)

NbAlS-1(00270041)

18

Fig S10 (a) XAS spectra of the fresh and used NbAlS-1(00270041) (b) Phase-corrected k3-weighted

Fourier Transform of the EXAFS spectra for fresh and used NbAlS-1(00270041) The stability of the Nb

active sites within NbAlS-1(00270041) was verified by Nb K edge XAS with both fresh and used

catalysts exhibiting the same pre-edge XANES and EXAFS features

00

04

08

12

16

20

18800 19075 19350 19625 19900

No

rm a

bso

rptio

n (

au

)

Energy (eV)

NbAlS-1(00270041)

0

1

2

3

4

5

6

7

0 2 4 6

χ(R

)(Aring

-4)

Radial distance (Aring)

a b

NbAlS-1(00270041)

NbAlS-1(00270041) used

NbAlS-1(00270041)

used

19

Fig S11 27Al MAS NMR spectra of fresh and used zeolites Chemical shifts at 0 and 55 ppm are assigned to

six-coordinate extra-framework and four-coordinate framework aluminum species respectively26

100 80 60 40 20 0 -20 -40

NbAlS-1(00270041) used

NbAlS-1(00270041)

HZSM-5(0041) used

27Al chemical shift (ppm)

HZSM-5(0041)

20

Fig S12 Characterisation of the acidity of fresh and used zeolites by NH3-TPD

100 150 200 250 300 350 400 450 500 550 600

In

tensity (

au

)

Temperature (oC)

NbAlS-1(00270041) used

NbAlS-1(00270041)

HZSM-5(0041) used

HZSM-5(0041)

21

Fig S13 X-band (ca 9 GHz) EPR spectra of HZSM-5 and post-reaction zeolites activated by γ-irradiation

at 77 K narrow magnetic field-sweep highlighting the induced electron hole defect Al-O-Si signals in

HZSM-5 (0041) and the used sample

300 310 320 330 340 350 360

HZSM-50041) used

Al simulation

Inte

nsity (

au

)

Magnetic field (mT)

HZSM-5(0041)

22

Fig S14 Comparison of SXPD patterns of (a) HZSM-5(0041) (b) NbS-1(00271) and (c) NbAlS-

1(00270041) before and after adsorption of GVL at room temperature [λ = 082487(1) Aring]

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbAlS-1(0027041)

GVLNbAlS-1(0027041)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbS-1(00271)

GVLNbS-1(00271)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

HZSM-5(0041)

GVLHZSM-5(0041)

a

b

c

23

Fig S15 Comparison of the experimental data (black line) and Rietveld refinement (red line) and the

difference between them (grey line) for SXPD patterns of (ab) GVLHZSM-5(0041) (cd) GVLNbS-

1(00271) (ef) GVLNbAlS-1(00270041) at room temperature at a 2θ range of (ace) 3 - 20deg and

(bdf) 20 - 50deg [λ = 082487(1) Aring]

a b

c d

e f

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

24

Fig S16 (a) 29Si NMR spectra of HZSM-5 and NbAlS-1 de-convolution of 29Si NMR spectra of HZSM-5

(b) and NbAlS-1 (c) by Guassian and Lorentzian line shapes

a

b

c

-125 -120 -115 -110 -105 -100 -95 -90 -85

-1023

-1076

-1138

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-4

Cumulative Fitted Peak

-1171

-125 -120 -115 -110 -105 -100 -95 -90 -85

-924-983

-1026

-1057

-1124

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-6

Cumulative Fitted Peak

-1162

-125 -120 -115 -110 -105 -100 -95 -90 -8529

Si chemical shift (ppm)

NbAlS-1(00270041)

HZSM-5(0041)

25

Fig S17 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and calculated INS

spectra for 12 types of NbAlH sites

0 200 400 600 800 1000 1200 1400 1600

1211109876

4

23

5

1

Bare NbAlS-1 (exp)

S(Q

) (a

u)

Neutron energy loss (cm-1)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

26

Fig S18 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and combination of

calculated INS spectra of different NbAlH sites Combination 1 = 3125Site I + 3125Site II +

5Site III + 325Site IV Combination 2 = 675Site III + 325Site IV Site I = 025(NbAlH_1 +

NbAlH_2 + NbAlH_3 + NbAlH_4) Site II = 025(NbAlH_5 + NbAlH_6 + NbAlH_7 +

NbAlH_8) Site III = 05(NbAlH_9 + NbAlH_10) Site IV = 05(NbAlH_11 + NbAlH_12)

Abscissa is scaled down by 097 for combination 1 and 2

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Bare NbAlS-1 (exp)

Combination 1

Combination 2

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

27

Fig S19 Schematic view of the procedure of in situ INS experiment and data collection

Zeolite (Calcined)

Zeolite (activated)

Heating at 450 oC under

He flow for 3 h

Zeolite (Adsorbed)

INS collection 1

Zeolite (Reaction at 280 C)

Adsorption of GVL at 135 oC

Zeolite (Reaction at 300 C)

Zeolite (Reaction at 320 C)

Reaction at 280 oC for 3 min

Reaction at 300 oC for 3 min

Reaction at 320 oC for 3 min

INS collection 2

INS collection 3

INS collection 4

INS collection 5

28

Fig S20 Comparison of the experimental INS spectra of condensed GVL in the solid state (black) and

calculated INS spectra of single GVL molecule (red) The crystal structure of solid GVL is unavailable in the

database

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental GVL

Calculated GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

29

Fig S21 Comparison of the experimental and calculated INS spectra of adsorbed GVL molecules on

NbAlS-1 The structure model derived from SXPD experiments was used for initial DFT modelling where

the positional disorder has been removed in the calculation and this partially accounts for the discrepancies

observed between calculated and experimental INS plots

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental adsorbed GVL

Calculated adsorbed GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

30

Fig S22 View of the INS spectrum for the empty catalysis cell used for this experiment The empty can has

the features below 300 cm-1 and at approximately 457 and 659 cm-1

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Empty can

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

31

Fig S23 Comparison of the experimental INS spectra for bare and GVL-adsorbed catalyst Spectra shown

are after subtraction of the empty cell The INS spectrum of the catalyst on GVL adsorption at 135 degC shows

a significant increase in total intensity demonstrating the binding of GVL to the catalyst sites

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

GVLNbAlS-1(00270041)

Bare NbAlS-1(00270041)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

32

Fig S24 Comparison of the experimental INS spectra of all butene isomers and reacted GVL at 320 degC

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Reaction 320 oC

trans-2-butene

i-butene

1-butene

cis-2-butene

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

33

Supplementary Tables

Table S1 Textural properties (data determined from N2 sorption isotherms at 77 K) and crystallite size (data

determined from SEM) of all zeolites used in this study

Samples ABET (m2 g-1)a Amic (m2 g-1) b Aext (m2 g-1) c Vmic (cm3 g-1) d Vtotal (cm3 g-1) e

Crystallite sizef

(nm)

HZSM-5 (00271) 413 314 99 019 033 200-500

HZSM-5 (0041) 346 259 87 015 028 200-500

HZSM-5 (00671) 348 277 71 016 026 200-500

NbS-1 (00271) 377 284 93 017 029 300-500

NbS-1 (0041) 357 282 75 016 027 300-500

NbAlS-1(00270041) 408 263 145 018 041 300-500

NbAlS-1(00400271) 376 268 108 017 033 300-500

HZSM-5 (0041)g 338 258 80 015 027 200-500

NbAlS-1(00270041)g 396 262 134 018 039 300-500

aBET specific surface area bMicropore surface area cExternal surface area dMicropore volume eTotal pore volume fObtainted from SEM gUsed catalyst

34

Table S2 Spin-Hamiltonian parameters of radiation induced Nb(IV) and electron hole Al-O-Si defects

from simulation of CW X-band EPR spectra in Fig 1 lw is the homogeneous Lorentzian linewidth g and A

are the principle values of the g and hyperfine interaction tensors

Signal Parameters

Electron

Spin

Nuclear

Spin g-tensor g-Strain

A-tensor

(G)

lw

(mT)

Nb defect 12 92 [1935 1935 1866] [004 004 00] [159 159

310] [0 40]

Al defect 12 52 [20012 2007 2045] [00 0003 004] [7 7 -] [00 04]

35

Table S3 Summary of acidity of all zeolites used in this work Data were determined by NH3-TPD and

Pyridine-IR studies

Catalyst Weak acida

(mmol g-1)

Strong acida

(mmol g-1)

Total acida

(mmol g-1)

LB acid

ratiob

HZSM-5(00271) 015 025 04 039

HZSM-5(0041) 024 028 052 037

HZSM-5(00671) 033 03 063 027

NbS-1(00271) 004 0 004 -

NbS-1(0041) 004 0 004 -

NbAlS-1(00270041) 022 0 022 469

NbAlS-1(00400271) 023 0 023 35 aFrom NH3-TPD bFrom Pyridine-IR

36

Table S4 The butenes distribution in equilibrium at 320 degC and the distribution of butene isomers produced

from conversion of 30 GVL at 320 degC over catalysts

Catalyst Distribution ()

i-butene 1-butene trans-2-butene cis-2-butene

Equilibrium27 45 12 27 16

HZSM-5(0041) 44 14 25 17

NbAlS-1(00270041) 18 19 38 25

NbOPO4 15 20 39 26

37

Table S5 Comparison of the catalytic performance of reported catalysts for the conversion of GVL in aqueous solution (25-40 wt ) to butenes

Catalyst Reaction Conditions GVL

concentration

(wt )

GVL

conversion

()

Butene

Yield

(mol )a

Ref

Temperature

(degC)

WHSV

(h-1)

Pressure

(bar)

NbAlS-1(00270041) 320 018 1 30 100 993 this work

SiO2Al2O3 375 09 1 30 97 75 28

HZSM-5(0041) 320 018 1 30 76 232 this work

LaZSM-5 450 1 10 40 gt99 ca 21 15

PdNb2O5b 275 05 14 30d 100 lt16c 29

Zn-AlPO-5 397 077 10 40 65 ca 12 30

H3PO4 240 - - 25 100 12c 31

ZnZSM-5 450 1 10 40 gt99 ca 6 15

AlPO-5 397 077 10 40 2 ca 04 30

aButene yield is calculated by the equation defined in the Method section

bunder H2 atmosphere

cThe product includes both butene and butane d002 M H2SO4 was added in the GVL solution

38

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1

R (Aring)a σ a Amp a CN a

NbAlS-1 (Dry) Nb=O 1680 0017 082 1 Nb-O 2014 0008 082 3 NbAlS-1

Nb=O 1721 0012 078 1

Nb-O 2014 0004 078 3

NbAlS-1+GVL

Nb=O 1943 0003 075 1

Nb-O 2014 0010 075 3

NbS-1

Nb=O 1711 0032 091 1

Nb-O 2014 0005 091 3

NbS-1+GVL

Nb=O 1770 0004 089 1

Nb-O 2014 0014 089 3 aR = Interatomic distance from central scattering atom σ = Debye-Waller factor Amp = amplitude factor

and CN = coordination number

39

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption

Samples GVLHZSM-5(0041) GVLNbS-1(00271) NbAlS-1(00270041) GVLNbAlS-1(00270041)

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma

Chemical formula Al3692Si92308O192 8GVL Nb2524Si93476O192 8GVL Al3599Nb2429Si89972O192 Al3599Nb2429Si89972O192 8GVL

2θ range for refinement (deg) 3 ndash 50 3 ndash 50 3 ndash 50 3 ndash 50

Detector Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals

Number of hkls 3251 3214 3179 3222

Refinement methods Rietveld Rietveld Rietveld Rietveld

a (Aring) 201351(2) 200604(2) 199955(3) 200697(3)

b (Aring) 199852(2) 198995(1) 198333(3) 199150(3)

c (Aring) 134549(2) 134010(1) 133531(2) 134214(2)

V (Aring3) 541428(11) 534957(7) 529553(15) 536437(15)

RwpRexp Rp () 445135013378 463131253497 553133614058 444933763305

Wavelength (Aring) 082487(1) 082487(1) 082487(1) 082487(1)

Gof χ2 1272 1482 1646 1318

40

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) at room

temperature

Species Atom x y z SOF Beq(Aring2) Wyckoff

HZSM-5(0041) Al1 -00732(5) 00570(7) 08366(7) 003846154 100(5) 8d

Al2 01869(6) -00339(5) 03189(8) 003846154 100(5) 8d

Al3 02207(5) -00626(7) 05256(8) 003846154 100(5) 8d

Al4 01210(5) 00590(7) 10220(8) 003846154 100(5) 8d

Al5 -00703(6) -00272(5) 01933(8) 003846154 100(5) 8d

Al6 01859(5) 00593(6) 06679(8) 003846154 100(5) 8d

Al7 -00745(6) 06734(6) 08243(9) 003846154 100(5) 8d

Al8 01956(6) 01297(5) 03114(7) 003846154 100(5) 8d

Al9 02187(5) 01761(5) 05326(8) 003846154 100(5) 8d

Al10 01228(5) 06749(6) 10400(8) 003846154 100(5) 8d

Al11 -00694(6) 01308(6) 01819(9) 003846154 100(5) 8d

Al12 01859(6) 06714(5) 06756(8) 003846154 100(5) 8d

Si1 -00732(5) 00570(7) 08366(7) 09615385 100(5) 8d

Si2 01869(6) -00339(5) 03189(8) 09615385 100(5) 8d

Si3 02207(5) -00626(7) 05256(8) 09615385 100(5) 8d

Si4 01210(5) 00590(7) 10220(8) 09615385 100(5) 8d

Si5 -00703(6) -00272(5) 01933(8) 09615385 100(5) 8d

Si6 01859(5) 00593(6) 06679(8) 09615385 100(5) 8d

Si7 -00745(6) 06734(6) 08243(9) 09615385 100(5) 8d

Si8 01956(6) 01297(5) 03114(7) 09615385 100(5) 8d

Si9 02187(5) 01761(5) 05326(8) 09615385 100(5) 8d

Si10 01228(5) 06749(6) 10400(8) 09615385 100(5) 8d

Si11 -00694(6) 01308(6) 01819(9) 09615385 100(5) 8d

Si12 01859(6) 06714(5) 06756(8) 09615385 100(5) 8d

O1 01189(10) -00643(12) 02762(13) 1 143(9) 8d

O2 01900(11) -00665(10) 04093(13) 1 143(9) 8d

O3 02017(11) 00485(12) 10198(11) 1 143(9) 8d

O4 -00964(9) -00573(13) 10736(15) 1 143(9) 8d

O5 01132(9) 00573(12) 07009(13) 1 143(9) 8d

O6 02544(10) 00574(13) 07592(13) 1 143(9) 8d

O7 01249(11) 01569(12) 02676(15) 1 143(9) 8d

O8 01995(12) 01482(9) 04331(13) 1 143(9) 8d

O9 01968(12) 06607(9) 00500(12) 1 143(9) 8d

O10 -00922(10) 01564(11) 10827(17) 1 143(9) 8d

O11 01123(10) 06498(11) 07436(14) 1 143(9) 8d

O12 02420(11) 06557(12) 07396(15) 1 143(9) 8d

O13 02109(9) 00468(11) 03170(12) 1 143(9) 8d

O14 -00793(8) 00525(13) 01708(13) 1 143(9) 8d

O15 -00850(10) 01327(12) 08874(17) 1 143(9) 8d

O16 -01009(10) 00004(11) 09239(15) 1 143(9) 8d

O17 -01006(10) 06343(12) -00444(14) 1 143(9) 8d

O18 01746(10) 01273(11) 06145(13) 1 143(9) 8d

O19 01980(12) 00019(10) 06091(12) 1 143(9) 8d

O20 02014(13) 06300(11) 05761(13) 1 143(9) 8d

O21 -00054(11) 00405(12) 07595(12) 1 143(9) 8d

O22 -00045(12) 06580(13) 07876(13) 1 143(9) 8d

O23 -00801(15) 075 0861(2) 1 143(9) 4c

O24 01839(17) 075 0648(2) 1 143(9) 4c

O25 02011(18) 025 0563(2) 1 143(9) 4c

O26 00863(13) 075 0143(2) 1 143(9) 4c

41

GVLI O1 -00251(15) 08553(18) -0468(2) 0500(3) 06(4) 8d

O2 -0013(2) 07533(17) -0531(3) 0500(3) 06(4) 8d

C1 00570(11) 08446(12) -05861(14) 0500(3) 06(4) 8d

C2 00466(18) 09175(12) -05663(18) 0500(3) 06(4) 8d

C3 0004(2) 09222(15) -0484(2) 0500(3) 06(4) 8d

C4 00038(13) 08112(15) -05293(19) 0500(3) 06(4) 8d

C5 -0034(3) 09728(19) -0448(3) 0500(3) 06(4) 8d

H1a 00999(11) 08315(15) -05641(17) 0500(3) 07(5) 8d

H1b 00528(13) 08360(13) -06553(15) 0500(3) 07(5) 8d

H2a 0088(2) 09384(14) -0553(2) 0500(3) 07(5) 8d

H2b 0026(2) 09378(15) -0622(2) 0500(3) 07(5) 8d

H3 0038(2) 09204(15) -04313(18) 0500(3) 07(5) 8d

H5a -0043(3) 0965(2) -0380(3) 0500(3) 07(5) 8d

H5b -0011(4) 10138(17) -0454(3) 0500(3) 07(5) 8d

H5c -0074(3) 0975(3) -0485(3) 0500(3) 07(5) 8d

GVLII O1 -03289(15) -0778(2) -02817(19) 0500(4) 06(4) 8d

O2 -04372(14) -0757(2) -02733(16) 0500(4) 06(4) 8d

C1 -03730(11) -07204(15) -04150(12) 0500(4) 06(4) 8d

C2 -02990(11) -0718(2) -04230(16) 0500(4) 06(4) 8d

C3 -02738(13) -0762(3) -0350(2) 0500(4) 06(4) 8d

C4 -03856(13) -07518(18) -03175(14) 0500(4) 06(4) 8d

C5 -02129(14) -0768(4) -0308(3) 0500(4) 06(4) 8d

H1a -03908(13) -07461(16) -04681(13) 0500(3) 07(5) 8d

H1b -03904(14) -06762(15) -04174(16) 0500(3) 07(5) 8d

H2a -02856(13) -0732(2) -04875(17) 0500(3) 07(5) 8d

H2b -02835(15) -0674(2) -04093(19) 0500(3) 07(5) 8d

H3 -0275(2) -0803(3) -0389(3) 0500(3) 07(5) 8d

H5a -0208(2) -0812(4) -0281(3) 0500(3) 07(5) 8d

H5b -01797(13) -0762(4) -0357(3) 0500(3) 07(5) 8d

H5c -02080(14) -0735(4) -0257(3) 0500(3) 07(5) 8d

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 13: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

12

Fig S4 Characterisation of the acidity of zeolites by NH3-TPD Two peaks at 240 and 435 degC correspond to

NH3 eluted from the weak and strong acid sites respectively25

100 150 200 250 300 350 400 450 500 550 600

Inte

nsity (

au

)

Temperature (oC)

NbAlS-1(00400271)

NbAlS-1(00270041)

NbS-1(0041)

NbS-1(00271)

HZSM-5(00671)

HZSM-5(0041)

HZSM-5(00271)

13

Fig S5 GC-MS results of the products from the conversion of GVL at 320 oC (a) Gas and (b) liquid

products from conversion of pure GVL over HZSM-5(0041) (c) Gas and (d) liquid products from

conversion of pure GVL over NbS-1(00271) (e) Gas and (f) liquid products from conversion of pure GVL

over NbAlS-1(00270041) (g) Gas and (h) liquid products from conversion of 30 GVL over NbAlS-

1(00270041) The water in g is solely from the feeding solution rather than produced from dehydration as

no dehydration products are observed

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

b

d

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

a

c

N2

CO2

C2H4 C2H6 C3H6 C3H8

C4H10

C4H8

H2O

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

N2

CO2

C4H8

H2O

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

fe

Pentenoic

acid isomers

Pentenoic

acid isomers

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

Aromatics

Pentenoic

acid isomers

g h

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

N2

CO2C4H8

N2

CO2

C4H8

H2O

C2H4 C2H6 C3H6

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

14

Fig S6 TGA (black) and DSC (red) plots of used HZSM-5(0041) (a) and NbAlS-1(00270041) (b)

catalysts after the conversion of pure GVL at 320 oC The by-products (eg coke) deposited on the surface

of used HZSM-5(0041) are significantly more stable than those on used NbAlS-1(00270041)

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

-10

-08

-06

-04

-02

00

02

04

06

08

10

500

Hea

t flow

(W

g)

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

-10

-08

-06

-04

-02

00

02

04

06

08

10

430

He

at flow

(W

g)

330

a b

15

Fig S7 TGA plots of used NbAlS-1(00270041) catalysts after the conversion of pure GVL (black) and 30

wt GVL (red) at 320 oC The presence of water in this catalytic system effectively hindered the formation

of by-products on the catalyst surface

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

for 30 GVL feeding

for pure GVL feeding

16

Fig S8 Comparison of FTIR spectra of NbAlS-1 before and after the conversion of 30wt GVL at 320 oC

for 180 h

1400 1300 1200 1100 1000 900 800 700 600

Absorb

ance (

au

)

Wavenumber (cm-1)

NbAlS-1(00270041) used

NbAlS-1(00270041)

971

17

Fig S9 X-band (ca 9 GHz) EPR spectra of NbAlS-1 and post-reaction zeolites activated by γ-irradiation at

77 K (a) wide magnetic field-sweep highlighting the induced Nb(IV) signals in NbAlS-1(00270041) and

the used sample and (b) narrow magnetic field-sweep highlighting the induced electron hole defect Al-O-

Si signals in fresh and used NbAlS-1(00270041) samples

a

b

100 150 200 250 300 350 400 450 500 550

Nb simulation

NbAlS-1(00270041)

used

Inte

nsity (

au

)

NbAlS-1(00270041)

Magnetic field (mT)

300 310 320 330 340 350 360

NbAlS-1(00270041) used

Al simulation

Inte

nsity (

au

)

Magnetic field (mT)

NbAlS-1(00270041)

18

Fig S10 (a) XAS spectra of the fresh and used NbAlS-1(00270041) (b) Phase-corrected k3-weighted

Fourier Transform of the EXAFS spectra for fresh and used NbAlS-1(00270041) The stability of the Nb

active sites within NbAlS-1(00270041) was verified by Nb K edge XAS with both fresh and used

catalysts exhibiting the same pre-edge XANES and EXAFS features

00

04

08

12

16

20

18800 19075 19350 19625 19900

No

rm a

bso

rptio

n (

au

)

Energy (eV)

NbAlS-1(00270041)

0

1

2

3

4

5

6

7

0 2 4 6

χ(R

)(Aring

-4)

Radial distance (Aring)

a b

NbAlS-1(00270041)

NbAlS-1(00270041) used

NbAlS-1(00270041)

used

19

Fig S11 27Al MAS NMR spectra of fresh and used zeolites Chemical shifts at 0 and 55 ppm are assigned to

six-coordinate extra-framework and four-coordinate framework aluminum species respectively26

100 80 60 40 20 0 -20 -40

NbAlS-1(00270041) used

NbAlS-1(00270041)

HZSM-5(0041) used

27Al chemical shift (ppm)

HZSM-5(0041)

20

Fig S12 Characterisation of the acidity of fresh and used zeolites by NH3-TPD

100 150 200 250 300 350 400 450 500 550 600

In

tensity (

au

)

Temperature (oC)

NbAlS-1(00270041) used

NbAlS-1(00270041)

HZSM-5(0041) used

HZSM-5(0041)

21

Fig S13 X-band (ca 9 GHz) EPR spectra of HZSM-5 and post-reaction zeolites activated by γ-irradiation

at 77 K narrow magnetic field-sweep highlighting the induced electron hole defect Al-O-Si signals in

HZSM-5 (0041) and the used sample

300 310 320 330 340 350 360

HZSM-50041) used

Al simulation

Inte

nsity (

au

)

Magnetic field (mT)

HZSM-5(0041)

22

Fig S14 Comparison of SXPD patterns of (a) HZSM-5(0041) (b) NbS-1(00271) and (c) NbAlS-

1(00270041) before and after adsorption of GVL at room temperature [λ = 082487(1) Aring]

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbAlS-1(0027041)

GVLNbAlS-1(0027041)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbS-1(00271)

GVLNbS-1(00271)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

HZSM-5(0041)

GVLHZSM-5(0041)

a

b

c

23

Fig S15 Comparison of the experimental data (black line) and Rietveld refinement (red line) and the

difference between them (grey line) for SXPD patterns of (ab) GVLHZSM-5(0041) (cd) GVLNbS-

1(00271) (ef) GVLNbAlS-1(00270041) at room temperature at a 2θ range of (ace) 3 - 20deg and

(bdf) 20 - 50deg [λ = 082487(1) Aring]

a b

c d

e f

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

24

Fig S16 (a) 29Si NMR spectra of HZSM-5 and NbAlS-1 de-convolution of 29Si NMR spectra of HZSM-5

(b) and NbAlS-1 (c) by Guassian and Lorentzian line shapes

a

b

c

-125 -120 -115 -110 -105 -100 -95 -90 -85

-1023

-1076

-1138

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-4

Cumulative Fitted Peak

-1171

-125 -120 -115 -110 -105 -100 -95 -90 -85

-924-983

-1026

-1057

-1124

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-6

Cumulative Fitted Peak

-1162

-125 -120 -115 -110 -105 -100 -95 -90 -8529

Si chemical shift (ppm)

NbAlS-1(00270041)

HZSM-5(0041)

25

Fig S17 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and calculated INS

spectra for 12 types of NbAlH sites

0 200 400 600 800 1000 1200 1400 1600

1211109876

4

23

5

1

Bare NbAlS-1 (exp)

S(Q

) (a

u)

Neutron energy loss (cm-1)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

26

Fig S18 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and combination of

calculated INS spectra of different NbAlH sites Combination 1 = 3125Site I + 3125Site II +

5Site III + 325Site IV Combination 2 = 675Site III + 325Site IV Site I = 025(NbAlH_1 +

NbAlH_2 + NbAlH_3 + NbAlH_4) Site II = 025(NbAlH_5 + NbAlH_6 + NbAlH_7 +

NbAlH_8) Site III = 05(NbAlH_9 + NbAlH_10) Site IV = 05(NbAlH_11 + NbAlH_12)

Abscissa is scaled down by 097 for combination 1 and 2

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Bare NbAlS-1 (exp)

Combination 1

Combination 2

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

27

Fig S19 Schematic view of the procedure of in situ INS experiment and data collection

Zeolite (Calcined)

Zeolite (activated)

Heating at 450 oC under

He flow for 3 h

Zeolite (Adsorbed)

INS collection 1

Zeolite (Reaction at 280 C)

Adsorption of GVL at 135 oC

Zeolite (Reaction at 300 C)

Zeolite (Reaction at 320 C)

Reaction at 280 oC for 3 min

Reaction at 300 oC for 3 min

Reaction at 320 oC for 3 min

INS collection 2

INS collection 3

INS collection 4

INS collection 5

28

Fig S20 Comparison of the experimental INS spectra of condensed GVL in the solid state (black) and

calculated INS spectra of single GVL molecule (red) The crystal structure of solid GVL is unavailable in the

database

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental GVL

Calculated GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

29

Fig S21 Comparison of the experimental and calculated INS spectra of adsorbed GVL molecules on

NbAlS-1 The structure model derived from SXPD experiments was used for initial DFT modelling where

the positional disorder has been removed in the calculation and this partially accounts for the discrepancies

observed between calculated and experimental INS plots

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental adsorbed GVL

Calculated adsorbed GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

30

Fig S22 View of the INS spectrum for the empty catalysis cell used for this experiment The empty can has

the features below 300 cm-1 and at approximately 457 and 659 cm-1

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Empty can

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

31

Fig S23 Comparison of the experimental INS spectra for bare and GVL-adsorbed catalyst Spectra shown

are after subtraction of the empty cell The INS spectrum of the catalyst on GVL adsorption at 135 degC shows

a significant increase in total intensity demonstrating the binding of GVL to the catalyst sites

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

GVLNbAlS-1(00270041)

Bare NbAlS-1(00270041)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

32

Fig S24 Comparison of the experimental INS spectra of all butene isomers and reacted GVL at 320 degC

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Reaction 320 oC

trans-2-butene

i-butene

1-butene

cis-2-butene

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

33

Supplementary Tables

Table S1 Textural properties (data determined from N2 sorption isotherms at 77 K) and crystallite size (data

determined from SEM) of all zeolites used in this study

Samples ABET (m2 g-1)a Amic (m2 g-1) b Aext (m2 g-1) c Vmic (cm3 g-1) d Vtotal (cm3 g-1) e

Crystallite sizef

(nm)

HZSM-5 (00271) 413 314 99 019 033 200-500

HZSM-5 (0041) 346 259 87 015 028 200-500

HZSM-5 (00671) 348 277 71 016 026 200-500

NbS-1 (00271) 377 284 93 017 029 300-500

NbS-1 (0041) 357 282 75 016 027 300-500

NbAlS-1(00270041) 408 263 145 018 041 300-500

NbAlS-1(00400271) 376 268 108 017 033 300-500

HZSM-5 (0041)g 338 258 80 015 027 200-500

NbAlS-1(00270041)g 396 262 134 018 039 300-500

aBET specific surface area bMicropore surface area cExternal surface area dMicropore volume eTotal pore volume fObtainted from SEM gUsed catalyst

34

Table S2 Spin-Hamiltonian parameters of radiation induced Nb(IV) and electron hole Al-O-Si defects

from simulation of CW X-band EPR spectra in Fig 1 lw is the homogeneous Lorentzian linewidth g and A

are the principle values of the g and hyperfine interaction tensors

Signal Parameters

Electron

Spin

Nuclear

Spin g-tensor g-Strain

A-tensor

(G)

lw

(mT)

Nb defect 12 92 [1935 1935 1866] [004 004 00] [159 159

310] [0 40]

Al defect 12 52 [20012 2007 2045] [00 0003 004] [7 7 -] [00 04]

35

Table S3 Summary of acidity of all zeolites used in this work Data were determined by NH3-TPD and

Pyridine-IR studies

Catalyst Weak acida

(mmol g-1)

Strong acida

(mmol g-1)

Total acida

(mmol g-1)

LB acid

ratiob

HZSM-5(00271) 015 025 04 039

HZSM-5(0041) 024 028 052 037

HZSM-5(00671) 033 03 063 027

NbS-1(00271) 004 0 004 -

NbS-1(0041) 004 0 004 -

NbAlS-1(00270041) 022 0 022 469

NbAlS-1(00400271) 023 0 023 35 aFrom NH3-TPD bFrom Pyridine-IR

36

Table S4 The butenes distribution in equilibrium at 320 degC and the distribution of butene isomers produced

from conversion of 30 GVL at 320 degC over catalysts

Catalyst Distribution ()

i-butene 1-butene trans-2-butene cis-2-butene

Equilibrium27 45 12 27 16

HZSM-5(0041) 44 14 25 17

NbAlS-1(00270041) 18 19 38 25

NbOPO4 15 20 39 26

37

Table S5 Comparison of the catalytic performance of reported catalysts for the conversion of GVL in aqueous solution (25-40 wt ) to butenes

Catalyst Reaction Conditions GVL

concentration

(wt )

GVL

conversion

()

Butene

Yield

(mol )a

Ref

Temperature

(degC)

WHSV

(h-1)

Pressure

(bar)

NbAlS-1(00270041) 320 018 1 30 100 993 this work

SiO2Al2O3 375 09 1 30 97 75 28

HZSM-5(0041) 320 018 1 30 76 232 this work

LaZSM-5 450 1 10 40 gt99 ca 21 15

PdNb2O5b 275 05 14 30d 100 lt16c 29

Zn-AlPO-5 397 077 10 40 65 ca 12 30

H3PO4 240 - - 25 100 12c 31

ZnZSM-5 450 1 10 40 gt99 ca 6 15

AlPO-5 397 077 10 40 2 ca 04 30

aButene yield is calculated by the equation defined in the Method section

bunder H2 atmosphere

cThe product includes both butene and butane d002 M H2SO4 was added in the GVL solution

38

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1

R (Aring)a σ a Amp a CN a

NbAlS-1 (Dry) Nb=O 1680 0017 082 1 Nb-O 2014 0008 082 3 NbAlS-1

Nb=O 1721 0012 078 1

Nb-O 2014 0004 078 3

NbAlS-1+GVL

Nb=O 1943 0003 075 1

Nb-O 2014 0010 075 3

NbS-1

Nb=O 1711 0032 091 1

Nb-O 2014 0005 091 3

NbS-1+GVL

Nb=O 1770 0004 089 1

Nb-O 2014 0014 089 3 aR = Interatomic distance from central scattering atom σ = Debye-Waller factor Amp = amplitude factor

and CN = coordination number

39

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption

Samples GVLHZSM-5(0041) GVLNbS-1(00271) NbAlS-1(00270041) GVLNbAlS-1(00270041)

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma

Chemical formula Al3692Si92308O192 8GVL Nb2524Si93476O192 8GVL Al3599Nb2429Si89972O192 Al3599Nb2429Si89972O192 8GVL

2θ range for refinement (deg) 3 ndash 50 3 ndash 50 3 ndash 50 3 ndash 50

Detector Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals

Number of hkls 3251 3214 3179 3222

Refinement methods Rietveld Rietveld Rietveld Rietveld

a (Aring) 201351(2) 200604(2) 199955(3) 200697(3)

b (Aring) 199852(2) 198995(1) 198333(3) 199150(3)

c (Aring) 134549(2) 134010(1) 133531(2) 134214(2)

V (Aring3) 541428(11) 534957(7) 529553(15) 536437(15)

RwpRexp Rp () 445135013378 463131253497 553133614058 444933763305

Wavelength (Aring) 082487(1) 082487(1) 082487(1) 082487(1)

Gof χ2 1272 1482 1646 1318

40

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) at room

temperature

Species Atom x y z SOF Beq(Aring2) Wyckoff

HZSM-5(0041) Al1 -00732(5) 00570(7) 08366(7) 003846154 100(5) 8d

Al2 01869(6) -00339(5) 03189(8) 003846154 100(5) 8d

Al3 02207(5) -00626(7) 05256(8) 003846154 100(5) 8d

Al4 01210(5) 00590(7) 10220(8) 003846154 100(5) 8d

Al5 -00703(6) -00272(5) 01933(8) 003846154 100(5) 8d

Al6 01859(5) 00593(6) 06679(8) 003846154 100(5) 8d

Al7 -00745(6) 06734(6) 08243(9) 003846154 100(5) 8d

Al8 01956(6) 01297(5) 03114(7) 003846154 100(5) 8d

Al9 02187(5) 01761(5) 05326(8) 003846154 100(5) 8d

Al10 01228(5) 06749(6) 10400(8) 003846154 100(5) 8d

Al11 -00694(6) 01308(6) 01819(9) 003846154 100(5) 8d

Al12 01859(6) 06714(5) 06756(8) 003846154 100(5) 8d

Si1 -00732(5) 00570(7) 08366(7) 09615385 100(5) 8d

Si2 01869(6) -00339(5) 03189(8) 09615385 100(5) 8d

Si3 02207(5) -00626(7) 05256(8) 09615385 100(5) 8d

Si4 01210(5) 00590(7) 10220(8) 09615385 100(5) 8d

Si5 -00703(6) -00272(5) 01933(8) 09615385 100(5) 8d

Si6 01859(5) 00593(6) 06679(8) 09615385 100(5) 8d

Si7 -00745(6) 06734(6) 08243(9) 09615385 100(5) 8d

Si8 01956(6) 01297(5) 03114(7) 09615385 100(5) 8d

Si9 02187(5) 01761(5) 05326(8) 09615385 100(5) 8d

Si10 01228(5) 06749(6) 10400(8) 09615385 100(5) 8d

Si11 -00694(6) 01308(6) 01819(9) 09615385 100(5) 8d

Si12 01859(6) 06714(5) 06756(8) 09615385 100(5) 8d

O1 01189(10) -00643(12) 02762(13) 1 143(9) 8d

O2 01900(11) -00665(10) 04093(13) 1 143(9) 8d

O3 02017(11) 00485(12) 10198(11) 1 143(9) 8d

O4 -00964(9) -00573(13) 10736(15) 1 143(9) 8d

O5 01132(9) 00573(12) 07009(13) 1 143(9) 8d

O6 02544(10) 00574(13) 07592(13) 1 143(9) 8d

O7 01249(11) 01569(12) 02676(15) 1 143(9) 8d

O8 01995(12) 01482(9) 04331(13) 1 143(9) 8d

O9 01968(12) 06607(9) 00500(12) 1 143(9) 8d

O10 -00922(10) 01564(11) 10827(17) 1 143(9) 8d

O11 01123(10) 06498(11) 07436(14) 1 143(9) 8d

O12 02420(11) 06557(12) 07396(15) 1 143(9) 8d

O13 02109(9) 00468(11) 03170(12) 1 143(9) 8d

O14 -00793(8) 00525(13) 01708(13) 1 143(9) 8d

O15 -00850(10) 01327(12) 08874(17) 1 143(9) 8d

O16 -01009(10) 00004(11) 09239(15) 1 143(9) 8d

O17 -01006(10) 06343(12) -00444(14) 1 143(9) 8d

O18 01746(10) 01273(11) 06145(13) 1 143(9) 8d

O19 01980(12) 00019(10) 06091(12) 1 143(9) 8d

O20 02014(13) 06300(11) 05761(13) 1 143(9) 8d

O21 -00054(11) 00405(12) 07595(12) 1 143(9) 8d

O22 -00045(12) 06580(13) 07876(13) 1 143(9) 8d

O23 -00801(15) 075 0861(2) 1 143(9) 4c

O24 01839(17) 075 0648(2) 1 143(9) 4c

O25 02011(18) 025 0563(2) 1 143(9) 4c

O26 00863(13) 075 0143(2) 1 143(9) 4c

41

GVLI O1 -00251(15) 08553(18) -0468(2) 0500(3) 06(4) 8d

O2 -0013(2) 07533(17) -0531(3) 0500(3) 06(4) 8d

C1 00570(11) 08446(12) -05861(14) 0500(3) 06(4) 8d

C2 00466(18) 09175(12) -05663(18) 0500(3) 06(4) 8d

C3 0004(2) 09222(15) -0484(2) 0500(3) 06(4) 8d

C4 00038(13) 08112(15) -05293(19) 0500(3) 06(4) 8d

C5 -0034(3) 09728(19) -0448(3) 0500(3) 06(4) 8d

H1a 00999(11) 08315(15) -05641(17) 0500(3) 07(5) 8d

H1b 00528(13) 08360(13) -06553(15) 0500(3) 07(5) 8d

H2a 0088(2) 09384(14) -0553(2) 0500(3) 07(5) 8d

H2b 0026(2) 09378(15) -0622(2) 0500(3) 07(5) 8d

H3 0038(2) 09204(15) -04313(18) 0500(3) 07(5) 8d

H5a -0043(3) 0965(2) -0380(3) 0500(3) 07(5) 8d

H5b -0011(4) 10138(17) -0454(3) 0500(3) 07(5) 8d

H5c -0074(3) 0975(3) -0485(3) 0500(3) 07(5) 8d

GVLII O1 -03289(15) -0778(2) -02817(19) 0500(4) 06(4) 8d

O2 -04372(14) -0757(2) -02733(16) 0500(4) 06(4) 8d

C1 -03730(11) -07204(15) -04150(12) 0500(4) 06(4) 8d

C2 -02990(11) -0718(2) -04230(16) 0500(4) 06(4) 8d

C3 -02738(13) -0762(3) -0350(2) 0500(4) 06(4) 8d

C4 -03856(13) -07518(18) -03175(14) 0500(4) 06(4) 8d

C5 -02129(14) -0768(4) -0308(3) 0500(4) 06(4) 8d

H1a -03908(13) -07461(16) -04681(13) 0500(3) 07(5) 8d

H1b -03904(14) -06762(15) -04174(16) 0500(3) 07(5) 8d

H2a -02856(13) -0732(2) -04875(17) 0500(3) 07(5) 8d

H2b -02835(15) -0674(2) -04093(19) 0500(3) 07(5) 8d

H3 -0275(2) -0803(3) -0389(3) 0500(3) 07(5) 8d

H5a -0208(2) -0812(4) -0281(3) 0500(3) 07(5) 8d

H5b -01797(13) -0762(4) -0357(3) 0500(3) 07(5) 8d

H5c -02080(14) -0735(4) -0257(3) 0500(3) 07(5) 8d

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 14: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

13

Fig S5 GC-MS results of the products from the conversion of GVL at 320 oC (a) Gas and (b) liquid

products from conversion of pure GVL over HZSM-5(0041) (c) Gas and (d) liquid products from

conversion of pure GVL over NbS-1(00271) (e) Gas and (f) liquid products from conversion of pure GVL

over NbAlS-1(00270041) (g) Gas and (h) liquid products from conversion of 30 GVL over NbAlS-

1(00270041) The water in g is solely from the feeding solution rather than produced from dehydration as

no dehydration products are observed

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

b

d

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

a

c

N2

CO2

C2H4 C2H6 C3H6 C3H8

C4H10

C4H8

H2O

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

N2

CO2

C4H8

H2O

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

fe

Pentenoic

acid isomers

Pentenoic

acid isomers

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

Aromatics

Pentenoic

acid isomers

g h

4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

N2

CO2C4H8

N2

CO2

C4H8

H2O

C2H4 C2H6 C3H6

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

0 1 2 3 4 5 6 7 8 9 10

Inte

nsity (

au

)

Retention time (min)

14

Fig S6 TGA (black) and DSC (red) plots of used HZSM-5(0041) (a) and NbAlS-1(00270041) (b)

catalysts after the conversion of pure GVL at 320 oC The by-products (eg coke) deposited on the surface

of used HZSM-5(0041) are significantly more stable than those on used NbAlS-1(00270041)

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

-10

-08

-06

-04

-02

00

02

04

06

08

10

500

Hea

t flow

(W

g)

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

-10

-08

-06

-04

-02

00

02

04

06

08

10

430

He

at flow

(W

g)

330

a b

15

Fig S7 TGA plots of used NbAlS-1(00270041) catalysts after the conversion of pure GVL (black) and 30

wt GVL (red) at 320 oC The presence of water in this catalytic system effectively hindered the formation

of by-products on the catalyst surface

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

for 30 GVL feeding

for pure GVL feeding

16

Fig S8 Comparison of FTIR spectra of NbAlS-1 before and after the conversion of 30wt GVL at 320 oC

for 180 h

1400 1300 1200 1100 1000 900 800 700 600

Absorb

ance (

au

)

Wavenumber (cm-1)

NbAlS-1(00270041) used

NbAlS-1(00270041)

971

17

Fig S9 X-band (ca 9 GHz) EPR spectra of NbAlS-1 and post-reaction zeolites activated by γ-irradiation at

77 K (a) wide magnetic field-sweep highlighting the induced Nb(IV) signals in NbAlS-1(00270041) and

the used sample and (b) narrow magnetic field-sweep highlighting the induced electron hole defect Al-O-

Si signals in fresh and used NbAlS-1(00270041) samples

a

b

100 150 200 250 300 350 400 450 500 550

Nb simulation

NbAlS-1(00270041)

used

Inte

nsity (

au

)

NbAlS-1(00270041)

Magnetic field (mT)

300 310 320 330 340 350 360

NbAlS-1(00270041) used

Al simulation

Inte

nsity (

au

)

Magnetic field (mT)

NbAlS-1(00270041)

18

Fig S10 (a) XAS spectra of the fresh and used NbAlS-1(00270041) (b) Phase-corrected k3-weighted

Fourier Transform of the EXAFS spectra for fresh and used NbAlS-1(00270041) The stability of the Nb

active sites within NbAlS-1(00270041) was verified by Nb K edge XAS with both fresh and used

catalysts exhibiting the same pre-edge XANES and EXAFS features

00

04

08

12

16

20

18800 19075 19350 19625 19900

No

rm a

bso

rptio

n (

au

)

Energy (eV)

NbAlS-1(00270041)

0

1

2

3

4

5

6

7

0 2 4 6

χ(R

)(Aring

-4)

Radial distance (Aring)

a b

NbAlS-1(00270041)

NbAlS-1(00270041) used

NbAlS-1(00270041)

used

19

Fig S11 27Al MAS NMR spectra of fresh and used zeolites Chemical shifts at 0 and 55 ppm are assigned to

six-coordinate extra-framework and four-coordinate framework aluminum species respectively26

100 80 60 40 20 0 -20 -40

NbAlS-1(00270041) used

NbAlS-1(00270041)

HZSM-5(0041) used

27Al chemical shift (ppm)

HZSM-5(0041)

20

Fig S12 Characterisation of the acidity of fresh and used zeolites by NH3-TPD

100 150 200 250 300 350 400 450 500 550 600

In

tensity (

au

)

Temperature (oC)

NbAlS-1(00270041) used

NbAlS-1(00270041)

HZSM-5(0041) used

HZSM-5(0041)

21

Fig S13 X-band (ca 9 GHz) EPR spectra of HZSM-5 and post-reaction zeolites activated by γ-irradiation

at 77 K narrow magnetic field-sweep highlighting the induced electron hole defect Al-O-Si signals in

HZSM-5 (0041) and the used sample

300 310 320 330 340 350 360

HZSM-50041) used

Al simulation

Inte

nsity (

au

)

Magnetic field (mT)

HZSM-5(0041)

22

Fig S14 Comparison of SXPD patterns of (a) HZSM-5(0041) (b) NbS-1(00271) and (c) NbAlS-

1(00270041) before and after adsorption of GVL at room temperature [λ = 082487(1) Aring]

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbAlS-1(0027041)

GVLNbAlS-1(0027041)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbS-1(00271)

GVLNbS-1(00271)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

HZSM-5(0041)

GVLHZSM-5(0041)

a

b

c

23

Fig S15 Comparison of the experimental data (black line) and Rietveld refinement (red line) and the

difference between them (grey line) for SXPD patterns of (ab) GVLHZSM-5(0041) (cd) GVLNbS-

1(00271) (ef) GVLNbAlS-1(00270041) at room temperature at a 2θ range of (ace) 3 - 20deg and

(bdf) 20 - 50deg [λ = 082487(1) Aring]

a b

c d

e f

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

24

Fig S16 (a) 29Si NMR spectra of HZSM-5 and NbAlS-1 de-convolution of 29Si NMR spectra of HZSM-5

(b) and NbAlS-1 (c) by Guassian and Lorentzian line shapes

a

b

c

-125 -120 -115 -110 -105 -100 -95 -90 -85

-1023

-1076

-1138

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-4

Cumulative Fitted Peak

-1171

-125 -120 -115 -110 -105 -100 -95 -90 -85

-924-983

-1026

-1057

-1124

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-6

Cumulative Fitted Peak

-1162

-125 -120 -115 -110 -105 -100 -95 -90 -8529

Si chemical shift (ppm)

NbAlS-1(00270041)

HZSM-5(0041)

25

Fig S17 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and calculated INS

spectra for 12 types of NbAlH sites

0 200 400 600 800 1000 1200 1400 1600

1211109876

4

23

5

1

Bare NbAlS-1 (exp)

S(Q

) (a

u)

Neutron energy loss (cm-1)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

26

Fig S18 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and combination of

calculated INS spectra of different NbAlH sites Combination 1 = 3125Site I + 3125Site II +

5Site III + 325Site IV Combination 2 = 675Site III + 325Site IV Site I = 025(NbAlH_1 +

NbAlH_2 + NbAlH_3 + NbAlH_4) Site II = 025(NbAlH_5 + NbAlH_6 + NbAlH_7 +

NbAlH_8) Site III = 05(NbAlH_9 + NbAlH_10) Site IV = 05(NbAlH_11 + NbAlH_12)

Abscissa is scaled down by 097 for combination 1 and 2

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Bare NbAlS-1 (exp)

Combination 1

Combination 2

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

27

Fig S19 Schematic view of the procedure of in situ INS experiment and data collection

Zeolite (Calcined)

Zeolite (activated)

Heating at 450 oC under

He flow for 3 h

Zeolite (Adsorbed)

INS collection 1

Zeolite (Reaction at 280 C)

Adsorption of GVL at 135 oC

Zeolite (Reaction at 300 C)

Zeolite (Reaction at 320 C)

Reaction at 280 oC for 3 min

Reaction at 300 oC for 3 min

Reaction at 320 oC for 3 min

INS collection 2

INS collection 3

INS collection 4

INS collection 5

28

Fig S20 Comparison of the experimental INS spectra of condensed GVL in the solid state (black) and

calculated INS spectra of single GVL molecule (red) The crystal structure of solid GVL is unavailable in the

database

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental GVL

Calculated GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

29

Fig S21 Comparison of the experimental and calculated INS spectra of adsorbed GVL molecules on

NbAlS-1 The structure model derived from SXPD experiments was used for initial DFT modelling where

the positional disorder has been removed in the calculation and this partially accounts for the discrepancies

observed between calculated and experimental INS plots

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental adsorbed GVL

Calculated adsorbed GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

30

Fig S22 View of the INS spectrum for the empty catalysis cell used for this experiment The empty can has

the features below 300 cm-1 and at approximately 457 and 659 cm-1

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Empty can

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

31

Fig S23 Comparison of the experimental INS spectra for bare and GVL-adsorbed catalyst Spectra shown

are after subtraction of the empty cell The INS spectrum of the catalyst on GVL adsorption at 135 degC shows

a significant increase in total intensity demonstrating the binding of GVL to the catalyst sites

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

GVLNbAlS-1(00270041)

Bare NbAlS-1(00270041)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

32

Fig S24 Comparison of the experimental INS spectra of all butene isomers and reacted GVL at 320 degC

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Reaction 320 oC

trans-2-butene

i-butene

1-butene

cis-2-butene

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

33

Supplementary Tables

Table S1 Textural properties (data determined from N2 sorption isotherms at 77 K) and crystallite size (data

determined from SEM) of all zeolites used in this study

Samples ABET (m2 g-1)a Amic (m2 g-1) b Aext (m2 g-1) c Vmic (cm3 g-1) d Vtotal (cm3 g-1) e

Crystallite sizef

(nm)

HZSM-5 (00271) 413 314 99 019 033 200-500

HZSM-5 (0041) 346 259 87 015 028 200-500

HZSM-5 (00671) 348 277 71 016 026 200-500

NbS-1 (00271) 377 284 93 017 029 300-500

NbS-1 (0041) 357 282 75 016 027 300-500

NbAlS-1(00270041) 408 263 145 018 041 300-500

NbAlS-1(00400271) 376 268 108 017 033 300-500

HZSM-5 (0041)g 338 258 80 015 027 200-500

NbAlS-1(00270041)g 396 262 134 018 039 300-500

aBET specific surface area bMicropore surface area cExternal surface area dMicropore volume eTotal pore volume fObtainted from SEM gUsed catalyst

34

Table S2 Spin-Hamiltonian parameters of radiation induced Nb(IV) and electron hole Al-O-Si defects

from simulation of CW X-band EPR spectra in Fig 1 lw is the homogeneous Lorentzian linewidth g and A

are the principle values of the g and hyperfine interaction tensors

Signal Parameters

Electron

Spin

Nuclear

Spin g-tensor g-Strain

A-tensor

(G)

lw

(mT)

Nb defect 12 92 [1935 1935 1866] [004 004 00] [159 159

310] [0 40]

Al defect 12 52 [20012 2007 2045] [00 0003 004] [7 7 -] [00 04]

35

Table S3 Summary of acidity of all zeolites used in this work Data were determined by NH3-TPD and

Pyridine-IR studies

Catalyst Weak acida

(mmol g-1)

Strong acida

(mmol g-1)

Total acida

(mmol g-1)

LB acid

ratiob

HZSM-5(00271) 015 025 04 039

HZSM-5(0041) 024 028 052 037

HZSM-5(00671) 033 03 063 027

NbS-1(00271) 004 0 004 -

NbS-1(0041) 004 0 004 -

NbAlS-1(00270041) 022 0 022 469

NbAlS-1(00400271) 023 0 023 35 aFrom NH3-TPD bFrom Pyridine-IR

36

Table S4 The butenes distribution in equilibrium at 320 degC and the distribution of butene isomers produced

from conversion of 30 GVL at 320 degC over catalysts

Catalyst Distribution ()

i-butene 1-butene trans-2-butene cis-2-butene

Equilibrium27 45 12 27 16

HZSM-5(0041) 44 14 25 17

NbAlS-1(00270041) 18 19 38 25

NbOPO4 15 20 39 26

37

Table S5 Comparison of the catalytic performance of reported catalysts for the conversion of GVL in aqueous solution (25-40 wt ) to butenes

Catalyst Reaction Conditions GVL

concentration

(wt )

GVL

conversion

()

Butene

Yield

(mol )a

Ref

Temperature

(degC)

WHSV

(h-1)

Pressure

(bar)

NbAlS-1(00270041) 320 018 1 30 100 993 this work

SiO2Al2O3 375 09 1 30 97 75 28

HZSM-5(0041) 320 018 1 30 76 232 this work

LaZSM-5 450 1 10 40 gt99 ca 21 15

PdNb2O5b 275 05 14 30d 100 lt16c 29

Zn-AlPO-5 397 077 10 40 65 ca 12 30

H3PO4 240 - - 25 100 12c 31

ZnZSM-5 450 1 10 40 gt99 ca 6 15

AlPO-5 397 077 10 40 2 ca 04 30

aButene yield is calculated by the equation defined in the Method section

bunder H2 atmosphere

cThe product includes both butene and butane d002 M H2SO4 was added in the GVL solution

38

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1

R (Aring)a σ a Amp a CN a

NbAlS-1 (Dry) Nb=O 1680 0017 082 1 Nb-O 2014 0008 082 3 NbAlS-1

Nb=O 1721 0012 078 1

Nb-O 2014 0004 078 3

NbAlS-1+GVL

Nb=O 1943 0003 075 1

Nb-O 2014 0010 075 3

NbS-1

Nb=O 1711 0032 091 1

Nb-O 2014 0005 091 3

NbS-1+GVL

Nb=O 1770 0004 089 1

Nb-O 2014 0014 089 3 aR = Interatomic distance from central scattering atom σ = Debye-Waller factor Amp = amplitude factor

and CN = coordination number

39

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption

Samples GVLHZSM-5(0041) GVLNbS-1(00271) NbAlS-1(00270041) GVLNbAlS-1(00270041)

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma

Chemical formula Al3692Si92308O192 8GVL Nb2524Si93476O192 8GVL Al3599Nb2429Si89972O192 Al3599Nb2429Si89972O192 8GVL

2θ range for refinement (deg) 3 ndash 50 3 ndash 50 3 ndash 50 3 ndash 50

Detector Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals

Number of hkls 3251 3214 3179 3222

Refinement methods Rietveld Rietveld Rietveld Rietveld

a (Aring) 201351(2) 200604(2) 199955(3) 200697(3)

b (Aring) 199852(2) 198995(1) 198333(3) 199150(3)

c (Aring) 134549(2) 134010(1) 133531(2) 134214(2)

V (Aring3) 541428(11) 534957(7) 529553(15) 536437(15)

RwpRexp Rp () 445135013378 463131253497 553133614058 444933763305

Wavelength (Aring) 082487(1) 082487(1) 082487(1) 082487(1)

Gof χ2 1272 1482 1646 1318

40

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) at room

temperature

Species Atom x y z SOF Beq(Aring2) Wyckoff

HZSM-5(0041) Al1 -00732(5) 00570(7) 08366(7) 003846154 100(5) 8d

Al2 01869(6) -00339(5) 03189(8) 003846154 100(5) 8d

Al3 02207(5) -00626(7) 05256(8) 003846154 100(5) 8d

Al4 01210(5) 00590(7) 10220(8) 003846154 100(5) 8d

Al5 -00703(6) -00272(5) 01933(8) 003846154 100(5) 8d

Al6 01859(5) 00593(6) 06679(8) 003846154 100(5) 8d

Al7 -00745(6) 06734(6) 08243(9) 003846154 100(5) 8d

Al8 01956(6) 01297(5) 03114(7) 003846154 100(5) 8d

Al9 02187(5) 01761(5) 05326(8) 003846154 100(5) 8d

Al10 01228(5) 06749(6) 10400(8) 003846154 100(5) 8d

Al11 -00694(6) 01308(6) 01819(9) 003846154 100(5) 8d

Al12 01859(6) 06714(5) 06756(8) 003846154 100(5) 8d

Si1 -00732(5) 00570(7) 08366(7) 09615385 100(5) 8d

Si2 01869(6) -00339(5) 03189(8) 09615385 100(5) 8d

Si3 02207(5) -00626(7) 05256(8) 09615385 100(5) 8d

Si4 01210(5) 00590(7) 10220(8) 09615385 100(5) 8d

Si5 -00703(6) -00272(5) 01933(8) 09615385 100(5) 8d

Si6 01859(5) 00593(6) 06679(8) 09615385 100(5) 8d

Si7 -00745(6) 06734(6) 08243(9) 09615385 100(5) 8d

Si8 01956(6) 01297(5) 03114(7) 09615385 100(5) 8d

Si9 02187(5) 01761(5) 05326(8) 09615385 100(5) 8d

Si10 01228(5) 06749(6) 10400(8) 09615385 100(5) 8d

Si11 -00694(6) 01308(6) 01819(9) 09615385 100(5) 8d

Si12 01859(6) 06714(5) 06756(8) 09615385 100(5) 8d

O1 01189(10) -00643(12) 02762(13) 1 143(9) 8d

O2 01900(11) -00665(10) 04093(13) 1 143(9) 8d

O3 02017(11) 00485(12) 10198(11) 1 143(9) 8d

O4 -00964(9) -00573(13) 10736(15) 1 143(9) 8d

O5 01132(9) 00573(12) 07009(13) 1 143(9) 8d

O6 02544(10) 00574(13) 07592(13) 1 143(9) 8d

O7 01249(11) 01569(12) 02676(15) 1 143(9) 8d

O8 01995(12) 01482(9) 04331(13) 1 143(9) 8d

O9 01968(12) 06607(9) 00500(12) 1 143(9) 8d

O10 -00922(10) 01564(11) 10827(17) 1 143(9) 8d

O11 01123(10) 06498(11) 07436(14) 1 143(9) 8d

O12 02420(11) 06557(12) 07396(15) 1 143(9) 8d

O13 02109(9) 00468(11) 03170(12) 1 143(9) 8d

O14 -00793(8) 00525(13) 01708(13) 1 143(9) 8d

O15 -00850(10) 01327(12) 08874(17) 1 143(9) 8d

O16 -01009(10) 00004(11) 09239(15) 1 143(9) 8d

O17 -01006(10) 06343(12) -00444(14) 1 143(9) 8d

O18 01746(10) 01273(11) 06145(13) 1 143(9) 8d

O19 01980(12) 00019(10) 06091(12) 1 143(9) 8d

O20 02014(13) 06300(11) 05761(13) 1 143(9) 8d

O21 -00054(11) 00405(12) 07595(12) 1 143(9) 8d

O22 -00045(12) 06580(13) 07876(13) 1 143(9) 8d

O23 -00801(15) 075 0861(2) 1 143(9) 4c

O24 01839(17) 075 0648(2) 1 143(9) 4c

O25 02011(18) 025 0563(2) 1 143(9) 4c

O26 00863(13) 075 0143(2) 1 143(9) 4c

41

GVLI O1 -00251(15) 08553(18) -0468(2) 0500(3) 06(4) 8d

O2 -0013(2) 07533(17) -0531(3) 0500(3) 06(4) 8d

C1 00570(11) 08446(12) -05861(14) 0500(3) 06(4) 8d

C2 00466(18) 09175(12) -05663(18) 0500(3) 06(4) 8d

C3 0004(2) 09222(15) -0484(2) 0500(3) 06(4) 8d

C4 00038(13) 08112(15) -05293(19) 0500(3) 06(4) 8d

C5 -0034(3) 09728(19) -0448(3) 0500(3) 06(4) 8d

H1a 00999(11) 08315(15) -05641(17) 0500(3) 07(5) 8d

H1b 00528(13) 08360(13) -06553(15) 0500(3) 07(5) 8d

H2a 0088(2) 09384(14) -0553(2) 0500(3) 07(5) 8d

H2b 0026(2) 09378(15) -0622(2) 0500(3) 07(5) 8d

H3 0038(2) 09204(15) -04313(18) 0500(3) 07(5) 8d

H5a -0043(3) 0965(2) -0380(3) 0500(3) 07(5) 8d

H5b -0011(4) 10138(17) -0454(3) 0500(3) 07(5) 8d

H5c -0074(3) 0975(3) -0485(3) 0500(3) 07(5) 8d

GVLII O1 -03289(15) -0778(2) -02817(19) 0500(4) 06(4) 8d

O2 -04372(14) -0757(2) -02733(16) 0500(4) 06(4) 8d

C1 -03730(11) -07204(15) -04150(12) 0500(4) 06(4) 8d

C2 -02990(11) -0718(2) -04230(16) 0500(4) 06(4) 8d

C3 -02738(13) -0762(3) -0350(2) 0500(4) 06(4) 8d

C4 -03856(13) -07518(18) -03175(14) 0500(4) 06(4) 8d

C5 -02129(14) -0768(4) -0308(3) 0500(4) 06(4) 8d

H1a -03908(13) -07461(16) -04681(13) 0500(3) 07(5) 8d

H1b -03904(14) -06762(15) -04174(16) 0500(3) 07(5) 8d

H2a -02856(13) -0732(2) -04875(17) 0500(3) 07(5) 8d

H2b -02835(15) -0674(2) -04093(19) 0500(3) 07(5) 8d

H3 -0275(2) -0803(3) -0389(3) 0500(3) 07(5) 8d

H5a -0208(2) -0812(4) -0281(3) 0500(3) 07(5) 8d

H5b -01797(13) -0762(4) -0357(3) 0500(3) 07(5) 8d

H5c -02080(14) -0735(4) -0257(3) 0500(3) 07(5) 8d

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 15: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

14

Fig S6 TGA (black) and DSC (red) plots of used HZSM-5(0041) (a) and NbAlS-1(00270041) (b)

catalysts after the conversion of pure GVL at 320 oC The by-products (eg coke) deposited on the surface

of used HZSM-5(0041) are significantly more stable than those on used NbAlS-1(00270041)

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

-10

-08

-06

-04

-02

00

02

04

06

08

10

500

Hea

t flow

(W

g)

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

-10

-08

-06

-04

-02

00

02

04

06

08

10

430

He

at flow

(W

g)

330

a b

15

Fig S7 TGA plots of used NbAlS-1(00270041) catalysts after the conversion of pure GVL (black) and 30

wt GVL (red) at 320 oC The presence of water in this catalytic system effectively hindered the formation

of by-products on the catalyst surface

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

for 30 GVL feeding

for pure GVL feeding

16

Fig S8 Comparison of FTIR spectra of NbAlS-1 before and after the conversion of 30wt GVL at 320 oC

for 180 h

1400 1300 1200 1100 1000 900 800 700 600

Absorb

ance (

au

)

Wavenumber (cm-1)

NbAlS-1(00270041) used

NbAlS-1(00270041)

971

17

Fig S9 X-band (ca 9 GHz) EPR spectra of NbAlS-1 and post-reaction zeolites activated by γ-irradiation at

77 K (a) wide magnetic field-sweep highlighting the induced Nb(IV) signals in NbAlS-1(00270041) and

the used sample and (b) narrow magnetic field-sweep highlighting the induced electron hole defect Al-O-

Si signals in fresh and used NbAlS-1(00270041) samples

a

b

100 150 200 250 300 350 400 450 500 550

Nb simulation

NbAlS-1(00270041)

used

Inte

nsity (

au

)

NbAlS-1(00270041)

Magnetic field (mT)

300 310 320 330 340 350 360

NbAlS-1(00270041) used

Al simulation

Inte

nsity (

au

)

Magnetic field (mT)

NbAlS-1(00270041)

18

Fig S10 (a) XAS spectra of the fresh and used NbAlS-1(00270041) (b) Phase-corrected k3-weighted

Fourier Transform of the EXAFS spectra for fresh and used NbAlS-1(00270041) The stability of the Nb

active sites within NbAlS-1(00270041) was verified by Nb K edge XAS with both fresh and used

catalysts exhibiting the same pre-edge XANES and EXAFS features

00

04

08

12

16

20

18800 19075 19350 19625 19900

No

rm a

bso

rptio

n (

au

)

Energy (eV)

NbAlS-1(00270041)

0

1

2

3

4

5

6

7

0 2 4 6

χ(R

)(Aring

-4)

Radial distance (Aring)

a b

NbAlS-1(00270041)

NbAlS-1(00270041) used

NbAlS-1(00270041)

used

19

Fig S11 27Al MAS NMR spectra of fresh and used zeolites Chemical shifts at 0 and 55 ppm are assigned to

six-coordinate extra-framework and four-coordinate framework aluminum species respectively26

100 80 60 40 20 0 -20 -40

NbAlS-1(00270041) used

NbAlS-1(00270041)

HZSM-5(0041) used

27Al chemical shift (ppm)

HZSM-5(0041)

20

Fig S12 Characterisation of the acidity of fresh and used zeolites by NH3-TPD

100 150 200 250 300 350 400 450 500 550 600

In

tensity (

au

)

Temperature (oC)

NbAlS-1(00270041) used

NbAlS-1(00270041)

HZSM-5(0041) used

HZSM-5(0041)

21

Fig S13 X-band (ca 9 GHz) EPR spectra of HZSM-5 and post-reaction zeolites activated by γ-irradiation

at 77 K narrow magnetic field-sweep highlighting the induced electron hole defect Al-O-Si signals in

HZSM-5 (0041) and the used sample

300 310 320 330 340 350 360

HZSM-50041) used

Al simulation

Inte

nsity (

au

)

Magnetic field (mT)

HZSM-5(0041)

22

Fig S14 Comparison of SXPD patterns of (a) HZSM-5(0041) (b) NbS-1(00271) and (c) NbAlS-

1(00270041) before and after adsorption of GVL at room temperature [λ = 082487(1) Aring]

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbAlS-1(0027041)

GVLNbAlS-1(0027041)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbS-1(00271)

GVLNbS-1(00271)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

HZSM-5(0041)

GVLHZSM-5(0041)

a

b

c

23

Fig S15 Comparison of the experimental data (black line) and Rietveld refinement (red line) and the

difference between them (grey line) for SXPD patterns of (ab) GVLHZSM-5(0041) (cd) GVLNbS-

1(00271) (ef) GVLNbAlS-1(00270041) at room temperature at a 2θ range of (ace) 3 - 20deg and

(bdf) 20 - 50deg [λ = 082487(1) Aring]

a b

c d

e f

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

24

Fig S16 (a) 29Si NMR spectra of HZSM-5 and NbAlS-1 de-convolution of 29Si NMR spectra of HZSM-5

(b) and NbAlS-1 (c) by Guassian and Lorentzian line shapes

a

b

c

-125 -120 -115 -110 -105 -100 -95 -90 -85

-1023

-1076

-1138

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-4

Cumulative Fitted Peak

-1171

-125 -120 -115 -110 -105 -100 -95 -90 -85

-924-983

-1026

-1057

-1124

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-6

Cumulative Fitted Peak

-1162

-125 -120 -115 -110 -105 -100 -95 -90 -8529

Si chemical shift (ppm)

NbAlS-1(00270041)

HZSM-5(0041)

25

Fig S17 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and calculated INS

spectra for 12 types of NbAlH sites

0 200 400 600 800 1000 1200 1400 1600

1211109876

4

23

5

1

Bare NbAlS-1 (exp)

S(Q

) (a

u)

Neutron energy loss (cm-1)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

26

Fig S18 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and combination of

calculated INS spectra of different NbAlH sites Combination 1 = 3125Site I + 3125Site II +

5Site III + 325Site IV Combination 2 = 675Site III + 325Site IV Site I = 025(NbAlH_1 +

NbAlH_2 + NbAlH_3 + NbAlH_4) Site II = 025(NbAlH_5 + NbAlH_6 + NbAlH_7 +

NbAlH_8) Site III = 05(NbAlH_9 + NbAlH_10) Site IV = 05(NbAlH_11 + NbAlH_12)

Abscissa is scaled down by 097 for combination 1 and 2

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Bare NbAlS-1 (exp)

Combination 1

Combination 2

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

27

Fig S19 Schematic view of the procedure of in situ INS experiment and data collection

Zeolite (Calcined)

Zeolite (activated)

Heating at 450 oC under

He flow for 3 h

Zeolite (Adsorbed)

INS collection 1

Zeolite (Reaction at 280 C)

Adsorption of GVL at 135 oC

Zeolite (Reaction at 300 C)

Zeolite (Reaction at 320 C)

Reaction at 280 oC for 3 min

Reaction at 300 oC for 3 min

Reaction at 320 oC for 3 min

INS collection 2

INS collection 3

INS collection 4

INS collection 5

28

Fig S20 Comparison of the experimental INS spectra of condensed GVL in the solid state (black) and

calculated INS spectra of single GVL molecule (red) The crystal structure of solid GVL is unavailable in the

database

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental GVL

Calculated GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

29

Fig S21 Comparison of the experimental and calculated INS spectra of adsorbed GVL molecules on

NbAlS-1 The structure model derived from SXPD experiments was used for initial DFT modelling where

the positional disorder has been removed in the calculation and this partially accounts for the discrepancies

observed between calculated and experimental INS plots

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental adsorbed GVL

Calculated adsorbed GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

30

Fig S22 View of the INS spectrum for the empty catalysis cell used for this experiment The empty can has

the features below 300 cm-1 and at approximately 457 and 659 cm-1

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Empty can

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

31

Fig S23 Comparison of the experimental INS spectra for bare and GVL-adsorbed catalyst Spectra shown

are after subtraction of the empty cell The INS spectrum of the catalyst on GVL adsorption at 135 degC shows

a significant increase in total intensity demonstrating the binding of GVL to the catalyst sites

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

GVLNbAlS-1(00270041)

Bare NbAlS-1(00270041)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

32

Fig S24 Comparison of the experimental INS spectra of all butene isomers and reacted GVL at 320 degC

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Reaction 320 oC

trans-2-butene

i-butene

1-butene

cis-2-butene

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

33

Supplementary Tables

Table S1 Textural properties (data determined from N2 sorption isotherms at 77 K) and crystallite size (data

determined from SEM) of all zeolites used in this study

Samples ABET (m2 g-1)a Amic (m2 g-1) b Aext (m2 g-1) c Vmic (cm3 g-1) d Vtotal (cm3 g-1) e

Crystallite sizef

(nm)

HZSM-5 (00271) 413 314 99 019 033 200-500

HZSM-5 (0041) 346 259 87 015 028 200-500

HZSM-5 (00671) 348 277 71 016 026 200-500

NbS-1 (00271) 377 284 93 017 029 300-500

NbS-1 (0041) 357 282 75 016 027 300-500

NbAlS-1(00270041) 408 263 145 018 041 300-500

NbAlS-1(00400271) 376 268 108 017 033 300-500

HZSM-5 (0041)g 338 258 80 015 027 200-500

NbAlS-1(00270041)g 396 262 134 018 039 300-500

aBET specific surface area bMicropore surface area cExternal surface area dMicropore volume eTotal pore volume fObtainted from SEM gUsed catalyst

34

Table S2 Spin-Hamiltonian parameters of radiation induced Nb(IV) and electron hole Al-O-Si defects

from simulation of CW X-band EPR spectra in Fig 1 lw is the homogeneous Lorentzian linewidth g and A

are the principle values of the g and hyperfine interaction tensors

Signal Parameters

Electron

Spin

Nuclear

Spin g-tensor g-Strain

A-tensor

(G)

lw

(mT)

Nb defect 12 92 [1935 1935 1866] [004 004 00] [159 159

310] [0 40]

Al defect 12 52 [20012 2007 2045] [00 0003 004] [7 7 -] [00 04]

35

Table S3 Summary of acidity of all zeolites used in this work Data were determined by NH3-TPD and

Pyridine-IR studies

Catalyst Weak acida

(mmol g-1)

Strong acida

(mmol g-1)

Total acida

(mmol g-1)

LB acid

ratiob

HZSM-5(00271) 015 025 04 039

HZSM-5(0041) 024 028 052 037

HZSM-5(00671) 033 03 063 027

NbS-1(00271) 004 0 004 -

NbS-1(0041) 004 0 004 -

NbAlS-1(00270041) 022 0 022 469

NbAlS-1(00400271) 023 0 023 35 aFrom NH3-TPD bFrom Pyridine-IR

36

Table S4 The butenes distribution in equilibrium at 320 degC and the distribution of butene isomers produced

from conversion of 30 GVL at 320 degC over catalysts

Catalyst Distribution ()

i-butene 1-butene trans-2-butene cis-2-butene

Equilibrium27 45 12 27 16

HZSM-5(0041) 44 14 25 17

NbAlS-1(00270041) 18 19 38 25

NbOPO4 15 20 39 26

37

Table S5 Comparison of the catalytic performance of reported catalysts for the conversion of GVL in aqueous solution (25-40 wt ) to butenes

Catalyst Reaction Conditions GVL

concentration

(wt )

GVL

conversion

()

Butene

Yield

(mol )a

Ref

Temperature

(degC)

WHSV

(h-1)

Pressure

(bar)

NbAlS-1(00270041) 320 018 1 30 100 993 this work

SiO2Al2O3 375 09 1 30 97 75 28

HZSM-5(0041) 320 018 1 30 76 232 this work

LaZSM-5 450 1 10 40 gt99 ca 21 15

PdNb2O5b 275 05 14 30d 100 lt16c 29

Zn-AlPO-5 397 077 10 40 65 ca 12 30

H3PO4 240 - - 25 100 12c 31

ZnZSM-5 450 1 10 40 gt99 ca 6 15

AlPO-5 397 077 10 40 2 ca 04 30

aButene yield is calculated by the equation defined in the Method section

bunder H2 atmosphere

cThe product includes both butene and butane d002 M H2SO4 was added in the GVL solution

38

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1

R (Aring)a σ a Amp a CN a

NbAlS-1 (Dry) Nb=O 1680 0017 082 1 Nb-O 2014 0008 082 3 NbAlS-1

Nb=O 1721 0012 078 1

Nb-O 2014 0004 078 3

NbAlS-1+GVL

Nb=O 1943 0003 075 1

Nb-O 2014 0010 075 3

NbS-1

Nb=O 1711 0032 091 1

Nb-O 2014 0005 091 3

NbS-1+GVL

Nb=O 1770 0004 089 1

Nb-O 2014 0014 089 3 aR = Interatomic distance from central scattering atom σ = Debye-Waller factor Amp = amplitude factor

and CN = coordination number

39

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption

Samples GVLHZSM-5(0041) GVLNbS-1(00271) NbAlS-1(00270041) GVLNbAlS-1(00270041)

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma

Chemical formula Al3692Si92308O192 8GVL Nb2524Si93476O192 8GVL Al3599Nb2429Si89972O192 Al3599Nb2429Si89972O192 8GVL

2θ range for refinement (deg) 3 ndash 50 3 ndash 50 3 ndash 50 3 ndash 50

Detector Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals

Number of hkls 3251 3214 3179 3222

Refinement methods Rietveld Rietveld Rietveld Rietveld

a (Aring) 201351(2) 200604(2) 199955(3) 200697(3)

b (Aring) 199852(2) 198995(1) 198333(3) 199150(3)

c (Aring) 134549(2) 134010(1) 133531(2) 134214(2)

V (Aring3) 541428(11) 534957(7) 529553(15) 536437(15)

RwpRexp Rp () 445135013378 463131253497 553133614058 444933763305

Wavelength (Aring) 082487(1) 082487(1) 082487(1) 082487(1)

Gof χ2 1272 1482 1646 1318

40

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) at room

temperature

Species Atom x y z SOF Beq(Aring2) Wyckoff

HZSM-5(0041) Al1 -00732(5) 00570(7) 08366(7) 003846154 100(5) 8d

Al2 01869(6) -00339(5) 03189(8) 003846154 100(5) 8d

Al3 02207(5) -00626(7) 05256(8) 003846154 100(5) 8d

Al4 01210(5) 00590(7) 10220(8) 003846154 100(5) 8d

Al5 -00703(6) -00272(5) 01933(8) 003846154 100(5) 8d

Al6 01859(5) 00593(6) 06679(8) 003846154 100(5) 8d

Al7 -00745(6) 06734(6) 08243(9) 003846154 100(5) 8d

Al8 01956(6) 01297(5) 03114(7) 003846154 100(5) 8d

Al9 02187(5) 01761(5) 05326(8) 003846154 100(5) 8d

Al10 01228(5) 06749(6) 10400(8) 003846154 100(5) 8d

Al11 -00694(6) 01308(6) 01819(9) 003846154 100(5) 8d

Al12 01859(6) 06714(5) 06756(8) 003846154 100(5) 8d

Si1 -00732(5) 00570(7) 08366(7) 09615385 100(5) 8d

Si2 01869(6) -00339(5) 03189(8) 09615385 100(5) 8d

Si3 02207(5) -00626(7) 05256(8) 09615385 100(5) 8d

Si4 01210(5) 00590(7) 10220(8) 09615385 100(5) 8d

Si5 -00703(6) -00272(5) 01933(8) 09615385 100(5) 8d

Si6 01859(5) 00593(6) 06679(8) 09615385 100(5) 8d

Si7 -00745(6) 06734(6) 08243(9) 09615385 100(5) 8d

Si8 01956(6) 01297(5) 03114(7) 09615385 100(5) 8d

Si9 02187(5) 01761(5) 05326(8) 09615385 100(5) 8d

Si10 01228(5) 06749(6) 10400(8) 09615385 100(5) 8d

Si11 -00694(6) 01308(6) 01819(9) 09615385 100(5) 8d

Si12 01859(6) 06714(5) 06756(8) 09615385 100(5) 8d

O1 01189(10) -00643(12) 02762(13) 1 143(9) 8d

O2 01900(11) -00665(10) 04093(13) 1 143(9) 8d

O3 02017(11) 00485(12) 10198(11) 1 143(9) 8d

O4 -00964(9) -00573(13) 10736(15) 1 143(9) 8d

O5 01132(9) 00573(12) 07009(13) 1 143(9) 8d

O6 02544(10) 00574(13) 07592(13) 1 143(9) 8d

O7 01249(11) 01569(12) 02676(15) 1 143(9) 8d

O8 01995(12) 01482(9) 04331(13) 1 143(9) 8d

O9 01968(12) 06607(9) 00500(12) 1 143(9) 8d

O10 -00922(10) 01564(11) 10827(17) 1 143(9) 8d

O11 01123(10) 06498(11) 07436(14) 1 143(9) 8d

O12 02420(11) 06557(12) 07396(15) 1 143(9) 8d

O13 02109(9) 00468(11) 03170(12) 1 143(9) 8d

O14 -00793(8) 00525(13) 01708(13) 1 143(9) 8d

O15 -00850(10) 01327(12) 08874(17) 1 143(9) 8d

O16 -01009(10) 00004(11) 09239(15) 1 143(9) 8d

O17 -01006(10) 06343(12) -00444(14) 1 143(9) 8d

O18 01746(10) 01273(11) 06145(13) 1 143(9) 8d

O19 01980(12) 00019(10) 06091(12) 1 143(9) 8d

O20 02014(13) 06300(11) 05761(13) 1 143(9) 8d

O21 -00054(11) 00405(12) 07595(12) 1 143(9) 8d

O22 -00045(12) 06580(13) 07876(13) 1 143(9) 8d

O23 -00801(15) 075 0861(2) 1 143(9) 4c

O24 01839(17) 075 0648(2) 1 143(9) 4c

O25 02011(18) 025 0563(2) 1 143(9) 4c

O26 00863(13) 075 0143(2) 1 143(9) 4c

41

GVLI O1 -00251(15) 08553(18) -0468(2) 0500(3) 06(4) 8d

O2 -0013(2) 07533(17) -0531(3) 0500(3) 06(4) 8d

C1 00570(11) 08446(12) -05861(14) 0500(3) 06(4) 8d

C2 00466(18) 09175(12) -05663(18) 0500(3) 06(4) 8d

C3 0004(2) 09222(15) -0484(2) 0500(3) 06(4) 8d

C4 00038(13) 08112(15) -05293(19) 0500(3) 06(4) 8d

C5 -0034(3) 09728(19) -0448(3) 0500(3) 06(4) 8d

H1a 00999(11) 08315(15) -05641(17) 0500(3) 07(5) 8d

H1b 00528(13) 08360(13) -06553(15) 0500(3) 07(5) 8d

H2a 0088(2) 09384(14) -0553(2) 0500(3) 07(5) 8d

H2b 0026(2) 09378(15) -0622(2) 0500(3) 07(5) 8d

H3 0038(2) 09204(15) -04313(18) 0500(3) 07(5) 8d

H5a -0043(3) 0965(2) -0380(3) 0500(3) 07(5) 8d

H5b -0011(4) 10138(17) -0454(3) 0500(3) 07(5) 8d

H5c -0074(3) 0975(3) -0485(3) 0500(3) 07(5) 8d

GVLII O1 -03289(15) -0778(2) -02817(19) 0500(4) 06(4) 8d

O2 -04372(14) -0757(2) -02733(16) 0500(4) 06(4) 8d

C1 -03730(11) -07204(15) -04150(12) 0500(4) 06(4) 8d

C2 -02990(11) -0718(2) -04230(16) 0500(4) 06(4) 8d

C3 -02738(13) -0762(3) -0350(2) 0500(4) 06(4) 8d

C4 -03856(13) -07518(18) -03175(14) 0500(4) 06(4) 8d

C5 -02129(14) -0768(4) -0308(3) 0500(4) 06(4) 8d

H1a -03908(13) -07461(16) -04681(13) 0500(3) 07(5) 8d

H1b -03904(14) -06762(15) -04174(16) 0500(3) 07(5) 8d

H2a -02856(13) -0732(2) -04875(17) 0500(3) 07(5) 8d

H2b -02835(15) -0674(2) -04093(19) 0500(3) 07(5) 8d

H3 -0275(2) -0803(3) -0389(3) 0500(3) 07(5) 8d

H5a -0208(2) -0812(4) -0281(3) 0500(3) 07(5) 8d

H5b -01797(13) -0762(4) -0357(3) 0500(3) 07(5) 8d

H5c -02080(14) -0735(4) -0257(3) 0500(3) 07(5) 8d

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 16: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

15

Fig S7 TGA plots of used NbAlS-1(00270041) catalysts after the conversion of pure GVL (black) and 30

wt GVL (red) at 320 oC The presence of water in this catalytic system effectively hindered the formation

of by-products on the catalyst surface

100 200 300 400 500 600 700 800

86

88

90

92

94

96

98

100

Weig

ht (

)

Temperature (oC)

for 30 GVL feeding

for pure GVL feeding

16

Fig S8 Comparison of FTIR spectra of NbAlS-1 before and after the conversion of 30wt GVL at 320 oC

for 180 h

1400 1300 1200 1100 1000 900 800 700 600

Absorb

ance (

au

)

Wavenumber (cm-1)

NbAlS-1(00270041) used

NbAlS-1(00270041)

971

17

Fig S9 X-band (ca 9 GHz) EPR spectra of NbAlS-1 and post-reaction zeolites activated by γ-irradiation at

77 K (a) wide magnetic field-sweep highlighting the induced Nb(IV) signals in NbAlS-1(00270041) and

the used sample and (b) narrow magnetic field-sweep highlighting the induced electron hole defect Al-O-

Si signals in fresh and used NbAlS-1(00270041) samples

a

b

100 150 200 250 300 350 400 450 500 550

Nb simulation

NbAlS-1(00270041)

used

Inte

nsity (

au

)

NbAlS-1(00270041)

Magnetic field (mT)

300 310 320 330 340 350 360

NbAlS-1(00270041) used

Al simulation

Inte

nsity (

au

)

Magnetic field (mT)

NbAlS-1(00270041)

18

Fig S10 (a) XAS spectra of the fresh and used NbAlS-1(00270041) (b) Phase-corrected k3-weighted

Fourier Transform of the EXAFS spectra for fresh and used NbAlS-1(00270041) The stability of the Nb

active sites within NbAlS-1(00270041) was verified by Nb K edge XAS with both fresh and used

catalysts exhibiting the same pre-edge XANES and EXAFS features

00

04

08

12

16

20

18800 19075 19350 19625 19900

No

rm a

bso

rptio

n (

au

)

Energy (eV)

NbAlS-1(00270041)

0

1

2

3

4

5

6

7

0 2 4 6

χ(R

)(Aring

-4)

Radial distance (Aring)

a b

NbAlS-1(00270041)

NbAlS-1(00270041) used

NbAlS-1(00270041)

used

19

Fig S11 27Al MAS NMR spectra of fresh and used zeolites Chemical shifts at 0 and 55 ppm are assigned to

six-coordinate extra-framework and four-coordinate framework aluminum species respectively26

100 80 60 40 20 0 -20 -40

NbAlS-1(00270041) used

NbAlS-1(00270041)

HZSM-5(0041) used

27Al chemical shift (ppm)

HZSM-5(0041)

20

Fig S12 Characterisation of the acidity of fresh and used zeolites by NH3-TPD

100 150 200 250 300 350 400 450 500 550 600

In

tensity (

au

)

Temperature (oC)

NbAlS-1(00270041) used

NbAlS-1(00270041)

HZSM-5(0041) used

HZSM-5(0041)

21

Fig S13 X-band (ca 9 GHz) EPR spectra of HZSM-5 and post-reaction zeolites activated by γ-irradiation

at 77 K narrow magnetic field-sweep highlighting the induced electron hole defect Al-O-Si signals in

HZSM-5 (0041) and the used sample

300 310 320 330 340 350 360

HZSM-50041) used

Al simulation

Inte

nsity (

au

)

Magnetic field (mT)

HZSM-5(0041)

22

Fig S14 Comparison of SXPD patterns of (a) HZSM-5(0041) (b) NbS-1(00271) and (c) NbAlS-

1(00270041) before and after adsorption of GVL at room temperature [λ = 082487(1) Aring]

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbAlS-1(0027041)

GVLNbAlS-1(0027041)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbS-1(00271)

GVLNbS-1(00271)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

HZSM-5(0041)

GVLHZSM-5(0041)

a

b

c

23

Fig S15 Comparison of the experimental data (black line) and Rietveld refinement (red line) and the

difference between them (grey line) for SXPD patterns of (ab) GVLHZSM-5(0041) (cd) GVLNbS-

1(00271) (ef) GVLNbAlS-1(00270041) at room temperature at a 2θ range of (ace) 3 - 20deg and

(bdf) 20 - 50deg [λ = 082487(1) Aring]

a b

c d

e f

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

24

Fig S16 (a) 29Si NMR spectra of HZSM-5 and NbAlS-1 de-convolution of 29Si NMR spectra of HZSM-5

(b) and NbAlS-1 (c) by Guassian and Lorentzian line shapes

a

b

c

-125 -120 -115 -110 -105 -100 -95 -90 -85

-1023

-1076

-1138

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-4

Cumulative Fitted Peak

-1171

-125 -120 -115 -110 -105 -100 -95 -90 -85

-924-983

-1026

-1057

-1124

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-6

Cumulative Fitted Peak

-1162

-125 -120 -115 -110 -105 -100 -95 -90 -8529

Si chemical shift (ppm)

NbAlS-1(00270041)

HZSM-5(0041)

25

Fig S17 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and calculated INS

spectra for 12 types of NbAlH sites

0 200 400 600 800 1000 1200 1400 1600

1211109876

4

23

5

1

Bare NbAlS-1 (exp)

S(Q

) (a

u)

Neutron energy loss (cm-1)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

26

Fig S18 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and combination of

calculated INS spectra of different NbAlH sites Combination 1 = 3125Site I + 3125Site II +

5Site III + 325Site IV Combination 2 = 675Site III + 325Site IV Site I = 025(NbAlH_1 +

NbAlH_2 + NbAlH_3 + NbAlH_4) Site II = 025(NbAlH_5 + NbAlH_6 + NbAlH_7 +

NbAlH_8) Site III = 05(NbAlH_9 + NbAlH_10) Site IV = 05(NbAlH_11 + NbAlH_12)

Abscissa is scaled down by 097 for combination 1 and 2

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Bare NbAlS-1 (exp)

Combination 1

Combination 2

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

27

Fig S19 Schematic view of the procedure of in situ INS experiment and data collection

Zeolite (Calcined)

Zeolite (activated)

Heating at 450 oC under

He flow for 3 h

Zeolite (Adsorbed)

INS collection 1

Zeolite (Reaction at 280 C)

Adsorption of GVL at 135 oC

Zeolite (Reaction at 300 C)

Zeolite (Reaction at 320 C)

Reaction at 280 oC for 3 min

Reaction at 300 oC for 3 min

Reaction at 320 oC for 3 min

INS collection 2

INS collection 3

INS collection 4

INS collection 5

28

Fig S20 Comparison of the experimental INS spectra of condensed GVL in the solid state (black) and

calculated INS spectra of single GVL molecule (red) The crystal structure of solid GVL is unavailable in the

database

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental GVL

Calculated GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

29

Fig S21 Comparison of the experimental and calculated INS spectra of adsorbed GVL molecules on

NbAlS-1 The structure model derived from SXPD experiments was used for initial DFT modelling where

the positional disorder has been removed in the calculation and this partially accounts for the discrepancies

observed between calculated and experimental INS plots

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental adsorbed GVL

Calculated adsorbed GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

30

Fig S22 View of the INS spectrum for the empty catalysis cell used for this experiment The empty can has

the features below 300 cm-1 and at approximately 457 and 659 cm-1

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Empty can

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

31

Fig S23 Comparison of the experimental INS spectra for bare and GVL-adsorbed catalyst Spectra shown

are after subtraction of the empty cell The INS spectrum of the catalyst on GVL adsorption at 135 degC shows

a significant increase in total intensity demonstrating the binding of GVL to the catalyst sites

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

GVLNbAlS-1(00270041)

Bare NbAlS-1(00270041)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

32

Fig S24 Comparison of the experimental INS spectra of all butene isomers and reacted GVL at 320 degC

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Reaction 320 oC

trans-2-butene

i-butene

1-butene

cis-2-butene

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

33

Supplementary Tables

Table S1 Textural properties (data determined from N2 sorption isotherms at 77 K) and crystallite size (data

determined from SEM) of all zeolites used in this study

Samples ABET (m2 g-1)a Amic (m2 g-1) b Aext (m2 g-1) c Vmic (cm3 g-1) d Vtotal (cm3 g-1) e

Crystallite sizef

(nm)

HZSM-5 (00271) 413 314 99 019 033 200-500

HZSM-5 (0041) 346 259 87 015 028 200-500

HZSM-5 (00671) 348 277 71 016 026 200-500

NbS-1 (00271) 377 284 93 017 029 300-500

NbS-1 (0041) 357 282 75 016 027 300-500

NbAlS-1(00270041) 408 263 145 018 041 300-500

NbAlS-1(00400271) 376 268 108 017 033 300-500

HZSM-5 (0041)g 338 258 80 015 027 200-500

NbAlS-1(00270041)g 396 262 134 018 039 300-500

aBET specific surface area bMicropore surface area cExternal surface area dMicropore volume eTotal pore volume fObtainted from SEM gUsed catalyst

34

Table S2 Spin-Hamiltonian parameters of radiation induced Nb(IV) and electron hole Al-O-Si defects

from simulation of CW X-band EPR spectra in Fig 1 lw is the homogeneous Lorentzian linewidth g and A

are the principle values of the g and hyperfine interaction tensors

Signal Parameters

Electron

Spin

Nuclear

Spin g-tensor g-Strain

A-tensor

(G)

lw

(mT)

Nb defect 12 92 [1935 1935 1866] [004 004 00] [159 159

310] [0 40]

Al defect 12 52 [20012 2007 2045] [00 0003 004] [7 7 -] [00 04]

35

Table S3 Summary of acidity of all zeolites used in this work Data were determined by NH3-TPD and

Pyridine-IR studies

Catalyst Weak acida

(mmol g-1)

Strong acida

(mmol g-1)

Total acida

(mmol g-1)

LB acid

ratiob

HZSM-5(00271) 015 025 04 039

HZSM-5(0041) 024 028 052 037

HZSM-5(00671) 033 03 063 027

NbS-1(00271) 004 0 004 -

NbS-1(0041) 004 0 004 -

NbAlS-1(00270041) 022 0 022 469

NbAlS-1(00400271) 023 0 023 35 aFrom NH3-TPD bFrom Pyridine-IR

36

Table S4 The butenes distribution in equilibrium at 320 degC and the distribution of butene isomers produced

from conversion of 30 GVL at 320 degC over catalysts

Catalyst Distribution ()

i-butene 1-butene trans-2-butene cis-2-butene

Equilibrium27 45 12 27 16

HZSM-5(0041) 44 14 25 17

NbAlS-1(00270041) 18 19 38 25

NbOPO4 15 20 39 26

37

Table S5 Comparison of the catalytic performance of reported catalysts for the conversion of GVL in aqueous solution (25-40 wt ) to butenes

Catalyst Reaction Conditions GVL

concentration

(wt )

GVL

conversion

()

Butene

Yield

(mol )a

Ref

Temperature

(degC)

WHSV

(h-1)

Pressure

(bar)

NbAlS-1(00270041) 320 018 1 30 100 993 this work

SiO2Al2O3 375 09 1 30 97 75 28

HZSM-5(0041) 320 018 1 30 76 232 this work

LaZSM-5 450 1 10 40 gt99 ca 21 15

PdNb2O5b 275 05 14 30d 100 lt16c 29

Zn-AlPO-5 397 077 10 40 65 ca 12 30

H3PO4 240 - - 25 100 12c 31

ZnZSM-5 450 1 10 40 gt99 ca 6 15

AlPO-5 397 077 10 40 2 ca 04 30

aButene yield is calculated by the equation defined in the Method section

bunder H2 atmosphere

cThe product includes both butene and butane d002 M H2SO4 was added in the GVL solution

38

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1

R (Aring)a σ a Amp a CN a

NbAlS-1 (Dry) Nb=O 1680 0017 082 1 Nb-O 2014 0008 082 3 NbAlS-1

Nb=O 1721 0012 078 1

Nb-O 2014 0004 078 3

NbAlS-1+GVL

Nb=O 1943 0003 075 1

Nb-O 2014 0010 075 3

NbS-1

Nb=O 1711 0032 091 1

Nb-O 2014 0005 091 3

NbS-1+GVL

Nb=O 1770 0004 089 1

Nb-O 2014 0014 089 3 aR = Interatomic distance from central scattering atom σ = Debye-Waller factor Amp = amplitude factor

and CN = coordination number

39

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption

Samples GVLHZSM-5(0041) GVLNbS-1(00271) NbAlS-1(00270041) GVLNbAlS-1(00270041)

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma

Chemical formula Al3692Si92308O192 8GVL Nb2524Si93476O192 8GVL Al3599Nb2429Si89972O192 Al3599Nb2429Si89972O192 8GVL

2θ range for refinement (deg) 3 ndash 50 3 ndash 50 3 ndash 50 3 ndash 50

Detector Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals

Number of hkls 3251 3214 3179 3222

Refinement methods Rietveld Rietveld Rietveld Rietveld

a (Aring) 201351(2) 200604(2) 199955(3) 200697(3)

b (Aring) 199852(2) 198995(1) 198333(3) 199150(3)

c (Aring) 134549(2) 134010(1) 133531(2) 134214(2)

V (Aring3) 541428(11) 534957(7) 529553(15) 536437(15)

RwpRexp Rp () 445135013378 463131253497 553133614058 444933763305

Wavelength (Aring) 082487(1) 082487(1) 082487(1) 082487(1)

Gof χ2 1272 1482 1646 1318

40

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) at room

temperature

Species Atom x y z SOF Beq(Aring2) Wyckoff

HZSM-5(0041) Al1 -00732(5) 00570(7) 08366(7) 003846154 100(5) 8d

Al2 01869(6) -00339(5) 03189(8) 003846154 100(5) 8d

Al3 02207(5) -00626(7) 05256(8) 003846154 100(5) 8d

Al4 01210(5) 00590(7) 10220(8) 003846154 100(5) 8d

Al5 -00703(6) -00272(5) 01933(8) 003846154 100(5) 8d

Al6 01859(5) 00593(6) 06679(8) 003846154 100(5) 8d

Al7 -00745(6) 06734(6) 08243(9) 003846154 100(5) 8d

Al8 01956(6) 01297(5) 03114(7) 003846154 100(5) 8d

Al9 02187(5) 01761(5) 05326(8) 003846154 100(5) 8d

Al10 01228(5) 06749(6) 10400(8) 003846154 100(5) 8d

Al11 -00694(6) 01308(6) 01819(9) 003846154 100(5) 8d

Al12 01859(6) 06714(5) 06756(8) 003846154 100(5) 8d

Si1 -00732(5) 00570(7) 08366(7) 09615385 100(5) 8d

Si2 01869(6) -00339(5) 03189(8) 09615385 100(5) 8d

Si3 02207(5) -00626(7) 05256(8) 09615385 100(5) 8d

Si4 01210(5) 00590(7) 10220(8) 09615385 100(5) 8d

Si5 -00703(6) -00272(5) 01933(8) 09615385 100(5) 8d

Si6 01859(5) 00593(6) 06679(8) 09615385 100(5) 8d

Si7 -00745(6) 06734(6) 08243(9) 09615385 100(5) 8d

Si8 01956(6) 01297(5) 03114(7) 09615385 100(5) 8d

Si9 02187(5) 01761(5) 05326(8) 09615385 100(5) 8d

Si10 01228(5) 06749(6) 10400(8) 09615385 100(5) 8d

Si11 -00694(6) 01308(6) 01819(9) 09615385 100(5) 8d

Si12 01859(6) 06714(5) 06756(8) 09615385 100(5) 8d

O1 01189(10) -00643(12) 02762(13) 1 143(9) 8d

O2 01900(11) -00665(10) 04093(13) 1 143(9) 8d

O3 02017(11) 00485(12) 10198(11) 1 143(9) 8d

O4 -00964(9) -00573(13) 10736(15) 1 143(9) 8d

O5 01132(9) 00573(12) 07009(13) 1 143(9) 8d

O6 02544(10) 00574(13) 07592(13) 1 143(9) 8d

O7 01249(11) 01569(12) 02676(15) 1 143(9) 8d

O8 01995(12) 01482(9) 04331(13) 1 143(9) 8d

O9 01968(12) 06607(9) 00500(12) 1 143(9) 8d

O10 -00922(10) 01564(11) 10827(17) 1 143(9) 8d

O11 01123(10) 06498(11) 07436(14) 1 143(9) 8d

O12 02420(11) 06557(12) 07396(15) 1 143(9) 8d

O13 02109(9) 00468(11) 03170(12) 1 143(9) 8d

O14 -00793(8) 00525(13) 01708(13) 1 143(9) 8d

O15 -00850(10) 01327(12) 08874(17) 1 143(9) 8d

O16 -01009(10) 00004(11) 09239(15) 1 143(9) 8d

O17 -01006(10) 06343(12) -00444(14) 1 143(9) 8d

O18 01746(10) 01273(11) 06145(13) 1 143(9) 8d

O19 01980(12) 00019(10) 06091(12) 1 143(9) 8d

O20 02014(13) 06300(11) 05761(13) 1 143(9) 8d

O21 -00054(11) 00405(12) 07595(12) 1 143(9) 8d

O22 -00045(12) 06580(13) 07876(13) 1 143(9) 8d

O23 -00801(15) 075 0861(2) 1 143(9) 4c

O24 01839(17) 075 0648(2) 1 143(9) 4c

O25 02011(18) 025 0563(2) 1 143(9) 4c

O26 00863(13) 075 0143(2) 1 143(9) 4c

41

GVLI O1 -00251(15) 08553(18) -0468(2) 0500(3) 06(4) 8d

O2 -0013(2) 07533(17) -0531(3) 0500(3) 06(4) 8d

C1 00570(11) 08446(12) -05861(14) 0500(3) 06(4) 8d

C2 00466(18) 09175(12) -05663(18) 0500(3) 06(4) 8d

C3 0004(2) 09222(15) -0484(2) 0500(3) 06(4) 8d

C4 00038(13) 08112(15) -05293(19) 0500(3) 06(4) 8d

C5 -0034(3) 09728(19) -0448(3) 0500(3) 06(4) 8d

H1a 00999(11) 08315(15) -05641(17) 0500(3) 07(5) 8d

H1b 00528(13) 08360(13) -06553(15) 0500(3) 07(5) 8d

H2a 0088(2) 09384(14) -0553(2) 0500(3) 07(5) 8d

H2b 0026(2) 09378(15) -0622(2) 0500(3) 07(5) 8d

H3 0038(2) 09204(15) -04313(18) 0500(3) 07(5) 8d

H5a -0043(3) 0965(2) -0380(3) 0500(3) 07(5) 8d

H5b -0011(4) 10138(17) -0454(3) 0500(3) 07(5) 8d

H5c -0074(3) 0975(3) -0485(3) 0500(3) 07(5) 8d

GVLII O1 -03289(15) -0778(2) -02817(19) 0500(4) 06(4) 8d

O2 -04372(14) -0757(2) -02733(16) 0500(4) 06(4) 8d

C1 -03730(11) -07204(15) -04150(12) 0500(4) 06(4) 8d

C2 -02990(11) -0718(2) -04230(16) 0500(4) 06(4) 8d

C3 -02738(13) -0762(3) -0350(2) 0500(4) 06(4) 8d

C4 -03856(13) -07518(18) -03175(14) 0500(4) 06(4) 8d

C5 -02129(14) -0768(4) -0308(3) 0500(4) 06(4) 8d

H1a -03908(13) -07461(16) -04681(13) 0500(3) 07(5) 8d

H1b -03904(14) -06762(15) -04174(16) 0500(3) 07(5) 8d

H2a -02856(13) -0732(2) -04875(17) 0500(3) 07(5) 8d

H2b -02835(15) -0674(2) -04093(19) 0500(3) 07(5) 8d

H3 -0275(2) -0803(3) -0389(3) 0500(3) 07(5) 8d

H5a -0208(2) -0812(4) -0281(3) 0500(3) 07(5) 8d

H5b -01797(13) -0762(4) -0357(3) 0500(3) 07(5) 8d

H5c -02080(14) -0735(4) -0257(3) 0500(3) 07(5) 8d

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 17: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

16

Fig S8 Comparison of FTIR spectra of NbAlS-1 before and after the conversion of 30wt GVL at 320 oC

for 180 h

1400 1300 1200 1100 1000 900 800 700 600

Absorb

ance (

au

)

Wavenumber (cm-1)

NbAlS-1(00270041) used

NbAlS-1(00270041)

971

17

Fig S9 X-band (ca 9 GHz) EPR spectra of NbAlS-1 and post-reaction zeolites activated by γ-irradiation at

77 K (a) wide magnetic field-sweep highlighting the induced Nb(IV) signals in NbAlS-1(00270041) and

the used sample and (b) narrow magnetic field-sweep highlighting the induced electron hole defect Al-O-

Si signals in fresh and used NbAlS-1(00270041) samples

a

b

100 150 200 250 300 350 400 450 500 550

Nb simulation

NbAlS-1(00270041)

used

Inte

nsity (

au

)

NbAlS-1(00270041)

Magnetic field (mT)

300 310 320 330 340 350 360

NbAlS-1(00270041) used

Al simulation

Inte

nsity (

au

)

Magnetic field (mT)

NbAlS-1(00270041)

18

Fig S10 (a) XAS spectra of the fresh and used NbAlS-1(00270041) (b) Phase-corrected k3-weighted

Fourier Transform of the EXAFS spectra for fresh and used NbAlS-1(00270041) The stability of the Nb

active sites within NbAlS-1(00270041) was verified by Nb K edge XAS with both fresh and used

catalysts exhibiting the same pre-edge XANES and EXAFS features

00

04

08

12

16

20

18800 19075 19350 19625 19900

No

rm a

bso

rptio

n (

au

)

Energy (eV)

NbAlS-1(00270041)

0

1

2

3

4

5

6

7

0 2 4 6

χ(R

)(Aring

-4)

Radial distance (Aring)

a b

NbAlS-1(00270041)

NbAlS-1(00270041) used

NbAlS-1(00270041)

used

19

Fig S11 27Al MAS NMR spectra of fresh and used zeolites Chemical shifts at 0 and 55 ppm are assigned to

six-coordinate extra-framework and four-coordinate framework aluminum species respectively26

100 80 60 40 20 0 -20 -40

NbAlS-1(00270041) used

NbAlS-1(00270041)

HZSM-5(0041) used

27Al chemical shift (ppm)

HZSM-5(0041)

20

Fig S12 Characterisation of the acidity of fresh and used zeolites by NH3-TPD

100 150 200 250 300 350 400 450 500 550 600

In

tensity (

au

)

Temperature (oC)

NbAlS-1(00270041) used

NbAlS-1(00270041)

HZSM-5(0041) used

HZSM-5(0041)

21

Fig S13 X-band (ca 9 GHz) EPR spectra of HZSM-5 and post-reaction zeolites activated by γ-irradiation

at 77 K narrow magnetic field-sweep highlighting the induced electron hole defect Al-O-Si signals in

HZSM-5 (0041) and the used sample

300 310 320 330 340 350 360

HZSM-50041) used

Al simulation

Inte

nsity (

au

)

Magnetic field (mT)

HZSM-5(0041)

22

Fig S14 Comparison of SXPD patterns of (a) HZSM-5(0041) (b) NbS-1(00271) and (c) NbAlS-

1(00270041) before and after adsorption of GVL at room temperature [λ = 082487(1) Aring]

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbAlS-1(0027041)

GVLNbAlS-1(0027041)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbS-1(00271)

GVLNbS-1(00271)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

HZSM-5(0041)

GVLHZSM-5(0041)

a

b

c

23

Fig S15 Comparison of the experimental data (black line) and Rietveld refinement (red line) and the

difference between them (grey line) for SXPD patterns of (ab) GVLHZSM-5(0041) (cd) GVLNbS-

1(00271) (ef) GVLNbAlS-1(00270041) at room temperature at a 2θ range of (ace) 3 - 20deg and

(bdf) 20 - 50deg [λ = 082487(1) Aring]

a b

c d

e f

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

24

Fig S16 (a) 29Si NMR spectra of HZSM-5 and NbAlS-1 de-convolution of 29Si NMR spectra of HZSM-5

(b) and NbAlS-1 (c) by Guassian and Lorentzian line shapes

a

b

c

-125 -120 -115 -110 -105 -100 -95 -90 -85

-1023

-1076

-1138

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-4

Cumulative Fitted Peak

-1171

-125 -120 -115 -110 -105 -100 -95 -90 -85

-924-983

-1026

-1057

-1124

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-6

Cumulative Fitted Peak

-1162

-125 -120 -115 -110 -105 -100 -95 -90 -8529

Si chemical shift (ppm)

NbAlS-1(00270041)

HZSM-5(0041)

25

Fig S17 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and calculated INS

spectra for 12 types of NbAlH sites

0 200 400 600 800 1000 1200 1400 1600

1211109876

4

23

5

1

Bare NbAlS-1 (exp)

S(Q

) (a

u)

Neutron energy loss (cm-1)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

26

Fig S18 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and combination of

calculated INS spectra of different NbAlH sites Combination 1 = 3125Site I + 3125Site II +

5Site III + 325Site IV Combination 2 = 675Site III + 325Site IV Site I = 025(NbAlH_1 +

NbAlH_2 + NbAlH_3 + NbAlH_4) Site II = 025(NbAlH_5 + NbAlH_6 + NbAlH_7 +

NbAlH_8) Site III = 05(NbAlH_9 + NbAlH_10) Site IV = 05(NbAlH_11 + NbAlH_12)

Abscissa is scaled down by 097 for combination 1 and 2

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Bare NbAlS-1 (exp)

Combination 1

Combination 2

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

27

Fig S19 Schematic view of the procedure of in situ INS experiment and data collection

Zeolite (Calcined)

Zeolite (activated)

Heating at 450 oC under

He flow for 3 h

Zeolite (Adsorbed)

INS collection 1

Zeolite (Reaction at 280 C)

Adsorption of GVL at 135 oC

Zeolite (Reaction at 300 C)

Zeolite (Reaction at 320 C)

Reaction at 280 oC for 3 min

Reaction at 300 oC for 3 min

Reaction at 320 oC for 3 min

INS collection 2

INS collection 3

INS collection 4

INS collection 5

28

Fig S20 Comparison of the experimental INS spectra of condensed GVL in the solid state (black) and

calculated INS spectra of single GVL molecule (red) The crystal structure of solid GVL is unavailable in the

database

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental GVL

Calculated GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

29

Fig S21 Comparison of the experimental and calculated INS spectra of adsorbed GVL molecules on

NbAlS-1 The structure model derived from SXPD experiments was used for initial DFT modelling where

the positional disorder has been removed in the calculation and this partially accounts for the discrepancies

observed between calculated and experimental INS plots

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental adsorbed GVL

Calculated adsorbed GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

30

Fig S22 View of the INS spectrum for the empty catalysis cell used for this experiment The empty can has

the features below 300 cm-1 and at approximately 457 and 659 cm-1

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Empty can

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

31

Fig S23 Comparison of the experimental INS spectra for bare and GVL-adsorbed catalyst Spectra shown

are after subtraction of the empty cell The INS spectrum of the catalyst on GVL adsorption at 135 degC shows

a significant increase in total intensity demonstrating the binding of GVL to the catalyst sites

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

GVLNbAlS-1(00270041)

Bare NbAlS-1(00270041)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

32

Fig S24 Comparison of the experimental INS spectra of all butene isomers and reacted GVL at 320 degC

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Reaction 320 oC

trans-2-butene

i-butene

1-butene

cis-2-butene

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

33

Supplementary Tables

Table S1 Textural properties (data determined from N2 sorption isotherms at 77 K) and crystallite size (data

determined from SEM) of all zeolites used in this study

Samples ABET (m2 g-1)a Amic (m2 g-1) b Aext (m2 g-1) c Vmic (cm3 g-1) d Vtotal (cm3 g-1) e

Crystallite sizef

(nm)

HZSM-5 (00271) 413 314 99 019 033 200-500

HZSM-5 (0041) 346 259 87 015 028 200-500

HZSM-5 (00671) 348 277 71 016 026 200-500

NbS-1 (00271) 377 284 93 017 029 300-500

NbS-1 (0041) 357 282 75 016 027 300-500

NbAlS-1(00270041) 408 263 145 018 041 300-500

NbAlS-1(00400271) 376 268 108 017 033 300-500

HZSM-5 (0041)g 338 258 80 015 027 200-500

NbAlS-1(00270041)g 396 262 134 018 039 300-500

aBET specific surface area bMicropore surface area cExternal surface area dMicropore volume eTotal pore volume fObtainted from SEM gUsed catalyst

34

Table S2 Spin-Hamiltonian parameters of radiation induced Nb(IV) and electron hole Al-O-Si defects

from simulation of CW X-band EPR spectra in Fig 1 lw is the homogeneous Lorentzian linewidth g and A

are the principle values of the g and hyperfine interaction tensors

Signal Parameters

Electron

Spin

Nuclear

Spin g-tensor g-Strain

A-tensor

(G)

lw

(mT)

Nb defect 12 92 [1935 1935 1866] [004 004 00] [159 159

310] [0 40]

Al defect 12 52 [20012 2007 2045] [00 0003 004] [7 7 -] [00 04]

35

Table S3 Summary of acidity of all zeolites used in this work Data were determined by NH3-TPD and

Pyridine-IR studies

Catalyst Weak acida

(mmol g-1)

Strong acida

(mmol g-1)

Total acida

(mmol g-1)

LB acid

ratiob

HZSM-5(00271) 015 025 04 039

HZSM-5(0041) 024 028 052 037

HZSM-5(00671) 033 03 063 027

NbS-1(00271) 004 0 004 -

NbS-1(0041) 004 0 004 -

NbAlS-1(00270041) 022 0 022 469

NbAlS-1(00400271) 023 0 023 35 aFrom NH3-TPD bFrom Pyridine-IR

36

Table S4 The butenes distribution in equilibrium at 320 degC and the distribution of butene isomers produced

from conversion of 30 GVL at 320 degC over catalysts

Catalyst Distribution ()

i-butene 1-butene trans-2-butene cis-2-butene

Equilibrium27 45 12 27 16

HZSM-5(0041) 44 14 25 17

NbAlS-1(00270041) 18 19 38 25

NbOPO4 15 20 39 26

37

Table S5 Comparison of the catalytic performance of reported catalysts for the conversion of GVL in aqueous solution (25-40 wt ) to butenes

Catalyst Reaction Conditions GVL

concentration

(wt )

GVL

conversion

()

Butene

Yield

(mol )a

Ref

Temperature

(degC)

WHSV

(h-1)

Pressure

(bar)

NbAlS-1(00270041) 320 018 1 30 100 993 this work

SiO2Al2O3 375 09 1 30 97 75 28

HZSM-5(0041) 320 018 1 30 76 232 this work

LaZSM-5 450 1 10 40 gt99 ca 21 15

PdNb2O5b 275 05 14 30d 100 lt16c 29

Zn-AlPO-5 397 077 10 40 65 ca 12 30

H3PO4 240 - - 25 100 12c 31

ZnZSM-5 450 1 10 40 gt99 ca 6 15

AlPO-5 397 077 10 40 2 ca 04 30

aButene yield is calculated by the equation defined in the Method section

bunder H2 atmosphere

cThe product includes both butene and butane d002 M H2SO4 was added in the GVL solution

38

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1

R (Aring)a σ a Amp a CN a

NbAlS-1 (Dry) Nb=O 1680 0017 082 1 Nb-O 2014 0008 082 3 NbAlS-1

Nb=O 1721 0012 078 1

Nb-O 2014 0004 078 3

NbAlS-1+GVL

Nb=O 1943 0003 075 1

Nb-O 2014 0010 075 3

NbS-1

Nb=O 1711 0032 091 1

Nb-O 2014 0005 091 3

NbS-1+GVL

Nb=O 1770 0004 089 1

Nb-O 2014 0014 089 3 aR = Interatomic distance from central scattering atom σ = Debye-Waller factor Amp = amplitude factor

and CN = coordination number

39

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption

Samples GVLHZSM-5(0041) GVLNbS-1(00271) NbAlS-1(00270041) GVLNbAlS-1(00270041)

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma

Chemical formula Al3692Si92308O192 8GVL Nb2524Si93476O192 8GVL Al3599Nb2429Si89972O192 Al3599Nb2429Si89972O192 8GVL

2θ range for refinement (deg) 3 ndash 50 3 ndash 50 3 ndash 50 3 ndash 50

Detector Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals

Number of hkls 3251 3214 3179 3222

Refinement methods Rietveld Rietveld Rietveld Rietveld

a (Aring) 201351(2) 200604(2) 199955(3) 200697(3)

b (Aring) 199852(2) 198995(1) 198333(3) 199150(3)

c (Aring) 134549(2) 134010(1) 133531(2) 134214(2)

V (Aring3) 541428(11) 534957(7) 529553(15) 536437(15)

RwpRexp Rp () 445135013378 463131253497 553133614058 444933763305

Wavelength (Aring) 082487(1) 082487(1) 082487(1) 082487(1)

Gof χ2 1272 1482 1646 1318

40

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) at room

temperature

Species Atom x y z SOF Beq(Aring2) Wyckoff

HZSM-5(0041) Al1 -00732(5) 00570(7) 08366(7) 003846154 100(5) 8d

Al2 01869(6) -00339(5) 03189(8) 003846154 100(5) 8d

Al3 02207(5) -00626(7) 05256(8) 003846154 100(5) 8d

Al4 01210(5) 00590(7) 10220(8) 003846154 100(5) 8d

Al5 -00703(6) -00272(5) 01933(8) 003846154 100(5) 8d

Al6 01859(5) 00593(6) 06679(8) 003846154 100(5) 8d

Al7 -00745(6) 06734(6) 08243(9) 003846154 100(5) 8d

Al8 01956(6) 01297(5) 03114(7) 003846154 100(5) 8d

Al9 02187(5) 01761(5) 05326(8) 003846154 100(5) 8d

Al10 01228(5) 06749(6) 10400(8) 003846154 100(5) 8d

Al11 -00694(6) 01308(6) 01819(9) 003846154 100(5) 8d

Al12 01859(6) 06714(5) 06756(8) 003846154 100(5) 8d

Si1 -00732(5) 00570(7) 08366(7) 09615385 100(5) 8d

Si2 01869(6) -00339(5) 03189(8) 09615385 100(5) 8d

Si3 02207(5) -00626(7) 05256(8) 09615385 100(5) 8d

Si4 01210(5) 00590(7) 10220(8) 09615385 100(5) 8d

Si5 -00703(6) -00272(5) 01933(8) 09615385 100(5) 8d

Si6 01859(5) 00593(6) 06679(8) 09615385 100(5) 8d

Si7 -00745(6) 06734(6) 08243(9) 09615385 100(5) 8d

Si8 01956(6) 01297(5) 03114(7) 09615385 100(5) 8d

Si9 02187(5) 01761(5) 05326(8) 09615385 100(5) 8d

Si10 01228(5) 06749(6) 10400(8) 09615385 100(5) 8d

Si11 -00694(6) 01308(6) 01819(9) 09615385 100(5) 8d

Si12 01859(6) 06714(5) 06756(8) 09615385 100(5) 8d

O1 01189(10) -00643(12) 02762(13) 1 143(9) 8d

O2 01900(11) -00665(10) 04093(13) 1 143(9) 8d

O3 02017(11) 00485(12) 10198(11) 1 143(9) 8d

O4 -00964(9) -00573(13) 10736(15) 1 143(9) 8d

O5 01132(9) 00573(12) 07009(13) 1 143(9) 8d

O6 02544(10) 00574(13) 07592(13) 1 143(9) 8d

O7 01249(11) 01569(12) 02676(15) 1 143(9) 8d

O8 01995(12) 01482(9) 04331(13) 1 143(9) 8d

O9 01968(12) 06607(9) 00500(12) 1 143(9) 8d

O10 -00922(10) 01564(11) 10827(17) 1 143(9) 8d

O11 01123(10) 06498(11) 07436(14) 1 143(9) 8d

O12 02420(11) 06557(12) 07396(15) 1 143(9) 8d

O13 02109(9) 00468(11) 03170(12) 1 143(9) 8d

O14 -00793(8) 00525(13) 01708(13) 1 143(9) 8d

O15 -00850(10) 01327(12) 08874(17) 1 143(9) 8d

O16 -01009(10) 00004(11) 09239(15) 1 143(9) 8d

O17 -01006(10) 06343(12) -00444(14) 1 143(9) 8d

O18 01746(10) 01273(11) 06145(13) 1 143(9) 8d

O19 01980(12) 00019(10) 06091(12) 1 143(9) 8d

O20 02014(13) 06300(11) 05761(13) 1 143(9) 8d

O21 -00054(11) 00405(12) 07595(12) 1 143(9) 8d

O22 -00045(12) 06580(13) 07876(13) 1 143(9) 8d

O23 -00801(15) 075 0861(2) 1 143(9) 4c

O24 01839(17) 075 0648(2) 1 143(9) 4c

O25 02011(18) 025 0563(2) 1 143(9) 4c

O26 00863(13) 075 0143(2) 1 143(9) 4c

41

GVLI O1 -00251(15) 08553(18) -0468(2) 0500(3) 06(4) 8d

O2 -0013(2) 07533(17) -0531(3) 0500(3) 06(4) 8d

C1 00570(11) 08446(12) -05861(14) 0500(3) 06(4) 8d

C2 00466(18) 09175(12) -05663(18) 0500(3) 06(4) 8d

C3 0004(2) 09222(15) -0484(2) 0500(3) 06(4) 8d

C4 00038(13) 08112(15) -05293(19) 0500(3) 06(4) 8d

C5 -0034(3) 09728(19) -0448(3) 0500(3) 06(4) 8d

H1a 00999(11) 08315(15) -05641(17) 0500(3) 07(5) 8d

H1b 00528(13) 08360(13) -06553(15) 0500(3) 07(5) 8d

H2a 0088(2) 09384(14) -0553(2) 0500(3) 07(5) 8d

H2b 0026(2) 09378(15) -0622(2) 0500(3) 07(5) 8d

H3 0038(2) 09204(15) -04313(18) 0500(3) 07(5) 8d

H5a -0043(3) 0965(2) -0380(3) 0500(3) 07(5) 8d

H5b -0011(4) 10138(17) -0454(3) 0500(3) 07(5) 8d

H5c -0074(3) 0975(3) -0485(3) 0500(3) 07(5) 8d

GVLII O1 -03289(15) -0778(2) -02817(19) 0500(4) 06(4) 8d

O2 -04372(14) -0757(2) -02733(16) 0500(4) 06(4) 8d

C1 -03730(11) -07204(15) -04150(12) 0500(4) 06(4) 8d

C2 -02990(11) -0718(2) -04230(16) 0500(4) 06(4) 8d

C3 -02738(13) -0762(3) -0350(2) 0500(4) 06(4) 8d

C4 -03856(13) -07518(18) -03175(14) 0500(4) 06(4) 8d

C5 -02129(14) -0768(4) -0308(3) 0500(4) 06(4) 8d

H1a -03908(13) -07461(16) -04681(13) 0500(3) 07(5) 8d

H1b -03904(14) -06762(15) -04174(16) 0500(3) 07(5) 8d

H2a -02856(13) -0732(2) -04875(17) 0500(3) 07(5) 8d

H2b -02835(15) -0674(2) -04093(19) 0500(3) 07(5) 8d

H3 -0275(2) -0803(3) -0389(3) 0500(3) 07(5) 8d

H5a -0208(2) -0812(4) -0281(3) 0500(3) 07(5) 8d

H5b -01797(13) -0762(4) -0357(3) 0500(3) 07(5) 8d

H5c -02080(14) -0735(4) -0257(3) 0500(3) 07(5) 8d

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 18: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

17

Fig S9 X-band (ca 9 GHz) EPR spectra of NbAlS-1 and post-reaction zeolites activated by γ-irradiation at

77 K (a) wide magnetic field-sweep highlighting the induced Nb(IV) signals in NbAlS-1(00270041) and

the used sample and (b) narrow magnetic field-sweep highlighting the induced electron hole defect Al-O-

Si signals in fresh and used NbAlS-1(00270041) samples

a

b

100 150 200 250 300 350 400 450 500 550

Nb simulation

NbAlS-1(00270041)

used

Inte

nsity (

au

)

NbAlS-1(00270041)

Magnetic field (mT)

300 310 320 330 340 350 360

NbAlS-1(00270041) used

Al simulation

Inte

nsity (

au

)

Magnetic field (mT)

NbAlS-1(00270041)

18

Fig S10 (a) XAS spectra of the fresh and used NbAlS-1(00270041) (b) Phase-corrected k3-weighted

Fourier Transform of the EXAFS spectra for fresh and used NbAlS-1(00270041) The stability of the Nb

active sites within NbAlS-1(00270041) was verified by Nb K edge XAS with both fresh and used

catalysts exhibiting the same pre-edge XANES and EXAFS features

00

04

08

12

16

20

18800 19075 19350 19625 19900

No

rm a

bso

rptio

n (

au

)

Energy (eV)

NbAlS-1(00270041)

0

1

2

3

4

5

6

7

0 2 4 6

χ(R

)(Aring

-4)

Radial distance (Aring)

a b

NbAlS-1(00270041)

NbAlS-1(00270041) used

NbAlS-1(00270041)

used

19

Fig S11 27Al MAS NMR spectra of fresh and used zeolites Chemical shifts at 0 and 55 ppm are assigned to

six-coordinate extra-framework and four-coordinate framework aluminum species respectively26

100 80 60 40 20 0 -20 -40

NbAlS-1(00270041) used

NbAlS-1(00270041)

HZSM-5(0041) used

27Al chemical shift (ppm)

HZSM-5(0041)

20

Fig S12 Characterisation of the acidity of fresh and used zeolites by NH3-TPD

100 150 200 250 300 350 400 450 500 550 600

In

tensity (

au

)

Temperature (oC)

NbAlS-1(00270041) used

NbAlS-1(00270041)

HZSM-5(0041) used

HZSM-5(0041)

21

Fig S13 X-band (ca 9 GHz) EPR spectra of HZSM-5 and post-reaction zeolites activated by γ-irradiation

at 77 K narrow magnetic field-sweep highlighting the induced electron hole defect Al-O-Si signals in

HZSM-5 (0041) and the used sample

300 310 320 330 340 350 360

HZSM-50041) used

Al simulation

Inte

nsity (

au

)

Magnetic field (mT)

HZSM-5(0041)

22

Fig S14 Comparison of SXPD patterns of (a) HZSM-5(0041) (b) NbS-1(00271) and (c) NbAlS-

1(00270041) before and after adsorption of GVL at room temperature [λ = 082487(1) Aring]

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbAlS-1(0027041)

GVLNbAlS-1(0027041)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbS-1(00271)

GVLNbS-1(00271)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

HZSM-5(0041)

GVLHZSM-5(0041)

a

b

c

23

Fig S15 Comparison of the experimental data (black line) and Rietveld refinement (red line) and the

difference between them (grey line) for SXPD patterns of (ab) GVLHZSM-5(0041) (cd) GVLNbS-

1(00271) (ef) GVLNbAlS-1(00270041) at room temperature at a 2θ range of (ace) 3 - 20deg and

(bdf) 20 - 50deg [λ = 082487(1) Aring]

a b

c d

e f

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

24

Fig S16 (a) 29Si NMR spectra of HZSM-5 and NbAlS-1 de-convolution of 29Si NMR spectra of HZSM-5

(b) and NbAlS-1 (c) by Guassian and Lorentzian line shapes

a

b

c

-125 -120 -115 -110 -105 -100 -95 -90 -85

-1023

-1076

-1138

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-4

Cumulative Fitted Peak

-1171

-125 -120 -115 -110 -105 -100 -95 -90 -85

-924-983

-1026

-1057

-1124

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-6

Cumulative Fitted Peak

-1162

-125 -120 -115 -110 -105 -100 -95 -90 -8529

Si chemical shift (ppm)

NbAlS-1(00270041)

HZSM-5(0041)

25

Fig S17 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and calculated INS

spectra for 12 types of NbAlH sites

0 200 400 600 800 1000 1200 1400 1600

1211109876

4

23

5

1

Bare NbAlS-1 (exp)

S(Q

) (a

u)

Neutron energy loss (cm-1)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

26

Fig S18 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and combination of

calculated INS spectra of different NbAlH sites Combination 1 = 3125Site I + 3125Site II +

5Site III + 325Site IV Combination 2 = 675Site III + 325Site IV Site I = 025(NbAlH_1 +

NbAlH_2 + NbAlH_3 + NbAlH_4) Site II = 025(NbAlH_5 + NbAlH_6 + NbAlH_7 +

NbAlH_8) Site III = 05(NbAlH_9 + NbAlH_10) Site IV = 05(NbAlH_11 + NbAlH_12)

Abscissa is scaled down by 097 for combination 1 and 2

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Bare NbAlS-1 (exp)

Combination 1

Combination 2

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

27

Fig S19 Schematic view of the procedure of in situ INS experiment and data collection

Zeolite (Calcined)

Zeolite (activated)

Heating at 450 oC under

He flow for 3 h

Zeolite (Adsorbed)

INS collection 1

Zeolite (Reaction at 280 C)

Adsorption of GVL at 135 oC

Zeolite (Reaction at 300 C)

Zeolite (Reaction at 320 C)

Reaction at 280 oC for 3 min

Reaction at 300 oC for 3 min

Reaction at 320 oC for 3 min

INS collection 2

INS collection 3

INS collection 4

INS collection 5

28

Fig S20 Comparison of the experimental INS spectra of condensed GVL in the solid state (black) and

calculated INS spectra of single GVL molecule (red) The crystal structure of solid GVL is unavailable in the

database

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental GVL

Calculated GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

29

Fig S21 Comparison of the experimental and calculated INS spectra of adsorbed GVL molecules on

NbAlS-1 The structure model derived from SXPD experiments was used for initial DFT modelling where

the positional disorder has been removed in the calculation and this partially accounts for the discrepancies

observed between calculated and experimental INS plots

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental adsorbed GVL

Calculated adsorbed GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

30

Fig S22 View of the INS spectrum for the empty catalysis cell used for this experiment The empty can has

the features below 300 cm-1 and at approximately 457 and 659 cm-1

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Empty can

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

31

Fig S23 Comparison of the experimental INS spectra for bare and GVL-adsorbed catalyst Spectra shown

are after subtraction of the empty cell The INS spectrum of the catalyst on GVL adsorption at 135 degC shows

a significant increase in total intensity demonstrating the binding of GVL to the catalyst sites

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

GVLNbAlS-1(00270041)

Bare NbAlS-1(00270041)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

32

Fig S24 Comparison of the experimental INS spectra of all butene isomers and reacted GVL at 320 degC

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Reaction 320 oC

trans-2-butene

i-butene

1-butene

cis-2-butene

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

33

Supplementary Tables

Table S1 Textural properties (data determined from N2 sorption isotherms at 77 K) and crystallite size (data

determined from SEM) of all zeolites used in this study

Samples ABET (m2 g-1)a Amic (m2 g-1) b Aext (m2 g-1) c Vmic (cm3 g-1) d Vtotal (cm3 g-1) e

Crystallite sizef

(nm)

HZSM-5 (00271) 413 314 99 019 033 200-500

HZSM-5 (0041) 346 259 87 015 028 200-500

HZSM-5 (00671) 348 277 71 016 026 200-500

NbS-1 (00271) 377 284 93 017 029 300-500

NbS-1 (0041) 357 282 75 016 027 300-500

NbAlS-1(00270041) 408 263 145 018 041 300-500

NbAlS-1(00400271) 376 268 108 017 033 300-500

HZSM-5 (0041)g 338 258 80 015 027 200-500

NbAlS-1(00270041)g 396 262 134 018 039 300-500

aBET specific surface area bMicropore surface area cExternal surface area dMicropore volume eTotal pore volume fObtainted from SEM gUsed catalyst

34

Table S2 Spin-Hamiltonian parameters of radiation induced Nb(IV) and electron hole Al-O-Si defects

from simulation of CW X-band EPR spectra in Fig 1 lw is the homogeneous Lorentzian linewidth g and A

are the principle values of the g and hyperfine interaction tensors

Signal Parameters

Electron

Spin

Nuclear

Spin g-tensor g-Strain

A-tensor

(G)

lw

(mT)

Nb defect 12 92 [1935 1935 1866] [004 004 00] [159 159

310] [0 40]

Al defect 12 52 [20012 2007 2045] [00 0003 004] [7 7 -] [00 04]

35

Table S3 Summary of acidity of all zeolites used in this work Data were determined by NH3-TPD and

Pyridine-IR studies

Catalyst Weak acida

(mmol g-1)

Strong acida

(mmol g-1)

Total acida

(mmol g-1)

LB acid

ratiob

HZSM-5(00271) 015 025 04 039

HZSM-5(0041) 024 028 052 037

HZSM-5(00671) 033 03 063 027

NbS-1(00271) 004 0 004 -

NbS-1(0041) 004 0 004 -

NbAlS-1(00270041) 022 0 022 469

NbAlS-1(00400271) 023 0 023 35 aFrom NH3-TPD bFrom Pyridine-IR

36

Table S4 The butenes distribution in equilibrium at 320 degC and the distribution of butene isomers produced

from conversion of 30 GVL at 320 degC over catalysts

Catalyst Distribution ()

i-butene 1-butene trans-2-butene cis-2-butene

Equilibrium27 45 12 27 16

HZSM-5(0041) 44 14 25 17

NbAlS-1(00270041) 18 19 38 25

NbOPO4 15 20 39 26

37

Table S5 Comparison of the catalytic performance of reported catalysts for the conversion of GVL in aqueous solution (25-40 wt ) to butenes

Catalyst Reaction Conditions GVL

concentration

(wt )

GVL

conversion

()

Butene

Yield

(mol )a

Ref

Temperature

(degC)

WHSV

(h-1)

Pressure

(bar)

NbAlS-1(00270041) 320 018 1 30 100 993 this work

SiO2Al2O3 375 09 1 30 97 75 28

HZSM-5(0041) 320 018 1 30 76 232 this work

LaZSM-5 450 1 10 40 gt99 ca 21 15

PdNb2O5b 275 05 14 30d 100 lt16c 29

Zn-AlPO-5 397 077 10 40 65 ca 12 30

H3PO4 240 - - 25 100 12c 31

ZnZSM-5 450 1 10 40 gt99 ca 6 15

AlPO-5 397 077 10 40 2 ca 04 30

aButene yield is calculated by the equation defined in the Method section

bunder H2 atmosphere

cThe product includes both butene and butane d002 M H2SO4 was added in the GVL solution

38

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1

R (Aring)a σ a Amp a CN a

NbAlS-1 (Dry) Nb=O 1680 0017 082 1 Nb-O 2014 0008 082 3 NbAlS-1

Nb=O 1721 0012 078 1

Nb-O 2014 0004 078 3

NbAlS-1+GVL

Nb=O 1943 0003 075 1

Nb-O 2014 0010 075 3

NbS-1

Nb=O 1711 0032 091 1

Nb-O 2014 0005 091 3

NbS-1+GVL

Nb=O 1770 0004 089 1

Nb-O 2014 0014 089 3 aR = Interatomic distance from central scattering atom σ = Debye-Waller factor Amp = amplitude factor

and CN = coordination number

39

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption

Samples GVLHZSM-5(0041) GVLNbS-1(00271) NbAlS-1(00270041) GVLNbAlS-1(00270041)

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma

Chemical formula Al3692Si92308O192 8GVL Nb2524Si93476O192 8GVL Al3599Nb2429Si89972O192 Al3599Nb2429Si89972O192 8GVL

2θ range for refinement (deg) 3 ndash 50 3 ndash 50 3 ndash 50 3 ndash 50

Detector Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals

Number of hkls 3251 3214 3179 3222

Refinement methods Rietveld Rietveld Rietveld Rietveld

a (Aring) 201351(2) 200604(2) 199955(3) 200697(3)

b (Aring) 199852(2) 198995(1) 198333(3) 199150(3)

c (Aring) 134549(2) 134010(1) 133531(2) 134214(2)

V (Aring3) 541428(11) 534957(7) 529553(15) 536437(15)

RwpRexp Rp () 445135013378 463131253497 553133614058 444933763305

Wavelength (Aring) 082487(1) 082487(1) 082487(1) 082487(1)

Gof χ2 1272 1482 1646 1318

40

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) at room

temperature

Species Atom x y z SOF Beq(Aring2) Wyckoff

HZSM-5(0041) Al1 -00732(5) 00570(7) 08366(7) 003846154 100(5) 8d

Al2 01869(6) -00339(5) 03189(8) 003846154 100(5) 8d

Al3 02207(5) -00626(7) 05256(8) 003846154 100(5) 8d

Al4 01210(5) 00590(7) 10220(8) 003846154 100(5) 8d

Al5 -00703(6) -00272(5) 01933(8) 003846154 100(5) 8d

Al6 01859(5) 00593(6) 06679(8) 003846154 100(5) 8d

Al7 -00745(6) 06734(6) 08243(9) 003846154 100(5) 8d

Al8 01956(6) 01297(5) 03114(7) 003846154 100(5) 8d

Al9 02187(5) 01761(5) 05326(8) 003846154 100(5) 8d

Al10 01228(5) 06749(6) 10400(8) 003846154 100(5) 8d

Al11 -00694(6) 01308(6) 01819(9) 003846154 100(5) 8d

Al12 01859(6) 06714(5) 06756(8) 003846154 100(5) 8d

Si1 -00732(5) 00570(7) 08366(7) 09615385 100(5) 8d

Si2 01869(6) -00339(5) 03189(8) 09615385 100(5) 8d

Si3 02207(5) -00626(7) 05256(8) 09615385 100(5) 8d

Si4 01210(5) 00590(7) 10220(8) 09615385 100(5) 8d

Si5 -00703(6) -00272(5) 01933(8) 09615385 100(5) 8d

Si6 01859(5) 00593(6) 06679(8) 09615385 100(5) 8d

Si7 -00745(6) 06734(6) 08243(9) 09615385 100(5) 8d

Si8 01956(6) 01297(5) 03114(7) 09615385 100(5) 8d

Si9 02187(5) 01761(5) 05326(8) 09615385 100(5) 8d

Si10 01228(5) 06749(6) 10400(8) 09615385 100(5) 8d

Si11 -00694(6) 01308(6) 01819(9) 09615385 100(5) 8d

Si12 01859(6) 06714(5) 06756(8) 09615385 100(5) 8d

O1 01189(10) -00643(12) 02762(13) 1 143(9) 8d

O2 01900(11) -00665(10) 04093(13) 1 143(9) 8d

O3 02017(11) 00485(12) 10198(11) 1 143(9) 8d

O4 -00964(9) -00573(13) 10736(15) 1 143(9) 8d

O5 01132(9) 00573(12) 07009(13) 1 143(9) 8d

O6 02544(10) 00574(13) 07592(13) 1 143(9) 8d

O7 01249(11) 01569(12) 02676(15) 1 143(9) 8d

O8 01995(12) 01482(9) 04331(13) 1 143(9) 8d

O9 01968(12) 06607(9) 00500(12) 1 143(9) 8d

O10 -00922(10) 01564(11) 10827(17) 1 143(9) 8d

O11 01123(10) 06498(11) 07436(14) 1 143(9) 8d

O12 02420(11) 06557(12) 07396(15) 1 143(9) 8d

O13 02109(9) 00468(11) 03170(12) 1 143(9) 8d

O14 -00793(8) 00525(13) 01708(13) 1 143(9) 8d

O15 -00850(10) 01327(12) 08874(17) 1 143(9) 8d

O16 -01009(10) 00004(11) 09239(15) 1 143(9) 8d

O17 -01006(10) 06343(12) -00444(14) 1 143(9) 8d

O18 01746(10) 01273(11) 06145(13) 1 143(9) 8d

O19 01980(12) 00019(10) 06091(12) 1 143(9) 8d

O20 02014(13) 06300(11) 05761(13) 1 143(9) 8d

O21 -00054(11) 00405(12) 07595(12) 1 143(9) 8d

O22 -00045(12) 06580(13) 07876(13) 1 143(9) 8d

O23 -00801(15) 075 0861(2) 1 143(9) 4c

O24 01839(17) 075 0648(2) 1 143(9) 4c

O25 02011(18) 025 0563(2) 1 143(9) 4c

O26 00863(13) 075 0143(2) 1 143(9) 4c

41

GVLI O1 -00251(15) 08553(18) -0468(2) 0500(3) 06(4) 8d

O2 -0013(2) 07533(17) -0531(3) 0500(3) 06(4) 8d

C1 00570(11) 08446(12) -05861(14) 0500(3) 06(4) 8d

C2 00466(18) 09175(12) -05663(18) 0500(3) 06(4) 8d

C3 0004(2) 09222(15) -0484(2) 0500(3) 06(4) 8d

C4 00038(13) 08112(15) -05293(19) 0500(3) 06(4) 8d

C5 -0034(3) 09728(19) -0448(3) 0500(3) 06(4) 8d

H1a 00999(11) 08315(15) -05641(17) 0500(3) 07(5) 8d

H1b 00528(13) 08360(13) -06553(15) 0500(3) 07(5) 8d

H2a 0088(2) 09384(14) -0553(2) 0500(3) 07(5) 8d

H2b 0026(2) 09378(15) -0622(2) 0500(3) 07(5) 8d

H3 0038(2) 09204(15) -04313(18) 0500(3) 07(5) 8d

H5a -0043(3) 0965(2) -0380(3) 0500(3) 07(5) 8d

H5b -0011(4) 10138(17) -0454(3) 0500(3) 07(5) 8d

H5c -0074(3) 0975(3) -0485(3) 0500(3) 07(5) 8d

GVLII O1 -03289(15) -0778(2) -02817(19) 0500(4) 06(4) 8d

O2 -04372(14) -0757(2) -02733(16) 0500(4) 06(4) 8d

C1 -03730(11) -07204(15) -04150(12) 0500(4) 06(4) 8d

C2 -02990(11) -0718(2) -04230(16) 0500(4) 06(4) 8d

C3 -02738(13) -0762(3) -0350(2) 0500(4) 06(4) 8d

C4 -03856(13) -07518(18) -03175(14) 0500(4) 06(4) 8d

C5 -02129(14) -0768(4) -0308(3) 0500(4) 06(4) 8d

H1a -03908(13) -07461(16) -04681(13) 0500(3) 07(5) 8d

H1b -03904(14) -06762(15) -04174(16) 0500(3) 07(5) 8d

H2a -02856(13) -0732(2) -04875(17) 0500(3) 07(5) 8d

H2b -02835(15) -0674(2) -04093(19) 0500(3) 07(5) 8d

H3 -0275(2) -0803(3) -0389(3) 0500(3) 07(5) 8d

H5a -0208(2) -0812(4) -0281(3) 0500(3) 07(5) 8d

H5b -01797(13) -0762(4) -0357(3) 0500(3) 07(5) 8d

H5c -02080(14) -0735(4) -0257(3) 0500(3) 07(5) 8d

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 19: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

18

Fig S10 (a) XAS spectra of the fresh and used NbAlS-1(00270041) (b) Phase-corrected k3-weighted

Fourier Transform of the EXAFS spectra for fresh and used NbAlS-1(00270041) The stability of the Nb

active sites within NbAlS-1(00270041) was verified by Nb K edge XAS with both fresh and used

catalysts exhibiting the same pre-edge XANES and EXAFS features

00

04

08

12

16

20

18800 19075 19350 19625 19900

No

rm a

bso

rptio

n (

au

)

Energy (eV)

NbAlS-1(00270041)

0

1

2

3

4

5

6

7

0 2 4 6

χ(R

)(Aring

-4)

Radial distance (Aring)

a b

NbAlS-1(00270041)

NbAlS-1(00270041) used

NbAlS-1(00270041)

used

19

Fig S11 27Al MAS NMR spectra of fresh and used zeolites Chemical shifts at 0 and 55 ppm are assigned to

six-coordinate extra-framework and four-coordinate framework aluminum species respectively26

100 80 60 40 20 0 -20 -40

NbAlS-1(00270041) used

NbAlS-1(00270041)

HZSM-5(0041) used

27Al chemical shift (ppm)

HZSM-5(0041)

20

Fig S12 Characterisation of the acidity of fresh and used zeolites by NH3-TPD

100 150 200 250 300 350 400 450 500 550 600

In

tensity (

au

)

Temperature (oC)

NbAlS-1(00270041) used

NbAlS-1(00270041)

HZSM-5(0041) used

HZSM-5(0041)

21

Fig S13 X-band (ca 9 GHz) EPR spectra of HZSM-5 and post-reaction zeolites activated by γ-irradiation

at 77 K narrow magnetic field-sweep highlighting the induced electron hole defect Al-O-Si signals in

HZSM-5 (0041) and the used sample

300 310 320 330 340 350 360

HZSM-50041) used

Al simulation

Inte

nsity (

au

)

Magnetic field (mT)

HZSM-5(0041)

22

Fig S14 Comparison of SXPD patterns of (a) HZSM-5(0041) (b) NbS-1(00271) and (c) NbAlS-

1(00270041) before and after adsorption of GVL at room temperature [λ = 082487(1) Aring]

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbAlS-1(0027041)

GVLNbAlS-1(0027041)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbS-1(00271)

GVLNbS-1(00271)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

HZSM-5(0041)

GVLHZSM-5(0041)

a

b

c

23

Fig S15 Comparison of the experimental data (black line) and Rietveld refinement (red line) and the

difference between them (grey line) for SXPD patterns of (ab) GVLHZSM-5(0041) (cd) GVLNbS-

1(00271) (ef) GVLNbAlS-1(00270041) at room temperature at a 2θ range of (ace) 3 - 20deg and

(bdf) 20 - 50deg [λ = 082487(1) Aring]

a b

c d

e f

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

24

Fig S16 (a) 29Si NMR spectra of HZSM-5 and NbAlS-1 de-convolution of 29Si NMR spectra of HZSM-5

(b) and NbAlS-1 (c) by Guassian and Lorentzian line shapes

a

b

c

-125 -120 -115 -110 -105 -100 -95 -90 -85

-1023

-1076

-1138

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-4

Cumulative Fitted Peak

-1171

-125 -120 -115 -110 -105 -100 -95 -90 -85

-924-983

-1026

-1057

-1124

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-6

Cumulative Fitted Peak

-1162

-125 -120 -115 -110 -105 -100 -95 -90 -8529

Si chemical shift (ppm)

NbAlS-1(00270041)

HZSM-5(0041)

25

Fig S17 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and calculated INS

spectra for 12 types of NbAlH sites

0 200 400 600 800 1000 1200 1400 1600

1211109876

4

23

5

1

Bare NbAlS-1 (exp)

S(Q

) (a

u)

Neutron energy loss (cm-1)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

26

Fig S18 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and combination of

calculated INS spectra of different NbAlH sites Combination 1 = 3125Site I + 3125Site II +

5Site III + 325Site IV Combination 2 = 675Site III + 325Site IV Site I = 025(NbAlH_1 +

NbAlH_2 + NbAlH_3 + NbAlH_4) Site II = 025(NbAlH_5 + NbAlH_6 + NbAlH_7 +

NbAlH_8) Site III = 05(NbAlH_9 + NbAlH_10) Site IV = 05(NbAlH_11 + NbAlH_12)

Abscissa is scaled down by 097 for combination 1 and 2

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Bare NbAlS-1 (exp)

Combination 1

Combination 2

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

27

Fig S19 Schematic view of the procedure of in situ INS experiment and data collection

Zeolite (Calcined)

Zeolite (activated)

Heating at 450 oC under

He flow for 3 h

Zeolite (Adsorbed)

INS collection 1

Zeolite (Reaction at 280 C)

Adsorption of GVL at 135 oC

Zeolite (Reaction at 300 C)

Zeolite (Reaction at 320 C)

Reaction at 280 oC for 3 min

Reaction at 300 oC for 3 min

Reaction at 320 oC for 3 min

INS collection 2

INS collection 3

INS collection 4

INS collection 5

28

Fig S20 Comparison of the experimental INS spectra of condensed GVL in the solid state (black) and

calculated INS spectra of single GVL molecule (red) The crystal structure of solid GVL is unavailable in the

database

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental GVL

Calculated GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

29

Fig S21 Comparison of the experimental and calculated INS spectra of adsorbed GVL molecules on

NbAlS-1 The structure model derived from SXPD experiments was used for initial DFT modelling where

the positional disorder has been removed in the calculation and this partially accounts for the discrepancies

observed between calculated and experimental INS plots

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental adsorbed GVL

Calculated adsorbed GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

30

Fig S22 View of the INS spectrum for the empty catalysis cell used for this experiment The empty can has

the features below 300 cm-1 and at approximately 457 and 659 cm-1

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Empty can

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

31

Fig S23 Comparison of the experimental INS spectra for bare and GVL-adsorbed catalyst Spectra shown

are after subtraction of the empty cell The INS spectrum of the catalyst on GVL adsorption at 135 degC shows

a significant increase in total intensity demonstrating the binding of GVL to the catalyst sites

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

GVLNbAlS-1(00270041)

Bare NbAlS-1(00270041)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

32

Fig S24 Comparison of the experimental INS spectra of all butene isomers and reacted GVL at 320 degC

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Reaction 320 oC

trans-2-butene

i-butene

1-butene

cis-2-butene

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

33

Supplementary Tables

Table S1 Textural properties (data determined from N2 sorption isotherms at 77 K) and crystallite size (data

determined from SEM) of all zeolites used in this study

Samples ABET (m2 g-1)a Amic (m2 g-1) b Aext (m2 g-1) c Vmic (cm3 g-1) d Vtotal (cm3 g-1) e

Crystallite sizef

(nm)

HZSM-5 (00271) 413 314 99 019 033 200-500

HZSM-5 (0041) 346 259 87 015 028 200-500

HZSM-5 (00671) 348 277 71 016 026 200-500

NbS-1 (00271) 377 284 93 017 029 300-500

NbS-1 (0041) 357 282 75 016 027 300-500

NbAlS-1(00270041) 408 263 145 018 041 300-500

NbAlS-1(00400271) 376 268 108 017 033 300-500

HZSM-5 (0041)g 338 258 80 015 027 200-500

NbAlS-1(00270041)g 396 262 134 018 039 300-500

aBET specific surface area bMicropore surface area cExternal surface area dMicropore volume eTotal pore volume fObtainted from SEM gUsed catalyst

34

Table S2 Spin-Hamiltonian parameters of radiation induced Nb(IV) and electron hole Al-O-Si defects

from simulation of CW X-band EPR spectra in Fig 1 lw is the homogeneous Lorentzian linewidth g and A

are the principle values of the g and hyperfine interaction tensors

Signal Parameters

Electron

Spin

Nuclear

Spin g-tensor g-Strain

A-tensor

(G)

lw

(mT)

Nb defect 12 92 [1935 1935 1866] [004 004 00] [159 159

310] [0 40]

Al defect 12 52 [20012 2007 2045] [00 0003 004] [7 7 -] [00 04]

35

Table S3 Summary of acidity of all zeolites used in this work Data were determined by NH3-TPD and

Pyridine-IR studies

Catalyst Weak acida

(mmol g-1)

Strong acida

(mmol g-1)

Total acida

(mmol g-1)

LB acid

ratiob

HZSM-5(00271) 015 025 04 039

HZSM-5(0041) 024 028 052 037

HZSM-5(00671) 033 03 063 027

NbS-1(00271) 004 0 004 -

NbS-1(0041) 004 0 004 -

NbAlS-1(00270041) 022 0 022 469

NbAlS-1(00400271) 023 0 023 35 aFrom NH3-TPD bFrom Pyridine-IR

36

Table S4 The butenes distribution in equilibrium at 320 degC and the distribution of butene isomers produced

from conversion of 30 GVL at 320 degC over catalysts

Catalyst Distribution ()

i-butene 1-butene trans-2-butene cis-2-butene

Equilibrium27 45 12 27 16

HZSM-5(0041) 44 14 25 17

NbAlS-1(00270041) 18 19 38 25

NbOPO4 15 20 39 26

37

Table S5 Comparison of the catalytic performance of reported catalysts for the conversion of GVL in aqueous solution (25-40 wt ) to butenes

Catalyst Reaction Conditions GVL

concentration

(wt )

GVL

conversion

()

Butene

Yield

(mol )a

Ref

Temperature

(degC)

WHSV

(h-1)

Pressure

(bar)

NbAlS-1(00270041) 320 018 1 30 100 993 this work

SiO2Al2O3 375 09 1 30 97 75 28

HZSM-5(0041) 320 018 1 30 76 232 this work

LaZSM-5 450 1 10 40 gt99 ca 21 15

PdNb2O5b 275 05 14 30d 100 lt16c 29

Zn-AlPO-5 397 077 10 40 65 ca 12 30

H3PO4 240 - - 25 100 12c 31

ZnZSM-5 450 1 10 40 gt99 ca 6 15

AlPO-5 397 077 10 40 2 ca 04 30

aButene yield is calculated by the equation defined in the Method section

bunder H2 atmosphere

cThe product includes both butene and butane d002 M H2SO4 was added in the GVL solution

38

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1

R (Aring)a σ a Amp a CN a

NbAlS-1 (Dry) Nb=O 1680 0017 082 1 Nb-O 2014 0008 082 3 NbAlS-1

Nb=O 1721 0012 078 1

Nb-O 2014 0004 078 3

NbAlS-1+GVL

Nb=O 1943 0003 075 1

Nb-O 2014 0010 075 3

NbS-1

Nb=O 1711 0032 091 1

Nb-O 2014 0005 091 3

NbS-1+GVL

Nb=O 1770 0004 089 1

Nb-O 2014 0014 089 3 aR = Interatomic distance from central scattering atom σ = Debye-Waller factor Amp = amplitude factor

and CN = coordination number

39

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption

Samples GVLHZSM-5(0041) GVLNbS-1(00271) NbAlS-1(00270041) GVLNbAlS-1(00270041)

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma

Chemical formula Al3692Si92308O192 8GVL Nb2524Si93476O192 8GVL Al3599Nb2429Si89972O192 Al3599Nb2429Si89972O192 8GVL

2θ range for refinement (deg) 3 ndash 50 3 ndash 50 3 ndash 50 3 ndash 50

Detector Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals

Number of hkls 3251 3214 3179 3222

Refinement methods Rietveld Rietveld Rietveld Rietveld

a (Aring) 201351(2) 200604(2) 199955(3) 200697(3)

b (Aring) 199852(2) 198995(1) 198333(3) 199150(3)

c (Aring) 134549(2) 134010(1) 133531(2) 134214(2)

V (Aring3) 541428(11) 534957(7) 529553(15) 536437(15)

RwpRexp Rp () 445135013378 463131253497 553133614058 444933763305

Wavelength (Aring) 082487(1) 082487(1) 082487(1) 082487(1)

Gof χ2 1272 1482 1646 1318

40

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) at room

temperature

Species Atom x y z SOF Beq(Aring2) Wyckoff

HZSM-5(0041) Al1 -00732(5) 00570(7) 08366(7) 003846154 100(5) 8d

Al2 01869(6) -00339(5) 03189(8) 003846154 100(5) 8d

Al3 02207(5) -00626(7) 05256(8) 003846154 100(5) 8d

Al4 01210(5) 00590(7) 10220(8) 003846154 100(5) 8d

Al5 -00703(6) -00272(5) 01933(8) 003846154 100(5) 8d

Al6 01859(5) 00593(6) 06679(8) 003846154 100(5) 8d

Al7 -00745(6) 06734(6) 08243(9) 003846154 100(5) 8d

Al8 01956(6) 01297(5) 03114(7) 003846154 100(5) 8d

Al9 02187(5) 01761(5) 05326(8) 003846154 100(5) 8d

Al10 01228(5) 06749(6) 10400(8) 003846154 100(5) 8d

Al11 -00694(6) 01308(6) 01819(9) 003846154 100(5) 8d

Al12 01859(6) 06714(5) 06756(8) 003846154 100(5) 8d

Si1 -00732(5) 00570(7) 08366(7) 09615385 100(5) 8d

Si2 01869(6) -00339(5) 03189(8) 09615385 100(5) 8d

Si3 02207(5) -00626(7) 05256(8) 09615385 100(5) 8d

Si4 01210(5) 00590(7) 10220(8) 09615385 100(5) 8d

Si5 -00703(6) -00272(5) 01933(8) 09615385 100(5) 8d

Si6 01859(5) 00593(6) 06679(8) 09615385 100(5) 8d

Si7 -00745(6) 06734(6) 08243(9) 09615385 100(5) 8d

Si8 01956(6) 01297(5) 03114(7) 09615385 100(5) 8d

Si9 02187(5) 01761(5) 05326(8) 09615385 100(5) 8d

Si10 01228(5) 06749(6) 10400(8) 09615385 100(5) 8d

Si11 -00694(6) 01308(6) 01819(9) 09615385 100(5) 8d

Si12 01859(6) 06714(5) 06756(8) 09615385 100(5) 8d

O1 01189(10) -00643(12) 02762(13) 1 143(9) 8d

O2 01900(11) -00665(10) 04093(13) 1 143(9) 8d

O3 02017(11) 00485(12) 10198(11) 1 143(9) 8d

O4 -00964(9) -00573(13) 10736(15) 1 143(9) 8d

O5 01132(9) 00573(12) 07009(13) 1 143(9) 8d

O6 02544(10) 00574(13) 07592(13) 1 143(9) 8d

O7 01249(11) 01569(12) 02676(15) 1 143(9) 8d

O8 01995(12) 01482(9) 04331(13) 1 143(9) 8d

O9 01968(12) 06607(9) 00500(12) 1 143(9) 8d

O10 -00922(10) 01564(11) 10827(17) 1 143(9) 8d

O11 01123(10) 06498(11) 07436(14) 1 143(9) 8d

O12 02420(11) 06557(12) 07396(15) 1 143(9) 8d

O13 02109(9) 00468(11) 03170(12) 1 143(9) 8d

O14 -00793(8) 00525(13) 01708(13) 1 143(9) 8d

O15 -00850(10) 01327(12) 08874(17) 1 143(9) 8d

O16 -01009(10) 00004(11) 09239(15) 1 143(9) 8d

O17 -01006(10) 06343(12) -00444(14) 1 143(9) 8d

O18 01746(10) 01273(11) 06145(13) 1 143(9) 8d

O19 01980(12) 00019(10) 06091(12) 1 143(9) 8d

O20 02014(13) 06300(11) 05761(13) 1 143(9) 8d

O21 -00054(11) 00405(12) 07595(12) 1 143(9) 8d

O22 -00045(12) 06580(13) 07876(13) 1 143(9) 8d

O23 -00801(15) 075 0861(2) 1 143(9) 4c

O24 01839(17) 075 0648(2) 1 143(9) 4c

O25 02011(18) 025 0563(2) 1 143(9) 4c

O26 00863(13) 075 0143(2) 1 143(9) 4c

41

GVLI O1 -00251(15) 08553(18) -0468(2) 0500(3) 06(4) 8d

O2 -0013(2) 07533(17) -0531(3) 0500(3) 06(4) 8d

C1 00570(11) 08446(12) -05861(14) 0500(3) 06(4) 8d

C2 00466(18) 09175(12) -05663(18) 0500(3) 06(4) 8d

C3 0004(2) 09222(15) -0484(2) 0500(3) 06(4) 8d

C4 00038(13) 08112(15) -05293(19) 0500(3) 06(4) 8d

C5 -0034(3) 09728(19) -0448(3) 0500(3) 06(4) 8d

H1a 00999(11) 08315(15) -05641(17) 0500(3) 07(5) 8d

H1b 00528(13) 08360(13) -06553(15) 0500(3) 07(5) 8d

H2a 0088(2) 09384(14) -0553(2) 0500(3) 07(5) 8d

H2b 0026(2) 09378(15) -0622(2) 0500(3) 07(5) 8d

H3 0038(2) 09204(15) -04313(18) 0500(3) 07(5) 8d

H5a -0043(3) 0965(2) -0380(3) 0500(3) 07(5) 8d

H5b -0011(4) 10138(17) -0454(3) 0500(3) 07(5) 8d

H5c -0074(3) 0975(3) -0485(3) 0500(3) 07(5) 8d

GVLII O1 -03289(15) -0778(2) -02817(19) 0500(4) 06(4) 8d

O2 -04372(14) -0757(2) -02733(16) 0500(4) 06(4) 8d

C1 -03730(11) -07204(15) -04150(12) 0500(4) 06(4) 8d

C2 -02990(11) -0718(2) -04230(16) 0500(4) 06(4) 8d

C3 -02738(13) -0762(3) -0350(2) 0500(4) 06(4) 8d

C4 -03856(13) -07518(18) -03175(14) 0500(4) 06(4) 8d

C5 -02129(14) -0768(4) -0308(3) 0500(4) 06(4) 8d

H1a -03908(13) -07461(16) -04681(13) 0500(3) 07(5) 8d

H1b -03904(14) -06762(15) -04174(16) 0500(3) 07(5) 8d

H2a -02856(13) -0732(2) -04875(17) 0500(3) 07(5) 8d

H2b -02835(15) -0674(2) -04093(19) 0500(3) 07(5) 8d

H3 -0275(2) -0803(3) -0389(3) 0500(3) 07(5) 8d

H5a -0208(2) -0812(4) -0281(3) 0500(3) 07(5) 8d

H5b -01797(13) -0762(4) -0357(3) 0500(3) 07(5) 8d

H5c -02080(14) -0735(4) -0257(3) 0500(3) 07(5) 8d

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 20: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

19

Fig S11 27Al MAS NMR spectra of fresh and used zeolites Chemical shifts at 0 and 55 ppm are assigned to

six-coordinate extra-framework and four-coordinate framework aluminum species respectively26

100 80 60 40 20 0 -20 -40

NbAlS-1(00270041) used

NbAlS-1(00270041)

HZSM-5(0041) used

27Al chemical shift (ppm)

HZSM-5(0041)

20

Fig S12 Characterisation of the acidity of fresh and used zeolites by NH3-TPD

100 150 200 250 300 350 400 450 500 550 600

In

tensity (

au

)

Temperature (oC)

NbAlS-1(00270041) used

NbAlS-1(00270041)

HZSM-5(0041) used

HZSM-5(0041)

21

Fig S13 X-band (ca 9 GHz) EPR spectra of HZSM-5 and post-reaction zeolites activated by γ-irradiation

at 77 K narrow magnetic field-sweep highlighting the induced electron hole defect Al-O-Si signals in

HZSM-5 (0041) and the used sample

300 310 320 330 340 350 360

HZSM-50041) used

Al simulation

Inte

nsity (

au

)

Magnetic field (mT)

HZSM-5(0041)

22

Fig S14 Comparison of SXPD patterns of (a) HZSM-5(0041) (b) NbS-1(00271) and (c) NbAlS-

1(00270041) before and after adsorption of GVL at room temperature [λ = 082487(1) Aring]

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbAlS-1(0027041)

GVLNbAlS-1(0027041)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbS-1(00271)

GVLNbS-1(00271)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

HZSM-5(0041)

GVLHZSM-5(0041)

a

b

c

23

Fig S15 Comparison of the experimental data (black line) and Rietveld refinement (red line) and the

difference between them (grey line) for SXPD patterns of (ab) GVLHZSM-5(0041) (cd) GVLNbS-

1(00271) (ef) GVLNbAlS-1(00270041) at room temperature at a 2θ range of (ace) 3 - 20deg and

(bdf) 20 - 50deg [λ = 082487(1) Aring]

a b

c d

e f

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

24

Fig S16 (a) 29Si NMR spectra of HZSM-5 and NbAlS-1 de-convolution of 29Si NMR spectra of HZSM-5

(b) and NbAlS-1 (c) by Guassian and Lorentzian line shapes

a

b

c

-125 -120 -115 -110 -105 -100 -95 -90 -85

-1023

-1076

-1138

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-4

Cumulative Fitted Peak

-1171

-125 -120 -115 -110 -105 -100 -95 -90 -85

-924-983

-1026

-1057

-1124

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-6

Cumulative Fitted Peak

-1162

-125 -120 -115 -110 -105 -100 -95 -90 -8529

Si chemical shift (ppm)

NbAlS-1(00270041)

HZSM-5(0041)

25

Fig S17 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and calculated INS

spectra for 12 types of NbAlH sites

0 200 400 600 800 1000 1200 1400 1600

1211109876

4

23

5

1

Bare NbAlS-1 (exp)

S(Q

) (a

u)

Neutron energy loss (cm-1)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

26

Fig S18 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and combination of

calculated INS spectra of different NbAlH sites Combination 1 = 3125Site I + 3125Site II +

5Site III + 325Site IV Combination 2 = 675Site III + 325Site IV Site I = 025(NbAlH_1 +

NbAlH_2 + NbAlH_3 + NbAlH_4) Site II = 025(NbAlH_5 + NbAlH_6 + NbAlH_7 +

NbAlH_8) Site III = 05(NbAlH_9 + NbAlH_10) Site IV = 05(NbAlH_11 + NbAlH_12)

Abscissa is scaled down by 097 for combination 1 and 2

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Bare NbAlS-1 (exp)

Combination 1

Combination 2

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

27

Fig S19 Schematic view of the procedure of in situ INS experiment and data collection

Zeolite (Calcined)

Zeolite (activated)

Heating at 450 oC under

He flow for 3 h

Zeolite (Adsorbed)

INS collection 1

Zeolite (Reaction at 280 C)

Adsorption of GVL at 135 oC

Zeolite (Reaction at 300 C)

Zeolite (Reaction at 320 C)

Reaction at 280 oC for 3 min

Reaction at 300 oC for 3 min

Reaction at 320 oC for 3 min

INS collection 2

INS collection 3

INS collection 4

INS collection 5

28

Fig S20 Comparison of the experimental INS spectra of condensed GVL in the solid state (black) and

calculated INS spectra of single GVL molecule (red) The crystal structure of solid GVL is unavailable in the

database

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental GVL

Calculated GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

29

Fig S21 Comparison of the experimental and calculated INS spectra of adsorbed GVL molecules on

NbAlS-1 The structure model derived from SXPD experiments was used for initial DFT modelling where

the positional disorder has been removed in the calculation and this partially accounts for the discrepancies

observed between calculated and experimental INS plots

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental adsorbed GVL

Calculated adsorbed GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

30

Fig S22 View of the INS spectrum for the empty catalysis cell used for this experiment The empty can has

the features below 300 cm-1 and at approximately 457 and 659 cm-1

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Empty can

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

31

Fig S23 Comparison of the experimental INS spectra for bare and GVL-adsorbed catalyst Spectra shown

are after subtraction of the empty cell The INS spectrum of the catalyst on GVL adsorption at 135 degC shows

a significant increase in total intensity demonstrating the binding of GVL to the catalyst sites

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

GVLNbAlS-1(00270041)

Bare NbAlS-1(00270041)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

32

Fig S24 Comparison of the experimental INS spectra of all butene isomers and reacted GVL at 320 degC

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Reaction 320 oC

trans-2-butene

i-butene

1-butene

cis-2-butene

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

33

Supplementary Tables

Table S1 Textural properties (data determined from N2 sorption isotherms at 77 K) and crystallite size (data

determined from SEM) of all zeolites used in this study

Samples ABET (m2 g-1)a Amic (m2 g-1) b Aext (m2 g-1) c Vmic (cm3 g-1) d Vtotal (cm3 g-1) e

Crystallite sizef

(nm)

HZSM-5 (00271) 413 314 99 019 033 200-500

HZSM-5 (0041) 346 259 87 015 028 200-500

HZSM-5 (00671) 348 277 71 016 026 200-500

NbS-1 (00271) 377 284 93 017 029 300-500

NbS-1 (0041) 357 282 75 016 027 300-500

NbAlS-1(00270041) 408 263 145 018 041 300-500

NbAlS-1(00400271) 376 268 108 017 033 300-500

HZSM-5 (0041)g 338 258 80 015 027 200-500

NbAlS-1(00270041)g 396 262 134 018 039 300-500

aBET specific surface area bMicropore surface area cExternal surface area dMicropore volume eTotal pore volume fObtainted from SEM gUsed catalyst

34

Table S2 Spin-Hamiltonian parameters of radiation induced Nb(IV) and electron hole Al-O-Si defects

from simulation of CW X-band EPR spectra in Fig 1 lw is the homogeneous Lorentzian linewidth g and A

are the principle values of the g and hyperfine interaction tensors

Signal Parameters

Electron

Spin

Nuclear

Spin g-tensor g-Strain

A-tensor

(G)

lw

(mT)

Nb defect 12 92 [1935 1935 1866] [004 004 00] [159 159

310] [0 40]

Al defect 12 52 [20012 2007 2045] [00 0003 004] [7 7 -] [00 04]

35

Table S3 Summary of acidity of all zeolites used in this work Data were determined by NH3-TPD and

Pyridine-IR studies

Catalyst Weak acida

(mmol g-1)

Strong acida

(mmol g-1)

Total acida

(mmol g-1)

LB acid

ratiob

HZSM-5(00271) 015 025 04 039

HZSM-5(0041) 024 028 052 037

HZSM-5(00671) 033 03 063 027

NbS-1(00271) 004 0 004 -

NbS-1(0041) 004 0 004 -

NbAlS-1(00270041) 022 0 022 469

NbAlS-1(00400271) 023 0 023 35 aFrom NH3-TPD bFrom Pyridine-IR

36

Table S4 The butenes distribution in equilibrium at 320 degC and the distribution of butene isomers produced

from conversion of 30 GVL at 320 degC over catalysts

Catalyst Distribution ()

i-butene 1-butene trans-2-butene cis-2-butene

Equilibrium27 45 12 27 16

HZSM-5(0041) 44 14 25 17

NbAlS-1(00270041) 18 19 38 25

NbOPO4 15 20 39 26

37

Table S5 Comparison of the catalytic performance of reported catalysts for the conversion of GVL in aqueous solution (25-40 wt ) to butenes

Catalyst Reaction Conditions GVL

concentration

(wt )

GVL

conversion

()

Butene

Yield

(mol )a

Ref

Temperature

(degC)

WHSV

(h-1)

Pressure

(bar)

NbAlS-1(00270041) 320 018 1 30 100 993 this work

SiO2Al2O3 375 09 1 30 97 75 28

HZSM-5(0041) 320 018 1 30 76 232 this work

LaZSM-5 450 1 10 40 gt99 ca 21 15

PdNb2O5b 275 05 14 30d 100 lt16c 29

Zn-AlPO-5 397 077 10 40 65 ca 12 30

H3PO4 240 - - 25 100 12c 31

ZnZSM-5 450 1 10 40 gt99 ca 6 15

AlPO-5 397 077 10 40 2 ca 04 30

aButene yield is calculated by the equation defined in the Method section

bunder H2 atmosphere

cThe product includes both butene and butane d002 M H2SO4 was added in the GVL solution

38

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1

R (Aring)a σ a Amp a CN a

NbAlS-1 (Dry) Nb=O 1680 0017 082 1 Nb-O 2014 0008 082 3 NbAlS-1

Nb=O 1721 0012 078 1

Nb-O 2014 0004 078 3

NbAlS-1+GVL

Nb=O 1943 0003 075 1

Nb-O 2014 0010 075 3

NbS-1

Nb=O 1711 0032 091 1

Nb-O 2014 0005 091 3

NbS-1+GVL

Nb=O 1770 0004 089 1

Nb-O 2014 0014 089 3 aR = Interatomic distance from central scattering atom σ = Debye-Waller factor Amp = amplitude factor

and CN = coordination number

39

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption

Samples GVLHZSM-5(0041) GVLNbS-1(00271) NbAlS-1(00270041) GVLNbAlS-1(00270041)

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma

Chemical formula Al3692Si92308O192 8GVL Nb2524Si93476O192 8GVL Al3599Nb2429Si89972O192 Al3599Nb2429Si89972O192 8GVL

2θ range for refinement (deg) 3 ndash 50 3 ndash 50 3 ndash 50 3 ndash 50

Detector Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals

Number of hkls 3251 3214 3179 3222

Refinement methods Rietveld Rietveld Rietveld Rietveld

a (Aring) 201351(2) 200604(2) 199955(3) 200697(3)

b (Aring) 199852(2) 198995(1) 198333(3) 199150(3)

c (Aring) 134549(2) 134010(1) 133531(2) 134214(2)

V (Aring3) 541428(11) 534957(7) 529553(15) 536437(15)

RwpRexp Rp () 445135013378 463131253497 553133614058 444933763305

Wavelength (Aring) 082487(1) 082487(1) 082487(1) 082487(1)

Gof χ2 1272 1482 1646 1318

40

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) at room

temperature

Species Atom x y z SOF Beq(Aring2) Wyckoff

HZSM-5(0041) Al1 -00732(5) 00570(7) 08366(7) 003846154 100(5) 8d

Al2 01869(6) -00339(5) 03189(8) 003846154 100(5) 8d

Al3 02207(5) -00626(7) 05256(8) 003846154 100(5) 8d

Al4 01210(5) 00590(7) 10220(8) 003846154 100(5) 8d

Al5 -00703(6) -00272(5) 01933(8) 003846154 100(5) 8d

Al6 01859(5) 00593(6) 06679(8) 003846154 100(5) 8d

Al7 -00745(6) 06734(6) 08243(9) 003846154 100(5) 8d

Al8 01956(6) 01297(5) 03114(7) 003846154 100(5) 8d

Al9 02187(5) 01761(5) 05326(8) 003846154 100(5) 8d

Al10 01228(5) 06749(6) 10400(8) 003846154 100(5) 8d

Al11 -00694(6) 01308(6) 01819(9) 003846154 100(5) 8d

Al12 01859(6) 06714(5) 06756(8) 003846154 100(5) 8d

Si1 -00732(5) 00570(7) 08366(7) 09615385 100(5) 8d

Si2 01869(6) -00339(5) 03189(8) 09615385 100(5) 8d

Si3 02207(5) -00626(7) 05256(8) 09615385 100(5) 8d

Si4 01210(5) 00590(7) 10220(8) 09615385 100(5) 8d

Si5 -00703(6) -00272(5) 01933(8) 09615385 100(5) 8d

Si6 01859(5) 00593(6) 06679(8) 09615385 100(5) 8d

Si7 -00745(6) 06734(6) 08243(9) 09615385 100(5) 8d

Si8 01956(6) 01297(5) 03114(7) 09615385 100(5) 8d

Si9 02187(5) 01761(5) 05326(8) 09615385 100(5) 8d

Si10 01228(5) 06749(6) 10400(8) 09615385 100(5) 8d

Si11 -00694(6) 01308(6) 01819(9) 09615385 100(5) 8d

Si12 01859(6) 06714(5) 06756(8) 09615385 100(5) 8d

O1 01189(10) -00643(12) 02762(13) 1 143(9) 8d

O2 01900(11) -00665(10) 04093(13) 1 143(9) 8d

O3 02017(11) 00485(12) 10198(11) 1 143(9) 8d

O4 -00964(9) -00573(13) 10736(15) 1 143(9) 8d

O5 01132(9) 00573(12) 07009(13) 1 143(9) 8d

O6 02544(10) 00574(13) 07592(13) 1 143(9) 8d

O7 01249(11) 01569(12) 02676(15) 1 143(9) 8d

O8 01995(12) 01482(9) 04331(13) 1 143(9) 8d

O9 01968(12) 06607(9) 00500(12) 1 143(9) 8d

O10 -00922(10) 01564(11) 10827(17) 1 143(9) 8d

O11 01123(10) 06498(11) 07436(14) 1 143(9) 8d

O12 02420(11) 06557(12) 07396(15) 1 143(9) 8d

O13 02109(9) 00468(11) 03170(12) 1 143(9) 8d

O14 -00793(8) 00525(13) 01708(13) 1 143(9) 8d

O15 -00850(10) 01327(12) 08874(17) 1 143(9) 8d

O16 -01009(10) 00004(11) 09239(15) 1 143(9) 8d

O17 -01006(10) 06343(12) -00444(14) 1 143(9) 8d

O18 01746(10) 01273(11) 06145(13) 1 143(9) 8d

O19 01980(12) 00019(10) 06091(12) 1 143(9) 8d

O20 02014(13) 06300(11) 05761(13) 1 143(9) 8d

O21 -00054(11) 00405(12) 07595(12) 1 143(9) 8d

O22 -00045(12) 06580(13) 07876(13) 1 143(9) 8d

O23 -00801(15) 075 0861(2) 1 143(9) 4c

O24 01839(17) 075 0648(2) 1 143(9) 4c

O25 02011(18) 025 0563(2) 1 143(9) 4c

O26 00863(13) 075 0143(2) 1 143(9) 4c

41

GVLI O1 -00251(15) 08553(18) -0468(2) 0500(3) 06(4) 8d

O2 -0013(2) 07533(17) -0531(3) 0500(3) 06(4) 8d

C1 00570(11) 08446(12) -05861(14) 0500(3) 06(4) 8d

C2 00466(18) 09175(12) -05663(18) 0500(3) 06(4) 8d

C3 0004(2) 09222(15) -0484(2) 0500(3) 06(4) 8d

C4 00038(13) 08112(15) -05293(19) 0500(3) 06(4) 8d

C5 -0034(3) 09728(19) -0448(3) 0500(3) 06(4) 8d

H1a 00999(11) 08315(15) -05641(17) 0500(3) 07(5) 8d

H1b 00528(13) 08360(13) -06553(15) 0500(3) 07(5) 8d

H2a 0088(2) 09384(14) -0553(2) 0500(3) 07(5) 8d

H2b 0026(2) 09378(15) -0622(2) 0500(3) 07(5) 8d

H3 0038(2) 09204(15) -04313(18) 0500(3) 07(5) 8d

H5a -0043(3) 0965(2) -0380(3) 0500(3) 07(5) 8d

H5b -0011(4) 10138(17) -0454(3) 0500(3) 07(5) 8d

H5c -0074(3) 0975(3) -0485(3) 0500(3) 07(5) 8d

GVLII O1 -03289(15) -0778(2) -02817(19) 0500(4) 06(4) 8d

O2 -04372(14) -0757(2) -02733(16) 0500(4) 06(4) 8d

C1 -03730(11) -07204(15) -04150(12) 0500(4) 06(4) 8d

C2 -02990(11) -0718(2) -04230(16) 0500(4) 06(4) 8d

C3 -02738(13) -0762(3) -0350(2) 0500(4) 06(4) 8d

C4 -03856(13) -07518(18) -03175(14) 0500(4) 06(4) 8d

C5 -02129(14) -0768(4) -0308(3) 0500(4) 06(4) 8d

H1a -03908(13) -07461(16) -04681(13) 0500(3) 07(5) 8d

H1b -03904(14) -06762(15) -04174(16) 0500(3) 07(5) 8d

H2a -02856(13) -0732(2) -04875(17) 0500(3) 07(5) 8d

H2b -02835(15) -0674(2) -04093(19) 0500(3) 07(5) 8d

H3 -0275(2) -0803(3) -0389(3) 0500(3) 07(5) 8d

H5a -0208(2) -0812(4) -0281(3) 0500(3) 07(5) 8d

H5b -01797(13) -0762(4) -0357(3) 0500(3) 07(5) 8d

H5c -02080(14) -0735(4) -0257(3) 0500(3) 07(5) 8d

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 21: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

20

Fig S12 Characterisation of the acidity of fresh and used zeolites by NH3-TPD

100 150 200 250 300 350 400 450 500 550 600

In

tensity (

au

)

Temperature (oC)

NbAlS-1(00270041) used

NbAlS-1(00270041)

HZSM-5(0041) used

HZSM-5(0041)

21

Fig S13 X-band (ca 9 GHz) EPR spectra of HZSM-5 and post-reaction zeolites activated by γ-irradiation

at 77 K narrow magnetic field-sweep highlighting the induced electron hole defect Al-O-Si signals in

HZSM-5 (0041) and the used sample

300 310 320 330 340 350 360

HZSM-50041) used

Al simulation

Inte

nsity (

au

)

Magnetic field (mT)

HZSM-5(0041)

22

Fig S14 Comparison of SXPD patterns of (a) HZSM-5(0041) (b) NbS-1(00271) and (c) NbAlS-

1(00270041) before and after adsorption of GVL at room temperature [λ = 082487(1) Aring]

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbAlS-1(0027041)

GVLNbAlS-1(0027041)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbS-1(00271)

GVLNbS-1(00271)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

HZSM-5(0041)

GVLHZSM-5(0041)

a

b

c

23

Fig S15 Comparison of the experimental data (black line) and Rietveld refinement (red line) and the

difference between them (grey line) for SXPD patterns of (ab) GVLHZSM-5(0041) (cd) GVLNbS-

1(00271) (ef) GVLNbAlS-1(00270041) at room temperature at a 2θ range of (ace) 3 - 20deg and

(bdf) 20 - 50deg [λ = 082487(1) Aring]

a b

c d

e f

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

24

Fig S16 (a) 29Si NMR spectra of HZSM-5 and NbAlS-1 de-convolution of 29Si NMR spectra of HZSM-5

(b) and NbAlS-1 (c) by Guassian and Lorentzian line shapes

a

b

c

-125 -120 -115 -110 -105 -100 -95 -90 -85

-1023

-1076

-1138

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-4

Cumulative Fitted Peak

-1171

-125 -120 -115 -110 -105 -100 -95 -90 -85

-924-983

-1026

-1057

-1124

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-6

Cumulative Fitted Peak

-1162

-125 -120 -115 -110 -105 -100 -95 -90 -8529

Si chemical shift (ppm)

NbAlS-1(00270041)

HZSM-5(0041)

25

Fig S17 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and calculated INS

spectra for 12 types of NbAlH sites

0 200 400 600 800 1000 1200 1400 1600

1211109876

4

23

5

1

Bare NbAlS-1 (exp)

S(Q

) (a

u)

Neutron energy loss (cm-1)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

26

Fig S18 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and combination of

calculated INS spectra of different NbAlH sites Combination 1 = 3125Site I + 3125Site II +

5Site III + 325Site IV Combination 2 = 675Site III + 325Site IV Site I = 025(NbAlH_1 +

NbAlH_2 + NbAlH_3 + NbAlH_4) Site II = 025(NbAlH_5 + NbAlH_6 + NbAlH_7 +

NbAlH_8) Site III = 05(NbAlH_9 + NbAlH_10) Site IV = 05(NbAlH_11 + NbAlH_12)

Abscissa is scaled down by 097 for combination 1 and 2

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Bare NbAlS-1 (exp)

Combination 1

Combination 2

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

27

Fig S19 Schematic view of the procedure of in situ INS experiment and data collection

Zeolite (Calcined)

Zeolite (activated)

Heating at 450 oC under

He flow for 3 h

Zeolite (Adsorbed)

INS collection 1

Zeolite (Reaction at 280 C)

Adsorption of GVL at 135 oC

Zeolite (Reaction at 300 C)

Zeolite (Reaction at 320 C)

Reaction at 280 oC for 3 min

Reaction at 300 oC for 3 min

Reaction at 320 oC for 3 min

INS collection 2

INS collection 3

INS collection 4

INS collection 5

28

Fig S20 Comparison of the experimental INS spectra of condensed GVL in the solid state (black) and

calculated INS spectra of single GVL molecule (red) The crystal structure of solid GVL is unavailable in the

database

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental GVL

Calculated GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

29

Fig S21 Comparison of the experimental and calculated INS spectra of adsorbed GVL molecules on

NbAlS-1 The structure model derived from SXPD experiments was used for initial DFT modelling where

the positional disorder has been removed in the calculation and this partially accounts for the discrepancies

observed between calculated and experimental INS plots

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental adsorbed GVL

Calculated adsorbed GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

30

Fig S22 View of the INS spectrum for the empty catalysis cell used for this experiment The empty can has

the features below 300 cm-1 and at approximately 457 and 659 cm-1

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Empty can

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

31

Fig S23 Comparison of the experimental INS spectra for bare and GVL-adsorbed catalyst Spectra shown

are after subtraction of the empty cell The INS spectrum of the catalyst on GVL adsorption at 135 degC shows

a significant increase in total intensity demonstrating the binding of GVL to the catalyst sites

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

GVLNbAlS-1(00270041)

Bare NbAlS-1(00270041)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

32

Fig S24 Comparison of the experimental INS spectra of all butene isomers and reacted GVL at 320 degC

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Reaction 320 oC

trans-2-butene

i-butene

1-butene

cis-2-butene

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

33

Supplementary Tables

Table S1 Textural properties (data determined from N2 sorption isotherms at 77 K) and crystallite size (data

determined from SEM) of all zeolites used in this study

Samples ABET (m2 g-1)a Amic (m2 g-1) b Aext (m2 g-1) c Vmic (cm3 g-1) d Vtotal (cm3 g-1) e

Crystallite sizef

(nm)

HZSM-5 (00271) 413 314 99 019 033 200-500

HZSM-5 (0041) 346 259 87 015 028 200-500

HZSM-5 (00671) 348 277 71 016 026 200-500

NbS-1 (00271) 377 284 93 017 029 300-500

NbS-1 (0041) 357 282 75 016 027 300-500

NbAlS-1(00270041) 408 263 145 018 041 300-500

NbAlS-1(00400271) 376 268 108 017 033 300-500

HZSM-5 (0041)g 338 258 80 015 027 200-500

NbAlS-1(00270041)g 396 262 134 018 039 300-500

aBET specific surface area bMicropore surface area cExternal surface area dMicropore volume eTotal pore volume fObtainted from SEM gUsed catalyst

34

Table S2 Spin-Hamiltonian parameters of radiation induced Nb(IV) and electron hole Al-O-Si defects

from simulation of CW X-band EPR spectra in Fig 1 lw is the homogeneous Lorentzian linewidth g and A

are the principle values of the g and hyperfine interaction tensors

Signal Parameters

Electron

Spin

Nuclear

Spin g-tensor g-Strain

A-tensor

(G)

lw

(mT)

Nb defect 12 92 [1935 1935 1866] [004 004 00] [159 159

310] [0 40]

Al defect 12 52 [20012 2007 2045] [00 0003 004] [7 7 -] [00 04]

35

Table S3 Summary of acidity of all zeolites used in this work Data were determined by NH3-TPD and

Pyridine-IR studies

Catalyst Weak acida

(mmol g-1)

Strong acida

(mmol g-1)

Total acida

(mmol g-1)

LB acid

ratiob

HZSM-5(00271) 015 025 04 039

HZSM-5(0041) 024 028 052 037

HZSM-5(00671) 033 03 063 027

NbS-1(00271) 004 0 004 -

NbS-1(0041) 004 0 004 -

NbAlS-1(00270041) 022 0 022 469

NbAlS-1(00400271) 023 0 023 35 aFrom NH3-TPD bFrom Pyridine-IR

36

Table S4 The butenes distribution in equilibrium at 320 degC and the distribution of butene isomers produced

from conversion of 30 GVL at 320 degC over catalysts

Catalyst Distribution ()

i-butene 1-butene trans-2-butene cis-2-butene

Equilibrium27 45 12 27 16

HZSM-5(0041) 44 14 25 17

NbAlS-1(00270041) 18 19 38 25

NbOPO4 15 20 39 26

37

Table S5 Comparison of the catalytic performance of reported catalysts for the conversion of GVL in aqueous solution (25-40 wt ) to butenes

Catalyst Reaction Conditions GVL

concentration

(wt )

GVL

conversion

()

Butene

Yield

(mol )a

Ref

Temperature

(degC)

WHSV

(h-1)

Pressure

(bar)

NbAlS-1(00270041) 320 018 1 30 100 993 this work

SiO2Al2O3 375 09 1 30 97 75 28

HZSM-5(0041) 320 018 1 30 76 232 this work

LaZSM-5 450 1 10 40 gt99 ca 21 15

PdNb2O5b 275 05 14 30d 100 lt16c 29

Zn-AlPO-5 397 077 10 40 65 ca 12 30

H3PO4 240 - - 25 100 12c 31

ZnZSM-5 450 1 10 40 gt99 ca 6 15

AlPO-5 397 077 10 40 2 ca 04 30

aButene yield is calculated by the equation defined in the Method section

bunder H2 atmosphere

cThe product includes both butene and butane d002 M H2SO4 was added in the GVL solution

38

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1

R (Aring)a σ a Amp a CN a

NbAlS-1 (Dry) Nb=O 1680 0017 082 1 Nb-O 2014 0008 082 3 NbAlS-1

Nb=O 1721 0012 078 1

Nb-O 2014 0004 078 3

NbAlS-1+GVL

Nb=O 1943 0003 075 1

Nb-O 2014 0010 075 3

NbS-1

Nb=O 1711 0032 091 1

Nb-O 2014 0005 091 3

NbS-1+GVL

Nb=O 1770 0004 089 1

Nb-O 2014 0014 089 3 aR = Interatomic distance from central scattering atom σ = Debye-Waller factor Amp = amplitude factor

and CN = coordination number

39

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption

Samples GVLHZSM-5(0041) GVLNbS-1(00271) NbAlS-1(00270041) GVLNbAlS-1(00270041)

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma

Chemical formula Al3692Si92308O192 8GVL Nb2524Si93476O192 8GVL Al3599Nb2429Si89972O192 Al3599Nb2429Si89972O192 8GVL

2θ range for refinement (deg) 3 ndash 50 3 ndash 50 3 ndash 50 3 ndash 50

Detector Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals

Number of hkls 3251 3214 3179 3222

Refinement methods Rietveld Rietveld Rietveld Rietveld

a (Aring) 201351(2) 200604(2) 199955(3) 200697(3)

b (Aring) 199852(2) 198995(1) 198333(3) 199150(3)

c (Aring) 134549(2) 134010(1) 133531(2) 134214(2)

V (Aring3) 541428(11) 534957(7) 529553(15) 536437(15)

RwpRexp Rp () 445135013378 463131253497 553133614058 444933763305

Wavelength (Aring) 082487(1) 082487(1) 082487(1) 082487(1)

Gof χ2 1272 1482 1646 1318

40

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) at room

temperature

Species Atom x y z SOF Beq(Aring2) Wyckoff

HZSM-5(0041) Al1 -00732(5) 00570(7) 08366(7) 003846154 100(5) 8d

Al2 01869(6) -00339(5) 03189(8) 003846154 100(5) 8d

Al3 02207(5) -00626(7) 05256(8) 003846154 100(5) 8d

Al4 01210(5) 00590(7) 10220(8) 003846154 100(5) 8d

Al5 -00703(6) -00272(5) 01933(8) 003846154 100(5) 8d

Al6 01859(5) 00593(6) 06679(8) 003846154 100(5) 8d

Al7 -00745(6) 06734(6) 08243(9) 003846154 100(5) 8d

Al8 01956(6) 01297(5) 03114(7) 003846154 100(5) 8d

Al9 02187(5) 01761(5) 05326(8) 003846154 100(5) 8d

Al10 01228(5) 06749(6) 10400(8) 003846154 100(5) 8d

Al11 -00694(6) 01308(6) 01819(9) 003846154 100(5) 8d

Al12 01859(6) 06714(5) 06756(8) 003846154 100(5) 8d

Si1 -00732(5) 00570(7) 08366(7) 09615385 100(5) 8d

Si2 01869(6) -00339(5) 03189(8) 09615385 100(5) 8d

Si3 02207(5) -00626(7) 05256(8) 09615385 100(5) 8d

Si4 01210(5) 00590(7) 10220(8) 09615385 100(5) 8d

Si5 -00703(6) -00272(5) 01933(8) 09615385 100(5) 8d

Si6 01859(5) 00593(6) 06679(8) 09615385 100(5) 8d

Si7 -00745(6) 06734(6) 08243(9) 09615385 100(5) 8d

Si8 01956(6) 01297(5) 03114(7) 09615385 100(5) 8d

Si9 02187(5) 01761(5) 05326(8) 09615385 100(5) 8d

Si10 01228(5) 06749(6) 10400(8) 09615385 100(5) 8d

Si11 -00694(6) 01308(6) 01819(9) 09615385 100(5) 8d

Si12 01859(6) 06714(5) 06756(8) 09615385 100(5) 8d

O1 01189(10) -00643(12) 02762(13) 1 143(9) 8d

O2 01900(11) -00665(10) 04093(13) 1 143(9) 8d

O3 02017(11) 00485(12) 10198(11) 1 143(9) 8d

O4 -00964(9) -00573(13) 10736(15) 1 143(9) 8d

O5 01132(9) 00573(12) 07009(13) 1 143(9) 8d

O6 02544(10) 00574(13) 07592(13) 1 143(9) 8d

O7 01249(11) 01569(12) 02676(15) 1 143(9) 8d

O8 01995(12) 01482(9) 04331(13) 1 143(9) 8d

O9 01968(12) 06607(9) 00500(12) 1 143(9) 8d

O10 -00922(10) 01564(11) 10827(17) 1 143(9) 8d

O11 01123(10) 06498(11) 07436(14) 1 143(9) 8d

O12 02420(11) 06557(12) 07396(15) 1 143(9) 8d

O13 02109(9) 00468(11) 03170(12) 1 143(9) 8d

O14 -00793(8) 00525(13) 01708(13) 1 143(9) 8d

O15 -00850(10) 01327(12) 08874(17) 1 143(9) 8d

O16 -01009(10) 00004(11) 09239(15) 1 143(9) 8d

O17 -01006(10) 06343(12) -00444(14) 1 143(9) 8d

O18 01746(10) 01273(11) 06145(13) 1 143(9) 8d

O19 01980(12) 00019(10) 06091(12) 1 143(9) 8d

O20 02014(13) 06300(11) 05761(13) 1 143(9) 8d

O21 -00054(11) 00405(12) 07595(12) 1 143(9) 8d

O22 -00045(12) 06580(13) 07876(13) 1 143(9) 8d

O23 -00801(15) 075 0861(2) 1 143(9) 4c

O24 01839(17) 075 0648(2) 1 143(9) 4c

O25 02011(18) 025 0563(2) 1 143(9) 4c

O26 00863(13) 075 0143(2) 1 143(9) 4c

41

GVLI O1 -00251(15) 08553(18) -0468(2) 0500(3) 06(4) 8d

O2 -0013(2) 07533(17) -0531(3) 0500(3) 06(4) 8d

C1 00570(11) 08446(12) -05861(14) 0500(3) 06(4) 8d

C2 00466(18) 09175(12) -05663(18) 0500(3) 06(4) 8d

C3 0004(2) 09222(15) -0484(2) 0500(3) 06(4) 8d

C4 00038(13) 08112(15) -05293(19) 0500(3) 06(4) 8d

C5 -0034(3) 09728(19) -0448(3) 0500(3) 06(4) 8d

H1a 00999(11) 08315(15) -05641(17) 0500(3) 07(5) 8d

H1b 00528(13) 08360(13) -06553(15) 0500(3) 07(5) 8d

H2a 0088(2) 09384(14) -0553(2) 0500(3) 07(5) 8d

H2b 0026(2) 09378(15) -0622(2) 0500(3) 07(5) 8d

H3 0038(2) 09204(15) -04313(18) 0500(3) 07(5) 8d

H5a -0043(3) 0965(2) -0380(3) 0500(3) 07(5) 8d

H5b -0011(4) 10138(17) -0454(3) 0500(3) 07(5) 8d

H5c -0074(3) 0975(3) -0485(3) 0500(3) 07(5) 8d

GVLII O1 -03289(15) -0778(2) -02817(19) 0500(4) 06(4) 8d

O2 -04372(14) -0757(2) -02733(16) 0500(4) 06(4) 8d

C1 -03730(11) -07204(15) -04150(12) 0500(4) 06(4) 8d

C2 -02990(11) -0718(2) -04230(16) 0500(4) 06(4) 8d

C3 -02738(13) -0762(3) -0350(2) 0500(4) 06(4) 8d

C4 -03856(13) -07518(18) -03175(14) 0500(4) 06(4) 8d

C5 -02129(14) -0768(4) -0308(3) 0500(4) 06(4) 8d

H1a -03908(13) -07461(16) -04681(13) 0500(3) 07(5) 8d

H1b -03904(14) -06762(15) -04174(16) 0500(3) 07(5) 8d

H2a -02856(13) -0732(2) -04875(17) 0500(3) 07(5) 8d

H2b -02835(15) -0674(2) -04093(19) 0500(3) 07(5) 8d

H3 -0275(2) -0803(3) -0389(3) 0500(3) 07(5) 8d

H5a -0208(2) -0812(4) -0281(3) 0500(3) 07(5) 8d

H5b -01797(13) -0762(4) -0357(3) 0500(3) 07(5) 8d

H5c -02080(14) -0735(4) -0257(3) 0500(3) 07(5) 8d

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 22: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

21

Fig S13 X-band (ca 9 GHz) EPR spectra of HZSM-5 and post-reaction zeolites activated by γ-irradiation

at 77 K narrow magnetic field-sweep highlighting the induced electron hole defect Al-O-Si signals in

HZSM-5 (0041) and the used sample

300 310 320 330 340 350 360

HZSM-50041) used

Al simulation

Inte

nsity (

au

)

Magnetic field (mT)

HZSM-5(0041)

22

Fig S14 Comparison of SXPD patterns of (a) HZSM-5(0041) (b) NbS-1(00271) and (c) NbAlS-

1(00270041) before and after adsorption of GVL at room temperature [λ = 082487(1) Aring]

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbAlS-1(0027041)

GVLNbAlS-1(0027041)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbS-1(00271)

GVLNbS-1(00271)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

HZSM-5(0041)

GVLHZSM-5(0041)

a

b

c

23

Fig S15 Comparison of the experimental data (black line) and Rietveld refinement (red line) and the

difference between them (grey line) for SXPD patterns of (ab) GVLHZSM-5(0041) (cd) GVLNbS-

1(00271) (ef) GVLNbAlS-1(00270041) at room temperature at a 2θ range of (ace) 3 - 20deg and

(bdf) 20 - 50deg [λ = 082487(1) Aring]

a b

c d

e f

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

24

Fig S16 (a) 29Si NMR spectra of HZSM-5 and NbAlS-1 de-convolution of 29Si NMR spectra of HZSM-5

(b) and NbAlS-1 (c) by Guassian and Lorentzian line shapes

a

b

c

-125 -120 -115 -110 -105 -100 -95 -90 -85

-1023

-1076

-1138

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-4

Cumulative Fitted Peak

-1171

-125 -120 -115 -110 -105 -100 -95 -90 -85

-924-983

-1026

-1057

-1124

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-6

Cumulative Fitted Peak

-1162

-125 -120 -115 -110 -105 -100 -95 -90 -8529

Si chemical shift (ppm)

NbAlS-1(00270041)

HZSM-5(0041)

25

Fig S17 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and calculated INS

spectra for 12 types of NbAlH sites

0 200 400 600 800 1000 1200 1400 1600

1211109876

4

23

5

1

Bare NbAlS-1 (exp)

S(Q

) (a

u)

Neutron energy loss (cm-1)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

26

Fig S18 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and combination of

calculated INS spectra of different NbAlH sites Combination 1 = 3125Site I + 3125Site II +

5Site III + 325Site IV Combination 2 = 675Site III + 325Site IV Site I = 025(NbAlH_1 +

NbAlH_2 + NbAlH_3 + NbAlH_4) Site II = 025(NbAlH_5 + NbAlH_6 + NbAlH_7 +

NbAlH_8) Site III = 05(NbAlH_9 + NbAlH_10) Site IV = 05(NbAlH_11 + NbAlH_12)

Abscissa is scaled down by 097 for combination 1 and 2

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Bare NbAlS-1 (exp)

Combination 1

Combination 2

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

27

Fig S19 Schematic view of the procedure of in situ INS experiment and data collection

Zeolite (Calcined)

Zeolite (activated)

Heating at 450 oC under

He flow for 3 h

Zeolite (Adsorbed)

INS collection 1

Zeolite (Reaction at 280 C)

Adsorption of GVL at 135 oC

Zeolite (Reaction at 300 C)

Zeolite (Reaction at 320 C)

Reaction at 280 oC for 3 min

Reaction at 300 oC for 3 min

Reaction at 320 oC for 3 min

INS collection 2

INS collection 3

INS collection 4

INS collection 5

28

Fig S20 Comparison of the experimental INS spectra of condensed GVL in the solid state (black) and

calculated INS spectra of single GVL molecule (red) The crystal structure of solid GVL is unavailable in the

database

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental GVL

Calculated GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

29

Fig S21 Comparison of the experimental and calculated INS spectra of adsorbed GVL molecules on

NbAlS-1 The structure model derived from SXPD experiments was used for initial DFT modelling where

the positional disorder has been removed in the calculation and this partially accounts for the discrepancies

observed between calculated and experimental INS plots

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental adsorbed GVL

Calculated adsorbed GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

30

Fig S22 View of the INS spectrum for the empty catalysis cell used for this experiment The empty can has

the features below 300 cm-1 and at approximately 457 and 659 cm-1

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Empty can

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

31

Fig S23 Comparison of the experimental INS spectra for bare and GVL-adsorbed catalyst Spectra shown

are after subtraction of the empty cell The INS spectrum of the catalyst on GVL adsorption at 135 degC shows

a significant increase in total intensity demonstrating the binding of GVL to the catalyst sites

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

GVLNbAlS-1(00270041)

Bare NbAlS-1(00270041)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

32

Fig S24 Comparison of the experimental INS spectra of all butene isomers and reacted GVL at 320 degC

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Reaction 320 oC

trans-2-butene

i-butene

1-butene

cis-2-butene

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

33

Supplementary Tables

Table S1 Textural properties (data determined from N2 sorption isotherms at 77 K) and crystallite size (data

determined from SEM) of all zeolites used in this study

Samples ABET (m2 g-1)a Amic (m2 g-1) b Aext (m2 g-1) c Vmic (cm3 g-1) d Vtotal (cm3 g-1) e

Crystallite sizef

(nm)

HZSM-5 (00271) 413 314 99 019 033 200-500

HZSM-5 (0041) 346 259 87 015 028 200-500

HZSM-5 (00671) 348 277 71 016 026 200-500

NbS-1 (00271) 377 284 93 017 029 300-500

NbS-1 (0041) 357 282 75 016 027 300-500

NbAlS-1(00270041) 408 263 145 018 041 300-500

NbAlS-1(00400271) 376 268 108 017 033 300-500

HZSM-5 (0041)g 338 258 80 015 027 200-500

NbAlS-1(00270041)g 396 262 134 018 039 300-500

aBET specific surface area bMicropore surface area cExternal surface area dMicropore volume eTotal pore volume fObtainted from SEM gUsed catalyst

34

Table S2 Spin-Hamiltonian parameters of radiation induced Nb(IV) and electron hole Al-O-Si defects

from simulation of CW X-band EPR spectra in Fig 1 lw is the homogeneous Lorentzian linewidth g and A

are the principle values of the g and hyperfine interaction tensors

Signal Parameters

Electron

Spin

Nuclear

Spin g-tensor g-Strain

A-tensor

(G)

lw

(mT)

Nb defect 12 92 [1935 1935 1866] [004 004 00] [159 159

310] [0 40]

Al defect 12 52 [20012 2007 2045] [00 0003 004] [7 7 -] [00 04]

35

Table S3 Summary of acidity of all zeolites used in this work Data were determined by NH3-TPD and

Pyridine-IR studies

Catalyst Weak acida

(mmol g-1)

Strong acida

(mmol g-1)

Total acida

(mmol g-1)

LB acid

ratiob

HZSM-5(00271) 015 025 04 039

HZSM-5(0041) 024 028 052 037

HZSM-5(00671) 033 03 063 027

NbS-1(00271) 004 0 004 -

NbS-1(0041) 004 0 004 -

NbAlS-1(00270041) 022 0 022 469

NbAlS-1(00400271) 023 0 023 35 aFrom NH3-TPD bFrom Pyridine-IR

36

Table S4 The butenes distribution in equilibrium at 320 degC and the distribution of butene isomers produced

from conversion of 30 GVL at 320 degC over catalysts

Catalyst Distribution ()

i-butene 1-butene trans-2-butene cis-2-butene

Equilibrium27 45 12 27 16

HZSM-5(0041) 44 14 25 17

NbAlS-1(00270041) 18 19 38 25

NbOPO4 15 20 39 26

37

Table S5 Comparison of the catalytic performance of reported catalysts for the conversion of GVL in aqueous solution (25-40 wt ) to butenes

Catalyst Reaction Conditions GVL

concentration

(wt )

GVL

conversion

()

Butene

Yield

(mol )a

Ref

Temperature

(degC)

WHSV

(h-1)

Pressure

(bar)

NbAlS-1(00270041) 320 018 1 30 100 993 this work

SiO2Al2O3 375 09 1 30 97 75 28

HZSM-5(0041) 320 018 1 30 76 232 this work

LaZSM-5 450 1 10 40 gt99 ca 21 15

PdNb2O5b 275 05 14 30d 100 lt16c 29

Zn-AlPO-5 397 077 10 40 65 ca 12 30

H3PO4 240 - - 25 100 12c 31

ZnZSM-5 450 1 10 40 gt99 ca 6 15

AlPO-5 397 077 10 40 2 ca 04 30

aButene yield is calculated by the equation defined in the Method section

bunder H2 atmosphere

cThe product includes both butene and butane d002 M H2SO4 was added in the GVL solution

38

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1

R (Aring)a σ a Amp a CN a

NbAlS-1 (Dry) Nb=O 1680 0017 082 1 Nb-O 2014 0008 082 3 NbAlS-1

Nb=O 1721 0012 078 1

Nb-O 2014 0004 078 3

NbAlS-1+GVL

Nb=O 1943 0003 075 1

Nb-O 2014 0010 075 3

NbS-1

Nb=O 1711 0032 091 1

Nb-O 2014 0005 091 3

NbS-1+GVL

Nb=O 1770 0004 089 1

Nb-O 2014 0014 089 3 aR = Interatomic distance from central scattering atom σ = Debye-Waller factor Amp = amplitude factor

and CN = coordination number

39

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption

Samples GVLHZSM-5(0041) GVLNbS-1(00271) NbAlS-1(00270041) GVLNbAlS-1(00270041)

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma

Chemical formula Al3692Si92308O192 8GVL Nb2524Si93476O192 8GVL Al3599Nb2429Si89972O192 Al3599Nb2429Si89972O192 8GVL

2θ range for refinement (deg) 3 ndash 50 3 ndash 50 3 ndash 50 3 ndash 50

Detector Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals

Number of hkls 3251 3214 3179 3222

Refinement methods Rietveld Rietveld Rietveld Rietveld

a (Aring) 201351(2) 200604(2) 199955(3) 200697(3)

b (Aring) 199852(2) 198995(1) 198333(3) 199150(3)

c (Aring) 134549(2) 134010(1) 133531(2) 134214(2)

V (Aring3) 541428(11) 534957(7) 529553(15) 536437(15)

RwpRexp Rp () 445135013378 463131253497 553133614058 444933763305

Wavelength (Aring) 082487(1) 082487(1) 082487(1) 082487(1)

Gof χ2 1272 1482 1646 1318

40

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) at room

temperature

Species Atom x y z SOF Beq(Aring2) Wyckoff

HZSM-5(0041) Al1 -00732(5) 00570(7) 08366(7) 003846154 100(5) 8d

Al2 01869(6) -00339(5) 03189(8) 003846154 100(5) 8d

Al3 02207(5) -00626(7) 05256(8) 003846154 100(5) 8d

Al4 01210(5) 00590(7) 10220(8) 003846154 100(5) 8d

Al5 -00703(6) -00272(5) 01933(8) 003846154 100(5) 8d

Al6 01859(5) 00593(6) 06679(8) 003846154 100(5) 8d

Al7 -00745(6) 06734(6) 08243(9) 003846154 100(5) 8d

Al8 01956(6) 01297(5) 03114(7) 003846154 100(5) 8d

Al9 02187(5) 01761(5) 05326(8) 003846154 100(5) 8d

Al10 01228(5) 06749(6) 10400(8) 003846154 100(5) 8d

Al11 -00694(6) 01308(6) 01819(9) 003846154 100(5) 8d

Al12 01859(6) 06714(5) 06756(8) 003846154 100(5) 8d

Si1 -00732(5) 00570(7) 08366(7) 09615385 100(5) 8d

Si2 01869(6) -00339(5) 03189(8) 09615385 100(5) 8d

Si3 02207(5) -00626(7) 05256(8) 09615385 100(5) 8d

Si4 01210(5) 00590(7) 10220(8) 09615385 100(5) 8d

Si5 -00703(6) -00272(5) 01933(8) 09615385 100(5) 8d

Si6 01859(5) 00593(6) 06679(8) 09615385 100(5) 8d

Si7 -00745(6) 06734(6) 08243(9) 09615385 100(5) 8d

Si8 01956(6) 01297(5) 03114(7) 09615385 100(5) 8d

Si9 02187(5) 01761(5) 05326(8) 09615385 100(5) 8d

Si10 01228(5) 06749(6) 10400(8) 09615385 100(5) 8d

Si11 -00694(6) 01308(6) 01819(9) 09615385 100(5) 8d

Si12 01859(6) 06714(5) 06756(8) 09615385 100(5) 8d

O1 01189(10) -00643(12) 02762(13) 1 143(9) 8d

O2 01900(11) -00665(10) 04093(13) 1 143(9) 8d

O3 02017(11) 00485(12) 10198(11) 1 143(9) 8d

O4 -00964(9) -00573(13) 10736(15) 1 143(9) 8d

O5 01132(9) 00573(12) 07009(13) 1 143(9) 8d

O6 02544(10) 00574(13) 07592(13) 1 143(9) 8d

O7 01249(11) 01569(12) 02676(15) 1 143(9) 8d

O8 01995(12) 01482(9) 04331(13) 1 143(9) 8d

O9 01968(12) 06607(9) 00500(12) 1 143(9) 8d

O10 -00922(10) 01564(11) 10827(17) 1 143(9) 8d

O11 01123(10) 06498(11) 07436(14) 1 143(9) 8d

O12 02420(11) 06557(12) 07396(15) 1 143(9) 8d

O13 02109(9) 00468(11) 03170(12) 1 143(9) 8d

O14 -00793(8) 00525(13) 01708(13) 1 143(9) 8d

O15 -00850(10) 01327(12) 08874(17) 1 143(9) 8d

O16 -01009(10) 00004(11) 09239(15) 1 143(9) 8d

O17 -01006(10) 06343(12) -00444(14) 1 143(9) 8d

O18 01746(10) 01273(11) 06145(13) 1 143(9) 8d

O19 01980(12) 00019(10) 06091(12) 1 143(9) 8d

O20 02014(13) 06300(11) 05761(13) 1 143(9) 8d

O21 -00054(11) 00405(12) 07595(12) 1 143(9) 8d

O22 -00045(12) 06580(13) 07876(13) 1 143(9) 8d

O23 -00801(15) 075 0861(2) 1 143(9) 4c

O24 01839(17) 075 0648(2) 1 143(9) 4c

O25 02011(18) 025 0563(2) 1 143(9) 4c

O26 00863(13) 075 0143(2) 1 143(9) 4c

41

GVLI O1 -00251(15) 08553(18) -0468(2) 0500(3) 06(4) 8d

O2 -0013(2) 07533(17) -0531(3) 0500(3) 06(4) 8d

C1 00570(11) 08446(12) -05861(14) 0500(3) 06(4) 8d

C2 00466(18) 09175(12) -05663(18) 0500(3) 06(4) 8d

C3 0004(2) 09222(15) -0484(2) 0500(3) 06(4) 8d

C4 00038(13) 08112(15) -05293(19) 0500(3) 06(4) 8d

C5 -0034(3) 09728(19) -0448(3) 0500(3) 06(4) 8d

H1a 00999(11) 08315(15) -05641(17) 0500(3) 07(5) 8d

H1b 00528(13) 08360(13) -06553(15) 0500(3) 07(5) 8d

H2a 0088(2) 09384(14) -0553(2) 0500(3) 07(5) 8d

H2b 0026(2) 09378(15) -0622(2) 0500(3) 07(5) 8d

H3 0038(2) 09204(15) -04313(18) 0500(3) 07(5) 8d

H5a -0043(3) 0965(2) -0380(3) 0500(3) 07(5) 8d

H5b -0011(4) 10138(17) -0454(3) 0500(3) 07(5) 8d

H5c -0074(3) 0975(3) -0485(3) 0500(3) 07(5) 8d

GVLII O1 -03289(15) -0778(2) -02817(19) 0500(4) 06(4) 8d

O2 -04372(14) -0757(2) -02733(16) 0500(4) 06(4) 8d

C1 -03730(11) -07204(15) -04150(12) 0500(4) 06(4) 8d

C2 -02990(11) -0718(2) -04230(16) 0500(4) 06(4) 8d

C3 -02738(13) -0762(3) -0350(2) 0500(4) 06(4) 8d

C4 -03856(13) -07518(18) -03175(14) 0500(4) 06(4) 8d

C5 -02129(14) -0768(4) -0308(3) 0500(4) 06(4) 8d

H1a -03908(13) -07461(16) -04681(13) 0500(3) 07(5) 8d

H1b -03904(14) -06762(15) -04174(16) 0500(3) 07(5) 8d

H2a -02856(13) -0732(2) -04875(17) 0500(3) 07(5) 8d

H2b -02835(15) -0674(2) -04093(19) 0500(3) 07(5) 8d

H3 -0275(2) -0803(3) -0389(3) 0500(3) 07(5) 8d

H5a -0208(2) -0812(4) -0281(3) 0500(3) 07(5) 8d

H5b -01797(13) -0762(4) -0357(3) 0500(3) 07(5) 8d

H5c -02080(14) -0735(4) -0257(3) 0500(3) 07(5) 8d

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 23: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

22

Fig S14 Comparison of SXPD patterns of (a) HZSM-5(0041) (b) NbS-1(00271) and (c) NbAlS-

1(00270041) before and after adsorption of GVL at room temperature [λ = 082487(1) Aring]

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbAlS-1(0027041)

GVLNbAlS-1(0027041)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

NbS-1(00271)

GVLNbS-1(00271)

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

HZSM-5(0041)

GVLHZSM-5(0041)

a

b

c

23

Fig S15 Comparison of the experimental data (black line) and Rietveld refinement (red line) and the

difference between them (grey line) for SXPD patterns of (ab) GVLHZSM-5(0041) (cd) GVLNbS-

1(00271) (ef) GVLNbAlS-1(00270041) at room temperature at a 2θ range of (ace) 3 - 20deg and

(bdf) 20 - 50deg [λ = 082487(1) Aring]

a b

c d

e f

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

24

Fig S16 (a) 29Si NMR spectra of HZSM-5 and NbAlS-1 de-convolution of 29Si NMR spectra of HZSM-5

(b) and NbAlS-1 (c) by Guassian and Lorentzian line shapes

a

b

c

-125 -120 -115 -110 -105 -100 -95 -90 -85

-1023

-1076

-1138

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-4

Cumulative Fitted Peak

-1171

-125 -120 -115 -110 -105 -100 -95 -90 -85

-924-983

-1026

-1057

-1124

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-6

Cumulative Fitted Peak

-1162

-125 -120 -115 -110 -105 -100 -95 -90 -8529

Si chemical shift (ppm)

NbAlS-1(00270041)

HZSM-5(0041)

25

Fig S17 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and calculated INS

spectra for 12 types of NbAlH sites

0 200 400 600 800 1000 1200 1400 1600

1211109876

4

23

5

1

Bare NbAlS-1 (exp)

S(Q

) (a

u)

Neutron energy loss (cm-1)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

26

Fig S18 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and combination of

calculated INS spectra of different NbAlH sites Combination 1 = 3125Site I + 3125Site II +

5Site III + 325Site IV Combination 2 = 675Site III + 325Site IV Site I = 025(NbAlH_1 +

NbAlH_2 + NbAlH_3 + NbAlH_4) Site II = 025(NbAlH_5 + NbAlH_6 + NbAlH_7 +

NbAlH_8) Site III = 05(NbAlH_9 + NbAlH_10) Site IV = 05(NbAlH_11 + NbAlH_12)

Abscissa is scaled down by 097 for combination 1 and 2

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Bare NbAlS-1 (exp)

Combination 1

Combination 2

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

27

Fig S19 Schematic view of the procedure of in situ INS experiment and data collection

Zeolite (Calcined)

Zeolite (activated)

Heating at 450 oC under

He flow for 3 h

Zeolite (Adsorbed)

INS collection 1

Zeolite (Reaction at 280 C)

Adsorption of GVL at 135 oC

Zeolite (Reaction at 300 C)

Zeolite (Reaction at 320 C)

Reaction at 280 oC for 3 min

Reaction at 300 oC for 3 min

Reaction at 320 oC for 3 min

INS collection 2

INS collection 3

INS collection 4

INS collection 5

28

Fig S20 Comparison of the experimental INS spectra of condensed GVL in the solid state (black) and

calculated INS spectra of single GVL molecule (red) The crystal structure of solid GVL is unavailable in the

database

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental GVL

Calculated GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

29

Fig S21 Comparison of the experimental and calculated INS spectra of adsorbed GVL molecules on

NbAlS-1 The structure model derived from SXPD experiments was used for initial DFT modelling where

the positional disorder has been removed in the calculation and this partially accounts for the discrepancies

observed between calculated and experimental INS plots

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental adsorbed GVL

Calculated adsorbed GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

30

Fig S22 View of the INS spectrum for the empty catalysis cell used for this experiment The empty can has

the features below 300 cm-1 and at approximately 457 and 659 cm-1

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Empty can

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

31

Fig S23 Comparison of the experimental INS spectra for bare and GVL-adsorbed catalyst Spectra shown

are after subtraction of the empty cell The INS spectrum of the catalyst on GVL adsorption at 135 degC shows

a significant increase in total intensity demonstrating the binding of GVL to the catalyst sites

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

GVLNbAlS-1(00270041)

Bare NbAlS-1(00270041)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

32

Fig S24 Comparison of the experimental INS spectra of all butene isomers and reacted GVL at 320 degC

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Reaction 320 oC

trans-2-butene

i-butene

1-butene

cis-2-butene

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

33

Supplementary Tables

Table S1 Textural properties (data determined from N2 sorption isotherms at 77 K) and crystallite size (data

determined from SEM) of all zeolites used in this study

Samples ABET (m2 g-1)a Amic (m2 g-1) b Aext (m2 g-1) c Vmic (cm3 g-1) d Vtotal (cm3 g-1) e

Crystallite sizef

(nm)

HZSM-5 (00271) 413 314 99 019 033 200-500

HZSM-5 (0041) 346 259 87 015 028 200-500

HZSM-5 (00671) 348 277 71 016 026 200-500

NbS-1 (00271) 377 284 93 017 029 300-500

NbS-1 (0041) 357 282 75 016 027 300-500

NbAlS-1(00270041) 408 263 145 018 041 300-500

NbAlS-1(00400271) 376 268 108 017 033 300-500

HZSM-5 (0041)g 338 258 80 015 027 200-500

NbAlS-1(00270041)g 396 262 134 018 039 300-500

aBET specific surface area bMicropore surface area cExternal surface area dMicropore volume eTotal pore volume fObtainted from SEM gUsed catalyst

34

Table S2 Spin-Hamiltonian parameters of radiation induced Nb(IV) and electron hole Al-O-Si defects

from simulation of CW X-band EPR spectra in Fig 1 lw is the homogeneous Lorentzian linewidth g and A

are the principle values of the g and hyperfine interaction tensors

Signal Parameters

Electron

Spin

Nuclear

Spin g-tensor g-Strain

A-tensor

(G)

lw

(mT)

Nb defect 12 92 [1935 1935 1866] [004 004 00] [159 159

310] [0 40]

Al defect 12 52 [20012 2007 2045] [00 0003 004] [7 7 -] [00 04]

35

Table S3 Summary of acidity of all zeolites used in this work Data were determined by NH3-TPD and

Pyridine-IR studies

Catalyst Weak acida

(mmol g-1)

Strong acida

(mmol g-1)

Total acida

(mmol g-1)

LB acid

ratiob

HZSM-5(00271) 015 025 04 039

HZSM-5(0041) 024 028 052 037

HZSM-5(00671) 033 03 063 027

NbS-1(00271) 004 0 004 -

NbS-1(0041) 004 0 004 -

NbAlS-1(00270041) 022 0 022 469

NbAlS-1(00400271) 023 0 023 35 aFrom NH3-TPD bFrom Pyridine-IR

36

Table S4 The butenes distribution in equilibrium at 320 degC and the distribution of butene isomers produced

from conversion of 30 GVL at 320 degC over catalysts

Catalyst Distribution ()

i-butene 1-butene trans-2-butene cis-2-butene

Equilibrium27 45 12 27 16

HZSM-5(0041) 44 14 25 17

NbAlS-1(00270041) 18 19 38 25

NbOPO4 15 20 39 26

37

Table S5 Comparison of the catalytic performance of reported catalysts for the conversion of GVL in aqueous solution (25-40 wt ) to butenes

Catalyst Reaction Conditions GVL

concentration

(wt )

GVL

conversion

()

Butene

Yield

(mol )a

Ref

Temperature

(degC)

WHSV

(h-1)

Pressure

(bar)

NbAlS-1(00270041) 320 018 1 30 100 993 this work

SiO2Al2O3 375 09 1 30 97 75 28

HZSM-5(0041) 320 018 1 30 76 232 this work

LaZSM-5 450 1 10 40 gt99 ca 21 15

PdNb2O5b 275 05 14 30d 100 lt16c 29

Zn-AlPO-5 397 077 10 40 65 ca 12 30

H3PO4 240 - - 25 100 12c 31

ZnZSM-5 450 1 10 40 gt99 ca 6 15

AlPO-5 397 077 10 40 2 ca 04 30

aButene yield is calculated by the equation defined in the Method section

bunder H2 atmosphere

cThe product includes both butene and butane d002 M H2SO4 was added in the GVL solution

38

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1

R (Aring)a σ a Amp a CN a

NbAlS-1 (Dry) Nb=O 1680 0017 082 1 Nb-O 2014 0008 082 3 NbAlS-1

Nb=O 1721 0012 078 1

Nb-O 2014 0004 078 3

NbAlS-1+GVL

Nb=O 1943 0003 075 1

Nb-O 2014 0010 075 3

NbS-1

Nb=O 1711 0032 091 1

Nb-O 2014 0005 091 3

NbS-1+GVL

Nb=O 1770 0004 089 1

Nb-O 2014 0014 089 3 aR = Interatomic distance from central scattering atom σ = Debye-Waller factor Amp = amplitude factor

and CN = coordination number

39

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption

Samples GVLHZSM-5(0041) GVLNbS-1(00271) NbAlS-1(00270041) GVLNbAlS-1(00270041)

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma

Chemical formula Al3692Si92308O192 8GVL Nb2524Si93476O192 8GVL Al3599Nb2429Si89972O192 Al3599Nb2429Si89972O192 8GVL

2θ range for refinement (deg) 3 ndash 50 3 ndash 50 3 ndash 50 3 ndash 50

Detector Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals

Number of hkls 3251 3214 3179 3222

Refinement methods Rietveld Rietveld Rietveld Rietveld

a (Aring) 201351(2) 200604(2) 199955(3) 200697(3)

b (Aring) 199852(2) 198995(1) 198333(3) 199150(3)

c (Aring) 134549(2) 134010(1) 133531(2) 134214(2)

V (Aring3) 541428(11) 534957(7) 529553(15) 536437(15)

RwpRexp Rp () 445135013378 463131253497 553133614058 444933763305

Wavelength (Aring) 082487(1) 082487(1) 082487(1) 082487(1)

Gof χ2 1272 1482 1646 1318

40

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) at room

temperature

Species Atom x y z SOF Beq(Aring2) Wyckoff

HZSM-5(0041) Al1 -00732(5) 00570(7) 08366(7) 003846154 100(5) 8d

Al2 01869(6) -00339(5) 03189(8) 003846154 100(5) 8d

Al3 02207(5) -00626(7) 05256(8) 003846154 100(5) 8d

Al4 01210(5) 00590(7) 10220(8) 003846154 100(5) 8d

Al5 -00703(6) -00272(5) 01933(8) 003846154 100(5) 8d

Al6 01859(5) 00593(6) 06679(8) 003846154 100(5) 8d

Al7 -00745(6) 06734(6) 08243(9) 003846154 100(5) 8d

Al8 01956(6) 01297(5) 03114(7) 003846154 100(5) 8d

Al9 02187(5) 01761(5) 05326(8) 003846154 100(5) 8d

Al10 01228(5) 06749(6) 10400(8) 003846154 100(5) 8d

Al11 -00694(6) 01308(6) 01819(9) 003846154 100(5) 8d

Al12 01859(6) 06714(5) 06756(8) 003846154 100(5) 8d

Si1 -00732(5) 00570(7) 08366(7) 09615385 100(5) 8d

Si2 01869(6) -00339(5) 03189(8) 09615385 100(5) 8d

Si3 02207(5) -00626(7) 05256(8) 09615385 100(5) 8d

Si4 01210(5) 00590(7) 10220(8) 09615385 100(5) 8d

Si5 -00703(6) -00272(5) 01933(8) 09615385 100(5) 8d

Si6 01859(5) 00593(6) 06679(8) 09615385 100(5) 8d

Si7 -00745(6) 06734(6) 08243(9) 09615385 100(5) 8d

Si8 01956(6) 01297(5) 03114(7) 09615385 100(5) 8d

Si9 02187(5) 01761(5) 05326(8) 09615385 100(5) 8d

Si10 01228(5) 06749(6) 10400(8) 09615385 100(5) 8d

Si11 -00694(6) 01308(6) 01819(9) 09615385 100(5) 8d

Si12 01859(6) 06714(5) 06756(8) 09615385 100(5) 8d

O1 01189(10) -00643(12) 02762(13) 1 143(9) 8d

O2 01900(11) -00665(10) 04093(13) 1 143(9) 8d

O3 02017(11) 00485(12) 10198(11) 1 143(9) 8d

O4 -00964(9) -00573(13) 10736(15) 1 143(9) 8d

O5 01132(9) 00573(12) 07009(13) 1 143(9) 8d

O6 02544(10) 00574(13) 07592(13) 1 143(9) 8d

O7 01249(11) 01569(12) 02676(15) 1 143(9) 8d

O8 01995(12) 01482(9) 04331(13) 1 143(9) 8d

O9 01968(12) 06607(9) 00500(12) 1 143(9) 8d

O10 -00922(10) 01564(11) 10827(17) 1 143(9) 8d

O11 01123(10) 06498(11) 07436(14) 1 143(9) 8d

O12 02420(11) 06557(12) 07396(15) 1 143(9) 8d

O13 02109(9) 00468(11) 03170(12) 1 143(9) 8d

O14 -00793(8) 00525(13) 01708(13) 1 143(9) 8d

O15 -00850(10) 01327(12) 08874(17) 1 143(9) 8d

O16 -01009(10) 00004(11) 09239(15) 1 143(9) 8d

O17 -01006(10) 06343(12) -00444(14) 1 143(9) 8d

O18 01746(10) 01273(11) 06145(13) 1 143(9) 8d

O19 01980(12) 00019(10) 06091(12) 1 143(9) 8d

O20 02014(13) 06300(11) 05761(13) 1 143(9) 8d

O21 -00054(11) 00405(12) 07595(12) 1 143(9) 8d

O22 -00045(12) 06580(13) 07876(13) 1 143(9) 8d

O23 -00801(15) 075 0861(2) 1 143(9) 4c

O24 01839(17) 075 0648(2) 1 143(9) 4c

O25 02011(18) 025 0563(2) 1 143(9) 4c

O26 00863(13) 075 0143(2) 1 143(9) 4c

41

GVLI O1 -00251(15) 08553(18) -0468(2) 0500(3) 06(4) 8d

O2 -0013(2) 07533(17) -0531(3) 0500(3) 06(4) 8d

C1 00570(11) 08446(12) -05861(14) 0500(3) 06(4) 8d

C2 00466(18) 09175(12) -05663(18) 0500(3) 06(4) 8d

C3 0004(2) 09222(15) -0484(2) 0500(3) 06(4) 8d

C4 00038(13) 08112(15) -05293(19) 0500(3) 06(4) 8d

C5 -0034(3) 09728(19) -0448(3) 0500(3) 06(4) 8d

H1a 00999(11) 08315(15) -05641(17) 0500(3) 07(5) 8d

H1b 00528(13) 08360(13) -06553(15) 0500(3) 07(5) 8d

H2a 0088(2) 09384(14) -0553(2) 0500(3) 07(5) 8d

H2b 0026(2) 09378(15) -0622(2) 0500(3) 07(5) 8d

H3 0038(2) 09204(15) -04313(18) 0500(3) 07(5) 8d

H5a -0043(3) 0965(2) -0380(3) 0500(3) 07(5) 8d

H5b -0011(4) 10138(17) -0454(3) 0500(3) 07(5) 8d

H5c -0074(3) 0975(3) -0485(3) 0500(3) 07(5) 8d

GVLII O1 -03289(15) -0778(2) -02817(19) 0500(4) 06(4) 8d

O2 -04372(14) -0757(2) -02733(16) 0500(4) 06(4) 8d

C1 -03730(11) -07204(15) -04150(12) 0500(4) 06(4) 8d

C2 -02990(11) -0718(2) -04230(16) 0500(4) 06(4) 8d

C3 -02738(13) -0762(3) -0350(2) 0500(4) 06(4) 8d

C4 -03856(13) -07518(18) -03175(14) 0500(4) 06(4) 8d

C5 -02129(14) -0768(4) -0308(3) 0500(4) 06(4) 8d

H1a -03908(13) -07461(16) -04681(13) 0500(3) 07(5) 8d

H1b -03904(14) -06762(15) -04174(16) 0500(3) 07(5) 8d

H2a -02856(13) -0732(2) -04875(17) 0500(3) 07(5) 8d

H2b -02835(15) -0674(2) -04093(19) 0500(3) 07(5) 8d

H3 -0275(2) -0803(3) -0389(3) 0500(3) 07(5) 8d

H5a -0208(2) -0812(4) -0281(3) 0500(3) 07(5) 8d

H5b -01797(13) -0762(4) -0357(3) 0500(3) 07(5) 8d

H5c -02080(14) -0735(4) -0257(3) 0500(3) 07(5) 8d

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 24: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

23

Fig S15 Comparison of the experimental data (black line) and Rietveld refinement (red line) and the

difference between them (grey line) for SXPD patterns of (ab) GVLHZSM-5(0041) (cd) GVLNbS-

1(00271) (ef) GVLNbAlS-1(00270041) at room temperature at a 2θ range of (ace) 3 - 20deg and

(bdf) 20 - 50deg [λ = 082487(1) Aring]

a b

c d

e f

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbS-1(00271) obs

GVLNbS-1(00271) cal

GVLNbS-1(00271) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLHZSM-5(0041) obs

GVLHZSM-5(0041) cal

GVLHZSM-5(0041) diff

4 6 8 10 12 14 16 18 20

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

20 25 30 35 40 45 50

Inte

nsity (

au

)

2 (degree)

GVLNbAlS-1(00270041) obs

GVLNbAlS-1(00270041) cal

GVLNbAlS-1(00270041) diff

24

Fig S16 (a) 29Si NMR spectra of HZSM-5 and NbAlS-1 de-convolution of 29Si NMR spectra of HZSM-5

(b) and NbAlS-1 (c) by Guassian and Lorentzian line shapes

a

b

c

-125 -120 -115 -110 -105 -100 -95 -90 -85

-1023

-1076

-1138

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-4

Cumulative Fitted Peak

-1171

-125 -120 -115 -110 -105 -100 -95 -90 -85

-924-983

-1026

-1057

-1124

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-6

Cumulative Fitted Peak

-1162

-125 -120 -115 -110 -105 -100 -95 -90 -8529

Si chemical shift (ppm)

NbAlS-1(00270041)

HZSM-5(0041)

25

Fig S17 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and calculated INS

spectra for 12 types of NbAlH sites

0 200 400 600 800 1000 1200 1400 1600

1211109876

4

23

5

1

Bare NbAlS-1 (exp)

S(Q

) (a

u)

Neutron energy loss (cm-1)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

26

Fig S18 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and combination of

calculated INS spectra of different NbAlH sites Combination 1 = 3125Site I + 3125Site II +

5Site III + 325Site IV Combination 2 = 675Site III + 325Site IV Site I = 025(NbAlH_1 +

NbAlH_2 + NbAlH_3 + NbAlH_4) Site II = 025(NbAlH_5 + NbAlH_6 + NbAlH_7 +

NbAlH_8) Site III = 05(NbAlH_9 + NbAlH_10) Site IV = 05(NbAlH_11 + NbAlH_12)

Abscissa is scaled down by 097 for combination 1 and 2

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Bare NbAlS-1 (exp)

Combination 1

Combination 2

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

27

Fig S19 Schematic view of the procedure of in situ INS experiment and data collection

Zeolite (Calcined)

Zeolite (activated)

Heating at 450 oC under

He flow for 3 h

Zeolite (Adsorbed)

INS collection 1

Zeolite (Reaction at 280 C)

Adsorption of GVL at 135 oC

Zeolite (Reaction at 300 C)

Zeolite (Reaction at 320 C)

Reaction at 280 oC for 3 min

Reaction at 300 oC for 3 min

Reaction at 320 oC for 3 min

INS collection 2

INS collection 3

INS collection 4

INS collection 5

28

Fig S20 Comparison of the experimental INS spectra of condensed GVL in the solid state (black) and

calculated INS spectra of single GVL molecule (red) The crystal structure of solid GVL is unavailable in the

database

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental GVL

Calculated GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

29

Fig S21 Comparison of the experimental and calculated INS spectra of adsorbed GVL molecules on

NbAlS-1 The structure model derived from SXPD experiments was used for initial DFT modelling where

the positional disorder has been removed in the calculation and this partially accounts for the discrepancies

observed between calculated and experimental INS plots

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental adsorbed GVL

Calculated adsorbed GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

30

Fig S22 View of the INS spectrum for the empty catalysis cell used for this experiment The empty can has

the features below 300 cm-1 and at approximately 457 and 659 cm-1

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Empty can

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

31

Fig S23 Comparison of the experimental INS spectra for bare and GVL-adsorbed catalyst Spectra shown

are after subtraction of the empty cell The INS spectrum of the catalyst on GVL adsorption at 135 degC shows

a significant increase in total intensity demonstrating the binding of GVL to the catalyst sites

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

GVLNbAlS-1(00270041)

Bare NbAlS-1(00270041)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

32

Fig S24 Comparison of the experimental INS spectra of all butene isomers and reacted GVL at 320 degC

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Reaction 320 oC

trans-2-butene

i-butene

1-butene

cis-2-butene

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

33

Supplementary Tables

Table S1 Textural properties (data determined from N2 sorption isotherms at 77 K) and crystallite size (data

determined from SEM) of all zeolites used in this study

Samples ABET (m2 g-1)a Amic (m2 g-1) b Aext (m2 g-1) c Vmic (cm3 g-1) d Vtotal (cm3 g-1) e

Crystallite sizef

(nm)

HZSM-5 (00271) 413 314 99 019 033 200-500

HZSM-5 (0041) 346 259 87 015 028 200-500

HZSM-5 (00671) 348 277 71 016 026 200-500

NbS-1 (00271) 377 284 93 017 029 300-500

NbS-1 (0041) 357 282 75 016 027 300-500

NbAlS-1(00270041) 408 263 145 018 041 300-500

NbAlS-1(00400271) 376 268 108 017 033 300-500

HZSM-5 (0041)g 338 258 80 015 027 200-500

NbAlS-1(00270041)g 396 262 134 018 039 300-500

aBET specific surface area bMicropore surface area cExternal surface area dMicropore volume eTotal pore volume fObtainted from SEM gUsed catalyst

34

Table S2 Spin-Hamiltonian parameters of radiation induced Nb(IV) and electron hole Al-O-Si defects

from simulation of CW X-band EPR spectra in Fig 1 lw is the homogeneous Lorentzian linewidth g and A

are the principle values of the g and hyperfine interaction tensors

Signal Parameters

Electron

Spin

Nuclear

Spin g-tensor g-Strain

A-tensor

(G)

lw

(mT)

Nb defect 12 92 [1935 1935 1866] [004 004 00] [159 159

310] [0 40]

Al defect 12 52 [20012 2007 2045] [00 0003 004] [7 7 -] [00 04]

35

Table S3 Summary of acidity of all zeolites used in this work Data were determined by NH3-TPD and

Pyridine-IR studies

Catalyst Weak acida

(mmol g-1)

Strong acida

(mmol g-1)

Total acida

(mmol g-1)

LB acid

ratiob

HZSM-5(00271) 015 025 04 039

HZSM-5(0041) 024 028 052 037

HZSM-5(00671) 033 03 063 027

NbS-1(00271) 004 0 004 -

NbS-1(0041) 004 0 004 -

NbAlS-1(00270041) 022 0 022 469

NbAlS-1(00400271) 023 0 023 35 aFrom NH3-TPD bFrom Pyridine-IR

36

Table S4 The butenes distribution in equilibrium at 320 degC and the distribution of butene isomers produced

from conversion of 30 GVL at 320 degC over catalysts

Catalyst Distribution ()

i-butene 1-butene trans-2-butene cis-2-butene

Equilibrium27 45 12 27 16

HZSM-5(0041) 44 14 25 17

NbAlS-1(00270041) 18 19 38 25

NbOPO4 15 20 39 26

37

Table S5 Comparison of the catalytic performance of reported catalysts for the conversion of GVL in aqueous solution (25-40 wt ) to butenes

Catalyst Reaction Conditions GVL

concentration

(wt )

GVL

conversion

()

Butene

Yield

(mol )a

Ref

Temperature

(degC)

WHSV

(h-1)

Pressure

(bar)

NbAlS-1(00270041) 320 018 1 30 100 993 this work

SiO2Al2O3 375 09 1 30 97 75 28

HZSM-5(0041) 320 018 1 30 76 232 this work

LaZSM-5 450 1 10 40 gt99 ca 21 15

PdNb2O5b 275 05 14 30d 100 lt16c 29

Zn-AlPO-5 397 077 10 40 65 ca 12 30

H3PO4 240 - - 25 100 12c 31

ZnZSM-5 450 1 10 40 gt99 ca 6 15

AlPO-5 397 077 10 40 2 ca 04 30

aButene yield is calculated by the equation defined in the Method section

bunder H2 atmosphere

cThe product includes both butene and butane d002 M H2SO4 was added in the GVL solution

38

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1

R (Aring)a σ a Amp a CN a

NbAlS-1 (Dry) Nb=O 1680 0017 082 1 Nb-O 2014 0008 082 3 NbAlS-1

Nb=O 1721 0012 078 1

Nb-O 2014 0004 078 3

NbAlS-1+GVL

Nb=O 1943 0003 075 1

Nb-O 2014 0010 075 3

NbS-1

Nb=O 1711 0032 091 1

Nb-O 2014 0005 091 3

NbS-1+GVL

Nb=O 1770 0004 089 1

Nb-O 2014 0014 089 3 aR = Interatomic distance from central scattering atom σ = Debye-Waller factor Amp = amplitude factor

and CN = coordination number

39

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption

Samples GVLHZSM-5(0041) GVLNbS-1(00271) NbAlS-1(00270041) GVLNbAlS-1(00270041)

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma

Chemical formula Al3692Si92308O192 8GVL Nb2524Si93476O192 8GVL Al3599Nb2429Si89972O192 Al3599Nb2429Si89972O192 8GVL

2θ range for refinement (deg) 3 ndash 50 3 ndash 50 3 ndash 50 3 ndash 50

Detector Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals

Number of hkls 3251 3214 3179 3222

Refinement methods Rietveld Rietveld Rietveld Rietveld

a (Aring) 201351(2) 200604(2) 199955(3) 200697(3)

b (Aring) 199852(2) 198995(1) 198333(3) 199150(3)

c (Aring) 134549(2) 134010(1) 133531(2) 134214(2)

V (Aring3) 541428(11) 534957(7) 529553(15) 536437(15)

RwpRexp Rp () 445135013378 463131253497 553133614058 444933763305

Wavelength (Aring) 082487(1) 082487(1) 082487(1) 082487(1)

Gof χ2 1272 1482 1646 1318

40

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) at room

temperature

Species Atom x y z SOF Beq(Aring2) Wyckoff

HZSM-5(0041) Al1 -00732(5) 00570(7) 08366(7) 003846154 100(5) 8d

Al2 01869(6) -00339(5) 03189(8) 003846154 100(5) 8d

Al3 02207(5) -00626(7) 05256(8) 003846154 100(5) 8d

Al4 01210(5) 00590(7) 10220(8) 003846154 100(5) 8d

Al5 -00703(6) -00272(5) 01933(8) 003846154 100(5) 8d

Al6 01859(5) 00593(6) 06679(8) 003846154 100(5) 8d

Al7 -00745(6) 06734(6) 08243(9) 003846154 100(5) 8d

Al8 01956(6) 01297(5) 03114(7) 003846154 100(5) 8d

Al9 02187(5) 01761(5) 05326(8) 003846154 100(5) 8d

Al10 01228(5) 06749(6) 10400(8) 003846154 100(5) 8d

Al11 -00694(6) 01308(6) 01819(9) 003846154 100(5) 8d

Al12 01859(6) 06714(5) 06756(8) 003846154 100(5) 8d

Si1 -00732(5) 00570(7) 08366(7) 09615385 100(5) 8d

Si2 01869(6) -00339(5) 03189(8) 09615385 100(5) 8d

Si3 02207(5) -00626(7) 05256(8) 09615385 100(5) 8d

Si4 01210(5) 00590(7) 10220(8) 09615385 100(5) 8d

Si5 -00703(6) -00272(5) 01933(8) 09615385 100(5) 8d

Si6 01859(5) 00593(6) 06679(8) 09615385 100(5) 8d

Si7 -00745(6) 06734(6) 08243(9) 09615385 100(5) 8d

Si8 01956(6) 01297(5) 03114(7) 09615385 100(5) 8d

Si9 02187(5) 01761(5) 05326(8) 09615385 100(5) 8d

Si10 01228(5) 06749(6) 10400(8) 09615385 100(5) 8d

Si11 -00694(6) 01308(6) 01819(9) 09615385 100(5) 8d

Si12 01859(6) 06714(5) 06756(8) 09615385 100(5) 8d

O1 01189(10) -00643(12) 02762(13) 1 143(9) 8d

O2 01900(11) -00665(10) 04093(13) 1 143(9) 8d

O3 02017(11) 00485(12) 10198(11) 1 143(9) 8d

O4 -00964(9) -00573(13) 10736(15) 1 143(9) 8d

O5 01132(9) 00573(12) 07009(13) 1 143(9) 8d

O6 02544(10) 00574(13) 07592(13) 1 143(9) 8d

O7 01249(11) 01569(12) 02676(15) 1 143(9) 8d

O8 01995(12) 01482(9) 04331(13) 1 143(9) 8d

O9 01968(12) 06607(9) 00500(12) 1 143(9) 8d

O10 -00922(10) 01564(11) 10827(17) 1 143(9) 8d

O11 01123(10) 06498(11) 07436(14) 1 143(9) 8d

O12 02420(11) 06557(12) 07396(15) 1 143(9) 8d

O13 02109(9) 00468(11) 03170(12) 1 143(9) 8d

O14 -00793(8) 00525(13) 01708(13) 1 143(9) 8d

O15 -00850(10) 01327(12) 08874(17) 1 143(9) 8d

O16 -01009(10) 00004(11) 09239(15) 1 143(9) 8d

O17 -01006(10) 06343(12) -00444(14) 1 143(9) 8d

O18 01746(10) 01273(11) 06145(13) 1 143(9) 8d

O19 01980(12) 00019(10) 06091(12) 1 143(9) 8d

O20 02014(13) 06300(11) 05761(13) 1 143(9) 8d

O21 -00054(11) 00405(12) 07595(12) 1 143(9) 8d

O22 -00045(12) 06580(13) 07876(13) 1 143(9) 8d

O23 -00801(15) 075 0861(2) 1 143(9) 4c

O24 01839(17) 075 0648(2) 1 143(9) 4c

O25 02011(18) 025 0563(2) 1 143(9) 4c

O26 00863(13) 075 0143(2) 1 143(9) 4c

41

GVLI O1 -00251(15) 08553(18) -0468(2) 0500(3) 06(4) 8d

O2 -0013(2) 07533(17) -0531(3) 0500(3) 06(4) 8d

C1 00570(11) 08446(12) -05861(14) 0500(3) 06(4) 8d

C2 00466(18) 09175(12) -05663(18) 0500(3) 06(4) 8d

C3 0004(2) 09222(15) -0484(2) 0500(3) 06(4) 8d

C4 00038(13) 08112(15) -05293(19) 0500(3) 06(4) 8d

C5 -0034(3) 09728(19) -0448(3) 0500(3) 06(4) 8d

H1a 00999(11) 08315(15) -05641(17) 0500(3) 07(5) 8d

H1b 00528(13) 08360(13) -06553(15) 0500(3) 07(5) 8d

H2a 0088(2) 09384(14) -0553(2) 0500(3) 07(5) 8d

H2b 0026(2) 09378(15) -0622(2) 0500(3) 07(5) 8d

H3 0038(2) 09204(15) -04313(18) 0500(3) 07(5) 8d

H5a -0043(3) 0965(2) -0380(3) 0500(3) 07(5) 8d

H5b -0011(4) 10138(17) -0454(3) 0500(3) 07(5) 8d

H5c -0074(3) 0975(3) -0485(3) 0500(3) 07(5) 8d

GVLII O1 -03289(15) -0778(2) -02817(19) 0500(4) 06(4) 8d

O2 -04372(14) -0757(2) -02733(16) 0500(4) 06(4) 8d

C1 -03730(11) -07204(15) -04150(12) 0500(4) 06(4) 8d

C2 -02990(11) -0718(2) -04230(16) 0500(4) 06(4) 8d

C3 -02738(13) -0762(3) -0350(2) 0500(4) 06(4) 8d

C4 -03856(13) -07518(18) -03175(14) 0500(4) 06(4) 8d

C5 -02129(14) -0768(4) -0308(3) 0500(4) 06(4) 8d

H1a -03908(13) -07461(16) -04681(13) 0500(3) 07(5) 8d

H1b -03904(14) -06762(15) -04174(16) 0500(3) 07(5) 8d

H2a -02856(13) -0732(2) -04875(17) 0500(3) 07(5) 8d

H2b -02835(15) -0674(2) -04093(19) 0500(3) 07(5) 8d

H3 -0275(2) -0803(3) -0389(3) 0500(3) 07(5) 8d

H5a -0208(2) -0812(4) -0281(3) 0500(3) 07(5) 8d

H5b -01797(13) -0762(4) -0357(3) 0500(3) 07(5) 8d

H5c -02080(14) -0735(4) -0257(3) 0500(3) 07(5) 8d

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 25: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

24

Fig S16 (a) 29Si NMR spectra of HZSM-5 and NbAlS-1 de-convolution of 29Si NMR spectra of HZSM-5

(b) and NbAlS-1 (c) by Guassian and Lorentzian line shapes

a

b

c

-125 -120 -115 -110 -105 -100 -95 -90 -85

-1023

-1076

-1138

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-4

Cumulative Fitted Peak

-1171

-125 -120 -115 -110 -105 -100 -95 -90 -85

-924-983

-1026

-1057

-1124

29Si chemical shift (ppm)

Experimental Spectrum

Fitted Peak 1-6

Cumulative Fitted Peak

-1162

-125 -120 -115 -110 -105 -100 -95 -90 -8529

Si chemical shift (ppm)

NbAlS-1(00270041)

HZSM-5(0041)

25

Fig S17 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and calculated INS

spectra for 12 types of NbAlH sites

0 200 400 600 800 1000 1200 1400 1600

1211109876

4

23

5

1

Bare NbAlS-1 (exp)

S(Q

) (a

u)

Neutron energy loss (cm-1)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

26

Fig S18 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and combination of

calculated INS spectra of different NbAlH sites Combination 1 = 3125Site I + 3125Site II +

5Site III + 325Site IV Combination 2 = 675Site III + 325Site IV Site I = 025(NbAlH_1 +

NbAlH_2 + NbAlH_3 + NbAlH_4) Site II = 025(NbAlH_5 + NbAlH_6 + NbAlH_7 +

NbAlH_8) Site III = 05(NbAlH_9 + NbAlH_10) Site IV = 05(NbAlH_11 + NbAlH_12)

Abscissa is scaled down by 097 for combination 1 and 2

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Bare NbAlS-1 (exp)

Combination 1

Combination 2

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

27

Fig S19 Schematic view of the procedure of in situ INS experiment and data collection

Zeolite (Calcined)

Zeolite (activated)

Heating at 450 oC under

He flow for 3 h

Zeolite (Adsorbed)

INS collection 1

Zeolite (Reaction at 280 C)

Adsorption of GVL at 135 oC

Zeolite (Reaction at 300 C)

Zeolite (Reaction at 320 C)

Reaction at 280 oC for 3 min

Reaction at 300 oC for 3 min

Reaction at 320 oC for 3 min

INS collection 2

INS collection 3

INS collection 4

INS collection 5

28

Fig S20 Comparison of the experimental INS spectra of condensed GVL in the solid state (black) and

calculated INS spectra of single GVL molecule (red) The crystal structure of solid GVL is unavailable in the

database

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental GVL

Calculated GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

29

Fig S21 Comparison of the experimental and calculated INS spectra of adsorbed GVL molecules on

NbAlS-1 The structure model derived from SXPD experiments was used for initial DFT modelling where

the positional disorder has been removed in the calculation and this partially accounts for the discrepancies

observed between calculated and experimental INS plots

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental adsorbed GVL

Calculated adsorbed GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

30

Fig S22 View of the INS spectrum for the empty catalysis cell used for this experiment The empty can has

the features below 300 cm-1 and at approximately 457 and 659 cm-1

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Empty can

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

31

Fig S23 Comparison of the experimental INS spectra for bare and GVL-adsorbed catalyst Spectra shown

are after subtraction of the empty cell The INS spectrum of the catalyst on GVL adsorption at 135 degC shows

a significant increase in total intensity demonstrating the binding of GVL to the catalyst sites

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

GVLNbAlS-1(00270041)

Bare NbAlS-1(00270041)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

32

Fig S24 Comparison of the experimental INS spectra of all butene isomers and reacted GVL at 320 degC

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Reaction 320 oC

trans-2-butene

i-butene

1-butene

cis-2-butene

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

33

Supplementary Tables

Table S1 Textural properties (data determined from N2 sorption isotherms at 77 K) and crystallite size (data

determined from SEM) of all zeolites used in this study

Samples ABET (m2 g-1)a Amic (m2 g-1) b Aext (m2 g-1) c Vmic (cm3 g-1) d Vtotal (cm3 g-1) e

Crystallite sizef

(nm)

HZSM-5 (00271) 413 314 99 019 033 200-500

HZSM-5 (0041) 346 259 87 015 028 200-500

HZSM-5 (00671) 348 277 71 016 026 200-500

NbS-1 (00271) 377 284 93 017 029 300-500

NbS-1 (0041) 357 282 75 016 027 300-500

NbAlS-1(00270041) 408 263 145 018 041 300-500

NbAlS-1(00400271) 376 268 108 017 033 300-500

HZSM-5 (0041)g 338 258 80 015 027 200-500

NbAlS-1(00270041)g 396 262 134 018 039 300-500

aBET specific surface area bMicropore surface area cExternal surface area dMicropore volume eTotal pore volume fObtainted from SEM gUsed catalyst

34

Table S2 Spin-Hamiltonian parameters of radiation induced Nb(IV) and electron hole Al-O-Si defects

from simulation of CW X-band EPR spectra in Fig 1 lw is the homogeneous Lorentzian linewidth g and A

are the principle values of the g and hyperfine interaction tensors

Signal Parameters

Electron

Spin

Nuclear

Spin g-tensor g-Strain

A-tensor

(G)

lw

(mT)

Nb defect 12 92 [1935 1935 1866] [004 004 00] [159 159

310] [0 40]

Al defect 12 52 [20012 2007 2045] [00 0003 004] [7 7 -] [00 04]

35

Table S3 Summary of acidity of all zeolites used in this work Data were determined by NH3-TPD and

Pyridine-IR studies

Catalyst Weak acida

(mmol g-1)

Strong acida

(mmol g-1)

Total acida

(mmol g-1)

LB acid

ratiob

HZSM-5(00271) 015 025 04 039

HZSM-5(0041) 024 028 052 037

HZSM-5(00671) 033 03 063 027

NbS-1(00271) 004 0 004 -

NbS-1(0041) 004 0 004 -

NbAlS-1(00270041) 022 0 022 469

NbAlS-1(00400271) 023 0 023 35 aFrom NH3-TPD bFrom Pyridine-IR

36

Table S4 The butenes distribution in equilibrium at 320 degC and the distribution of butene isomers produced

from conversion of 30 GVL at 320 degC over catalysts

Catalyst Distribution ()

i-butene 1-butene trans-2-butene cis-2-butene

Equilibrium27 45 12 27 16

HZSM-5(0041) 44 14 25 17

NbAlS-1(00270041) 18 19 38 25

NbOPO4 15 20 39 26

37

Table S5 Comparison of the catalytic performance of reported catalysts for the conversion of GVL in aqueous solution (25-40 wt ) to butenes

Catalyst Reaction Conditions GVL

concentration

(wt )

GVL

conversion

()

Butene

Yield

(mol )a

Ref

Temperature

(degC)

WHSV

(h-1)

Pressure

(bar)

NbAlS-1(00270041) 320 018 1 30 100 993 this work

SiO2Al2O3 375 09 1 30 97 75 28

HZSM-5(0041) 320 018 1 30 76 232 this work

LaZSM-5 450 1 10 40 gt99 ca 21 15

PdNb2O5b 275 05 14 30d 100 lt16c 29

Zn-AlPO-5 397 077 10 40 65 ca 12 30

H3PO4 240 - - 25 100 12c 31

ZnZSM-5 450 1 10 40 gt99 ca 6 15

AlPO-5 397 077 10 40 2 ca 04 30

aButene yield is calculated by the equation defined in the Method section

bunder H2 atmosphere

cThe product includes both butene and butane d002 M H2SO4 was added in the GVL solution

38

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1

R (Aring)a σ a Amp a CN a

NbAlS-1 (Dry) Nb=O 1680 0017 082 1 Nb-O 2014 0008 082 3 NbAlS-1

Nb=O 1721 0012 078 1

Nb-O 2014 0004 078 3

NbAlS-1+GVL

Nb=O 1943 0003 075 1

Nb-O 2014 0010 075 3

NbS-1

Nb=O 1711 0032 091 1

Nb-O 2014 0005 091 3

NbS-1+GVL

Nb=O 1770 0004 089 1

Nb-O 2014 0014 089 3 aR = Interatomic distance from central scattering atom σ = Debye-Waller factor Amp = amplitude factor

and CN = coordination number

39

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption

Samples GVLHZSM-5(0041) GVLNbS-1(00271) NbAlS-1(00270041) GVLNbAlS-1(00270041)

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma

Chemical formula Al3692Si92308O192 8GVL Nb2524Si93476O192 8GVL Al3599Nb2429Si89972O192 Al3599Nb2429Si89972O192 8GVL

2θ range for refinement (deg) 3 ndash 50 3 ndash 50 3 ndash 50 3 ndash 50

Detector Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals

Number of hkls 3251 3214 3179 3222

Refinement methods Rietveld Rietveld Rietveld Rietveld

a (Aring) 201351(2) 200604(2) 199955(3) 200697(3)

b (Aring) 199852(2) 198995(1) 198333(3) 199150(3)

c (Aring) 134549(2) 134010(1) 133531(2) 134214(2)

V (Aring3) 541428(11) 534957(7) 529553(15) 536437(15)

RwpRexp Rp () 445135013378 463131253497 553133614058 444933763305

Wavelength (Aring) 082487(1) 082487(1) 082487(1) 082487(1)

Gof χ2 1272 1482 1646 1318

40

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) at room

temperature

Species Atom x y z SOF Beq(Aring2) Wyckoff

HZSM-5(0041) Al1 -00732(5) 00570(7) 08366(7) 003846154 100(5) 8d

Al2 01869(6) -00339(5) 03189(8) 003846154 100(5) 8d

Al3 02207(5) -00626(7) 05256(8) 003846154 100(5) 8d

Al4 01210(5) 00590(7) 10220(8) 003846154 100(5) 8d

Al5 -00703(6) -00272(5) 01933(8) 003846154 100(5) 8d

Al6 01859(5) 00593(6) 06679(8) 003846154 100(5) 8d

Al7 -00745(6) 06734(6) 08243(9) 003846154 100(5) 8d

Al8 01956(6) 01297(5) 03114(7) 003846154 100(5) 8d

Al9 02187(5) 01761(5) 05326(8) 003846154 100(5) 8d

Al10 01228(5) 06749(6) 10400(8) 003846154 100(5) 8d

Al11 -00694(6) 01308(6) 01819(9) 003846154 100(5) 8d

Al12 01859(6) 06714(5) 06756(8) 003846154 100(5) 8d

Si1 -00732(5) 00570(7) 08366(7) 09615385 100(5) 8d

Si2 01869(6) -00339(5) 03189(8) 09615385 100(5) 8d

Si3 02207(5) -00626(7) 05256(8) 09615385 100(5) 8d

Si4 01210(5) 00590(7) 10220(8) 09615385 100(5) 8d

Si5 -00703(6) -00272(5) 01933(8) 09615385 100(5) 8d

Si6 01859(5) 00593(6) 06679(8) 09615385 100(5) 8d

Si7 -00745(6) 06734(6) 08243(9) 09615385 100(5) 8d

Si8 01956(6) 01297(5) 03114(7) 09615385 100(5) 8d

Si9 02187(5) 01761(5) 05326(8) 09615385 100(5) 8d

Si10 01228(5) 06749(6) 10400(8) 09615385 100(5) 8d

Si11 -00694(6) 01308(6) 01819(9) 09615385 100(5) 8d

Si12 01859(6) 06714(5) 06756(8) 09615385 100(5) 8d

O1 01189(10) -00643(12) 02762(13) 1 143(9) 8d

O2 01900(11) -00665(10) 04093(13) 1 143(9) 8d

O3 02017(11) 00485(12) 10198(11) 1 143(9) 8d

O4 -00964(9) -00573(13) 10736(15) 1 143(9) 8d

O5 01132(9) 00573(12) 07009(13) 1 143(9) 8d

O6 02544(10) 00574(13) 07592(13) 1 143(9) 8d

O7 01249(11) 01569(12) 02676(15) 1 143(9) 8d

O8 01995(12) 01482(9) 04331(13) 1 143(9) 8d

O9 01968(12) 06607(9) 00500(12) 1 143(9) 8d

O10 -00922(10) 01564(11) 10827(17) 1 143(9) 8d

O11 01123(10) 06498(11) 07436(14) 1 143(9) 8d

O12 02420(11) 06557(12) 07396(15) 1 143(9) 8d

O13 02109(9) 00468(11) 03170(12) 1 143(9) 8d

O14 -00793(8) 00525(13) 01708(13) 1 143(9) 8d

O15 -00850(10) 01327(12) 08874(17) 1 143(9) 8d

O16 -01009(10) 00004(11) 09239(15) 1 143(9) 8d

O17 -01006(10) 06343(12) -00444(14) 1 143(9) 8d

O18 01746(10) 01273(11) 06145(13) 1 143(9) 8d

O19 01980(12) 00019(10) 06091(12) 1 143(9) 8d

O20 02014(13) 06300(11) 05761(13) 1 143(9) 8d

O21 -00054(11) 00405(12) 07595(12) 1 143(9) 8d

O22 -00045(12) 06580(13) 07876(13) 1 143(9) 8d

O23 -00801(15) 075 0861(2) 1 143(9) 4c

O24 01839(17) 075 0648(2) 1 143(9) 4c

O25 02011(18) 025 0563(2) 1 143(9) 4c

O26 00863(13) 075 0143(2) 1 143(9) 4c

41

GVLI O1 -00251(15) 08553(18) -0468(2) 0500(3) 06(4) 8d

O2 -0013(2) 07533(17) -0531(3) 0500(3) 06(4) 8d

C1 00570(11) 08446(12) -05861(14) 0500(3) 06(4) 8d

C2 00466(18) 09175(12) -05663(18) 0500(3) 06(4) 8d

C3 0004(2) 09222(15) -0484(2) 0500(3) 06(4) 8d

C4 00038(13) 08112(15) -05293(19) 0500(3) 06(4) 8d

C5 -0034(3) 09728(19) -0448(3) 0500(3) 06(4) 8d

H1a 00999(11) 08315(15) -05641(17) 0500(3) 07(5) 8d

H1b 00528(13) 08360(13) -06553(15) 0500(3) 07(5) 8d

H2a 0088(2) 09384(14) -0553(2) 0500(3) 07(5) 8d

H2b 0026(2) 09378(15) -0622(2) 0500(3) 07(5) 8d

H3 0038(2) 09204(15) -04313(18) 0500(3) 07(5) 8d

H5a -0043(3) 0965(2) -0380(3) 0500(3) 07(5) 8d

H5b -0011(4) 10138(17) -0454(3) 0500(3) 07(5) 8d

H5c -0074(3) 0975(3) -0485(3) 0500(3) 07(5) 8d

GVLII O1 -03289(15) -0778(2) -02817(19) 0500(4) 06(4) 8d

O2 -04372(14) -0757(2) -02733(16) 0500(4) 06(4) 8d

C1 -03730(11) -07204(15) -04150(12) 0500(4) 06(4) 8d

C2 -02990(11) -0718(2) -04230(16) 0500(4) 06(4) 8d

C3 -02738(13) -0762(3) -0350(2) 0500(4) 06(4) 8d

C4 -03856(13) -07518(18) -03175(14) 0500(4) 06(4) 8d

C5 -02129(14) -0768(4) -0308(3) 0500(4) 06(4) 8d

H1a -03908(13) -07461(16) -04681(13) 0500(3) 07(5) 8d

H1b -03904(14) -06762(15) -04174(16) 0500(3) 07(5) 8d

H2a -02856(13) -0732(2) -04875(17) 0500(3) 07(5) 8d

H2b -02835(15) -0674(2) -04093(19) 0500(3) 07(5) 8d

H3 -0275(2) -0803(3) -0389(3) 0500(3) 07(5) 8d

H5a -0208(2) -0812(4) -0281(3) 0500(3) 07(5) 8d

H5b -01797(13) -0762(4) -0357(3) 0500(3) 07(5) 8d

H5c -02080(14) -0735(4) -0257(3) 0500(3) 07(5) 8d

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 26: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

25

Fig S17 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and calculated INS

spectra for 12 types of NbAlH sites

0 200 400 600 800 1000 1200 1400 1600

1211109876

4

23

5

1

Bare NbAlS-1 (exp)

S(Q

) (a

u)

Neutron energy loss (cm-1)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

26

Fig S18 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and combination of

calculated INS spectra of different NbAlH sites Combination 1 = 3125Site I + 3125Site II +

5Site III + 325Site IV Combination 2 = 675Site III + 325Site IV Site I = 025(NbAlH_1 +

NbAlH_2 + NbAlH_3 + NbAlH_4) Site II = 025(NbAlH_5 + NbAlH_6 + NbAlH_7 +

NbAlH_8) Site III = 05(NbAlH_9 + NbAlH_10) Site IV = 05(NbAlH_11 + NbAlH_12)

Abscissa is scaled down by 097 for combination 1 and 2

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Bare NbAlS-1 (exp)

Combination 1

Combination 2

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

27

Fig S19 Schematic view of the procedure of in situ INS experiment and data collection

Zeolite (Calcined)

Zeolite (activated)

Heating at 450 oC under

He flow for 3 h

Zeolite (Adsorbed)

INS collection 1

Zeolite (Reaction at 280 C)

Adsorption of GVL at 135 oC

Zeolite (Reaction at 300 C)

Zeolite (Reaction at 320 C)

Reaction at 280 oC for 3 min

Reaction at 300 oC for 3 min

Reaction at 320 oC for 3 min

INS collection 2

INS collection 3

INS collection 4

INS collection 5

28

Fig S20 Comparison of the experimental INS spectra of condensed GVL in the solid state (black) and

calculated INS spectra of single GVL molecule (red) The crystal structure of solid GVL is unavailable in the

database

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental GVL

Calculated GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

29

Fig S21 Comparison of the experimental and calculated INS spectra of adsorbed GVL molecules on

NbAlS-1 The structure model derived from SXPD experiments was used for initial DFT modelling where

the positional disorder has been removed in the calculation and this partially accounts for the discrepancies

observed between calculated and experimental INS plots

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental adsorbed GVL

Calculated adsorbed GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

30

Fig S22 View of the INS spectrum for the empty catalysis cell used for this experiment The empty can has

the features below 300 cm-1 and at approximately 457 and 659 cm-1

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Empty can

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

31

Fig S23 Comparison of the experimental INS spectra for bare and GVL-adsorbed catalyst Spectra shown

are after subtraction of the empty cell The INS spectrum of the catalyst on GVL adsorption at 135 degC shows

a significant increase in total intensity demonstrating the binding of GVL to the catalyst sites

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

GVLNbAlS-1(00270041)

Bare NbAlS-1(00270041)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

32

Fig S24 Comparison of the experimental INS spectra of all butene isomers and reacted GVL at 320 degC

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Reaction 320 oC

trans-2-butene

i-butene

1-butene

cis-2-butene

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

33

Supplementary Tables

Table S1 Textural properties (data determined from N2 sorption isotherms at 77 K) and crystallite size (data

determined from SEM) of all zeolites used in this study

Samples ABET (m2 g-1)a Amic (m2 g-1) b Aext (m2 g-1) c Vmic (cm3 g-1) d Vtotal (cm3 g-1) e

Crystallite sizef

(nm)

HZSM-5 (00271) 413 314 99 019 033 200-500

HZSM-5 (0041) 346 259 87 015 028 200-500

HZSM-5 (00671) 348 277 71 016 026 200-500

NbS-1 (00271) 377 284 93 017 029 300-500

NbS-1 (0041) 357 282 75 016 027 300-500

NbAlS-1(00270041) 408 263 145 018 041 300-500

NbAlS-1(00400271) 376 268 108 017 033 300-500

HZSM-5 (0041)g 338 258 80 015 027 200-500

NbAlS-1(00270041)g 396 262 134 018 039 300-500

aBET specific surface area bMicropore surface area cExternal surface area dMicropore volume eTotal pore volume fObtainted from SEM gUsed catalyst

34

Table S2 Spin-Hamiltonian parameters of radiation induced Nb(IV) and electron hole Al-O-Si defects

from simulation of CW X-band EPR spectra in Fig 1 lw is the homogeneous Lorentzian linewidth g and A

are the principle values of the g and hyperfine interaction tensors

Signal Parameters

Electron

Spin

Nuclear

Spin g-tensor g-Strain

A-tensor

(G)

lw

(mT)

Nb defect 12 92 [1935 1935 1866] [004 004 00] [159 159

310] [0 40]

Al defect 12 52 [20012 2007 2045] [00 0003 004] [7 7 -] [00 04]

35

Table S3 Summary of acidity of all zeolites used in this work Data were determined by NH3-TPD and

Pyridine-IR studies

Catalyst Weak acida

(mmol g-1)

Strong acida

(mmol g-1)

Total acida

(mmol g-1)

LB acid

ratiob

HZSM-5(00271) 015 025 04 039

HZSM-5(0041) 024 028 052 037

HZSM-5(00671) 033 03 063 027

NbS-1(00271) 004 0 004 -

NbS-1(0041) 004 0 004 -

NbAlS-1(00270041) 022 0 022 469

NbAlS-1(00400271) 023 0 023 35 aFrom NH3-TPD bFrom Pyridine-IR

36

Table S4 The butenes distribution in equilibrium at 320 degC and the distribution of butene isomers produced

from conversion of 30 GVL at 320 degC over catalysts

Catalyst Distribution ()

i-butene 1-butene trans-2-butene cis-2-butene

Equilibrium27 45 12 27 16

HZSM-5(0041) 44 14 25 17

NbAlS-1(00270041) 18 19 38 25

NbOPO4 15 20 39 26

37

Table S5 Comparison of the catalytic performance of reported catalysts for the conversion of GVL in aqueous solution (25-40 wt ) to butenes

Catalyst Reaction Conditions GVL

concentration

(wt )

GVL

conversion

()

Butene

Yield

(mol )a

Ref

Temperature

(degC)

WHSV

(h-1)

Pressure

(bar)

NbAlS-1(00270041) 320 018 1 30 100 993 this work

SiO2Al2O3 375 09 1 30 97 75 28

HZSM-5(0041) 320 018 1 30 76 232 this work

LaZSM-5 450 1 10 40 gt99 ca 21 15

PdNb2O5b 275 05 14 30d 100 lt16c 29

Zn-AlPO-5 397 077 10 40 65 ca 12 30

H3PO4 240 - - 25 100 12c 31

ZnZSM-5 450 1 10 40 gt99 ca 6 15

AlPO-5 397 077 10 40 2 ca 04 30

aButene yield is calculated by the equation defined in the Method section

bunder H2 atmosphere

cThe product includes both butene and butane d002 M H2SO4 was added in the GVL solution

38

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1

R (Aring)a σ a Amp a CN a

NbAlS-1 (Dry) Nb=O 1680 0017 082 1 Nb-O 2014 0008 082 3 NbAlS-1

Nb=O 1721 0012 078 1

Nb-O 2014 0004 078 3

NbAlS-1+GVL

Nb=O 1943 0003 075 1

Nb-O 2014 0010 075 3

NbS-1

Nb=O 1711 0032 091 1

Nb-O 2014 0005 091 3

NbS-1+GVL

Nb=O 1770 0004 089 1

Nb-O 2014 0014 089 3 aR = Interatomic distance from central scattering atom σ = Debye-Waller factor Amp = amplitude factor

and CN = coordination number

39

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption

Samples GVLHZSM-5(0041) GVLNbS-1(00271) NbAlS-1(00270041) GVLNbAlS-1(00270041)

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma

Chemical formula Al3692Si92308O192 8GVL Nb2524Si93476O192 8GVL Al3599Nb2429Si89972O192 Al3599Nb2429Si89972O192 8GVL

2θ range for refinement (deg) 3 ndash 50 3 ndash 50 3 ndash 50 3 ndash 50

Detector Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals

Number of hkls 3251 3214 3179 3222

Refinement methods Rietveld Rietveld Rietveld Rietveld

a (Aring) 201351(2) 200604(2) 199955(3) 200697(3)

b (Aring) 199852(2) 198995(1) 198333(3) 199150(3)

c (Aring) 134549(2) 134010(1) 133531(2) 134214(2)

V (Aring3) 541428(11) 534957(7) 529553(15) 536437(15)

RwpRexp Rp () 445135013378 463131253497 553133614058 444933763305

Wavelength (Aring) 082487(1) 082487(1) 082487(1) 082487(1)

Gof χ2 1272 1482 1646 1318

40

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) at room

temperature

Species Atom x y z SOF Beq(Aring2) Wyckoff

HZSM-5(0041) Al1 -00732(5) 00570(7) 08366(7) 003846154 100(5) 8d

Al2 01869(6) -00339(5) 03189(8) 003846154 100(5) 8d

Al3 02207(5) -00626(7) 05256(8) 003846154 100(5) 8d

Al4 01210(5) 00590(7) 10220(8) 003846154 100(5) 8d

Al5 -00703(6) -00272(5) 01933(8) 003846154 100(5) 8d

Al6 01859(5) 00593(6) 06679(8) 003846154 100(5) 8d

Al7 -00745(6) 06734(6) 08243(9) 003846154 100(5) 8d

Al8 01956(6) 01297(5) 03114(7) 003846154 100(5) 8d

Al9 02187(5) 01761(5) 05326(8) 003846154 100(5) 8d

Al10 01228(5) 06749(6) 10400(8) 003846154 100(5) 8d

Al11 -00694(6) 01308(6) 01819(9) 003846154 100(5) 8d

Al12 01859(6) 06714(5) 06756(8) 003846154 100(5) 8d

Si1 -00732(5) 00570(7) 08366(7) 09615385 100(5) 8d

Si2 01869(6) -00339(5) 03189(8) 09615385 100(5) 8d

Si3 02207(5) -00626(7) 05256(8) 09615385 100(5) 8d

Si4 01210(5) 00590(7) 10220(8) 09615385 100(5) 8d

Si5 -00703(6) -00272(5) 01933(8) 09615385 100(5) 8d

Si6 01859(5) 00593(6) 06679(8) 09615385 100(5) 8d

Si7 -00745(6) 06734(6) 08243(9) 09615385 100(5) 8d

Si8 01956(6) 01297(5) 03114(7) 09615385 100(5) 8d

Si9 02187(5) 01761(5) 05326(8) 09615385 100(5) 8d

Si10 01228(5) 06749(6) 10400(8) 09615385 100(5) 8d

Si11 -00694(6) 01308(6) 01819(9) 09615385 100(5) 8d

Si12 01859(6) 06714(5) 06756(8) 09615385 100(5) 8d

O1 01189(10) -00643(12) 02762(13) 1 143(9) 8d

O2 01900(11) -00665(10) 04093(13) 1 143(9) 8d

O3 02017(11) 00485(12) 10198(11) 1 143(9) 8d

O4 -00964(9) -00573(13) 10736(15) 1 143(9) 8d

O5 01132(9) 00573(12) 07009(13) 1 143(9) 8d

O6 02544(10) 00574(13) 07592(13) 1 143(9) 8d

O7 01249(11) 01569(12) 02676(15) 1 143(9) 8d

O8 01995(12) 01482(9) 04331(13) 1 143(9) 8d

O9 01968(12) 06607(9) 00500(12) 1 143(9) 8d

O10 -00922(10) 01564(11) 10827(17) 1 143(9) 8d

O11 01123(10) 06498(11) 07436(14) 1 143(9) 8d

O12 02420(11) 06557(12) 07396(15) 1 143(9) 8d

O13 02109(9) 00468(11) 03170(12) 1 143(9) 8d

O14 -00793(8) 00525(13) 01708(13) 1 143(9) 8d

O15 -00850(10) 01327(12) 08874(17) 1 143(9) 8d

O16 -01009(10) 00004(11) 09239(15) 1 143(9) 8d

O17 -01006(10) 06343(12) -00444(14) 1 143(9) 8d

O18 01746(10) 01273(11) 06145(13) 1 143(9) 8d

O19 01980(12) 00019(10) 06091(12) 1 143(9) 8d

O20 02014(13) 06300(11) 05761(13) 1 143(9) 8d

O21 -00054(11) 00405(12) 07595(12) 1 143(9) 8d

O22 -00045(12) 06580(13) 07876(13) 1 143(9) 8d

O23 -00801(15) 075 0861(2) 1 143(9) 4c

O24 01839(17) 075 0648(2) 1 143(9) 4c

O25 02011(18) 025 0563(2) 1 143(9) 4c

O26 00863(13) 075 0143(2) 1 143(9) 4c

41

GVLI O1 -00251(15) 08553(18) -0468(2) 0500(3) 06(4) 8d

O2 -0013(2) 07533(17) -0531(3) 0500(3) 06(4) 8d

C1 00570(11) 08446(12) -05861(14) 0500(3) 06(4) 8d

C2 00466(18) 09175(12) -05663(18) 0500(3) 06(4) 8d

C3 0004(2) 09222(15) -0484(2) 0500(3) 06(4) 8d

C4 00038(13) 08112(15) -05293(19) 0500(3) 06(4) 8d

C5 -0034(3) 09728(19) -0448(3) 0500(3) 06(4) 8d

H1a 00999(11) 08315(15) -05641(17) 0500(3) 07(5) 8d

H1b 00528(13) 08360(13) -06553(15) 0500(3) 07(5) 8d

H2a 0088(2) 09384(14) -0553(2) 0500(3) 07(5) 8d

H2b 0026(2) 09378(15) -0622(2) 0500(3) 07(5) 8d

H3 0038(2) 09204(15) -04313(18) 0500(3) 07(5) 8d

H5a -0043(3) 0965(2) -0380(3) 0500(3) 07(5) 8d

H5b -0011(4) 10138(17) -0454(3) 0500(3) 07(5) 8d

H5c -0074(3) 0975(3) -0485(3) 0500(3) 07(5) 8d

GVLII O1 -03289(15) -0778(2) -02817(19) 0500(4) 06(4) 8d

O2 -04372(14) -0757(2) -02733(16) 0500(4) 06(4) 8d

C1 -03730(11) -07204(15) -04150(12) 0500(4) 06(4) 8d

C2 -02990(11) -0718(2) -04230(16) 0500(4) 06(4) 8d

C3 -02738(13) -0762(3) -0350(2) 0500(4) 06(4) 8d

C4 -03856(13) -07518(18) -03175(14) 0500(4) 06(4) 8d

C5 -02129(14) -0768(4) -0308(3) 0500(4) 06(4) 8d

H1a -03908(13) -07461(16) -04681(13) 0500(3) 07(5) 8d

H1b -03904(14) -06762(15) -04174(16) 0500(3) 07(5) 8d

H2a -02856(13) -0732(2) -04875(17) 0500(3) 07(5) 8d

H2b -02835(15) -0674(2) -04093(19) 0500(3) 07(5) 8d

H3 -0275(2) -0803(3) -0389(3) 0500(3) 07(5) 8d

H5a -0208(2) -0812(4) -0281(3) 0500(3) 07(5) 8d

H5b -01797(13) -0762(4) -0357(3) 0500(3) 07(5) 8d

H5c -02080(14) -0735(4) -0257(3) 0500(3) 07(5) 8d

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 27: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

26

Fig S18 Comparison of the experimental INS spectrum of bare NbAlS-1(00270041) and combination of

calculated INS spectra of different NbAlH sites Combination 1 = 3125Site I + 3125Site II +

5Site III + 325Site IV Combination 2 = 675Site III + 325Site IV Site I = 025(NbAlH_1 +

NbAlH_2 + NbAlH_3 + NbAlH_4) Site II = 025(NbAlH_5 + NbAlH_6 + NbAlH_7 +

NbAlH_8) Site III = 05(NbAlH_9 + NbAlH_10) Site IV = 05(NbAlH_11 + NbAlH_12)

Abscissa is scaled down by 097 for combination 1 and 2

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Bare NbAlS-1 (exp)

Combination 1

Combination 2

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

27

Fig S19 Schematic view of the procedure of in situ INS experiment and data collection

Zeolite (Calcined)

Zeolite (activated)

Heating at 450 oC under

He flow for 3 h

Zeolite (Adsorbed)

INS collection 1

Zeolite (Reaction at 280 C)

Adsorption of GVL at 135 oC

Zeolite (Reaction at 300 C)

Zeolite (Reaction at 320 C)

Reaction at 280 oC for 3 min

Reaction at 300 oC for 3 min

Reaction at 320 oC for 3 min

INS collection 2

INS collection 3

INS collection 4

INS collection 5

28

Fig S20 Comparison of the experimental INS spectra of condensed GVL in the solid state (black) and

calculated INS spectra of single GVL molecule (red) The crystal structure of solid GVL is unavailable in the

database

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental GVL

Calculated GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

29

Fig S21 Comparison of the experimental and calculated INS spectra of adsorbed GVL molecules on

NbAlS-1 The structure model derived from SXPD experiments was used for initial DFT modelling where

the positional disorder has been removed in the calculation and this partially accounts for the discrepancies

observed between calculated and experimental INS plots

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental adsorbed GVL

Calculated adsorbed GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

30

Fig S22 View of the INS spectrum for the empty catalysis cell used for this experiment The empty can has

the features below 300 cm-1 and at approximately 457 and 659 cm-1

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Empty can

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

31

Fig S23 Comparison of the experimental INS spectra for bare and GVL-adsorbed catalyst Spectra shown

are after subtraction of the empty cell The INS spectrum of the catalyst on GVL adsorption at 135 degC shows

a significant increase in total intensity demonstrating the binding of GVL to the catalyst sites

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

GVLNbAlS-1(00270041)

Bare NbAlS-1(00270041)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

32

Fig S24 Comparison of the experimental INS spectra of all butene isomers and reacted GVL at 320 degC

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Reaction 320 oC

trans-2-butene

i-butene

1-butene

cis-2-butene

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

33

Supplementary Tables

Table S1 Textural properties (data determined from N2 sorption isotherms at 77 K) and crystallite size (data

determined from SEM) of all zeolites used in this study

Samples ABET (m2 g-1)a Amic (m2 g-1) b Aext (m2 g-1) c Vmic (cm3 g-1) d Vtotal (cm3 g-1) e

Crystallite sizef

(nm)

HZSM-5 (00271) 413 314 99 019 033 200-500

HZSM-5 (0041) 346 259 87 015 028 200-500

HZSM-5 (00671) 348 277 71 016 026 200-500

NbS-1 (00271) 377 284 93 017 029 300-500

NbS-1 (0041) 357 282 75 016 027 300-500

NbAlS-1(00270041) 408 263 145 018 041 300-500

NbAlS-1(00400271) 376 268 108 017 033 300-500

HZSM-5 (0041)g 338 258 80 015 027 200-500

NbAlS-1(00270041)g 396 262 134 018 039 300-500

aBET specific surface area bMicropore surface area cExternal surface area dMicropore volume eTotal pore volume fObtainted from SEM gUsed catalyst

34

Table S2 Spin-Hamiltonian parameters of radiation induced Nb(IV) and electron hole Al-O-Si defects

from simulation of CW X-band EPR spectra in Fig 1 lw is the homogeneous Lorentzian linewidth g and A

are the principle values of the g and hyperfine interaction tensors

Signal Parameters

Electron

Spin

Nuclear

Spin g-tensor g-Strain

A-tensor

(G)

lw

(mT)

Nb defect 12 92 [1935 1935 1866] [004 004 00] [159 159

310] [0 40]

Al defect 12 52 [20012 2007 2045] [00 0003 004] [7 7 -] [00 04]

35

Table S3 Summary of acidity of all zeolites used in this work Data were determined by NH3-TPD and

Pyridine-IR studies

Catalyst Weak acida

(mmol g-1)

Strong acida

(mmol g-1)

Total acida

(mmol g-1)

LB acid

ratiob

HZSM-5(00271) 015 025 04 039

HZSM-5(0041) 024 028 052 037

HZSM-5(00671) 033 03 063 027

NbS-1(00271) 004 0 004 -

NbS-1(0041) 004 0 004 -

NbAlS-1(00270041) 022 0 022 469

NbAlS-1(00400271) 023 0 023 35 aFrom NH3-TPD bFrom Pyridine-IR

36

Table S4 The butenes distribution in equilibrium at 320 degC and the distribution of butene isomers produced

from conversion of 30 GVL at 320 degC over catalysts

Catalyst Distribution ()

i-butene 1-butene trans-2-butene cis-2-butene

Equilibrium27 45 12 27 16

HZSM-5(0041) 44 14 25 17

NbAlS-1(00270041) 18 19 38 25

NbOPO4 15 20 39 26

37

Table S5 Comparison of the catalytic performance of reported catalysts for the conversion of GVL in aqueous solution (25-40 wt ) to butenes

Catalyst Reaction Conditions GVL

concentration

(wt )

GVL

conversion

()

Butene

Yield

(mol )a

Ref

Temperature

(degC)

WHSV

(h-1)

Pressure

(bar)

NbAlS-1(00270041) 320 018 1 30 100 993 this work

SiO2Al2O3 375 09 1 30 97 75 28

HZSM-5(0041) 320 018 1 30 76 232 this work

LaZSM-5 450 1 10 40 gt99 ca 21 15

PdNb2O5b 275 05 14 30d 100 lt16c 29

Zn-AlPO-5 397 077 10 40 65 ca 12 30

H3PO4 240 - - 25 100 12c 31

ZnZSM-5 450 1 10 40 gt99 ca 6 15

AlPO-5 397 077 10 40 2 ca 04 30

aButene yield is calculated by the equation defined in the Method section

bunder H2 atmosphere

cThe product includes both butene and butane d002 M H2SO4 was added in the GVL solution

38

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1

R (Aring)a σ a Amp a CN a

NbAlS-1 (Dry) Nb=O 1680 0017 082 1 Nb-O 2014 0008 082 3 NbAlS-1

Nb=O 1721 0012 078 1

Nb-O 2014 0004 078 3

NbAlS-1+GVL

Nb=O 1943 0003 075 1

Nb-O 2014 0010 075 3

NbS-1

Nb=O 1711 0032 091 1

Nb-O 2014 0005 091 3

NbS-1+GVL

Nb=O 1770 0004 089 1

Nb-O 2014 0014 089 3 aR = Interatomic distance from central scattering atom σ = Debye-Waller factor Amp = amplitude factor

and CN = coordination number

39

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption

Samples GVLHZSM-5(0041) GVLNbS-1(00271) NbAlS-1(00270041) GVLNbAlS-1(00270041)

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma

Chemical formula Al3692Si92308O192 8GVL Nb2524Si93476O192 8GVL Al3599Nb2429Si89972O192 Al3599Nb2429Si89972O192 8GVL

2θ range for refinement (deg) 3 ndash 50 3 ndash 50 3 ndash 50 3 ndash 50

Detector Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals

Number of hkls 3251 3214 3179 3222

Refinement methods Rietveld Rietveld Rietveld Rietveld

a (Aring) 201351(2) 200604(2) 199955(3) 200697(3)

b (Aring) 199852(2) 198995(1) 198333(3) 199150(3)

c (Aring) 134549(2) 134010(1) 133531(2) 134214(2)

V (Aring3) 541428(11) 534957(7) 529553(15) 536437(15)

RwpRexp Rp () 445135013378 463131253497 553133614058 444933763305

Wavelength (Aring) 082487(1) 082487(1) 082487(1) 082487(1)

Gof χ2 1272 1482 1646 1318

40

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) at room

temperature

Species Atom x y z SOF Beq(Aring2) Wyckoff

HZSM-5(0041) Al1 -00732(5) 00570(7) 08366(7) 003846154 100(5) 8d

Al2 01869(6) -00339(5) 03189(8) 003846154 100(5) 8d

Al3 02207(5) -00626(7) 05256(8) 003846154 100(5) 8d

Al4 01210(5) 00590(7) 10220(8) 003846154 100(5) 8d

Al5 -00703(6) -00272(5) 01933(8) 003846154 100(5) 8d

Al6 01859(5) 00593(6) 06679(8) 003846154 100(5) 8d

Al7 -00745(6) 06734(6) 08243(9) 003846154 100(5) 8d

Al8 01956(6) 01297(5) 03114(7) 003846154 100(5) 8d

Al9 02187(5) 01761(5) 05326(8) 003846154 100(5) 8d

Al10 01228(5) 06749(6) 10400(8) 003846154 100(5) 8d

Al11 -00694(6) 01308(6) 01819(9) 003846154 100(5) 8d

Al12 01859(6) 06714(5) 06756(8) 003846154 100(5) 8d

Si1 -00732(5) 00570(7) 08366(7) 09615385 100(5) 8d

Si2 01869(6) -00339(5) 03189(8) 09615385 100(5) 8d

Si3 02207(5) -00626(7) 05256(8) 09615385 100(5) 8d

Si4 01210(5) 00590(7) 10220(8) 09615385 100(5) 8d

Si5 -00703(6) -00272(5) 01933(8) 09615385 100(5) 8d

Si6 01859(5) 00593(6) 06679(8) 09615385 100(5) 8d

Si7 -00745(6) 06734(6) 08243(9) 09615385 100(5) 8d

Si8 01956(6) 01297(5) 03114(7) 09615385 100(5) 8d

Si9 02187(5) 01761(5) 05326(8) 09615385 100(5) 8d

Si10 01228(5) 06749(6) 10400(8) 09615385 100(5) 8d

Si11 -00694(6) 01308(6) 01819(9) 09615385 100(5) 8d

Si12 01859(6) 06714(5) 06756(8) 09615385 100(5) 8d

O1 01189(10) -00643(12) 02762(13) 1 143(9) 8d

O2 01900(11) -00665(10) 04093(13) 1 143(9) 8d

O3 02017(11) 00485(12) 10198(11) 1 143(9) 8d

O4 -00964(9) -00573(13) 10736(15) 1 143(9) 8d

O5 01132(9) 00573(12) 07009(13) 1 143(9) 8d

O6 02544(10) 00574(13) 07592(13) 1 143(9) 8d

O7 01249(11) 01569(12) 02676(15) 1 143(9) 8d

O8 01995(12) 01482(9) 04331(13) 1 143(9) 8d

O9 01968(12) 06607(9) 00500(12) 1 143(9) 8d

O10 -00922(10) 01564(11) 10827(17) 1 143(9) 8d

O11 01123(10) 06498(11) 07436(14) 1 143(9) 8d

O12 02420(11) 06557(12) 07396(15) 1 143(9) 8d

O13 02109(9) 00468(11) 03170(12) 1 143(9) 8d

O14 -00793(8) 00525(13) 01708(13) 1 143(9) 8d

O15 -00850(10) 01327(12) 08874(17) 1 143(9) 8d

O16 -01009(10) 00004(11) 09239(15) 1 143(9) 8d

O17 -01006(10) 06343(12) -00444(14) 1 143(9) 8d

O18 01746(10) 01273(11) 06145(13) 1 143(9) 8d

O19 01980(12) 00019(10) 06091(12) 1 143(9) 8d

O20 02014(13) 06300(11) 05761(13) 1 143(9) 8d

O21 -00054(11) 00405(12) 07595(12) 1 143(9) 8d

O22 -00045(12) 06580(13) 07876(13) 1 143(9) 8d

O23 -00801(15) 075 0861(2) 1 143(9) 4c

O24 01839(17) 075 0648(2) 1 143(9) 4c

O25 02011(18) 025 0563(2) 1 143(9) 4c

O26 00863(13) 075 0143(2) 1 143(9) 4c

41

GVLI O1 -00251(15) 08553(18) -0468(2) 0500(3) 06(4) 8d

O2 -0013(2) 07533(17) -0531(3) 0500(3) 06(4) 8d

C1 00570(11) 08446(12) -05861(14) 0500(3) 06(4) 8d

C2 00466(18) 09175(12) -05663(18) 0500(3) 06(4) 8d

C3 0004(2) 09222(15) -0484(2) 0500(3) 06(4) 8d

C4 00038(13) 08112(15) -05293(19) 0500(3) 06(4) 8d

C5 -0034(3) 09728(19) -0448(3) 0500(3) 06(4) 8d

H1a 00999(11) 08315(15) -05641(17) 0500(3) 07(5) 8d

H1b 00528(13) 08360(13) -06553(15) 0500(3) 07(5) 8d

H2a 0088(2) 09384(14) -0553(2) 0500(3) 07(5) 8d

H2b 0026(2) 09378(15) -0622(2) 0500(3) 07(5) 8d

H3 0038(2) 09204(15) -04313(18) 0500(3) 07(5) 8d

H5a -0043(3) 0965(2) -0380(3) 0500(3) 07(5) 8d

H5b -0011(4) 10138(17) -0454(3) 0500(3) 07(5) 8d

H5c -0074(3) 0975(3) -0485(3) 0500(3) 07(5) 8d

GVLII O1 -03289(15) -0778(2) -02817(19) 0500(4) 06(4) 8d

O2 -04372(14) -0757(2) -02733(16) 0500(4) 06(4) 8d

C1 -03730(11) -07204(15) -04150(12) 0500(4) 06(4) 8d

C2 -02990(11) -0718(2) -04230(16) 0500(4) 06(4) 8d

C3 -02738(13) -0762(3) -0350(2) 0500(4) 06(4) 8d

C4 -03856(13) -07518(18) -03175(14) 0500(4) 06(4) 8d

C5 -02129(14) -0768(4) -0308(3) 0500(4) 06(4) 8d

H1a -03908(13) -07461(16) -04681(13) 0500(3) 07(5) 8d

H1b -03904(14) -06762(15) -04174(16) 0500(3) 07(5) 8d

H2a -02856(13) -0732(2) -04875(17) 0500(3) 07(5) 8d

H2b -02835(15) -0674(2) -04093(19) 0500(3) 07(5) 8d

H3 -0275(2) -0803(3) -0389(3) 0500(3) 07(5) 8d

H5a -0208(2) -0812(4) -0281(3) 0500(3) 07(5) 8d

H5b -01797(13) -0762(4) -0357(3) 0500(3) 07(5) 8d

H5c -02080(14) -0735(4) -0257(3) 0500(3) 07(5) 8d

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 28: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

27

Fig S19 Schematic view of the procedure of in situ INS experiment and data collection

Zeolite (Calcined)

Zeolite (activated)

Heating at 450 oC under

He flow for 3 h

Zeolite (Adsorbed)

INS collection 1

Zeolite (Reaction at 280 C)

Adsorption of GVL at 135 oC

Zeolite (Reaction at 300 C)

Zeolite (Reaction at 320 C)

Reaction at 280 oC for 3 min

Reaction at 300 oC for 3 min

Reaction at 320 oC for 3 min

INS collection 2

INS collection 3

INS collection 4

INS collection 5

28

Fig S20 Comparison of the experimental INS spectra of condensed GVL in the solid state (black) and

calculated INS spectra of single GVL molecule (red) The crystal structure of solid GVL is unavailable in the

database

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental GVL

Calculated GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

29

Fig S21 Comparison of the experimental and calculated INS spectra of adsorbed GVL molecules on

NbAlS-1 The structure model derived from SXPD experiments was used for initial DFT modelling where

the positional disorder has been removed in the calculation and this partially accounts for the discrepancies

observed between calculated and experimental INS plots

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental adsorbed GVL

Calculated adsorbed GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

30

Fig S22 View of the INS spectrum for the empty catalysis cell used for this experiment The empty can has

the features below 300 cm-1 and at approximately 457 and 659 cm-1

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Empty can

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

31

Fig S23 Comparison of the experimental INS spectra for bare and GVL-adsorbed catalyst Spectra shown

are after subtraction of the empty cell The INS spectrum of the catalyst on GVL adsorption at 135 degC shows

a significant increase in total intensity demonstrating the binding of GVL to the catalyst sites

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

GVLNbAlS-1(00270041)

Bare NbAlS-1(00270041)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

32

Fig S24 Comparison of the experimental INS spectra of all butene isomers and reacted GVL at 320 degC

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Reaction 320 oC

trans-2-butene

i-butene

1-butene

cis-2-butene

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

33

Supplementary Tables

Table S1 Textural properties (data determined from N2 sorption isotherms at 77 K) and crystallite size (data

determined from SEM) of all zeolites used in this study

Samples ABET (m2 g-1)a Amic (m2 g-1) b Aext (m2 g-1) c Vmic (cm3 g-1) d Vtotal (cm3 g-1) e

Crystallite sizef

(nm)

HZSM-5 (00271) 413 314 99 019 033 200-500

HZSM-5 (0041) 346 259 87 015 028 200-500

HZSM-5 (00671) 348 277 71 016 026 200-500

NbS-1 (00271) 377 284 93 017 029 300-500

NbS-1 (0041) 357 282 75 016 027 300-500

NbAlS-1(00270041) 408 263 145 018 041 300-500

NbAlS-1(00400271) 376 268 108 017 033 300-500

HZSM-5 (0041)g 338 258 80 015 027 200-500

NbAlS-1(00270041)g 396 262 134 018 039 300-500

aBET specific surface area bMicropore surface area cExternal surface area dMicropore volume eTotal pore volume fObtainted from SEM gUsed catalyst

34

Table S2 Spin-Hamiltonian parameters of radiation induced Nb(IV) and electron hole Al-O-Si defects

from simulation of CW X-band EPR spectra in Fig 1 lw is the homogeneous Lorentzian linewidth g and A

are the principle values of the g and hyperfine interaction tensors

Signal Parameters

Electron

Spin

Nuclear

Spin g-tensor g-Strain

A-tensor

(G)

lw

(mT)

Nb defect 12 92 [1935 1935 1866] [004 004 00] [159 159

310] [0 40]

Al defect 12 52 [20012 2007 2045] [00 0003 004] [7 7 -] [00 04]

35

Table S3 Summary of acidity of all zeolites used in this work Data were determined by NH3-TPD and

Pyridine-IR studies

Catalyst Weak acida

(mmol g-1)

Strong acida

(mmol g-1)

Total acida

(mmol g-1)

LB acid

ratiob

HZSM-5(00271) 015 025 04 039

HZSM-5(0041) 024 028 052 037

HZSM-5(00671) 033 03 063 027

NbS-1(00271) 004 0 004 -

NbS-1(0041) 004 0 004 -

NbAlS-1(00270041) 022 0 022 469

NbAlS-1(00400271) 023 0 023 35 aFrom NH3-TPD bFrom Pyridine-IR

36

Table S4 The butenes distribution in equilibrium at 320 degC and the distribution of butene isomers produced

from conversion of 30 GVL at 320 degC over catalysts

Catalyst Distribution ()

i-butene 1-butene trans-2-butene cis-2-butene

Equilibrium27 45 12 27 16

HZSM-5(0041) 44 14 25 17

NbAlS-1(00270041) 18 19 38 25

NbOPO4 15 20 39 26

37

Table S5 Comparison of the catalytic performance of reported catalysts for the conversion of GVL in aqueous solution (25-40 wt ) to butenes

Catalyst Reaction Conditions GVL

concentration

(wt )

GVL

conversion

()

Butene

Yield

(mol )a

Ref

Temperature

(degC)

WHSV

(h-1)

Pressure

(bar)

NbAlS-1(00270041) 320 018 1 30 100 993 this work

SiO2Al2O3 375 09 1 30 97 75 28

HZSM-5(0041) 320 018 1 30 76 232 this work

LaZSM-5 450 1 10 40 gt99 ca 21 15

PdNb2O5b 275 05 14 30d 100 lt16c 29

Zn-AlPO-5 397 077 10 40 65 ca 12 30

H3PO4 240 - - 25 100 12c 31

ZnZSM-5 450 1 10 40 gt99 ca 6 15

AlPO-5 397 077 10 40 2 ca 04 30

aButene yield is calculated by the equation defined in the Method section

bunder H2 atmosphere

cThe product includes both butene and butane d002 M H2SO4 was added in the GVL solution

38

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1

R (Aring)a σ a Amp a CN a

NbAlS-1 (Dry) Nb=O 1680 0017 082 1 Nb-O 2014 0008 082 3 NbAlS-1

Nb=O 1721 0012 078 1

Nb-O 2014 0004 078 3

NbAlS-1+GVL

Nb=O 1943 0003 075 1

Nb-O 2014 0010 075 3

NbS-1

Nb=O 1711 0032 091 1

Nb-O 2014 0005 091 3

NbS-1+GVL

Nb=O 1770 0004 089 1

Nb-O 2014 0014 089 3 aR = Interatomic distance from central scattering atom σ = Debye-Waller factor Amp = amplitude factor

and CN = coordination number

39

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption

Samples GVLHZSM-5(0041) GVLNbS-1(00271) NbAlS-1(00270041) GVLNbAlS-1(00270041)

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma

Chemical formula Al3692Si92308O192 8GVL Nb2524Si93476O192 8GVL Al3599Nb2429Si89972O192 Al3599Nb2429Si89972O192 8GVL

2θ range for refinement (deg) 3 ndash 50 3 ndash 50 3 ndash 50 3 ndash 50

Detector Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals

Number of hkls 3251 3214 3179 3222

Refinement methods Rietveld Rietveld Rietveld Rietveld

a (Aring) 201351(2) 200604(2) 199955(3) 200697(3)

b (Aring) 199852(2) 198995(1) 198333(3) 199150(3)

c (Aring) 134549(2) 134010(1) 133531(2) 134214(2)

V (Aring3) 541428(11) 534957(7) 529553(15) 536437(15)

RwpRexp Rp () 445135013378 463131253497 553133614058 444933763305

Wavelength (Aring) 082487(1) 082487(1) 082487(1) 082487(1)

Gof χ2 1272 1482 1646 1318

40

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) at room

temperature

Species Atom x y z SOF Beq(Aring2) Wyckoff

HZSM-5(0041) Al1 -00732(5) 00570(7) 08366(7) 003846154 100(5) 8d

Al2 01869(6) -00339(5) 03189(8) 003846154 100(5) 8d

Al3 02207(5) -00626(7) 05256(8) 003846154 100(5) 8d

Al4 01210(5) 00590(7) 10220(8) 003846154 100(5) 8d

Al5 -00703(6) -00272(5) 01933(8) 003846154 100(5) 8d

Al6 01859(5) 00593(6) 06679(8) 003846154 100(5) 8d

Al7 -00745(6) 06734(6) 08243(9) 003846154 100(5) 8d

Al8 01956(6) 01297(5) 03114(7) 003846154 100(5) 8d

Al9 02187(5) 01761(5) 05326(8) 003846154 100(5) 8d

Al10 01228(5) 06749(6) 10400(8) 003846154 100(5) 8d

Al11 -00694(6) 01308(6) 01819(9) 003846154 100(5) 8d

Al12 01859(6) 06714(5) 06756(8) 003846154 100(5) 8d

Si1 -00732(5) 00570(7) 08366(7) 09615385 100(5) 8d

Si2 01869(6) -00339(5) 03189(8) 09615385 100(5) 8d

Si3 02207(5) -00626(7) 05256(8) 09615385 100(5) 8d

Si4 01210(5) 00590(7) 10220(8) 09615385 100(5) 8d

Si5 -00703(6) -00272(5) 01933(8) 09615385 100(5) 8d

Si6 01859(5) 00593(6) 06679(8) 09615385 100(5) 8d

Si7 -00745(6) 06734(6) 08243(9) 09615385 100(5) 8d

Si8 01956(6) 01297(5) 03114(7) 09615385 100(5) 8d

Si9 02187(5) 01761(5) 05326(8) 09615385 100(5) 8d

Si10 01228(5) 06749(6) 10400(8) 09615385 100(5) 8d

Si11 -00694(6) 01308(6) 01819(9) 09615385 100(5) 8d

Si12 01859(6) 06714(5) 06756(8) 09615385 100(5) 8d

O1 01189(10) -00643(12) 02762(13) 1 143(9) 8d

O2 01900(11) -00665(10) 04093(13) 1 143(9) 8d

O3 02017(11) 00485(12) 10198(11) 1 143(9) 8d

O4 -00964(9) -00573(13) 10736(15) 1 143(9) 8d

O5 01132(9) 00573(12) 07009(13) 1 143(9) 8d

O6 02544(10) 00574(13) 07592(13) 1 143(9) 8d

O7 01249(11) 01569(12) 02676(15) 1 143(9) 8d

O8 01995(12) 01482(9) 04331(13) 1 143(9) 8d

O9 01968(12) 06607(9) 00500(12) 1 143(9) 8d

O10 -00922(10) 01564(11) 10827(17) 1 143(9) 8d

O11 01123(10) 06498(11) 07436(14) 1 143(9) 8d

O12 02420(11) 06557(12) 07396(15) 1 143(9) 8d

O13 02109(9) 00468(11) 03170(12) 1 143(9) 8d

O14 -00793(8) 00525(13) 01708(13) 1 143(9) 8d

O15 -00850(10) 01327(12) 08874(17) 1 143(9) 8d

O16 -01009(10) 00004(11) 09239(15) 1 143(9) 8d

O17 -01006(10) 06343(12) -00444(14) 1 143(9) 8d

O18 01746(10) 01273(11) 06145(13) 1 143(9) 8d

O19 01980(12) 00019(10) 06091(12) 1 143(9) 8d

O20 02014(13) 06300(11) 05761(13) 1 143(9) 8d

O21 -00054(11) 00405(12) 07595(12) 1 143(9) 8d

O22 -00045(12) 06580(13) 07876(13) 1 143(9) 8d

O23 -00801(15) 075 0861(2) 1 143(9) 4c

O24 01839(17) 075 0648(2) 1 143(9) 4c

O25 02011(18) 025 0563(2) 1 143(9) 4c

O26 00863(13) 075 0143(2) 1 143(9) 4c

41

GVLI O1 -00251(15) 08553(18) -0468(2) 0500(3) 06(4) 8d

O2 -0013(2) 07533(17) -0531(3) 0500(3) 06(4) 8d

C1 00570(11) 08446(12) -05861(14) 0500(3) 06(4) 8d

C2 00466(18) 09175(12) -05663(18) 0500(3) 06(4) 8d

C3 0004(2) 09222(15) -0484(2) 0500(3) 06(4) 8d

C4 00038(13) 08112(15) -05293(19) 0500(3) 06(4) 8d

C5 -0034(3) 09728(19) -0448(3) 0500(3) 06(4) 8d

H1a 00999(11) 08315(15) -05641(17) 0500(3) 07(5) 8d

H1b 00528(13) 08360(13) -06553(15) 0500(3) 07(5) 8d

H2a 0088(2) 09384(14) -0553(2) 0500(3) 07(5) 8d

H2b 0026(2) 09378(15) -0622(2) 0500(3) 07(5) 8d

H3 0038(2) 09204(15) -04313(18) 0500(3) 07(5) 8d

H5a -0043(3) 0965(2) -0380(3) 0500(3) 07(5) 8d

H5b -0011(4) 10138(17) -0454(3) 0500(3) 07(5) 8d

H5c -0074(3) 0975(3) -0485(3) 0500(3) 07(5) 8d

GVLII O1 -03289(15) -0778(2) -02817(19) 0500(4) 06(4) 8d

O2 -04372(14) -0757(2) -02733(16) 0500(4) 06(4) 8d

C1 -03730(11) -07204(15) -04150(12) 0500(4) 06(4) 8d

C2 -02990(11) -0718(2) -04230(16) 0500(4) 06(4) 8d

C3 -02738(13) -0762(3) -0350(2) 0500(4) 06(4) 8d

C4 -03856(13) -07518(18) -03175(14) 0500(4) 06(4) 8d

C5 -02129(14) -0768(4) -0308(3) 0500(4) 06(4) 8d

H1a -03908(13) -07461(16) -04681(13) 0500(3) 07(5) 8d

H1b -03904(14) -06762(15) -04174(16) 0500(3) 07(5) 8d

H2a -02856(13) -0732(2) -04875(17) 0500(3) 07(5) 8d

H2b -02835(15) -0674(2) -04093(19) 0500(3) 07(5) 8d

H3 -0275(2) -0803(3) -0389(3) 0500(3) 07(5) 8d

H5a -0208(2) -0812(4) -0281(3) 0500(3) 07(5) 8d

H5b -01797(13) -0762(4) -0357(3) 0500(3) 07(5) 8d

H5c -02080(14) -0735(4) -0257(3) 0500(3) 07(5) 8d

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 29: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

28

Fig S20 Comparison of the experimental INS spectra of condensed GVL in the solid state (black) and

calculated INS spectra of single GVL molecule (red) The crystal structure of solid GVL is unavailable in the

database

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental GVL

Calculated GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

29

Fig S21 Comparison of the experimental and calculated INS spectra of adsorbed GVL molecules on

NbAlS-1 The structure model derived from SXPD experiments was used for initial DFT modelling where

the positional disorder has been removed in the calculation and this partially accounts for the discrepancies

observed between calculated and experimental INS plots

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental adsorbed GVL

Calculated adsorbed GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

30

Fig S22 View of the INS spectrum for the empty catalysis cell used for this experiment The empty can has

the features below 300 cm-1 and at approximately 457 and 659 cm-1

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Empty can

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

31

Fig S23 Comparison of the experimental INS spectra for bare and GVL-adsorbed catalyst Spectra shown

are after subtraction of the empty cell The INS spectrum of the catalyst on GVL adsorption at 135 degC shows

a significant increase in total intensity demonstrating the binding of GVL to the catalyst sites

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

GVLNbAlS-1(00270041)

Bare NbAlS-1(00270041)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

32

Fig S24 Comparison of the experimental INS spectra of all butene isomers and reacted GVL at 320 degC

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Reaction 320 oC

trans-2-butene

i-butene

1-butene

cis-2-butene

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

33

Supplementary Tables

Table S1 Textural properties (data determined from N2 sorption isotherms at 77 K) and crystallite size (data

determined from SEM) of all zeolites used in this study

Samples ABET (m2 g-1)a Amic (m2 g-1) b Aext (m2 g-1) c Vmic (cm3 g-1) d Vtotal (cm3 g-1) e

Crystallite sizef

(nm)

HZSM-5 (00271) 413 314 99 019 033 200-500

HZSM-5 (0041) 346 259 87 015 028 200-500

HZSM-5 (00671) 348 277 71 016 026 200-500

NbS-1 (00271) 377 284 93 017 029 300-500

NbS-1 (0041) 357 282 75 016 027 300-500

NbAlS-1(00270041) 408 263 145 018 041 300-500

NbAlS-1(00400271) 376 268 108 017 033 300-500

HZSM-5 (0041)g 338 258 80 015 027 200-500

NbAlS-1(00270041)g 396 262 134 018 039 300-500

aBET specific surface area bMicropore surface area cExternal surface area dMicropore volume eTotal pore volume fObtainted from SEM gUsed catalyst

34

Table S2 Spin-Hamiltonian parameters of radiation induced Nb(IV) and electron hole Al-O-Si defects

from simulation of CW X-band EPR spectra in Fig 1 lw is the homogeneous Lorentzian linewidth g and A

are the principle values of the g and hyperfine interaction tensors

Signal Parameters

Electron

Spin

Nuclear

Spin g-tensor g-Strain

A-tensor

(G)

lw

(mT)

Nb defect 12 92 [1935 1935 1866] [004 004 00] [159 159

310] [0 40]

Al defect 12 52 [20012 2007 2045] [00 0003 004] [7 7 -] [00 04]

35

Table S3 Summary of acidity of all zeolites used in this work Data were determined by NH3-TPD and

Pyridine-IR studies

Catalyst Weak acida

(mmol g-1)

Strong acida

(mmol g-1)

Total acida

(mmol g-1)

LB acid

ratiob

HZSM-5(00271) 015 025 04 039

HZSM-5(0041) 024 028 052 037

HZSM-5(00671) 033 03 063 027

NbS-1(00271) 004 0 004 -

NbS-1(0041) 004 0 004 -

NbAlS-1(00270041) 022 0 022 469

NbAlS-1(00400271) 023 0 023 35 aFrom NH3-TPD bFrom Pyridine-IR

36

Table S4 The butenes distribution in equilibrium at 320 degC and the distribution of butene isomers produced

from conversion of 30 GVL at 320 degC over catalysts

Catalyst Distribution ()

i-butene 1-butene trans-2-butene cis-2-butene

Equilibrium27 45 12 27 16

HZSM-5(0041) 44 14 25 17

NbAlS-1(00270041) 18 19 38 25

NbOPO4 15 20 39 26

37

Table S5 Comparison of the catalytic performance of reported catalysts for the conversion of GVL in aqueous solution (25-40 wt ) to butenes

Catalyst Reaction Conditions GVL

concentration

(wt )

GVL

conversion

()

Butene

Yield

(mol )a

Ref

Temperature

(degC)

WHSV

(h-1)

Pressure

(bar)

NbAlS-1(00270041) 320 018 1 30 100 993 this work

SiO2Al2O3 375 09 1 30 97 75 28

HZSM-5(0041) 320 018 1 30 76 232 this work

LaZSM-5 450 1 10 40 gt99 ca 21 15

PdNb2O5b 275 05 14 30d 100 lt16c 29

Zn-AlPO-5 397 077 10 40 65 ca 12 30

H3PO4 240 - - 25 100 12c 31

ZnZSM-5 450 1 10 40 gt99 ca 6 15

AlPO-5 397 077 10 40 2 ca 04 30

aButene yield is calculated by the equation defined in the Method section

bunder H2 atmosphere

cThe product includes both butene and butane d002 M H2SO4 was added in the GVL solution

38

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1

R (Aring)a σ a Amp a CN a

NbAlS-1 (Dry) Nb=O 1680 0017 082 1 Nb-O 2014 0008 082 3 NbAlS-1

Nb=O 1721 0012 078 1

Nb-O 2014 0004 078 3

NbAlS-1+GVL

Nb=O 1943 0003 075 1

Nb-O 2014 0010 075 3

NbS-1

Nb=O 1711 0032 091 1

Nb-O 2014 0005 091 3

NbS-1+GVL

Nb=O 1770 0004 089 1

Nb-O 2014 0014 089 3 aR = Interatomic distance from central scattering atom σ = Debye-Waller factor Amp = amplitude factor

and CN = coordination number

39

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption

Samples GVLHZSM-5(0041) GVLNbS-1(00271) NbAlS-1(00270041) GVLNbAlS-1(00270041)

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma

Chemical formula Al3692Si92308O192 8GVL Nb2524Si93476O192 8GVL Al3599Nb2429Si89972O192 Al3599Nb2429Si89972O192 8GVL

2θ range for refinement (deg) 3 ndash 50 3 ndash 50 3 ndash 50 3 ndash 50

Detector Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals

Number of hkls 3251 3214 3179 3222

Refinement methods Rietveld Rietveld Rietveld Rietveld

a (Aring) 201351(2) 200604(2) 199955(3) 200697(3)

b (Aring) 199852(2) 198995(1) 198333(3) 199150(3)

c (Aring) 134549(2) 134010(1) 133531(2) 134214(2)

V (Aring3) 541428(11) 534957(7) 529553(15) 536437(15)

RwpRexp Rp () 445135013378 463131253497 553133614058 444933763305

Wavelength (Aring) 082487(1) 082487(1) 082487(1) 082487(1)

Gof χ2 1272 1482 1646 1318

40

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) at room

temperature

Species Atom x y z SOF Beq(Aring2) Wyckoff

HZSM-5(0041) Al1 -00732(5) 00570(7) 08366(7) 003846154 100(5) 8d

Al2 01869(6) -00339(5) 03189(8) 003846154 100(5) 8d

Al3 02207(5) -00626(7) 05256(8) 003846154 100(5) 8d

Al4 01210(5) 00590(7) 10220(8) 003846154 100(5) 8d

Al5 -00703(6) -00272(5) 01933(8) 003846154 100(5) 8d

Al6 01859(5) 00593(6) 06679(8) 003846154 100(5) 8d

Al7 -00745(6) 06734(6) 08243(9) 003846154 100(5) 8d

Al8 01956(6) 01297(5) 03114(7) 003846154 100(5) 8d

Al9 02187(5) 01761(5) 05326(8) 003846154 100(5) 8d

Al10 01228(5) 06749(6) 10400(8) 003846154 100(5) 8d

Al11 -00694(6) 01308(6) 01819(9) 003846154 100(5) 8d

Al12 01859(6) 06714(5) 06756(8) 003846154 100(5) 8d

Si1 -00732(5) 00570(7) 08366(7) 09615385 100(5) 8d

Si2 01869(6) -00339(5) 03189(8) 09615385 100(5) 8d

Si3 02207(5) -00626(7) 05256(8) 09615385 100(5) 8d

Si4 01210(5) 00590(7) 10220(8) 09615385 100(5) 8d

Si5 -00703(6) -00272(5) 01933(8) 09615385 100(5) 8d

Si6 01859(5) 00593(6) 06679(8) 09615385 100(5) 8d

Si7 -00745(6) 06734(6) 08243(9) 09615385 100(5) 8d

Si8 01956(6) 01297(5) 03114(7) 09615385 100(5) 8d

Si9 02187(5) 01761(5) 05326(8) 09615385 100(5) 8d

Si10 01228(5) 06749(6) 10400(8) 09615385 100(5) 8d

Si11 -00694(6) 01308(6) 01819(9) 09615385 100(5) 8d

Si12 01859(6) 06714(5) 06756(8) 09615385 100(5) 8d

O1 01189(10) -00643(12) 02762(13) 1 143(9) 8d

O2 01900(11) -00665(10) 04093(13) 1 143(9) 8d

O3 02017(11) 00485(12) 10198(11) 1 143(9) 8d

O4 -00964(9) -00573(13) 10736(15) 1 143(9) 8d

O5 01132(9) 00573(12) 07009(13) 1 143(9) 8d

O6 02544(10) 00574(13) 07592(13) 1 143(9) 8d

O7 01249(11) 01569(12) 02676(15) 1 143(9) 8d

O8 01995(12) 01482(9) 04331(13) 1 143(9) 8d

O9 01968(12) 06607(9) 00500(12) 1 143(9) 8d

O10 -00922(10) 01564(11) 10827(17) 1 143(9) 8d

O11 01123(10) 06498(11) 07436(14) 1 143(9) 8d

O12 02420(11) 06557(12) 07396(15) 1 143(9) 8d

O13 02109(9) 00468(11) 03170(12) 1 143(9) 8d

O14 -00793(8) 00525(13) 01708(13) 1 143(9) 8d

O15 -00850(10) 01327(12) 08874(17) 1 143(9) 8d

O16 -01009(10) 00004(11) 09239(15) 1 143(9) 8d

O17 -01006(10) 06343(12) -00444(14) 1 143(9) 8d

O18 01746(10) 01273(11) 06145(13) 1 143(9) 8d

O19 01980(12) 00019(10) 06091(12) 1 143(9) 8d

O20 02014(13) 06300(11) 05761(13) 1 143(9) 8d

O21 -00054(11) 00405(12) 07595(12) 1 143(9) 8d

O22 -00045(12) 06580(13) 07876(13) 1 143(9) 8d

O23 -00801(15) 075 0861(2) 1 143(9) 4c

O24 01839(17) 075 0648(2) 1 143(9) 4c

O25 02011(18) 025 0563(2) 1 143(9) 4c

O26 00863(13) 075 0143(2) 1 143(9) 4c

41

GVLI O1 -00251(15) 08553(18) -0468(2) 0500(3) 06(4) 8d

O2 -0013(2) 07533(17) -0531(3) 0500(3) 06(4) 8d

C1 00570(11) 08446(12) -05861(14) 0500(3) 06(4) 8d

C2 00466(18) 09175(12) -05663(18) 0500(3) 06(4) 8d

C3 0004(2) 09222(15) -0484(2) 0500(3) 06(4) 8d

C4 00038(13) 08112(15) -05293(19) 0500(3) 06(4) 8d

C5 -0034(3) 09728(19) -0448(3) 0500(3) 06(4) 8d

H1a 00999(11) 08315(15) -05641(17) 0500(3) 07(5) 8d

H1b 00528(13) 08360(13) -06553(15) 0500(3) 07(5) 8d

H2a 0088(2) 09384(14) -0553(2) 0500(3) 07(5) 8d

H2b 0026(2) 09378(15) -0622(2) 0500(3) 07(5) 8d

H3 0038(2) 09204(15) -04313(18) 0500(3) 07(5) 8d

H5a -0043(3) 0965(2) -0380(3) 0500(3) 07(5) 8d

H5b -0011(4) 10138(17) -0454(3) 0500(3) 07(5) 8d

H5c -0074(3) 0975(3) -0485(3) 0500(3) 07(5) 8d

GVLII O1 -03289(15) -0778(2) -02817(19) 0500(4) 06(4) 8d

O2 -04372(14) -0757(2) -02733(16) 0500(4) 06(4) 8d

C1 -03730(11) -07204(15) -04150(12) 0500(4) 06(4) 8d

C2 -02990(11) -0718(2) -04230(16) 0500(4) 06(4) 8d

C3 -02738(13) -0762(3) -0350(2) 0500(4) 06(4) 8d

C4 -03856(13) -07518(18) -03175(14) 0500(4) 06(4) 8d

C5 -02129(14) -0768(4) -0308(3) 0500(4) 06(4) 8d

H1a -03908(13) -07461(16) -04681(13) 0500(3) 07(5) 8d

H1b -03904(14) -06762(15) -04174(16) 0500(3) 07(5) 8d

H2a -02856(13) -0732(2) -04875(17) 0500(3) 07(5) 8d

H2b -02835(15) -0674(2) -04093(19) 0500(3) 07(5) 8d

H3 -0275(2) -0803(3) -0389(3) 0500(3) 07(5) 8d

H5a -0208(2) -0812(4) -0281(3) 0500(3) 07(5) 8d

H5b -01797(13) -0762(4) -0357(3) 0500(3) 07(5) 8d

H5c -02080(14) -0735(4) -0257(3) 0500(3) 07(5) 8d

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 30: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

29

Fig S21 Comparison of the experimental and calculated INS spectra of adsorbed GVL molecules on

NbAlS-1 The structure model derived from SXPD experiments was used for initial DFT modelling where

the positional disorder has been removed in the calculation and this partially accounts for the discrepancies

observed between calculated and experimental INS plots

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Experimental adsorbed GVL

Calculated adsorbed GVL

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

30

Fig S22 View of the INS spectrum for the empty catalysis cell used for this experiment The empty can has

the features below 300 cm-1 and at approximately 457 and 659 cm-1

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Empty can

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

31

Fig S23 Comparison of the experimental INS spectra for bare and GVL-adsorbed catalyst Spectra shown

are after subtraction of the empty cell The INS spectrum of the catalyst on GVL adsorption at 135 degC shows

a significant increase in total intensity demonstrating the binding of GVL to the catalyst sites

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

GVLNbAlS-1(00270041)

Bare NbAlS-1(00270041)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

32

Fig S24 Comparison of the experimental INS spectra of all butene isomers and reacted GVL at 320 degC

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Reaction 320 oC

trans-2-butene

i-butene

1-butene

cis-2-butene

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

33

Supplementary Tables

Table S1 Textural properties (data determined from N2 sorption isotherms at 77 K) and crystallite size (data

determined from SEM) of all zeolites used in this study

Samples ABET (m2 g-1)a Amic (m2 g-1) b Aext (m2 g-1) c Vmic (cm3 g-1) d Vtotal (cm3 g-1) e

Crystallite sizef

(nm)

HZSM-5 (00271) 413 314 99 019 033 200-500

HZSM-5 (0041) 346 259 87 015 028 200-500

HZSM-5 (00671) 348 277 71 016 026 200-500

NbS-1 (00271) 377 284 93 017 029 300-500

NbS-1 (0041) 357 282 75 016 027 300-500

NbAlS-1(00270041) 408 263 145 018 041 300-500

NbAlS-1(00400271) 376 268 108 017 033 300-500

HZSM-5 (0041)g 338 258 80 015 027 200-500

NbAlS-1(00270041)g 396 262 134 018 039 300-500

aBET specific surface area bMicropore surface area cExternal surface area dMicropore volume eTotal pore volume fObtainted from SEM gUsed catalyst

34

Table S2 Spin-Hamiltonian parameters of radiation induced Nb(IV) and electron hole Al-O-Si defects

from simulation of CW X-band EPR spectra in Fig 1 lw is the homogeneous Lorentzian linewidth g and A

are the principle values of the g and hyperfine interaction tensors

Signal Parameters

Electron

Spin

Nuclear

Spin g-tensor g-Strain

A-tensor

(G)

lw

(mT)

Nb defect 12 92 [1935 1935 1866] [004 004 00] [159 159

310] [0 40]

Al defect 12 52 [20012 2007 2045] [00 0003 004] [7 7 -] [00 04]

35

Table S3 Summary of acidity of all zeolites used in this work Data were determined by NH3-TPD and

Pyridine-IR studies

Catalyst Weak acida

(mmol g-1)

Strong acida

(mmol g-1)

Total acida

(mmol g-1)

LB acid

ratiob

HZSM-5(00271) 015 025 04 039

HZSM-5(0041) 024 028 052 037

HZSM-5(00671) 033 03 063 027

NbS-1(00271) 004 0 004 -

NbS-1(0041) 004 0 004 -

NbAlS-1(00270041) 022 0 022 469

NbAlS-1(00400271) 023 0 023 35 aFrom NH3-TPD bFrom Pyridine-IR

36

Table S4 The butenes distribution in equilibrium at 320 degC and the distribution of butene isomers produced

from conversion of 30 GVL at 320 degC over catalysts

Catalyst Distribution ()

i-butene 1-butene trans-2-butene cis-2-butene

Equilibrium27 45 12 27 16

HZSM-5(0041) 44 14 25 17

NbAlS-1(00270041) 18 19 38 25

NbOPO4 15 20 39 26

37

Table S5 Comparison of the catalytic performance of reported catalysts for the conversion of GVL in aqueous solution (25-40 wt ) to butenes

Catalyst Reaction Conditions GVL

concentration

(wt )

GVL

conversion

()

Butene

Yield

(mol )a

Ref

Temperature

(degC)

WHSV

(h-1)

Pressure

(bar)

NbAlS-1(00270041) 320 018 1 30 100 993 this work

SiO2Al2O3 375 09 1 30 97 75 28

HZSM-5(0041) 320 018 1 30 76 232 this work

LaZSM-5 450 1 10 40 gt99 ca 21 15

PdNb2O5b 275 05 14 30d 100 lt16c 29

Zn-AlPO-5 397 077 10 40 65 ca 12 30

H3PO4 240 - - 25 100 12c 31

ZnZSM-5 450 1 10 40 gt99 ca 6 15

AlPO-5 397 077 10 40 2 ca 04 30

aButene yield is calculated by the equation defined in the Method section

bunder H2 atmosphere

cThe product includes both butene and butane d002 M H2SO4 was added in the GVL solution

38

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1

R (Aring)a σ a Amp a CN a

NbAlS-1 (Dry) Nb=O 1680 0017 082 1 Nb-O 2014 0008 082 3 NbAlS-1

Nb=O 1721 0012 078 1

Nb-O 2014 0004 078 3

NbAlS-1+GVL

Nb=O 1943 0003 075 1

Nb-O 2014 0010 075 3

NbS-1

Nb=O 1711 0032 091 1

Nb-O 2014 0005 091 3

NbS-1+GVL

Nb=O 1770 0004 089 1

Nb-O 2014 0014 089 3 aR = Interatomic distance from central scattering atom σ = Debye-Waller factor Amp = amplitude factor

and CN = coordination number

39

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption

Samples GVLHZSM-5(0041) GVLNbS-1(00271) NbAlS-1(00270041) GVLNbAlS-1(00270041)

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma

Chemical formula Al3692Si92308O192 8GVL Nb2524Si93476O192 8GVL Al3599Nb2429Si89972O192 Al3599Nb2429Si89972O192 8GVL

2θ range for refinement (deg) 3 ndash 50 3 ndash 50 3 ndash 50 3 ndash 50

Detector Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals

Number of hkls 3251 3214 3179 3222

Refinement methods Rietveld Rietveld Rietveld Rietveld

a (Aring) 201351(2) 200604(2) 199955(3) 200697(3)

b (Aring) 199852(2) 198995(1) 198333(3) 199150(3)

c (Aring) 134549(2) 134010(1) 133531(2) 134214(2)

V (Aring3) 541428(11) 534957(7) 529553(15) 536437(15)

RwpRexp Rp () 445135013378 463131253497 553133614058 444933763305

Wavelength (Aring) 082487(1) 082487(1) 082487(1) 082487(1)

Gof χ2 1272 1482 1646 1318

40

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) at room

temperature

Species Atom x y z SOF Beq(Aring2) Wyckoff

HZSM-5(0041) Al1 -00732(5) 00570(7) 08366(7) 003846154 100(5) 8d

Al2 01869(6) -00339(5) 03189(8) 003846154 100(5) 8d

Al3 02207(5) -00626(7) 05256(8) 003846154 100(5) 8d

Al4 01210(5) 00590(7) 10220(8) 003846154 100(5) 8d

Al5 -00703(6) -00272(5) 01933(8) 003846154 100(5) 8d

Al6 01859(5) 00593(6) 06679(8) 003846154 100(5) 8d

Al7 -00745(6) 06734(6) 08243(9) 003846154 100(5) 8d

Al8 01956(6) 01297(5) 03114(7) 003846154 100(5) 8d

Al9 02187(5) 01761(5) 05326(8) 003846154 100(5) 8d

Al10 01228(5) 06749(6) 10400(8) 003846154 100(5) 8d

Al11 -00694(6) 01308(6) 01819(9) 003846154 100(5) 8d

Al12 01859(6) 06714(5) 06756(8) 003846154 100(5) 8d

Si1 -00732(5) 00570(7) 08366(7) 09615385 100(5) 8d

Si2 01869(6) -00339(5) 03189(8) 09615385 100(5) 8d

Si3 02207(5) -00626(7) 05256(8) 09615385 100(5) 8d

Si4 01210(5) 00590(7) 10220(8) 09615385 100(5) 8d

Si5 -00703(6) -00272(5) 01933(8) 09615385 100(5) 8d

Si6 01859(5) 00593(6) 06679(8) 09615385 100(5) 8d

Si7 -00745(6) 06734(6) 08243(9) 09615385 100(5) 8d

Si8 01956(6) 01297(5) 03114(7) 09615385 100(5) 8d

Si9 02187(5) 01761(5) 05326(8) 09615385 100(5) 8d

Si10 01228(5) 06749(6) 10400(8) 09615385 100(5) 8d

Si11 -00694(6) 01308(6) 01819(9) 09615385 100(5) 8d

Si12 01859(6) 06714(5) 06756(8) 09615385 100(5) 8d

O1 01189(10) -00643(12) 02762(13) 1 143(9) 8d

O2 01900(11) -00665(10) 04093(13) 1 143(9) 8d

O3 02017(11) 00485(12) 10198(11) 1 143(9) 8d

O4 -00964(9) -00573(13) 10736(15) 1 143(9) 8d

O5 01132(9) 00573(12) 07009(13) 1 143(9) 8d

O6 02544(10) 00574(13) 07592(13) 1 143(9) 8d

O7 01249(11) 01569(12) 02676(15) 1 143(9) 8d

O8 01995(12) 01482(9) 04331(13) 1 143(9) 8d

O9 01968(12) 06607(9) 00500(12) 1 143(9) 8d

O10 -00922(10) 01564(11) 10827(17) 1 143(9) 8d

O11 01123(10) 06498(11) 07436(14) 1 143(9) 8d

O12 02420(11) 06557(12) 07396(15) 1 143(9) 8d

O13 02109(9) 00468(11) 03170(12) 1 143(9) 8d

O14 -00793(8) 00525(13) 01708(13) 1 143(9) 8d

O15 -00850(10) 01327(12) 08874(17) 1 143(9) 8d

O16 -01009(10) 00004(11) 09239(15) 1 143(9) 8d

O17 -01006(10) 06343(12) -00444(14) 1 143(9) 8d

O18 01746(10) 01273(11) 06145(13) 1 143(9) 8d

O19 01980(12) 00019(10) 06091(12) 1 143(9) 8d

O20 02014(13) 06300(11) 05761(13) 1 143(9) 8d

O21 -00054(11) 00405(12) 07595(12) 1 143(9) 8d

O22 -00045(12) 06580(13) 07876(13) 1 143(9) 8d

O23 -00801(15) 075 0861(2) 1 143(9) 4c

O24 01839(17) 075 0648(2) 1 143(9) 4c

O25 02011(18) 025 0563(2) 1 143(9) 4c

O26 00863(13) 075 0143(2) 1 143(9) 4c

41

GVLI O1 -00251(15) 08553(18) -0468(2) 0500(3) 06(4) 8d

O2 -0013(2) 07533(17) -0531(3) 0500(3) 06(4) 8d

C1 00570(11) 08446(12) -05861(14) 0500(3) 06(4) 8d

C2 00466(18) 09175(12) -05663(18) 0500(3) 06(4) 8d

C3 0004(2) 09222(15) -0484(2) 0500(3) 06(4) 8d

C4 00038(13) 08112(15) -05293(19) 0500(3) 06(4) 8d

C5 -0034(3) 09728(19) -0448(3) 0500(3) 06(4) 8d

H1a 00999(11) 08315(15) -05641(17) 0500(3) 07(5) 8d

H1b 00528(13) 08360(13) -06553(15) 0500(3) 07(5) 8d

H2a 0088(2) 09384(14) -0553(2) 0500(3) 07(5) 8d

H2b 0026(2) 09378(15) -0622(2) 0500(3) 07(5) 8d

H3 0038(2) 09204(15) -04313(18) 0500(3) 07(5) 8d

H5a -0043(3) 0965(2) -0380(3) 0500(3) 07(5) 8d

H5b -0011(4) 10138(17) -0454(3) 0500(3) 07(5) 8d

H5c -0074(3) 0975(3) -0485(3) 0500(3) 07(5) 8d

GVLII O1 -03289(15) -0778(2) -02817(19) 0500(4) 06(4) 8d

O2 -04372(14) -0757(2) -02733(16) 0500(4) 06(4) 8d

C1 -03730(11) -07204(15) -04150(12) 0500(4) 06(4) 8d

C2 -02990(11) -0718(2) -04230(16) 0500(4) 06(4) 8d

C3 -02738(13) -0762(3) -0350(2) 0500(4) 06(4) 8d

C4 -03856(13) -07518(18) -03175(14) 0500(4) 06(4) 8d

C5 -02129(14) -0768(4) -0308(3) 0500(4) 06(4) 8d

H1a -03908(13) -07461(16) -04681(13) 0500(3) 07(5) 8d

H1b -03904(14) -06762(15) -04174(16) 0500(3) 07(5) 8d

H2a -02856(13) -0732(2) -04875(17) 0500(3) 07(5) 8d

H2b -02835(15) -0674(2) -04093(19) 0500(3) 07(5) 8d

H3 -0275(2) -0803(3) -0389(3) 0500(3) 07(5) 8d

H5a -0208(2) -0812(4) -0281(3) 0500(3) 07(5) 8d

H5b -01797(13) -0762(4) -0357(3) 0500(3) 07(5) 8d

H5c -02080(14) -0735(4) -0257(3) 0500(3) 07(5) 8d

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 31: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

30

Fig S22 View of the INS spectrum for the empty catalysis cell used for this experiment The empty can has

the features below 300 cm-1 and at approximately 457 and 659 cm-1

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Empty can

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

31

Fig S23 Comparison of the experimental INS spectra for bare and GVL-adsorbed catalyst Spectra shown

are after subtraction of the empty cell The INS spectrum of the catalyst on GVL adsorption at 135 degC shows

a significant increase in total intensity demonstrating the binding of GVL to the catalyst sites

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

GVLNbAlS-1(00270041)

Bare NbAlS-1(00270041)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

32

Fig S24 Comparison of the experimental INS spectra of all butene isomers and reacted GVL at 320 degC

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Reaction 320 oC

trans-2-butene

i-butene

1-butene

cis-2-butene

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

33

Supplementary Tables

Table S1 Textural properties (data determined from N2 sorption isotherms at 77 K) and crystallite size (data

determined from SEM) of all zeolites used in this study

Samples ABET (m2 g-1)a Amic (m2 g-1) b Aext (m2 g-1) c Vmic (cm3 g-1) d Vtotal (cm3 g-1) e

Crystallite sizef

(nm)

HZSM-5 (00271) 413 314 99 019 033 200-500

HZSM-5 (0041) 346 259 87 015 028 200-500

HZSM-5 (00671) 348 277 71 016 026 200-500

NbS-1 (00271) 377 284 93 017 029 300-500

NbS-1 (0041) 357 282 75 016 027 300-500

NbAlS-1(00270041) 408 263 145 018 041 300-500

NbAlS-1(00400271) 376 268 108 017 033 300-500

HZSM-5 (0041)g 338 258 80 015 027 200-500

NbAlS-1(00270041)g 396 262 134 018 039 300-500

aBET specific surface area bMicropore surface area cExternal surface area dMicropore volume eTotal pore volume fObtainted from SEM gUsed catalyst

34

Table S2 Spin-Hamiltonian parameters of radiation induced Nb(IV) and electron hole Al-O-Si defects

from simulation of CW X-band EPR spectra in Fig 1 lw is the homogeneous Lorentzian linewidth g and A

are the principle values of the g and hyperfine interaction tensors

Signal Parameters

Electron

Spin

Nuclear

Spin g-tensor g-Strain

A-tensor

(G)

lw

(mT)

Nb defect 12 92 [1935 1935 1866] [004 004 00] [159 159

310] [0 40]

Al defect 12 52 [20012 2007 2045] [00 0003 004] [7 7 -] [00 04]

35

Table S3 Summary of acidity of all zeolites used in this work Data were determined by NH3-TPD and

Pyridine-IR studies

Catalyst Weak acida

(mmol g-1)

Strong acida

(mmol g-1)

Total acida

(mmol g-1)

LB acid

ratiob

HZSM-5(00271) 015 025 04 039

HZSM-5(0041) 024 028 052 037

HZSM-5(00671) 033 03 063 027

NbS-1(00271) 004 0 004 -

NbS-1(0041) 004 0 004 -

NbAlS-1(00270041) 022 0 022 469

NbAlS-1(00400271) 023 0 023 35 aFrom NH3-TPD bFrom Pyridine-IR

36

Table S4 The butenes distribution in equilibrium at 320 degC and the distribution of butene isomers produced

from conversion of 30 GVL at 320 degC over catalysts

Catalyst Distribution ()

i-butene 1-butene trans-2-butene cis-2-butene

Equilibrium27 45 12 27 16

HZSM-5(0041) 44 14 25 17

NbAlS-1(00270041) 18 19 38 25

NbOPO4 15 20 39 26

37

Table S5 Comparison of the catalytic performance of reported catalysts for the conversion of GVL in aqueous solution (25-40 wt ) to butenes

Catalyst Reaction Conditions GVL

concentration

(wt )

GVL

conversion

()

Butene

Yield

(mol )a

Ref

Temperature

(degC)

WHSV

(h-1)

Pressure

(bar)

NbAlS-1(00270041) 320 018 1 30 100 993 this work

SiO2Al2O3 375 09 1 30 97 75 28

HZSM-5(0041) 320 018 1 30 76 232 this work

LaZSM-5 450 1 10 40 gt99 ca 21 15

PdNb2O5b 275 05 14 30d 100 lt16c 29

Zn-AlPO-5 397 077 10 40 65 ca 12 30

H3PO4 240 - - 25 100 12c 31

ZnZSM-5 450 1 10 40 gt99 ca 6 15

AlPO-5 397 077 10 40 2 ca 04 30

aButene yield is calculated by the equation defined in the Method section

bunder H2 atmosphere

cThe product includes both butene and butane d002 M H2SO4 was added in the GVL solution

38

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1

R (Aring)a σ a Amp a CN a

NbAlS-1 (Dry) Nb=O 1680 0017 082 1 Nb-O 2014 0008 082 3 NbAlS-1

Nb=O 1721 0012 078 1

Nb-O 2014 0004 078 3

NbAlS-1+GVL

Nb=O 1943 0003 075 1

Nb-O 2014 0010 075 3

NbS-1

Nb=O 1711 0032 091 1

Nb-O 2014 0005 091 3

NbS-1+GVL

Nb=O 1770 0004 089 1

Nb-O 2014 0014 089 3 aR = Interatomic distance from central scattering atom σ = Debye-Waller factor Amp = amplitude factor

and CN = coordination number

39

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption

Samples GVLHZSM-5(0041) GVLNbS-1(00271) NbAlS-1(00270041) GVLNbAlS-1(00270041)

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma

Chemical formula Al3692Si92308O192 8GVL Nb2524Si93476O192 8GVL Al3599Nb2429Si89972O192 Al3599Nb2429Si89972O192 8GVL

2θ range for refinement (deg) 3 ndash 50 3 ndash 50 3 ndash 50 3 ndash 50

Detector Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals

Number of hkls 3251 3214 3179 3222

Refinement methods Rietveld Rietveld Rietveld Rietveld

a (Aring) 201351(2) 200604(2) 199955(3) 200697(3)

b (Aring) 199852(2) 198995(1) 198333(3) 199150(3)

c (Aring) 134549(2) 134010(1) 133531(2) 134214(2)

V (Aring3) 541428(11) 534957(7) 529553(15) 536437(15)

RwpRexp Rp () 445135013378 463131253497 553133614058 444933763305

Wavelength (Aring) 082487(1) 082487(1) 082487(1) 082487(1)

Gof χ2 1272 1482 1646 1318

40

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) at room

temperature

Species Atom x y z SOF Beq(Aring2) Wyckoff

HZSM-5(0041) Al1 -00732(5) 00570(7) 08366(7) 003846154 100(5) 8d

Al2 01869(6) -00339(5) 03189(8) 003846154 100(5) 8d

Al3 02207(5) -00626(7) 05256(8) 003846154 100(5) 8d

Al4 01210(5) 00590(7) 10220(8) 003846154 100(5) 8d

Al5 -00703(6) -00272(5) 01933(8) 003846154 100(5) 8d

Al6 01859(5) 00593(6) 06679(8) 003846154 100(5) 8d

Al7 -00745(6) 06734(6) 08243(9) 003846154 100(5) 8d

Al8 01956(6) 01297(5) 03114(7) 003846154 100(5) 8d

Al9 02187(5) 01761(5) 05326(8) 003846154 100(5) 8d

Al10 01228(5) 06749(6) 10400(8) 003846154 100(5) 8d

Al11 -00694(6) 01308(6) 01819(9) 003846154 100(5) 8d

Al12 01859(6) 06714(5) 06756(8) 003846154 100(5) 8d

Si1 -00732(5) 00570(7) 08366(7) 09615385 100(5) 8d

Si2 01869(6) -00339(5) 03189(8) 09615385 100(5) 8d

Si3 02207(5) -00626(7) 05256(8) 09615385 100(5) 8d

Si4 01210(5) 00590(7) 10220(8) 09615385 100(5) 8d

Si5 -00703(6) -00272(5) 01933(8) 09615385 100(5) 8d

Si6 01859(5) 00593(6) 06679(8) 09615385 100(5) 8d

Si7 -00745(6) 06734(6) 08243(9) 09615385 100(5) 8d

Si8 01956(6) 01297(5) 03114(7) 09615385 100(5) 8d

Si9 02187(5) 01761(5) 05326(8) 09615385 100(5) 8d

Si10 01228(5) 06749(6) 10400(8) 09615385 100(5) 8d

Si11 -00694(6) 01308(6) 01819(9) 09615385 100(5) 8d

Si12 01859(6) 06714(5) 06756(8) 09615385 100(5) 8d

O1 01189(10) -00643(12) 02762(13) 1 143(9) 8d

O2 01900(11) -00665(10) 04093(13) 1 143(9) 8d

O3 02017(11) 00485(12) 10198(11) 1 143(9) 8d

O4 -00964(9) -00573(13) 10736(15) 1 143(9) 8d

O5 01132(9) 00573(12) 07009(13) 1 143(9) 8d

O6 02544(10) 00574(13) 07592(13) 1 143(9) 8d

O7 01249(11) 01569(12) 02676(15) 1 143(9) 8d

O8 01995(12) 01482(9) 04331(13) 1 143(9) 8d

O9 01968(12) 06607(9) 00500(12) 1 143(9) 8d

O10 -00922(10) 01564(11) 10827(17) 1 143(9) 8d

O11 01123(10) 06498(11) 07436(14) 1 143(9) 8d

O12 02420(11) 06557(12) 07396(15) 1 143(9) 8d

O13 02109(9) 00468(11) 03170(12) 1 143(9) 8d

O14 -00793(8) 00525(13) 01708(13) 1 143(9) 8d

O15 -00850(10) 01327(12) 08874(17) 1 143(9) 8d

O16 -01009(10) 00004(11) 09239(15) 1 143(9) 8d

O17 -01006(10) 06343(12) -00444(14) 1 143(9) 8d

O18 01746(10) 01273(11) 06145(13) 1 143(9) 8d

O19 01980(12) 00019(10) 06091(12) 1 143(9) 8d

O20 02014(13) 06300(11) 05761(13) 1 143(9) 8d

O21 -00054(11) 00405(12) 07595(12) 1 143(9) 8d

O22 -00045(12) 06580(13) 07876(13) 1 143(9) 8d

O23 -00801(15) 075 0861(2) 1 143(9) 4c

O24 01839(17) 075 0648(2) 1 143(9) 4c

O25 02011(18) 025 0563(2) 1 143(9) 4c

O26 00863(13) 075 0143(2) 1 143(9) 4c

41

GVLI O1 -00251(15) 08553(18) -0468(2) 0500(3) 06(4) 8d

O2 -0013(2) 07533(17) -0531(3) 0500(3) 06(4) 8d

C1 00570(11) 08446(12) -05861(14) 0500(3) 06(4) 8d

C2 00466(18) 09175(12) -05663(18) 0500(3) 06(4) 8d

C3 0004(2) 09222(15) -0484(2) 0500(3) 06(4) 8d

C4 00038(13) 08112(15) -05293(19) 0500(3) 06(4) 8d

C5 -0034(3) 09728(19) -0448(3) 0500(3) 06(4) 8d

H1a 00999(11) 08315(15) -05641(17) 0500(3) 07(5) 8d

H1b 00528(13) 08360(13) -06553(15) 0500(3) 07(5) 8d

H2a 0088(2) 09384(14) -0553(2) 0500(3) 07(5) 8d

H2b 0026(2) 09378(15) -0622(2) 0500(3) 07(5) 8d

H3 0038(2) 09204(15) -04313(18) 0500(3) 07(5) 8d

H5a -0043(3) 0965(2) -0380(3) 0500(3) 07(5) 8d

H5b -0011(4) 10138(17) -0454(3) 0500(3) 07(5) 8d

H5c -0074(3) 0975(3) -0485(3) 0500(3) 07(5) 8d

GVLII O1 -03289(15) -0778(2) -02817(19) 0500(4) 06(4) 8d

O2 -04372(14) -0757(2) -02733(16) 0500(4) 06(4) 8d

C1 -03730(11) -07204(15) -04150(12) 0500(4) 06(4) 8d

C2 -02990(11) -0718(2) -04230(16) 0500(4) 06(4) 8d

C3 -02738(13) -0762(3) -0350(2) 0500(4) 06(4) 8d

C4 -03856(13) -07518(18) -03175(14) 0500(4) 06(4) 8d

C5 -02129(14) -0768(4) -0308(3) 0500(4) 06(4) 8d

H1a -03908(13) -07461(16) -04681(13) 0500(3) 07(5) 8d

H1b -03904(14) -06762(15) -04174(16) 0500(3) 07(5) 8d

H2a -02856(13) -0732(2) -04875(17) 0500(3) 07(5) 8d

H2b -02835(15) -0674(2) -04093(19) 0500(3) 07(5) 8d

H3 -0275(2) -0803(3) -0389(3) 0500(3) 07(5) 8d

H5a -0208(2) -0812(4) -0281(3) 0500(3) 07(5) 8d

H5b -01797(13) -0762(4) -0357(3) 0500(3) 07(5) 8d

H5c -02080(14) -0735(4) -0257(3) 0500(3) 07(5) 8d

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 32: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

31

Fig S23 Comparison of the experimental INS spectra for bare and GVL-adsorbed catalyst Spectra shown

are after subtraction of the empty cell The INS spectrum of the catalyst on GVL adsorption at 135 degC shows

a significant increase in total intensity demonstrating the binding of GVL to the catalyst sites

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

GVLNbAlS-1(00270041)

Bare NbAlS-1(00270041)

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

32

Fig S24 Comparison of the experimental INS spectra of all butene isomers and reacted GVL at 320 degC

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Reaction 320 oC

trans-2-butene

i-butene

1-butene

cis-2-butene

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

33

Supplementary Tables

Table S1 Textural properties (data determined from N2 sorption isotherms at 77 K) and crystallite size (data

determined from SEM) of all zeolites used in this study

Samples ABET (m2 g-1)a Amic (m2 g-1) b Aext (m2 g-1) c Vmic (cm3 g-1) d Vtotal (cm3 g-1) e

Crystallite sizef

(nm)

HZSM-5 (00271) 413 314 99 019 033 200-500

HZSM-5 (0041) 346 259 87 015 028 200-500

HZSM-5 (00671) 348 277 71 016 026 200-500

NbS-1 (00271) 377 284 93 017 029 300-500

NbS-1 (0041) 357 282 75 016 027 300-500

NbAlS-1(00270041) 408 263 145 018 041 300-500

NbAlS-1(00400271) 376 268 108 017 033 300-500

HZSM-5 (0041)g 338 258 80 015 027 200-500

NbAlS-1(00270041)g 396 262 134 018 039 300-500

aBET specific surface area bMicropore surface area cExternal surface area dMicropore volume eTotal pore volume fObtainted from SEM gUsed catalyst

34

Table S2 Spin-Hamiltonian parameters of radiation induced Nb(IV) and electron hole Al-O-Si defects

from simulation of CW X-band EPR spectra in Fig 1 lw is the homogeneous Lorentzian linewidth g and A

are the principle values of the g and hyperfine interaction tensors

Signal Parameters

Electron

Spin

Nuclear

Spin g-tensor g-Strain

A-tensor

(G)

lw

(mT)

Nb defect 12 92 [1935 1935 1866] [004 004 00] [159 159

310] [0 40]

Al defect 12 52 [20012 2007 2045] [00 0003 004] [7 7 -] [00 04]

35

Table S3 Summary of acidity of all zeolites used in this work Data were determined by NH3-TPD and

Pyridine-IR studies

Catalyst Weak acida

(mmol g-1)

Strong acida

(mmol g-1)

Total acida

(mmol g-1)

LB acid

ratiob

HZSM-5(00271) 015 025 04 039

HZSM-5(0041) 024 028 052 037

HZSM-5(00671) 033 03 063 027

NbS-1(00271) 004 0 004 -

NbS-1(0041) 004 0 004 -

NbAlS-1(00270041) 022 0 022 469

NbAlS-1(00400271) 023 0 023 35 aFrom NH3-TPD bFrom Pyridine-IR

36

Table S4 The butenes distribution in equilibrium at 320 degC and the distribution of butene isomers produced

from conversion of 30 GVL at 320 degC over catalysts

Catalyst Distribution ()

i-butene 1-butene trans-2-butene cis-2-butene

Equilibrium27 45 12 27 16

HZSM-5(0041) 44 14 25 17

NbAlS-1(00270041) 18 19 38 25

NbOPO4 15 20 39 26

37

Table S5 Comparison of the catalytic performance of reported catalysts for the conversion of GVL in aqueous solution (25-40 wt ) to butenes

Catalyst Reaction Conditions GVL

concentration

(wt )

GVL

conversion

()

Butene

Yield

(mol )a

Ref

Temperature

(degC)

WHSV

(h-1)

Pressure

(bar)

NbAlS-1(00270041) 320 018 1 30 100 993 this work

SiO2Al2O3 375 09 1 30 97 75 28

HZSM-5(0041) 320 018 1 30 76 232 this work

LaZSM-5 450 1 10 40 gt99 ca 21 15

PdNb2O5b 275 05 14 30d 100 lt16c 29

Zn-AlPO-5 397 077 10 40 65 ca 12 30

H3PO4 240 - - 25 100 12c 31

ZnZSM-5 450 1 10 40 gt99 ca 6 15

AlPO-5 397 077 10 40 2 ca 04 30

aButene yield is calculated by the equation defined in the Method section

bunder H2 atmosphere

cThe product includes both butene and butane d002 M H2SO4 was added in the GVL solution

38

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1

R (Aring)a σ a Amp a CN a

NbAlS-1 (Dry) Nb=O 1680 0017 082 1 Nb-O 2014 0008 082 3 NbAlS-1

Nb=O 1721 0012 078 1

Nb-O 2014 0004 078 3

NbAlS-1+GVL

Nb=O 1943 0003 075 1

Nb-O 2014 0010 075 3

NbS-1

Nb=O 1711 0032 091 1

Nb-O 2014 0005 091 3

NbS-1+GVL

Nb=O 1770 0004 089 1

Nb-O 2014 0014 089 3 aR = Interatomic distance from central scattering atom σ = Debye-Waller factor Amp = amplitude factor

and CN = coordination number

39

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption

Samples GVLHZSM-5(0041) GVLNbS-1(00271) NbAlS-1(00270041) GVLNbAlS-1(00270041)

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma

Chemical formula Al3692Si92308O192 8GVL Nb2524Si93476O192 8GVL Al3599Nb2429Si89972O192 Al3599Nb2429Si89972O192 8GVL

2θ range for refinement (deg) 3 ndash 50 3 ndash 50 3 ndash 50 3 ndash 50

Detector Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals

Number of hkls 3251 3214 3179 3222

Refinement methods Rietveld Rietveld Rietveld Rietveld

a (Aring) 201351(2) 200604(2) 199955(3) 200697(3)

b (Aring) 199852(2) 198995(1) 198333(3) 199150(3)

c (Aring) 134549(2) 134010(1) 133531(2) 134214(2)

V (Aring3) 541428(11) 534957(7) 529553(15) 536437(15)

RwpRexp Rp () 445135013378 463131253497 553133614058 444933763305

Wavelength (Aring) 082487(1) 082487(1) 082487(1) 082487(1)

Gof χ2 1272 1482 1646 1318

40

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) at room

temperature

Species Atom x y z SOF Beq(Aring2) Wyckoff

HZSM-5(0041) Al1 -00732(5) 00570(7) 08366(7) 003846154 100(5) 8d

Al2 01869(6) -00339(5) 03189(8) 003846154 100(5) 8d

Al3 02207(5) -00626(7) 05256(8) 003846154 100(5) 8d

Al4 01210(5) 00590(7) 10220(8) 003846154 100(5) 8d

Al5 -00703(6) -00272(5) 01933(8) 003846154 100(5) 8d

Al6 01859(5) 00593(6) 06679(8) 003846154 100(5) 8d

Al7 -00745(6) 06734(6) 08243(9) 003846154 100(5) 8d

Al8 01956(6) 01297(5) 03114(7) 003846154 100(5) 8d

Al9 02187(5) 01761(5) 05326(8) 003846154 100(5) 8d

Al10 01228(5) 06749(6) 10400(8) 003846154 100(5) 8d

Al11 -00694(6) 01308(6) 01819(9) 003846154 100(5) 8d

Al12 01859(6) 06714(5) 06756(8) 003846154 100(5) 8d

Si1 -00732(5) 00570(7) 08366(7) 09615385 100(5) 8d

Si2 01869(6) -00339(5) 03189(8) 09615385 100(5) 8d

Si3 02207(5) -00626(7) 05256(8) 09615385 100(5) 8d

Si4 01210(5) 00590(7) 10220(8) 09615385 100(5) 8d

Si5 -00703(6) -00272(5) 01933(8) 09615385 100(5) 8d

Si6 01859(5) 00593(6) 06679(8) 09615385 100(5) 8d

Si7 -00745(6) 06734(6) 08243(9) 09615385 100(5) 8d

Si8 01956(6) 01297(5) 03114(7) 09615385 100(5) 8d

Si9 02187(5) 01761(5) 05326(8) 09615385 100(5) 8d

Si10 01228(5) 06749(6) 10400(8) 09615385 100(5) 8d

Si11 -00694(6) 01308(6) 01819(9) 09615385 100(5) 8d

Si12 01859(6) 06714(5) 06756(8) 09615385 100(5) 8d

O1 01189(10) -00643(12) 02762(13) 1 143(9) 8d

O2 01900(11) -00665(10) 04093(13) 1 143(9) 8d

O3 02017(11) 00485(12) 10198(11) 1 143(9) 8d

O4 -00964(9) -00573(13) 10736(15) 1 143(9) 8d

O5 01132(9) 00573(12) 07009(13) 1 143(9) 8d

O6 02544(10) 00574(13) 07592(13) 1 143(9) 8d

O7 01249(11) 01569(12) 02676(15) 1 143(9) 8d

O8 01995(12) 01482(9) 04331(13) 1 143(9) 8d

O9 01968(12) 06607(9) 00500(12) 1 143(9) 8d

O10 -00922(10) 01564(11) 10827(17) 1 143(9) 8d

O11 01123(10) 06498(11) 07436(14) 1 143(9) 8d

O12 02420(11) 06557(12) 07396(15) 1 143(9) 8d

O13 02109(9) 00468(11) 03170(12) 1 143(9) 8d

O14 -00793(8) 00525(13) 01708(13) 1 143(9) 8d

O15 -00850(10) 01327(12) 08874(17) 1 143(9) 8d

O16 -01009(10) 00004(11) 09239(15) 1 143(9) 8d

O17 -01006(10) 06343(12) -00444(14) 1 143(9) 8d

O18 01746(10) 01273(11) 06145(13) 1 143(9) 8d

O19 01980(12) 00019(10) 06091(12) 1 143(9) 8d

O20 02014(13) 06300(11) 05761(13) 1 143(9) 8d

O21 -00054(11) 00405(12) 07595(12) 1 143(9) 8d

O22 -00045(12) 06580(13) 07876(13) 1 143(9) 8d

O23 -00801(15) 075 0861(2) 1 143(9) 4c

O24 01839(17) 075 0648(2) 1 143(9) 4c

O25 02011(18) 025 0563(2) 1 143(9) 4c

O26 00863(13) 075 0143(2) 1 143(9) 4c

41

GVLI O1 -00251(15) 08553(18) -0468(2) 0500(3) 06(4) 8d

O2 -0013(2) 07533(17) -0531(3) 0500(3) 06(4) 8d

C1 00570(11) 08446(12) -05861(14) 0500(3) 06(4) 8d

C2 00466(18) 09175(12) -05663(18) 0500(3) 06(4) 8d

C3 0004(2) 09222(15) -0484(2) 0500(3) 06(4) 8d

C4 00038(13) 08112(15) -05293(19) 0500(3) 06(4) 8d

C5 -0034(3) 09728(19) -0448(3) 0500(3) 06(4) 8d

H1a 00999(11) 08315(15) -05641(17) 0500(3) 07(5) 8d

H1b 00528(13) 08360(13) -06553(15) 0500(3) 07(5) 8d

H2a 0088(2) 09384(14) -0553(2) 0500(3) 07(5) 8d

H2b 0026(2) 09378(15) -0622(2) 0500(3) 07(5) 8d

H3 0038(2) 09204(15) -04313(18) 0500(3) 07(5) 8d

H5a -0043(3) 0965(2) -0380(3) 0500(3) 07(5) 8d

H5b -0011(4) 10138(17) -0454(3) 0500(3) 07(5) 8d

H5c -0074(3) 0975(3) -0485(3) 0500(3) 07(5) 8d

GVLII O1 -03289(15) -0778(2) -02817(19) 0500(4) 06(4) 8d

O2 -04372(14) -0757(2) -02733(16) 0500(4) 06(4) 8d

C1 -03730(11) -07204(15) -04150(12) 0500(4) 06(4) 8d

C2 -02990(11) -0718(2) -04230(16) 0500(4) 06(4) 8d

C3 -02738(13) -0762(3) -0350(2) 0500(4) 06(4) 8d

C4 -03856(13) -07518(18) -03175(14) 0500(4) 06(4) 8d

C5 -02129(14) -0768(4) -0308(3) 0500(4) 06(4) 8d

H1a -03908(13) -07461(16) -04681(13) 0500(3) 07(5) 8d

H1b -03904(14) -06762(15) -04174(16) 0500(3) 07(5) 8d

H2a -02856(13) -0732(2) -04875(17) 0500(3) 07(5) 8d

H2b -02835(15) -0674(2) -04093(19) 0500(3) 07(5) 8d

H3 -0275(2) -0803(3) -0389(3) 0500(3) 07(5) 8d

H5a -0208(2) -0812(4) -0281(3) 0500(3) 07(5) 8d

H5b -01797(13) -0762(4) -0357(3) 0500(3) 07(5) 8d

H5c -02080(14) -0735(4) -0257(3) 0500(3) 07(5) 8d

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 33: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

32

Fig S24 Comparison of the experimental INS spectra of all butene isomers and reacted GVL at 320 degC

0 200 400 600 800 1000 1200 1400 1600

S(Q

) (a

u)

Neutron energy loss (cm-1)

Reaction 320 oC

trans-2-butene

i-butene

1-butene

cis-2-butene

0 20 40 60 80 100 120 140 160 180 200

Neutron energy loss (meV)

33

Supplementary Tables

Table S1 Textural properties (data determined from N2 sorption isotherms at 77 K) and crystallite size (data

determined from SEM) of all zeolites used in this study

Samples ABET (m2 g-1)a Amic (m2 g-1) b Aext (m2 g-1) c Vmic (cm3 g-1) d Vtotal (cm3 g-1) e

Crystallite sizef

(nm)

HZSM-5 (00271) 413 314 99 019 033 200-500

HZSM-5 (0041) 346 259 87 015 028 200-500

HZSM-5 (00671) 348 277 71 016 026 200-500

NbS-1 (00271) 377 284 93 017 029 300-500

NbS-1 (0041) 357 282 75 016 027 300-500

NbAlS-1(00270041) 408 263 145 018 041 300-500

NbAlS-1(00400271) 376 268 108 017 033 300-500

HZSM-5 (0041)g 338 258 80 015 027 200-500

NbAlS-1(00270041)g 396 262 134 018 039 300-500

aBET specific surface area bMicropore surface area cExternal surface area dMicropore volume eTotal pore volume fObtainted from SEM gUsed catalyst

34

Table S2 Spin-Hamiltonian parameters of radiation induced Nb(IV) and electron hole Al-O-Si defects

from simulation of CW X-band EPR spectra in Fig 1 lw is the homogeneous Lorentzian linewidth g and A

are the principle values of the g and hyperfine interaction tensors

Signal Parameters

Electron

Spin

Nuclear

Spin g-tensor g-Strain

A-tensor

(G)

lw

(mT)

Nb defect 12 92 [1935 1935 1866] [004 004 00] [159 159

310] [0 40]

Al defect 12 52 [20012 2007 2045] [00 0003 004] [7 7 -] [00 04]

35

Table S3 Summary of acidity of all zeolites used in this work Data were determined by NH3-TPD and

Pyridine-IR studies

Catalyst Weak acida

(mmol g-1)

Strong acida

(mmol g-1)

Total acida

(mmol g-1)

LB acid

ratiob

HZSM-5(00271) 015 025 04 039

HZSM-5(0041) 024 028 052 037

HZSM-5(00671) 033 03 063 027

NbS-1(00271) 004 0 004 -

NbS-1(0041) 004 0 004 -

NbAlS-1(00270041) 022 0 022 469

NbAlS-1(00400271) 023 0 023 35 aFrom NH3-TPD bFrom Pyridine-IR

36

Table S4 The butenes distribution in equilibrium at 320 degC and the distribution of butene isomers produced

from conversion of 30 GVL at 320 degC over catalysts

Catalyst Distribution ()

i-butene 1-butene trans-2-butene cis-2-butene

Equilibrium27 45 12 27 16

HZSM-5(0041) 44 14 25 17

NbAlS-1(00270041) 18 19 38 25

NbOPO4 15 20 39 26

37

Table S5 Comparison of the catalytic performance of reported catalysts for the conversion of GVL in aqueous solution (25-40 wt ) to butenes

Catalyst Reaction Conditions GVL

concentration

(wt )

GVL

conversion

()

Butene

Yield

(mol )a

Ref

Temperature

(degC)

WHSV

(h-1)

Pressure

(bar)

NbAlS-1(00270041) 320 018 1 30 100 993 this work

SiO2Al2O3 375 09 1 30 97 75 28

HZSM-5(0041) 320 018 1 30 76 232 this work

LaZSM-5 450 1 10 40 gt99 ca 21 15

PdNb2O5b 275 05 14 30d 100 lt16c 29

Zn-AlPO-5 397 077 10 40 65 ca 12 30

H3PO4 240 - - 25 100 12c 31

ZnZSM-5 450 1 10 40 gt99 ca 6 15

AlPO-5 397 077 10 40 2 ca 04 30

aButene yield is calculated by the equation defined in the Method section

bunder H2 atmosphere

cThe product includes both butene and butane d002 M H2SO4 was added in the GVL solution

38

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1

R (Aring)a σ a Amp a CN a

NbAlS-1 (Dry) Nb=O 1680 0017 082 1 Nb-O 2014 0008 082 3 NbAlS-1

Nb=O 1721 0012 078 1

Nb-O 2014 0004 078 3

NbAlS-1+GVL

Nb=O 1943 0003 075 1

Nb-O 2014 0010 075 3

NbS-1

Nb=O 1711 0032 091 1

Nb-O 2014 0005 091 3

NbS-1+GVL

Nb=O 1770 0004 089 1

Nb-O 2014 0014 089 3 aR = Interatomic distance from central scattering atom σ = Debye-Waller factor Amp = amplitude factor

and CN = coordination number

39

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption

Samples GVLHZSM-5(0041) GVLNbS-1(00271) NbAlS-1(00270041) GVLNbAlS-1(00270041)

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma

Chemical formula Al3692Si92308O192 8GVL Nb2524Si93476O192 8GVL Al3599Nb2429Si89972O192 Al3599Nb2429Si89972O192 8GVL

2θ range for refinement (deg) 3 ndash 50 3 ndash 50 3 ndash 50 3 ndash 50

Detector Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals

Number of hkls 3251 3214 3179 3222

Refinement methods Rietveld Rietveld Rietveld Rietveld

a (Aring) 201351(2) 200604(2) 199955(3) 200697(3)

b (Aring) 199852(2) 198995(1) 198333(3) 199150(3)

c (Aring) 134549(2) 134010(1) 133531(2) 134214(2)

V (Aring3) 541428(11) 534957(7) 529553(15) 536437(15)

RwpRexp Rp () 445135013378 463131253497 553133614058 444933763305

Wavelength (Aring) 082487(1) 082487(1) 082487(1) 082487(1)

Gof χ2 1272 1482 1646 1318

40

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) at room

temperature

Species Atom x y z SOF Beq(Aring2) Wyckoff

HZSM-5(0041) Al1 -00732(5) 00570(7) 08366(7) 003846154 100(5) 8d

Al2 01869(6) -00339(5) 03189(8) 003846154 100(5) 8d

Al3 02207(5) -00626(7) 05256(8) 003846154 100(5) 8d

Al4 01210(5) 00590(7) 10220(8) 003846154 100(5) 8d

Al5 -00703(6) -00272(5) 01933(8) 003846154 100(5) 8d

Al6 01859(5) 00593(6) 06679(8) 003846154 100(5) 8d

Al7 -00745(6) 06734(6) 08243(9) 003846154 100(5) 8d

Al8 01956(6) 01297(5) 03114(7) 003846154 100(5) 8d

Al9 02187(5) 01761(5) 05326(8) 003846154 100(5) 8d

Al10 01228(5) 06749(6) 10400(8) 003846154 100(5) 8d

Al11 -00694(6) 01308(6) 01819(9) 003846154 100(5) 8d

Al12 01859(6) 06714(5) 06756(8) 003846154 100(5) 8d

Si1 -00732(5) 00570(7) 08366(7) 09615385 100(5) 8d

Si2 01869(6) -00339(5) 03189(8) 09615385 100(5) 8d

Si3 02207(5) -00626(7) 05256(8) 09615385 100(5) 8d

Si4 01210(5) 00590(7) 10220(8) 09615385 100(5) 8d

Si5 -00703(6) -00272(5) 01933(8) 09615385 100(5) 8d

Si6 01859(5) 00593(6) 06679(8) 09615385 100(5) 8d

Si7 -00745(6) 06734(6) 08243(9) 09615385 100(5) 8d

Si8 01956(6) 01297(5) 03114(7) 09615385 100(5) 8d

Si9 02187(5) 01761(5) 05326(8) 09615385 100(5) 8d

Si10 01228(5) 06749(6) 10400(8) 09615385 100(5) 8d

Si11 -00694(6) 01308(6) 01819(9) 09615385 100(5) 8d

Si12 01859(6) 06714(5) 06756(8) 09615385 100(5) 8d

O1 01189(10) -00643(12) 02762(13) 1 143(9) 8d

O2 01900(11) -00665(10) 04093(13) 1 143(9) 8d

O3 02017(11) 00485(12) 10198(11) 1 143(9) 8d

O4 -00964(9) -00573(13) 10736(15) 1 143(9) 8d

O5 01132(9) 00573(12) 07009(13) 1 143(9) 8d

O6 02544(10) 00574(13) 07592(13) 1 143(9) 8d

O7 01249(11) 01569(12) 02676(15) 1 143(9) 8d

O8 01995(12) 01482(9) 04331(13) 1 143(9) 8d

O9 01968(12) 06607(9) 00500(12) 1 143(9) 8d

O10 -00922(10) 01564(11) 10827(17) 1 143(9) 8d

O11 01123(10) 06498(11) 07436(14) 1 143(9) 8d

O12 02420(11) 06557(12) 07396(15) 1 143(9) 8d

O13 02109(9) 00468(11) 03170(12) 1 143(9) 8d

O14 -00793(8) 00525(13) 01708(13) 1 143(9) 8d

O15 -00850(10) 01327(12) 08874(17) 1 143(9) 8d

O16 -01009(10) 00004(11) 09239(15) 1 143(9) 8d

O17 -01006(10) 06343(12) -00444(14) 1 143(9) 8d

O18 01746(10) 01273(11) 06145(13) 1 143(9) 8d

O19 01980(12) 00019(10) 06091(12) 1 143(9) 8d

O20 02014(13) 06300(11) 05761(13) 1 143(9) 8d

O21 -00054(11) 00405(12) 07595(12) 1 143(9) 8d

O22 -00045(12) 06580(13) 07876(13) 1 143(9) 8d

O23 -00801(15) 075 0861(2) 1 143(9) 4c

O24 01839(17) 075 0648(2) 1 143(9) 4c

O25 02011(18) 025 0563(2) 1 143(9) 4c

O26 00863(13) 075 0143(2) 1 143(9) 4c

41

GVLI O1 -00251(15) 08553(18) -0468(2) 0500(3) 06(4) 8d

O2 -0013(2) 07533(17) -0531(3) 0500(3) 06(4) 8d

C1 00570(11) 08446(12) -05861(14) 0500(3) 06(4) 8d

C2 00466(18) 09175(12) -05663(18) 0500(3) 06(4) 8d

C3 0004(2) 09222(15) -0484(2) 0500(3) 06(4) 8d

C4 00038(13) 08112(15) -05293(19) 0500(3) 06(4) 8d

C5 -0034(3) 09728(19) -0448(3) 0500(3) 06(4) 8d

H1a 00999(11) 08315(15) -05641(17) 0500(3) 07(5) 8d

H1b 00528(13) 08360(13) -06553(15) 0500(3) 07(5) 8d

H2a 0088(2) 09384(14) -0553(2) 0500(3) 07(5) 8d

H2b 0026(2) 09378(15) -0622(2) 0500(3) 07(5) 8d

H3 0038(2) 09204(15) -04313(18) 0500(3) 07(5) 8d

H5a -0043(3) 0965(2) -0380(3) 0500(3) 07(5) 8d

H5b -0011(4) 10138(17) -0454(3) 0500(3) 07(5) 8d

H5c -0074(3) 0975(3) -0485(3) 0500(3) 07(5) 8d

GVLII O1 -03289(15) -0778(2) -02817(19) 0500(4) 06(4) 8d

O2 -04372(14) -0757(2) -02733(16) 0500(4) 06(4) 8d

C1 -03730(11) -07204(15) -04150(12) 0500(4) 06(4) 8d

C2 -02990(11) -0718(2) -04230(16) 0500(4) 06(4) 8d

C3 -02738(13) -0762(3) -0350(2) 0500(4) 06(4) 8d

C4 -03856(13) -07518(18) -03175(14) 0500(4) 06(4) 8d

C5 -02129(14) -0768(4) -0308(3) 0500(4) 06(4) 8d

H1a -03908(13) -07461(16) -04681(13) 0500(3) 07(5) 8d

H1b -03904(14) -06762(15) -04174(16) 0500(3) 07(5) 8d

H2a -02856(13) -0732(2) -04875(17) 0500(3) 07(5) 8d

H2b -02835(15) -0674(2) -04093(19) 0500(3) 07(5) 8d

H3 -0275(2) -0803(3) -0389(3) 0500(3) 07(5) 8d

H5a -0208(2) -0812(4) -0281(3) 0500(3) 07(5) 8d

H5b -01797(13) -0762(4) -0357(3) 0500(3) 07(5) 8d

H5c -02080(14) -0735(4) -0257(3) 0500(3) 07(5) 8d

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 34: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

33

Supplementary Tables

Table S1 Textural properties (data determined from N2 sorption isotherms at 77 K) and crystallite size (data

determined from SEM) of all zeolites used in this study

Samples ABET (m2 g-1)a Amic (m2 g-1) b Aext (m2 g-1) c Vmic (cm3 g-1) d Vtotal (cm3 g-1) e

Crystallite sizef

(nm)

HZSM-5 (00271) 413 314 99 019 033 200-500

HZSM-5 (0041) 346 259 87 015 028 200-500

HZSM-5 (00671) 348 277 71 016 026 200-500

NbS-1 (00271) 377 284 93 017 029 300-500

NbS-1 (0041) 357 282 75 016 027 300-500

NbAlS-1(00270041) 408 263 145 018 041 300-500

NbAlS-1(00400271) 376 268 108 017 033 300-500

HZSM-5 (0041)g 338 258 80 015 027 200-500

NbAlS-1(00270041)g 396 262 134 018 039 300-500

aBET specific surface area bMicropore surface area cExternal surface area dMicropore volume eTotal pore volume fObtainted from SEM gUsed catalyst

34

Table S2 Spin-Hamiltonian parameters of radiation induced Nb(IV) and electron hole Al-O-Si defects

from simulation of CW X-band EPR spectra in Fig 1 lw is the homogeneous Lorentzian linewidth g and A

are the principle values of the g and hyperfine interaction tensors

Signal Parameters

Electron

Spin

Nuclear

Spin g-tensor g-Strain

A-tensor

(G)

lw

(mT)

Nb defect 12 92 [1935 1935 1866] [004 004 00] [159 159

310] [0 40]

Al defect 12 52 [20012 2007 2045] [00 0003 004] [7 7 -] [00 04]

35

Table S3 Summary of acidity of all zeolites used in this work Data were determined by NH3-TPD and

Pyridine-IR studies

Catalyst Weak acida

(mmol g-1)

Strong acida

(mmol g-1)

Total acida

(mmol g-1)

LB acid

ratiob

HZSM-5(00271) 015 025 04 039

HZSM-5(0041) 024 028 052 037

HZSM-5(00671) 033 03 063 027

NbS-1(00271) 004 0 004 -

NbS-1(0041) 004 0 004 -

NbAlS-1(00270041) 022 0 022 469

NbAlS-1(00400271) 023 0 023 35 aFrom NH3-TPD bFrom Pyridine-IR

36

Table S4 The butenes distribution in equilibrium at 320 degC and the distribution of butene isomers produced

from conversion of 30 GVL at 320 degC over catalysts

Catalyst Distribution ()

i-butene 1-butene trans-2-butene cis-2-butene

Equilibrium27 45 12 27 16

HZSM-5(0041) 44 14 25 17

NbAlS-1(00270041) 18 19 38 25

NbOPO4 15 20 39 26

37

Table S5 Comparison of the catalytic performance of reported catalysts for the conversion of GVL in aqueous solution (25-40 wt ) to butenes

Catalyst Reaction Conditions GVL

concentration

(wt )

GVL

conversion

()

Butene

Yield

(mol )a

Ref

Temperature

(degC)

WHSV

(h-1)

Pressure

(bar)

NbAlS-1(00270041) 320 018 1 30 100 993 this work

SiO2Al2O3 375 09 1 30 97 75 28

HZSM-5(0041) 320 018 1 30 76 232 this work

LaZSM-5 450 1 10 40 gt99 ca 21 15

PdNb2O5b 275 05 14 30d 100 lt16c 29

Zn-AlPO-5 397 077 10 40 65 ca 12 30

H3PO4 240 - - 25 100 12c 31

ZnZSM-5 450 1 10 40 gt99 ca 6 15

AlPO-5 397 077 10 40 2 ca 04 30

aButene yield is calculated by the equation defined in the Method section

bunder H2 atmosphere

cThe product includes both butene and butane d002 M H2SO4 was added in the GVL solution

38

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1

R (Aring)a σ a Amp a CN a

NbAlS-1 (Dry) Nb=O 1680 0017 082 1 Nb-O 2014 0008 082 3 NbAlS-1

Nb=O 1721 0012 078 1

Nb-O 2014 0004 078 3

NbAlS-1+GVL

Nb=O 1943 0003 075 1

Nb-O 2014 0010 075 3

NbS-1

Nb=O 1711 0032 091 1

Nb-O 2014 0005 091 3

NbS-1+GVL

Nb=O 1770 0004 089 1

Nb-O 2014 0014 089 3 aR = Interatomic distance from central scattering atom σ = Debye-Waller factor Amp = amplitude factor

and CN = coordination number

39

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption

Samples GVLHZSM-5(0041) GVLNbS-1(00271) NbAlS-1(00270041) GVLNbAlS-1(00270041)

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma

Chemical formula Al3692Si92308O192 8GVL Nb2524Si93476O192 8GVL Al3599Nb2429Si89972O192 Al3599Nb2429Si89972O192 8GVL

2θ range for refinement (deg) 3 ndash 50 3 ndash 50 3 ndash 50 3 ndash 50

Detector Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals

Number of hkls 3251 3214 3179 3222

Refinement methods Rietveld Rietveld Rietveld Rietveld

a (Aring) 201351(2) 200604(2) 199955(3) 200697(3)

b (Aring) 199852(2) 198995(1) 198333(3) 199150(3)

c (Aring) 134549(2) 134010(1) 133531(2) 134214(2)

V (Aring3) 541428(11) 534957(7) 529553(15) 536437(15)

RwpRexp Rp () 445135013378 463131253497 553133614058 444933763305

Wavelength (Aring) 082487(1) 082487(1) 082487(1) 082487(1)

Gof χ2 1272 1482 1646 1318

40

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) at room

temperature

Species Atom x y z SOF Beq(Aring2) Wyckoff

HZSM-5(0041) Al1 -00732(5) 00570(7) 08366(7) 003846154 100(5) 8d

Al2 01869(6) -00339(5) 03189(8) 003846154 100(5) 8d

Al3 02207(5) -00626(7) 05256(8) 003846154 100(5) 8d

Al4 01210(5) 00590(7) 10220(8) 003846154 100(5) 8d

Al5 -00703(6) -00272(5) 01933(8) 003846154 100(5) 8d

Al6 01859(5) 00593(6) 06679(8) 003846154 100(5) 8d

Al7 -00745(6) 06734(6) 08243(9) 003846154 100(5) 8d

Al8 01956(6) 01297(5) 03114(7) 003846154 100(5) 8d

Al9 02187(5) 01761(5) 05326(8) 003846154 100(5) 8d

Al10 01228(5) 06749(6) 10400(8) 003846154 100(5) 8d

Al11 -00694(6) 01308(6) 01819(9) 003846154 100(5) 8d

Al12 01859(6) 06714(5) 06756(8) 003846154 100(5) 8d

Si1 -00732(5) 00570(7) 08366(7) 09615385 100(5) 8d

Si2 01869(6) -00339(5) 03189(8) 09615385 100(5) 8d

Si3 02207(5) -00626(7) 05256(8) 09615385 100(5) 8d

Si4 01210(5) 00590(7) 10220(8) 09615385 100(5) 8d

Si5 -00703(6) -00272(5) 01933(8) 09615385 100(5) 8d

Si6 01859(5) 00593(6) 06679(8) 09615385 100(5) 8d

Si7 -00745(6) 06734(6) 08243(9) 09615385 100(5) 8d

Si8 01956(6) 01297(5) 03114(7) 09615385 100(5) 8d

Si9 02187(5) 01761(5) 05326(8) 09615385 100(5) 8d

Si10 01228(5) 06749(6) 10400(8) 09615385 100(5) 8d

Si11 -00694(6) 01308(6) 01819(9) 09615385 100(5) 8d

Si12 01859(6) 06714(5) 06756(8) 09615385 100(5) 8d

O1 01189(10) -00643(12) 02762(13) 1 143(9) 8d

O2 01900(11) -00665(10) 04093(13) 1 143(9) 8d

O3 02017(11) 00485(12) 10198(11) 1 143(9) 8d

O4 -00964(9) -00573(13) 10736(15) 1 143(9) 8d

O5 01132(9) 00573(12) 07009(13) 1 143(9) 8d

O6 02544(10) 00574(13) 07592(13) 1 143(9) 8d

O7 01249(11) 01569(12) 02676(15) 1 143(9) 8d

O8 01995(12) 01482(9) 04331(13) 1 143(9) 8d

O9 01968(12) 06607(9) 00500(12) 1 143(9) 8d

O10 -00922(10) 01564(11) 10827(17) 1 143(9) 8d

O11 01123(10) 06498(11) 07436(14) 1 143(9) 8d

O12 02420(11) 06557(12) 07396(15) 1 143(9) 8d

O13 02109(9) 00468(11) 03170(12) 1 143(9) 8d

O14 -00793(8) 00525(13) 01708(13) 1 143(9) 8d

O15 -00850(10) 01327(12) 08874(17) 1 143(9) 8d

O16 -01009(10) 00004(11) 09239(15) 1 143(9) 8d

O17 -01006(10) 06343(12) -00444(14) 1 143(9) 8d

O18 01746(10) 01273(11) 06145(13) 1 143(9) 8d

O19 01980(12) 00019(10) 06091(12) 1 143(9) 8d

O20 02014(13) 06300(11) 05761(13) 1 143(9) 8d

O21 -00054(11) 00405(12) 07595(12) 1 143(9) 8d

O22 -00045(12) 06580(13) 07876(13) 1 143(9) 8d

O23 -00801(15) 075 0861(2) 1 143(9) 4c

O24 01839(17) 075 0648(2) 1 143(9) 4c

O25 02011(18) 025 0563(2) 1 143(9) 4c

O26 00863(13) 075 0143(2) 1 143(9) 4c

41

GVLI O1 -00251(15) 08553(18) -0468(2) 0500(3) 06(4) 8d

O2 -0013(2) 07533(17) -0531(3) 0500(3) 06(4) 8d

C1 00570(11) 08446(12) -05861(14) 0500(3) 06(4) 8d

C2 00466(18) 09175(12) -05663(18) 0500(3) 06(4) 8d

C3 0004(2) 09222(15) -0484(2) 0500(3) 06(4) 8d

C4 00038(13) 08112(15) -05293(19) 0500(3) 06(4) 8d

C5 -0034(3) 09728(19) -0448(3) 0500(3) 06(4) 8d

H1a 00999(11) 08315(15) -05641(17) 0500(3) 07(5) 8d

H1b 00528(13) 08360(13) -06553(15) 0500(3) 07(5) 8d

H2a 0088(2) 09384(14) -0553(2) 0500(3) 07(5) 8d

H2b 0026(2) 09378(15) -0622(2) 0500(3) 07(5) 8d

H3 0038(2) 09204(15) -04313(18) 0500(3) 07(5) 8d

H5a -0043(3) 0965(2) -0380(3) 0500(3) 07(5) 8d

H5b -0011(4) 10138(17) -0454(3) 0500(3) 07(5) 8d

H5c -0074(3) 0975(3) -0485(3) 0500(3) 07(5) 8d

GVLII O1 -03289(15) -0778(2) -02817(19) 0500(4) 06(4) 8d

O2 -04372(14) -0757(2) -02733(16) 0500(4) 06(4) 8d

C1 -03730(11) -07204(15) -04150(12) 0500(4) 06(4) 8d

C2 -02990(11) -0718(2) -04230(16) 0500(4) 06(4) 8d

C3 -02738(13) -0762(3) -0350(2) 0500(4) 06(4) 8d

C4 -03856(13) -07518(18) -03175(14) 0500(4) 06(4) 8d

C5 -02129(14) -0768(4) -0308(3) 0500(4) 06(4) 8d

H1a -03908(13) -07461(16) -04681(13) 0500(3) 07(5) 8d

H1b -03904(14) -06762(15) -04174(16) 0500(3) 07(5) 8d

H2a -02856(13) -0732(2) -04875(17) 0500(3) 07(5) 8d

H2b -02835(15) -0674(2) -04093(19) 0500(3) 07(5) 8d

H3 -0275(2) -0803(3) -0389(3) 0500(3) 07(5) 8d

H5a -0208(2) -0812(4) -0281(3) 0500(3) 07(5) 8d

H5b -01797(13) -0762(4) -0357(3) 0500(3) 07(5) 8d

H5c -02080(14) -0735(4) -0257(3) 0500(3) 07(5) 8d

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 35: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

34

Table S2 Spin-Hamiltonian parameters of radiation induced Nb(IV) and electron hole Al-O-Si defects

from simulation of CW X-band EPR spectra in Fig 1 lw is the homogeneous Lorentzian linewidth g and A

are the principle values of the g and hyperfine interaction tensors

Signal Parameters

Electron

Spin

Nuclear

Spin g-tensor g-Strain

A-tensor

(G)

lw

(mT)

Nb defect 12 92 [1935 1935 1866] [004 004 00] [159 159

310] [0 40]

Al defect 12 52 [20012 2007 2045] [00 0003 004] [7 7 -] [00 04]

35

Table S3 Summary of acidity of all zeolites used in this work Data were determined by NH3-TPD and

Pyridine-IR studies

Catalyst Weak acida

(mmol g-1)

Strong acida

(mmol g-1)

Total acida

(mmol g-1)

LB acid

ratiob

HZSM-5(00271) 015 025 04 039

HZSM-5(0041) 024 028 052 037

HZSM-5(00671) 033 03 063 027

NbS-1(00271) 004 0 004 -

NbS-1(0041) 004 0 004 -

NbAlS-1(00270041) 022 0 022 469

NbAlS-1(00400271) 023 0 023 35 aFrom NH3-TPD bFrom Pyridine-IR

36

Table S4 The butenes distribution in equilibrium at 320 degC and the distribution of butene isomers produced

from conversion of 30 GVL at 320 degC over catalysts

Catalyst Distribution ()

i-butene 1-butene trans-2-butene cis-2-butene

Equilibrium27 45 12 27 16

HZSM-5(0041) 44 14 25 17

NbAlS-1(00270041) 18 19 38 25

NbOPO4 15 20 39 26

37

Table S5 Comparison of the catalytic performance of reported catalysts for the conversion of GVL in aqueous solution (25-40 wt ) to butenes

Catalyst Reaction Conditions GVL

concentration

(wt )

GVL

conversion

()

Butene

Yield

(mol )a

Ref

Temperature

(degC)

WHSV

(h-1)

Pressure

(bar)

NbAlS-1(00270041) 320 018 1 30 100 993 this work

SiO2Al2O3 375 09 1 30 97 75 28

HZSM-5(0041) 320 018 1 30 76 232 this work

LaZSM-5 450 1 10 40 gt99 ca 21 15

PdNb2O5b 275 05 14 30d 100 lt16c 29

Zn-AlPO-5 397 077 10 40 65 ca 12 30

H3PO4 240 - - 25 100 12c 31

ZnZSM-5 450 1 10 40 gt99 ca 6 15

AlPO-5 397 077 10 40 2 ca 04 30

aButene yield is calculated by the equation defined in the Method section

bunder H2 atmosphere

cThe product includes both butene and butane d002 M H2SO4 was added in the GVL solution

38

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1

R (Aring)a σ a Amp a CN a

NbAlS-1 (Dry) Nb=O 1680 0017 082 1 Nb-O 2014 0008 082 3 NbAlS-1

Nb=O 1721 0012 078 1

Nb-O 2014 0004 078 3

NbAlS-1+GVL

Nb=O 1943 0003 075 1

Nb-O 2014 0010 075 3

NbS-1

Nb=O 1711 0032 091 1

Nb-O 2014 0005 091 3

NbS-1+GVL

Nb=O 1770 0004 089 1

Nb-O 2014 0014 089 3 aR = Interatomic distance from central scattering atom σ = Debye-Waller factor Amp = amplitude factor

and CN = coordination number

39

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption

Samples GVLHZSM-5(0041) GVLNbS-1(00271) NbAlS-1(00270041) GVLNbAlS-1(00270041)

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma

Chemical formula Al3692Si92308O192 8GVL Nb2524Si93476O192 8GVL Al3599Nb2429Si89972O192 Al3599Nb2429Si89972O192 8GVL

2θ range for refinement (deg) 3 ndash 50 3 ndash 50 3 ndash 50 3 ndash 50

Detector Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals

Number of hkls 3251 3214 3179 3222

Refinement methods Rietveld Rietveld Rietveld Rietveld

a (Aring) 201351(2) 200604(2) 199955(3) 200697(3)

b (Aring) 199852(2) 198995(1) 198333(3) 199150(3)

c (Aring) 134549(2) 134010(1) 133531(2) 134214(2)

V (Aring3) 541428(11) 534957(7) 529553(15) 536437(15)

RwpRexp Rp () 445135013378 463131253497 553133614058 444933763305

Wavelength (Aring) 082487(1) 082487(1) 082487(1) 082487(1)

Gof χ2 1272 1482 1646 1318

40

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) at room

temperature

Species Atom x y z SOF Beq(Aring2) Wyckoff

HZSM-5(0041) Al1 -00732(5) 00570(7) 08366(7) 003846154 100(5) 8d

Al2 01869(6) -00339(5) 03189(8) 003846154 100(5) 8d

Al3 02207(5) -00626(7) 05256(8) 003846154 100(5) 8d

Al4 01210(5) 00590(7) 10220(8) 003846154 100(5) 8d

Al5 -00703(6) -00272(5) 01933(8) 003846154 100(5) 8d

Al6 01859(5) 00593(6) 06679(8) 003846154 100(5) 8d

Al7 -00745(6) 06734(6) 08243(9) 003846154 100(5) 8d

Al8 01956(6) 01297(5) 03114(7) 003846154 100(5) 8d

Al9 02187(5) 01761(5) 05326(8) 003846154 100(5) 8d

Al10 01228(5) 06749(6) 10400(8) 003846154 100(5) 8d

Al11 -00694(6) 01308(6) 01819(9) 003846154 100(5) 8d

Al12 01859(6) 06714(5) 06756(8) 003846154 100(5) 8d

Si1 -00732(5) 00570(7) 08366(7) 09615385 100(5) 8d

Si2 01869(6) -00339(5) 03189(8) 09615385 100(5) 8d

Si3 02207(5) -00626(7) 05256(8) 09615385 100(5) 8d

Si4 01210(5) 00590(7) 10220(8) 09615385 100(5) 8d

Si5 -00703(6) -00272(5) 01933(8) 09615385 100(5) 8d

Si6 01859(5) 00593(6) 06679(8) 09615385 100(5) 8d

Si7 -00745(6) 06734(6) 08243(9) 09615385 100(5) 8d

Si8 01956(6) 01297(5) 03114(7) 09615385 100(5) 8d

Si9 02187(5) 01761(5) 05326(8) 09615385 100(5) 8d

Si10 01228(5) 06749(6) 10400(8) 09615385 100(5) 8d

Si11 -00694(6) 01308(6) 01819(9) 09615385 100(5) 8d

Si12 01859(6) 06714(5) 06756(8) 09615385 100(5) 8d

O1 01189(10) -00643(12) 02762(13) 1 143(9) 8d

O2 01900(11) -00665(10) 04093(13) 1 143(9) 8d

O3 02017(11) 00485(12) 10198(11) 1 143(9) 8d

O4 -00964(9) -00573(13) 10736(15) 1 143(9) 8d

O5 01132(9) 00573(12) 07009(13) 1 143(9) 8d

O6 02544(10) 00574(13) 07592(13) 1 143(9) 8d

O7 01249(11) 01569(12) 02676(15) 1 143(9) 8d

O8 01995(12) 01482(9) 04331(13) 1 143(9) 8d

O9 01968(12) 06607(9) 00500(12) 1 143(9) 8d

O10 -00922(10) 01564(11) 10827(17) 1 143(9) 8d

O11 01123(10) 06498(11) 07436(14) 1 143(9) 8d

O12 02420(11) 06557(12) 07396(15) 1 143(9) 8d

O13 02109(9) 00468(11) 03170(12) 1 143(9) 8d

O14 -00793(8) 00525(13) 01708(13) 1 143(9) 8d

O15 -00850(10) 01327(12) 08874(17) 1 143(9) 8d

O16 -01009(10) 00004(11) 09239(15) 1 143(9) 8d

O17 -01006(10) 06343(12) -00444(14) 1 143(9) 8d

O18 01746(10) 01273(11) 06145(13) 1 143(9) 8d

O19 01980(12) 00019(10) 06091(12) 1 143(9) 8d

O20 02014(13) 06300(11) 05761(13) 1 143(9) 8d

O21 -00054(11) 00405(12) 07595(12) 1 143(9) 8d

O22 -00045(12) 06580(13) 07876(13) 1 143(9) 8d

O23 -00801(15) 075 0861(2) 1 143(9) 4c

O24 01839(17) 075 0648(2) 1 143(9) 4c

O25 02011(18) 025 0563(2) 1 143(9) 4c

O26 00863(13) 075 0143(2) 1 143(9) 4c

41

GVLI O1 -00251(15) 08553(18) -0468(2) 0500(3) 06(4) 8d

O2 -0013(2) 07533(17) -0531(3) 0500(3) 06(4) 8d

C1 00570(11) 08446(12) -05861(14) 0500(3) 06(4) 8d

C2 00466(18) 09175(12) -05663(18) 0500(3) 06(4) 8d

C3 0004(2) 09222(15) -0484(2) 0500(3) 06(4) 8d

C4 00038(13) 08112(15) -05293(19) 0500(3) 06(4) 8d

C5 -0034(3) 09728(19) -0448(3) 0500(3) 06(4) 8d

H1a 00999(11) 08315(15) -05641(17) 0500(3) 07(5) 8d

H1b 00528(13) 08360(13) -06553(15) 0500(3) 07(5) 8d

H2a 0088(2) 09384(14) -0553(2) 0500(3) 07(5) 8d

H2b 0026(2) 09378(15) -0622(2) 0500(3) 07(5) 8d

H3 0038(2) 09204(15) -04313(18) 0500(3) 07(5) 8d

H5a -0043(3) 0965(2) -0380(3) 0500(3) 07(5) 8d

H5b -0011(4) 10138(17) -0454(3) 0500(3) 07(5) 8d

H5c -0074(3) 0975(3) -0485(3) 0500(3) 07(5) 8d

GVLII O1 -03289(15) -0778(2) -02817(19) 0500(4) 06(4) 8d

O2 -04372(14) -0757(2) -02733(16) 0500(4) 06(4) 8d

C1 -03730(11) -07204(15) -04150(12) 0500(4) 06(4) 8d

C2 -02990(11) -0718(2) -04230(16) 0500(4) 06(4) 8d

C3 -02738(13) -0762(3) -0350(2) 0500(4) 06(4) 8d

C4 -03856(13) -07518(18) -03175(14) 0500(4) 06(4) 8d

C5 -02129(14) -0768(4) -0308(3) 0500(4) 06(4) 8d

H1a -03908(13) -07461(16) -04681(13) 0500(3) 07(5) 8d

H1b -03904(14) -06762(15) -04174(16) 0500(3) 07(5) 8d

H2a -02856(13) -0732(2) -04875(17) 0500(3) 07(5) 8d

H2b -02835(15) -0674(2) -04093(19) 0500(3) 07(5) 8d

H3 -0275(2) -0803(3) -0389(3) 0500(3) 07(5) 8d

H5a -0208(2) -0812(4) -0281(3) 0500(3) 07(5) 8d

H5b -01797(13) -0762(4) -0357(3) 0500(3) 07(5) 8d

H5c -02080(14) -0735(4) -0257(3) 0500(3) 07(5) 8d

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 36: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

35

Table S3 Summary of acidity of all zeolites used in this work Data were determined by NH3-TPD and

Pyridine-IR studies

Catalyst Weak acida

(mmol g-1)

Strong acida

(mmol g-1)

Total acida

(mmol g-1)

LB acid

ratiob

HZSM-5(00271) 015 025 04 039

HZSM-5(0041) 024 028 052 037

HZSM-5(00671) 033 03 063 027

NbS-1(00271) 004 0 004 -

NbS-1(0041) 004 0 004 -

NbAlS-1(00270041) 022 0 022 469

NbAlS-1(00400271) 023 0 023 35 aFrom NH3-TPD bFrom Pyridine-IR

36

Table S4 The butenes distribution in equilibrium at 320 degC and the distribution of butene isomers produced

from conversion of 30 GVL at 320 degC over catalysts

Catalyst Distribution ()

i-butene 1-butene trans-2-butene cis-2-butene

Equilibrium27 45 12 27 16

HZSM-5(0041) 44 14 25 17

NbAlS-1(00270041) 18 19 38 25

NbOPO4 15 20 39 26

37

Table S5 Comparison of the catalytic performance of reported catalysts for the conversion of GVL in aqueous solution (25-40 wt ) to butenes

Catalyst Reaction Conditions GVL

concentration

(wt )

GVL

conversion

()

Butene

Yield

(mol )a

Ref

Temperature

(degC)

WHSV

(h-1)

Pressure

(bar)

NbAlS-1(00270041) 320 018 1 30 100 993 this work

SiO2Al2O3 375 09 1 30 97 75 28

HZSM-5(0041) 320 018 1 30 76 232 this work

LaZSM-5 450 1 10 40 gt99 ca 21 15

PdNb2O5b 275 05 14 30d 100 lt16c 29

Zn-AlPO-5 397 077 10 40 65 ca 12 30

H3PO4 240 - - 25 100 12c 31

ZnZSM-5 450 1 10 40 gt99 ca 6 15

AlPO-5 397 077 10 40 2 ca 04 30

aButene yield is calculated by the equation defined in the Method section

bunder H2 atmosphere

cThe product includes both butene and butane d002 M H2SO4 was added in the GVL solution

38

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1

R (Aring)a σ a Amp a CN a

NbAlS-1 (Dry) Nb=O 1680 0017 082 1 Nb-O 2014 0008 082 3 NbAlS-1

Nb=O 1721 0012 078 1

Nb-O 2014 0004 078 3

NbAlS-1+GVL

Nb=O 1943 0003 075 1

Nb-O 2014 0010 075 3

NbS-1

Nb=O 1711 0032 091 1

Nb-O 2014 0005 091 3

NbS-1+GVL

Nb=O 1770 0004 089 1

Nb-O 2014 0014 089 3 aR = Interatomic distance from central scattering atom σ = Debye-Waller factor Amp = amplitude factor

and CN = coordination number

39

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption

Samples GVLHZSM-5(0041) GVLNbS-1(00271) NbAlS-1(00270041) GVLNbAlS-1(00270041)

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma

Chemical formula Al3692Si92308O192 8GVL Nb2524Si93476O192 8GVL Al3599Nb2429Si89972O192 Al3599Nb2429Si89972O192 8GVL

2θ range for refinement (deg) 3 ndash 50 3 ndash 50 3 ndash 50 3 ndash 50

Detector Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals

Number of hkls 3251 3214 3179 3222

Refinement methods Rietveld Rietveld Rietveld Rietveld

a (Aring) 201351(2) 200604(2) 199955(3) 200697(3)

b (Aring) 199852(2) 198995(1) 198333(3) 199150(3)

c (Aring) 134549(2) 134010(1) 133531(2) 134214(2)

V (Aring3) 541428(11) 534957(7) 529553(15) 536437(15)

RwpRexp Rp () 445135013378 463131253497 553133614058 444933763305

Wavelength (Aring) 082487(1) 082487(1) 082487(1) 082487(1)

Gof χ2 1272 1482 1646 1318

40

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) at room

temperature

Species Atom x y z SOF Beq(Aring2) Wyckoff

HZSM-5(0041) Al1 -00732(5) 00570(7) 08366(7) 003846154 100(5) 8d

Al2 01869(6) -00339(5) 03189(8) 003846154 100(5) 8d

Al3 02207(5) -00626(7) 05256(8) 003846154 100(5) 8d

Al4 01210(5) 00590(7) 10220(8) 003846154 100(5) 8d

Al5 -00703(6) -00272(5) 01933(8) 003846154 100(5) 8d

Al6 01859(5) 00593(6) 06679(8) 003846154 100(5) 8d

Al7 -00745(6) 06734(6) 08243(9) 003846154 100(5) 8d

Al8 01956(6) 01297(5) 03114(7) 003846154 100(5) 8d

Al9 02187(5) 01761(5) 05326(8) 003846154 100(5) 8d

Al10 01228(5) 06749(6) 10400(8) 003846154 100(5) 8d

Al11 -00694(6) 01308(6) 01819(9) 003846154 100(5) 8d

Al12 01859(6) 06714(5) 06756(8) 003846154 100(5) 8d

Si1 -00732(5) 00570(7) 08366(7) 09615385 100(5) 8d

Si2 01869(6) -00339(5) 03189(8) 09615385 100(5) 8d

Si3 02207(5) -00626(7) 05256(8) 09615385 100(5) 8d

Si4 01210(5) 00590(7) 10220(8) 09615385 100(5) 8d

Si5 -00703(6) -00272(5) 01933(8) 09615385 100(5) 8d

Si6 01859(5) 00593(6) 06679(8) 09615385 100(5) 8d

Si7 -00745(6) 06734(6) 08243(9) 09615385 100(5) 8d

Si8 01956(6) 01297(5) 03114(7) 09615385 100(5) 8d

Si9 02187(5) 01761(5) 05326(8) 09615385 100(5) 8d

Si10 01228(5) 06749(6) 10400(8) 09615385 100(5) 8d

Si11 -00694(6) 01308(6) 01819(9) 09615385 100(5) 8d

Si12 01859(6) 06714(5) 06756(8) 09615385 100(5) 8d

O1 01189(10) -00643(12) 02762(13) 1 143(9) 8d

O2 01900(11) -00665(10) 04093(13) 1 143(9) 8d

O3 02017(11) 00485(12) 10198(11) 1 143(9) 8d

O4 -00964(9) -00573(13) 10736(15) 1 143(9) 8d

O5 01132(9) 00573(12) 07009(13) 1 143(9) 8d

O6 02544(10) 00574(13) 07592(13) 1 143(9) 8d

O7 01249(11) 01569(12) 02676(15) 1 143(9) 8d

O8 01995(12) 01482(9) 04331(13) 1 143(9) 8d

O9 01968(12) 06607(9) 00500(12) 1 143(9) 8d

O10 -00922(10) 01564(11) 10827(17) 1 143(9) 8d

O11 01123(10) 06498(11) 07436(14) 1 143(9) 8d

O12 02420(11) 06557(12) 07396(15) 1 143(9) 8d

O13 02109(9) 00468(11) 03170(12) 1 143(9) 8d

O14 -00793(8) 00525(13) 01708(13) 1 143(9) 8d

O15 -00850(10) 01327(12) 08874(17) 1 143(9) 8d

O16 -01009(10) 00004(11) 09239(15) 1 143(9) 8d

O17 -01006(10) 06343(12) -00444(14) 1 143(9) 8d

O18 01746(10) 01273(11) 06145(13) 1 143(9) 8d

O19 01980(12) 00019(10) 06091(12) 1 143(9) 8d

O20 02014(13) 06300(11) 05761(13) 1 143(9) 8d

O21 -00054(11) 00405(12) 07595(12) 1 143(9) 8d

O22 -00045(12) 06580(13) 07876(13) 1 143(9) 8d

O23 -00801(15) 075 0861(2) 1 143(9) 4c

O24 01839(17) 075 0648(2) 1 143(9) 4c

O25 02011(18) 025 0563(2) 1 143(9) 4c

O26 00863(13) 075 0143(2) 1 143(9) 4c

41

GVLI O1 -00251(15) 08553(18) -0468(2) 0500(3) 06(4) 8d

O2 -0013(2) 07533(17) -0531(3) 0500(3) 06(4) 8d

C1 00570(11) 08446(12) -05861(14) 0500(3) 06(4) 8d

C2 00466(18) 09175(12) -05663(18) 0500(3) 06(4) 8d

C3 0004(2) 09222(15) -0484(2) 0500(3) 06(4) 8d

C4 00038(13) 08112(15) -05293(19) 0500(3) 06(4) 8d

C5 -0034(3) 09728(19) -0448(3) 0500(3) 06(4) 8d

H1a 00999(11) 08315(15) -05641(17) 0500(3) 07(5) 8d

H1b 00528(13) 08360(13) -06553(15) 0500(3) 07(5) 8d

H2a 0088(2) 09384(14) -0553(2) 0500(3) 07(5) 8d

H2b 0026(2) 09378(15) -0622(2) 0500(3) 07(5) 8d

H3 0038(2) 09204(15) -04313(18) 0500(3) 07(5) 8d

H5a -0043(3) 0965(2) -0380(3) 0500(3) 07(5) 8d

H5b -0011(4) 10138(17) -0454(3) 0500(3) 07(5) 8d

H5c -0074(3) 0975(3) -0485(3) 0500(3) 07(5) 8d

GVLII O1 -03289(15) -0778(2) -02817(19) 0500(4) 06(4) 8d

O2 -04372(14) -0757(2) -02733(16) 0500(4) 06(4) 8d

C1 -03730(11) -07204(15) -04150(12) 0500(4) 06(4) 8d

C2 -02990(11) -0718(2) -04230(16) 0500(4) 06(4) 8d

C3 -02738(13) -0762(3) -0350(2) 0500(4) 06(4) 8d

C4 -03856(13) -07518(18) -03175(14) 0500(4) 06(4) 8d

C5 -02129(14) -0768(4) -0308(3) 0500(4) 06(4) 8d

H1a -03908(13) -07461(16) -04681(13) 0500(3) 07(5) 8d

H1b -03904(14) -06762(15) -04174(16) 0500(3) 07(5) 8d

H2a -02856(13) -0732(2) -04875(17) 0500(3) 07(5) 8d

H2b -02835(15) -0674(2) -04093(19) 0500(3) 07(5) 8d

H3 -0275(2) -0803(3) -0389(3) 0500(3) 07(5) 8d

H5a -0208(2) -0812(4) -0281(3) 0500(3) 07(5) 8d

H5b -01797(13) -0762(4) -0357(3) 0500(3) 07(5) 8d

H5c -02080(14) -0735(4) -0257(3) 0500(3) 07(5) 8d

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 37: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

36

Table S4 The butenes distribution in equilibrium at 320 degC and the distribution of butene isomers produced

from conversion of 30 GVL at 320 degC over catalysts

Catalyst Distribution ()

i-butene 1-butene trans-2-butene cis-2-butene

Equilibrium27 45 12 27 16

HZSM-5(0041) 44 14 25 17

NbAlS-1(00270041) 18 19 38 25

NbOPO4 15 20 39 26

37

Table S5 Comparison of the catalytic performance of reported catalysts for the conversion of GVL in aqueous solution (25-40 wt ) to butenes

Catalyst Reaction Conditions GVL

concentration

(wt )

GVL

conversion

()

Butene

Yield

(mol )a

Ref

Temperature

(degC)

WHSV

(h-1)

Pressure

(bar)

NbAlS-1(00270041) 320 018 1 30 100 993 this work

SiO2Al2O3 375 09 1 30 97 75 28

HZSM-5(0041) 320 018 1 30 76 232 this work

LaZSM-5 450 1 10 40 gt99 ca 21 15

PdNb2O5b 275 05 14 30d 100 lt16c 29

Zn-AlPO-5 397 077 10 40 65 ca 12 30

H3PO4 240 - - 25 100 12c 31

ZnZSM-5 450 1 10 40 gt99 ca 6 15

AlPO-5 397 077 10 40 2 ca 04 30

aButene yield is calculated by the equation defined in the Method section

bunder H2 atmosphere

cThe product includes both butene and butane d002 M H2SO4 was added in the GVL solution

38

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1

R (Aring)a σ a Amp a CN a

NbAlS-1 (Dry) Nb=O 1680 0017 082 1 Nb-O 2014 0008 082 3 NbAlS-1

Nb=O 1721 0012 078 1

Nb-O 2014 0004 078 3

NbAlS-1+GVL

Nb=O 1943 0003 075 1

Nb-O 2014 0010 075 3

NbS-1

Nb=O 1711 0032 091 1

Nb-O 2014 0005 091 3

NbS-1+GVL

Nb=O 1770 0004 089 1

Nb-O 2014 0014 089 3 aR = Interatomic distance from central scattering atom σ = Debye-Waller factor Amp = amplitude factor

and CN = coordination number

39

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption

Samples GVLHZSM-5(0041) GVLNbS-1(00271) NbAlS-1(00270041) GVLNbAlS-1(00270041)

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma

Chemical formula Al3692Si92308O192 8GVL Nb2524Si93476O192 8GVL Al3599Nb2429Si89972O192 Al3599Nb2429Si89972O192 8GVL

2θ range for refinement (deg) 3 ndash 50 3 ndash 50 3 ndash 50 3 ndash 50

Detector Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals

Number of hkls 3251 3214 3179 3222

Refinement methods Rietveld Rietveld Rietveld Rietveld

a (Aring) 201351(2) 200604(2) 199955(3) 200697(3)

b (Aring) 199852(2) 198995(1) 198333(3) 199150(3)

c (Aring) 134549(2) 134010(1) 133531(2) 134214(2)

V (Aring3) 541428(11) 534957(7) 529553(15) 536437(15)

RwpRexp Rp () 445135013378 463131253497 553133614058 444933763305

Wavelength (Aring) 082487(1) 082487(1) 082487(1) 082487(1)

Gof χ2 1272 1482 1646 1318

40

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) at room

temperature

Species Atom x y z SOF Beq(Aring2) Wyckoff

HZSM-5(0041) Al1 -00732(5) 00570(7) 08366(7) 003846154 100(5) 8d

Al2 01869(6) -00339(5) 03189(8) 003846154 100(5) 8d

Al3 02207(5) -00626(7) 05256(8) 003846154 100(5) 8d

Al4 01210(5) 00590(7) 10220(8) 003846154 100(5) 8d

Al5 -00703(6) -00272(5) 01933(8) 003846154 100(5) 8d

Al6 01859(5) 00593(6) 06679(8) 003846154 100(5) 8d

Al7 -00745(6) 06734(6) 08243(9) 003846154 100(5) 8d

Al8 01956(6) 01297(5) 03114(7) 003846154 100(5) 8d

Al9 02187(5) 01761(5) 05326(8) 003846154 100(5) 8d

Al10 01228(5) 06749(6) 10400(8) 003846154 100(5) 8d

Al11 -00694(6) 01308(6) 01819(9) 003846154 100(5) 8d

Al12 01859(6) 06714(5) 06756(8) 003846154 100(5) 8d

Si1 -00732(5) 00570(7) 08366(7) 09615385 100(5) 8d

Si2 01869(6) -00339(5) 03189(8) 09615385 100(5) 8d

Si3 02207(5) -00626(7) 05256(8) 09615385 100(5) 8d

Si4 01210(5) 00590(7) 10220(8) 09615385 100(5) 8d

Si5 -00703(6) -00272(5) 01933(8) 09615385 100(5) 8d

Si6 01859(5) 00593(6) 06679(8) 09615385 100(5) 8d

Si7 -00745(6) 06734(6) 08243(9) 09615385 100(5) 8d

Si8 01956(6) 01297(5) 03114(7) 09615385 100(5) 8d

Si9 02187(5) 01761(5) 05326(8) 09615385 100(5) 8d

Si10 01228(5) 06749(6) 10400(8) 09615385 100(5) 8d

Si11 -00694(6) 01308(6) 01819(9) 09615385 100(5) 8d

Si12 01859(6) 06714(5) 06756(8) 09615385 100(5) 8d

O1 01189(10) -00643(12) 02762(13) 1 143(9) 8d

O2 01900(11) -00665(10) 04093(13) 1 143(9) 8d

O3 02017(11) 00485(12) 10198(11) 1 143(9) 8d

O4 -00964(9) -00573(13) 10736(15) 1 143(9) 8d

O5 01132(9) 00573(12) 07009(13) 1 143(9) 8d

O6 02544(10) 00574(13) 07592(13) 1 143(9) 8d

O7 01249(11) 01569(12) 02676(15) 1 143(9) 8d

O8 01995(12) 01482(9) 04331(13) 1 143(9) 8d

O9 01968(12) 06607(9) 00500(12) 1 143(9) 8d

O10 -00922(10) 01564(11) 10827(17) 1 143(9) 8d

O11 01123(10) 06498(11) 07436(14) 1 143(9) 8d

O12 02420(11) 06557(12) 07396(15) 1 143(9) 8d

O13 02109(9) 00468(11) 03170(12) 1 143(9) 8d

O14 -00793(8) 00525(13) 01708(13) 1 143(9) 8d

O15 -00850(10) 01327(12) 08874(17) 1 143(9) 8d

O16 -01009(10) 00004(11) 09239(15) 1 143(9) 8d

O17 -01006(10) 06343(12) -00444(14) 1 143(9) 8d

O18 01746(10) 01273(11) 06145(13) 1 143(9) 8d

O19 01980(12) 00019(10) 06091(12) 1 143(9) 8d

O20 02014(13) 06300(11) 05761(13) 1 143(9) 8d

O21 -00054(11) 00405(12) 07595(12) 1 143(9) 8d

O22 -00045(12) 06580(13) 07876(13) 1 143(9) 8d

O23 -00801(15) 075 0861(2) 1 143(9) 4c

O24 01839(17) 075 0648(2) 1 143(9) 4c

O25 02011(18) 025 0563(2) 1 143(9) 4c

O26 00863(13) 075 0143(2) 1 143(9) 4c

41

GVLI O1 -00251(15) 08553(18) -0468(2) 0500(3) 06(4) 8d

O2 -0013(2) 07533(17) -0531(3) 0500(3) 06(4) 8d

C1 00570(11) 08446(12) -05861(14) 0500(3) 06(4) 8d

C2 00466(18) 09175(12) -05663(18) 0500(3) 06(4) 8d

C3 0004(2) 09222(15) -0484(2) 0500(3) 06(4) 8d

C4 00038(13) 08112(15) -05293(19) 0500(3) 06(4) 8d

C5 -0034(3) 09728(19) -0448(3) 0500(3) 06(4) 8d

H1a 00999(11) 08315(15) -05641(17) 0500(3) 07(5) 8d

H1b 00528(13) 08360(13) -06553(15) 0500(3) 07(5) 8d

H2a 0088(2) 09384(14) -0553(2) 0500(3) 07(5) 8d

H2b 0026(2) 09378(15) -0622(2) 0500(3) 07(5) 8d

H3 0038(2) 09204(15) -04313(18) 0500(3) 07(5) 8d

H5a -0043(3) 0965(2) -0380(3) 0500(3) 07(5) 8d

H5b -0011(4) 10138(17) -0454(3) 0500(3) 07(5) 8d

H5c -0074(3) 0975(3) -0485(3) 0500(3) 07(5) 8d

GVLII O1 -03289(15) -0778(2) -02817(19) 0500(4) 06(4) 8d

O2 -04372(14) -0757(2) -02733(16) 0500(4) 06(4) 8d

C1 -03730(11) -07204(15) -04150(12) 0500(4) 06(4) 8d

C2 -02990(11) -0718(2) -04230(16) 0500(4) 06(4) 8d

C3 -02738(13) -0762(3) -0350(2) 0500(4) 06(4) 8d

C4 -03856(13) -07518(18) -03175(14) 0500(4) 06(4) 8d

C5 -02129(14) -0768(4) -0308(3) 0500(4) 06(4) 8d

H1a -03908(13) -07461(16) -04681(13) 0500(3) 07(5) 8d

H1b -03904(14) -06762(15) -04174(16) 0500(3) 07(5) 8d

H2a -02856(13) -0732(2) -04875(17) 0500(3) 07(5) 8d

H2b -02835(15) -0674(2) -04093(19) 0500(3) 07(5) 8d

H3 -0275(2) -0803(3) -0389(3) 0500(3) 07(5) 8d

H5a -0208(2) -0812(4) -0281(3) 0500(3) 07(5) 8d

H5b -01797(13) -0762(4) -0357(3) 0500(3) 07(5) 8d

H5c -02080(14) -0735(4) -0257(3) 0500(3) 07(5) 8d

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 38: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

37

Table S5 Comparison of the catalytic performance of reported catalysts for the conversion of GVL in aqueous solution (25-40 wt ) to butenes

Catalyst Reaction Conditions GVL

concentration

(wt )

GVL

conversion

()

Butene

Yield

(mol )a

Ref

Temperature

(degC)

WHSV

(h-1)

Pressure

(bar)

NbAlS-1(00270041) 320 018 1 30 100 993 this work

SiO2Al2O3 375 09 1 30 97 75 28

HZSM-5(0041) 320 018 1 30 76 232 this work

LaZSM-5 450 1 10 40 gt99 ca 21 15

PdNb2O5b 275 05 14 30d 100 lt16c 29

Zn-AlPO-5 397 077 10 40 65 ca 12 30

H3PO4 240 - - 25 100 12c 31

ZnZSM-5 450 1 10 40 gt99 ca 6 15

AlPO-5 397 077 10 40 2 ca 04 30

aButene yield is calculated by the equation defined in the Method section

bunder H2 atmosphere

cThe product includes both butene and butane d002 M H2SO4 was added in the GVL solution

38

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1

R (Aring)a σ a Amp a CN a

NbAlS-1 (Dry) Nb=O 1680 0017 082 1 Nb-O 2014 0008 082 3 NbAlS-1

Nb=O 1721 0012 078 1

Nb-O 2014 0004 078 3

NbAlS-1+GVL

Nb=O 1943 0003 075 1

Nb-O 2014 0010 075 3

NbS-1

Nb=O 1711 0032 091 1

Nb-O 2014 0005 091 3

NbS-1+GVL

Nb=O 1770 0004 089 1

Nb-O 2014 0014 089 3 aR = Interatomic distance from central scattering atom σ = Debye-Waller factor Amp = amplitude factor

and CN = coordination number

39

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption

Samples GVLHZSM-5(0041) GVLNbS-1(00271) NbAlS-1(00270041) GVLNbAlS-1(00270041)

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma

Chemical formula Al3692Si92308O192 8GVL Nb2524Si93476O192 8GVL Al3599Nb2429Si89972O192 Al3599Nb2429Si89972O192 8GVL

2θ range for refinement (deg) 3 ndash 50 3 ndash 50 3 ndash 50 3 ndash 50

Detector Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals

Number of hkls 3251 3214 3179 3222

Refinement methods Rietveld Rietveld Rietveld Rietveld

a (Aring) 201351(2) 200604(2) 199955(3) 200697(3)

b (Aring) 199852(2) 198995(1) 198333(3) 199150(3)

c (Aring) 134549(2) 134010(1) 133531(2) 134214(2)

V (Aring3) 541428(11) 534957(7) 529553(15) 536437(15)

RwpRexp Rp () 445135013378 463131253497 553133614058 444933763305

Wavelength (Aring) 082487(1) 082487(1) 082487(1) 082487(1)

Gof χ2 1272 1482 1646 1318

40

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) at room

temperature

Species Atom x y z SOF Beq(Aring2) Wyckoff

HZSM-5(0041) Al1 -00732(5) 00570(7) 08366(7) 003846154 100(5) 8d

Al2 01869(6) -00339(5) 03189(8) 003846154 100(5) 8d

Al3 02207(5) -00626(7) 05256(8) 003846154 100(5) 8d

Al4 01210(5) 00590(7) 10220(8) 003846154 100(5) 8d

Al5 -00703(6) -00272(5) 01933(8) 003846154 100(5) 8d

Al6 01859(5) 00593(6) 06679(8) 003846154 100(5) 8d

Al7 -00745(6) 06734(6) 08243(9) 003846154 100(5) 8d

Al8 01956(6) 01297(5) 03114(7) 003846154 100(5) 8d

Al9 02187(5) 01761(5) 05326(8) 003846154 100(5) 8d

Al10 01228(5) 06749(6) 10400(8) 003846154 100(5) 8d

Al11 -00694(6) 01308(6) 01819(9) 003846154 100(5) 8d

Al12 01859(6) 06714(5) 06756(8) 003846154 100(5) 8d

Si1 -00732(5) 00570(7) 08366(7) 09615385 100(5) 8d

Si2 01869(6) -00339(5) 03189(8) 09615385 100(5) 8d

Si3 02207(5) -00626(7) 05256(8) 09615385 100(5) 8d

Si4 01210(5) 00590(7) 10220(8) 09615385 100(5) 8d

Si5 -00703(6) -00272(5) 01933(8) 09615385 100(5) 8d

Si6 01859(5) 00593(6) 06679(8) 09615385 100(5) 8d

Si7 -00745(6) 06734(6) 08243(9) 09615385 100(5) 8d

Si8 01956(6) 01297(5) 03114(7) 09615385 100(5) 8d

Si9 02187(5) 01761(5) 05326(8) 09615385 100(5) 8d

Si10 01228(5) 06749(6) 10400(8) 09615385 100(5) 8d

Si11 -00694(6) 01308(6) 01819(9) 09615385 100(5) 8d

Si12 01859(6) 06714(5) 06756(8) 09615385 100(5) 8d

O1 01189(10) -00643(12) 02762(13) 1 143(9) 8d

O2 01900(11) -00665(10) 04093(13) 1 143(9) 8d

O3 02017(11) 00485(12) 10198(11) 1 143(9) 8d

O4 -00964(9) -00573(13) 10736(15) 1 143(9) 8d

O5 01132(9) 00573(12) 07009(13) 1 143(9) 8d

O6 02544(10) 00574(13) 07592(13) 1 143(9) 8d

O7 01249(11) 01569(12) 02676(15) 1 143(9) 8d

O8 01995(12) 01482(9) 04331(13) 1 143(9) 8d

O9 01968(12) 06607(9) 00500(12) 1 143(9) 8d

O10 -00922(10) 01564(11) 10827(17) 1 143(9) 8d

O11 01123(10) 06498(11) 07436(14) 1 143(9) 8d

O12 02420(11) 06557(12) 07396(15) 1 143(9) 8d

O13 02109(9) 00468(11) 03170(12) 1 143(9) 8d

O14 -00793(8) 00525(13) 01708(13) 1 143(9) 8d

O15 -00850(10) 01327(12) 08874(17) 1 143(9) 8d

O16 -01009(10) 00004(11) 09239(15) 1 143(9) 8d

O17 -01006(10) 06343(12) -00444(14) 1 143(9) 8d

O18 01746(10) 01273(11) 06145(13) 1 143(9) 8d

O19 01980(12) 00019(10) 06091(12) 1 143(9) 8d

O20 02014(13) 06300(11) 05761(13) 1 143(9) 8d

O21 -00054(11) 00405(12) 07595(12) 1 143(9) 8d

O22 -00045(12) 06580(13) 07876(13) 1 143(9) 8d

O23 -00801(15) 075 0861(2) 1 143(9) 4c

O24 01839(17) 075 0648(2) 1 143(9) 4c

O25 02011(18) 025 0563(2) 1 143(9) 4c

O26 00863(13) 075 0143(2) 1 143(9) 4c

41

GVLI O1 -00251(15) 08553(18) -0468(2) 0500(3) 06(4) 8d

O2 -0013(2) 07533(17) -0531(3) 0500(3) 06(4) 8d

C1 00570(11) 08446(12) -05861(14) 0500(3) 06(4) 8d

C2 00466(18) 09175(12) -05663(18) 0500(3) 06(4) 8d

C3 0004(2) 09222(15) -0484(2) 0500(3) 06(4) 8d

C4 00038(13) 08112(15) -05293(19) 0500(3) 06(4) 8d

C5 -0034(3) 09728(19) -0448(3) 0500(3) 06(4) 8d

H1a 00999(11) 08315(15) -05641(17) 0500(3) 07(5) 8d

H1b 00528(13) 08360(13) -06553(15) 0500(3) 07(5) 8d

H2a 0088(2) 09384(14) -0553(2) 0500(3) 07(5) 8d

H2b 0026(2) 09378(15) -0622(2) 0500(3) 07(5) 8d

H3 0038(2) 09204(15) -04313(18) 0500(3) 07(5) 8d

H5a -0043(3) 0965(2) -0380(3) 0500(3) 07(5) 8d

H5b -0011(4) 10138(17) -0454(3) 0500(3) 07(5) 8d

H5c -0074(3) 0975(3) -0485(3) 0500(3) 07(5) 8d

GVLII O1 -03289(15) -0778(2) -02817(19) 0500(4) 06(4) 8d

O2 -04372(14) -0757(2) -02733(16) 0500(4) 06(4) 8d

C1 -03730(11) -07204(15) -04150(12) 0500(4) 06(4) 8d

C2 -02990(11) -0718(2) -04230(16) 0500(4) 06(4) 8d

C3 -02738(13) -0762(3) -0350(2) 0500(4) 06(4) 8d

C4 -03856(13) -07518(18) -03175(14) 0500(4) 06(4) 8d

C5 -02129(14) -0768(4) -0308(3) 0500(4) 06(4) 8d

H1a -03908(13) -07461(16) -04681(13) 0500(3) 07(5) 8d

H1b -03904(14) -06762(15) -04174(16) 0500(3) 07(5) 8d

H2a -02856(13) -0732(2) -04875(17) 0500(3) 07(5) 8d

H2b -02835(15) -0674(2) -04093(19) 0500(3) 07(5) 8d

H3 -0275(2) -0803(3) -0389(3) 0500(3) 07(5) 8d

H5a -0208(2) -0812(4) -0281(3) 0500(3) 07(5) 8d

H5b -01797(13) -0762(4) -0357(3) 0500(3) 07(5) 8d

H5c -02080(14) -0735(4) -0257(3) 0500(3) 07(5) 8d

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 39: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

38

Table S6 1st Shell fitting of EXAFS data for as-prepared and GVL-adsorbed NbS-1 and NbAlS-1

R (Aring)a σ a Amp a CN a

NbAlS-1 (Dry) Nb=O 1680 0017 082 1 Nb-O 2014 0008 082 3 NbAlS-1

Nb=O 1721 0012 078 1

Nb-O 2014 0004 078 3

NbAlS-1+GVL

Nb=O 1943 0003 075 1

Nb-O 2014 0010 075 3

NbS-1

Nb=O 1711 0032 091 1

Nb-O 2014 0005 091 3

NbS-1+GVL

Nb=O 1770 0004 089 1

Nb-O 2014 0014 089 3 aR = Interatomic distance from central scattering atom σ = Debye-Waller factor Amp = amplitude factor

and CN = coordination number

39

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption

Samples GVLHZSM-5(0041) GVLNbS-1(00271) NbAlS-1(00270041) GVLNbAlS-1(00270041)

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma

Chemical formula Al3692Si92308O192 8GVL Nb2524Si93476O192 8GVL Al3599Nb2429Si89972O192 Al3599Nb2429Si89972O192 8GVL

2θ range for refinement (deg) 3 ndash 50 3 ndash 50 3 ndash 50 3 ndash 50

Detector Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals

Number of hkls 3251 3214 3179 3222

Refinement methods Rietveld Rietveld Rietveld Rietveld

a (Aring) 201351(2) 200604(2) 199955(3) 200697(3)

b (Aring) 199852(2) 198995(1) 198333(3) 199150(3)

c (Aring) 134549(2) 134010(1) 133531(2) 134214(2)

V (Aring3) 541428(11) 534957(7) 529553(15) 536437(15)

RwpRexp Rp () 445135013378 463131253497 553133614058 444933763305

Wavelength (Aring) 082487(1) 082487(1) 082487(1) 082487(1)

Gof χ2 1272 1482 1646 1318

40

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) at room

temperature

Species Atom x y z SOF Beq(Aring2) Wyckoff

HZSM-5(0041) Al1 -00732(5) 00570(7) 08366(7) 003846154 100(5) 8d

Al2 01869(6) -00339(5) 03189(8) 003846154 100(5) 8d

Al3 02207(5) -00626(7) 05256(8) 003846154 100(5) 8d

Al4 01210(5) 00590(7) 10220(8) 003846154 100(5) 8d

Al5 -00703(6) -00272(5) 01933(8) 003846154 100(5) 8d

Al6 01859(5) 00593(6) 06679(8) 003846154 100(5) 8d

Al7 -00745(6) 06734(6) 08243(9) 003846154 100(5) 8d

Al8 01956(6) 01297(5) 03114(7) 003846154 100(5) 8d

Al9 02187(5) 01761(5) 05326(8) 003846154 100(5) 8d

Al10 01228(5) 06749(6) 10400(8) 003846154 100(5) 8d

Al11 -00694(6) 01308(6) 01819(9) 003846154 100(5) 8d

Al12 01859(6) 06714(5) 06756(8) 003846154 100(5) 8d

Si1 -00732(5) 00570(7) 08366(7) 09615385 100(5) 8d

Si2 01869(6) -00339(5) 03189(8) 09615385 100(5) 8d

Si3 02207(5) -00626(7) 05256(8) 09615385 100(5) 8d

Si4 01210(5) 00590(7) 10220(8) 09615385 100(5) 8d

Si5 -00703(6) -00272(5) 01933(8) 09615385 100(5) 8d

Si6 01859(5) 00593(6) 06679(8) 09615385 100(5) 8d

Si7 -00745(6) 06734(6) 08243(9) 09615385 100(5) 8d

Si8 01956(6) 01297(5) 03114(7) 09615385 100(5) 8d

Si9 02187(5) 01761(5) 05326(8) 09615385 100(5) 8d

Si10 01228(5) 06749(6) 10400(8) 09615385 100(5) 8d

Si11 -00694(6) 01308(6) 01819(9) 09615385 100(5) 8d

Si12 01859(6) 06714(5) 06756(8) 09615385 100(5) 8d

O1 01189(10) -00643(12) 02762(13) 1 143(9) 8d

O2 01900(11) -00665(10) 04093(13) 1 143(9) 8d

O3 02017(11) 00485(12) 10198(11) 1 143(9) 8d

O4 -00964(9) -00573(13) 10736(15) 1 143(9) 8d

O5 01132(9) 00573(12) 07009(13) 1 143(9) 8d

O6 02544(10) 00574(13) 07592(13) 1 143(9) 8d

O7 01249(11) 01569(12) 02676(15) 1 143(9) 8d

O8 01995(12) 01482(9) 04331(13) 1 143(9) 8d

O9 01968(12) 06607(9) 00500(12) 1 143(9) 8d

O10 -00922(10) 01564(11) 10827(17) 1 143(9) 8d

O11 01123(10) 06498(11) 07436(14) 1 143(9) 8d

O12 02420(11) 06557(12) 07396(15) 1 143(9) 8d

O13 02109(9) 00468(11) 03170(12) 1 143(9) 8d

O14 -00793(8) 00525(13) 01708(13) 1 143(9) 8d

O15 -00850(10) 01327(12) 08874(17) 1 143(9) 8d

O16 -01009(10) 00004(11) 09239(15) 1 143(9) 8d

O17 -01006(10) 06343(12) -00444(14) 1 143(9) 8d

O18 01746(10) 01273(11) 06145(13) 1 143(9) 8d

O19 01980(12) 00019(10) 06091(12) 1 143(9) 8d

O20 02014(13) 06300(11) 05761(13) 1 143(9) 8d

O21 -00054(11) 00405(12) 07595(12) 1 143(9) 8d

O22 -00045(12) 06580(13) 07876(13) 1 143(9) 8d

O23 -00801(15) 075 0861(2) 1 143(9) 4c

O24 01839(17) 075 0648(2) 1 143(9) 4c

O25 02011(18) 025 0563(2) 1 143(9) 4c

O26 00863(13) 075 0143(2) 1 143(9) 4c

41

GVLI O1 -00251(15) 08553(18) -0468(2) 0500(3) 06(4) 8d

O2 -0013(2) 07533(17) -0531(3) 0500(3) 06(4) 8d

C1 00570(11) 08446(12) -05861(14) 0500(3) 06(4) 8d

C2 00466(18) 09175(12) -05663(18) 0500(3) 06(4) 8d

C3 0004(2) 09222(15) -0484(2) 0500(3) 06(4) 8d

C4 00038(13) 08112(15) -05293(19) 0500(3) 06(4) 8d

C5 -0034(3) 09728(19) -0448(3) 0500(3) 06(4) 8d

H1a 00999(11) 08315(15) -05641(17) 0500(3) 07(5) 8d

H1b 00528(13) 08360(13) -06553(15) 0500(3) 07(5) 8d

H2a 0088(2) 09384(14) -0553(2) 0500(3) 07(5) 8d

H2b 0026(2) 09378(15) -0622(2) 0500(3) 07(5) 8d

H3 0038(2) 09204(15) -04313(18) 0500(3) 07(5) 8d

H5a -0043(3) 0965(2) -0380(3) 0500(3) 07(5) 8d

H5b -0011(4) 10138(17) -0454(3) 0500(3) 07(5) 8d

H5c -0074(3) 0975(3) -0485(3) 0500(3) 07(5) 8d

GVLII O1 -03289(15) -0778(2) -02817(19) 0500(4) 06(4) 8d

O2 -04372(14) -0757(2) -02733(16) 0500(4) 06(4) 8d

C1 -03730(11) -07204(15) -04150(12) 0500(4) 06(4) 8d

C2 -02990(11) -0718(2) -04230(16) 0500(4) 06(4) 8d

C3 -02738(13) -0762(3) -0350(2) 0500(4) 06(4) 8d

C4 -03856(13) -07518(18) -03175(14) 0500(4) 06(4) 8d

C5 -02129(14) -0768(4) -0308(3) 0500(4) 06(4) 8d

H1a -03908(13) -07461(16) -04681(13) 0500(3) 07(5) 8d

H1b -03904(14) -06762(15) -04174(16) 0500(3) 07(5) 8d

H2a -02856(13) -0732(2) -04875(17) 0500(3) 07(5) 8d

H2b -02835(15) -0674(2) -04093(19) 0500(3) 07(5) 8d

H3 -0275(2) -0803(3) -0389(3) 0500(3) 07(5) 8d

H5a -0208(2) -0812(4) -0281(3) 0500(3) 07(5) 8d

H5b -01797(13) -0762(4) -0357(3) 0500(3) 07(5) 8d

H5c -02080(14) -0735(4) -0257(3) 0500(3) 07(5) 8d

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 40: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

39

Table S7 Crystallographic data and details of NbAlS-1and zeolites samples after GVL adsorption

Samples GVLHZSM-5(0041) GVLNbS-1(00271) NbAlS-1(00270041) GVLNbAlS-1(00270041)

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma

Chemical formula Al3692Si92308O192 8GVL Nb2524Si93476O192 8GVL Al3599Nb2429Si89972O192 Al3599Nb2429Si89972O192 8GVL

2θ range for refinement (deg) 3 ndash 50 3 ndash 50 3 ndash 50 3 ndash 50

Detector Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals Multi-analyser crystals

Number of hkls 3251 3214 3179 3222

Refinement methods Rietveld Rietveld Rietveld Rietveld

a (Aring) 201351(2) 200604(2) 199955(3) 200697(3)

b (Aring) 199852(2) 198995(1) 198333(3) 199150(3)

c (Aring) 134549(2) 134010(1) 133531(2) 134214(2)

V (Aring3) 541428(11) 534957(7) 529553(15) 536437(15)

RwpRexp Rp () 445135013378 463131253497 553133614058 444933763305

Wavelength (Aring) 082487(1) 082487(1) 082487(1) 082487(1)

Gof χ2 1272 1482 1646 1318

40

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) at room

temperature

Species Atom x y z SOF Beq(Aring2) Wyckoff

HZSM-5(0041) Al1 -00732(5) 00570(7) 08366(7) 003846154 100(5) 8d

Al2 01869(6) -00339(5) 03189(8) 003846154 100(5) 8d

Al3 02207(5) -00626(7) 05256(8) 003846154 100(5) 8d

Al4 01210(5) 00590(7) 10220(8) 003846154 100(5) 8d

Al5 -00703(6) -00272(5) 01933(8) 003846154 100(5) 8d

Al6 01859(5) 00593(6) 06679(8) 003846154 100(5) 8d

Al7 -00745(6) 06734(6) 08243(9) 003846154 100(5) 8d

Al8 01956(6) 01297(5) 03114(7) 003846154 100(5) 8d

Al9 02187(5) 01761(5) 05326(8) 003846154 100(5) 8d

Al10 01228(5) 06749(6) 10400(8) 003846154 100(5) 8d

Al11 -00694(6) 01308(6) 01819(9) 003846154 100(5) 8d

Al12 01859(6) 06714(5) 06756(8) 003846154 100(5) 8d

Si1 -00732(5) 00570(7) 08366(7) 09615385 100(5) 8d

Si2 01869(6) -00339(5) 03189(8) 09615385 100(5) 8d

Si3 02207(5) -00626(7) 05256(8) 09615385 100(5) 8d

Si4 01210(5) 00590(7) 10220(8) 09615385 100(5) 8d

Si5 -00703(6) -00272(5) 01933(8) 09615385 100(5) 8d

Si6 01859(5) 00593(6) 06679(8) 09615385 100(5) 8d

Si7 -00745(6) 06734(6) 08243(9) 09615385 100(5) 8d

Si8 01956(6) 01297(5) 03114(7) 09615385 100(5) 8d

Si9 02187(5) 01761(5) 05326(8) 09615385 100(5) 8d

Si10 01228(5) 06749(6) 10400(8) 09615385 100(5) 8d

Si11 -00694(6) 01308(6) 01819(9) 09615385 100(5) 8d

Si12 01859(6) 06714(5) 06756(8) 09615385 100(5) 8d

O1 01189(10) -00643(12) 02762(13) 1 143(9) 8d

O2 01900(11) -00665(10) 04093(13) 1 143(9) 8d

O3 02017(11) 00485(12) 10198(11) 1 143(9) 8d

O4 -00964(9) -00573(13) 10736(15) 1 143(9) 8d

O5 01132(9) 00573(12) 07009(13) 1 143(9) 8d

O6 02544(10) 00574(13) 07592(13) 1 143(9) 8d

O7 01249(11) 01569(12) 02676(15) 1 143(9) 8d

O8 01995(12) 01482(9) 04331(13) 1 143(9) 8d

O9 01968(12) 06607(9) 00500(12) 1 143(9) 8d

O10 -00922(10) 01564(11) 10827(17) 1 143(9) 8d

O11 01123(10) 06498(11) 07436(14) 1 143(9) 8d

O12 02420(11) 06557(12) 07396(15) 1 143(9) 8d

O13 02109(9) 00468(11) 03170(12) 1 143(9) 8d

O14 -00793(8) 00525(13) 01708(13) 1 143(9) 8d

O15 -00850(10) 01327(12) 08874(17) 1 143(9) 8d

O16 -01009(10) 00004(11) 09239(15) 1 143(9) 8d

O17 -01006(10) 06343(12) -00444(14) 1 143(9) 8d

O18 01746(10) 01273(11) 06145(13) 1 143(9) 8d

O19 01980(12) 00019(10) 06091(12) 1 143(9) 8d

O20 02014(13) 06300(11) 05761(13) 1 143(9) 8d

O21 -00054(11) 00405(12) 07595(12) 1 143(9) 8d

O22 -00045(12) 06580(13) 07876(13) 1 143(9) 8d

O23 -00801(15) 075 0861(2) 1 143(9) 4c

O24 01839(17) 075 0648(2) 1 143(9) 4c

O25 02011(18) 025 0563(2) 1 143(9) 4c

O26 00863(13) 075 0143(2) 1 143(9) 4c

41

GVLI O1 -00251(15) 08553(18) -0468(2) 0500(3) 06(4) 8d

O2 -0013(2) 07533(17) -0531(3) 0500(3) 06(4) 8d

C1 00570(11) 08446(12) -05861(14) 0500(3) 06(4) 8d

C2 00466(18) 09175(12) -05663(18) 0500(3) 06(4) 8d

C3 0004(2) 09222(15) -0484(2) 0500(3) 06(4) 8d

C4 00038(13) 08112(15) -05293(19) 0500(3) 06(4) 8d

C5 -0034(3) 09728(19) -0448(3) 0500(3) 06(4) 8d

H1a 00999(11) 08315(15) -05641(17) 0500(3) 07(5) 8d

H1b 00528(13) 08360(13) -06553(15) 0500(3) 07(5) 8d

H2a 0088(2) 09384(14) -0553(2) 0500(3) 07(5) 8d

H2b 0026(2) 09378(15) -0622(2) 0500(3) 07(5) 8d

H3 0038(2) 09204(15) -04313(18) 0500(3) 07(5) 8d

H5a -0043(3) 0965(2) -0380(3) 0500(3) 07(5) 8d

H5b -0011(4) 10138(17) -0454(3) 0500(3) 07(5) 8d

H5c -0074(3) 0975(3) -0485(3) 0500(3) 07(5) 8d

GVLII O1 -03289(15) -0778(2) -02817(19) 0500(4) 06(4) 8d

O2 -04372(14) -0757(2) -02733(16) 0500(4) 06(4) 8d

C1 -03730(11) -07204(15) -04150(12) 0500(4) 06(4) 8d

C2 -02990(11) -0718(2) -04230(16) 0500(4) 06(4) 8d

C3 -02738(13) -0762(3) -0350(2) 0500(4) 06(4) 8d

C4 -03856(13) -07518(18) -03175(14) 0500(4) 06(4) 8d

C5 -02129(14) -0768(4) -0308(3) 0500(4) 06(4) 8d

H1a -03908(13) -07461(16) -04681(13) 0500(3) 07(5) 8d

H1b -03904(14) -06762(15) -04174(16) 0500(3) 07(5) 8d

H2a -02856(13) -0732(2) -04875(17) 0500(3) 07(5) 8d

H2b -02835(15) -0674(2) -04093(19) 0500(3) 07(5) 8d

H3 -0275(2) -0803(3) -0389(3) 0500(3) 07(5) 8d

H5a -0208(2) -0812(4) -0281(3) 0500(3) 07(5) 8d

H5b -01797(13) -0762(4) -0357(3) 0500(3) 07(5) 8d

H5c -02080(14) -0735(4) -0257(3) 0500(3) 07(5) 8d

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 41: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

40

Table S8 Atomic parameters from the Rietveld refinement of GVLHZSM-5(0041) at room

temperature

Species Atom x y z SOF Beq(Aring2) Wyckoff

HZSM-5(0041) Al1 -00732(5) 00570(7) 08366(7) 003846154 100(5) 8d

Al2 01869(6) -00339(5) 03189(8) 003846154 100(5) 8d

Al3 02207(5) -00626(7) 05256(8) 003846154 100(5) 8d

Al4 01210(5) 00590(7) 10220(8) 003846154 100(5) 8d

Al5 -00703(6) -00272(5) 01933(8) 003846154 100(5) 8d

Al6 01859(5) 00593(6) 06679(8) 003846154 100(5) 8d

Al7 -00745(6) 06734(6) 08243(9) 003846154 100(5) 8d

Al8 01956(6) 01297(5) 03114(7) 003846154 100(5) 8d

Al9 02187(5) 01761(5) 05326(8) 003846154 100(5) 8d

Al10 01228(5) 06749(6) 10400(8) 003846154 100(5) 8d

Al11 -00694(6) 01308(6) 01819(9) 003846154 100(5) 8d

Al12 01859(6) 06714(5) 06756(8) 003846154 100(5) 8d

Si1 -00732(5) 00570(7) 08366(7) 09615385 100(5) 8d

Si2 01869(6) -00339(5) 03189(8) 09615385 100(5) 8d

Si3 02207(5) -00626(7) 05256(8) 09615385 100(5) 8d

Si4 01210(5) 00590(7) 10220(8) 09615385 100(5) 8d

Si5 -00703(6) -00272(5) 01933(8) 09615385 100(5) 8d

Si6 01859(5) 00593(6) 06679(8) 09615385 100(5) 8d

Si7 -00745(6) 06734(6) 08243(9) 09615385 100(5) 8d

Si8 01956(6) 01297(5) 03114(7) 09615385 100(5) 8d

Si9 02187(5) 01761(5) 05326(8) 09615385 100(5) 8d

Si10 01228(5) 06749(6) 10400(8) 09615385 100(5) 8d

Si11 -00694(6) 01308(6) 01819(9) 09615385 100(5) 8d

Si12 01859(6) 06714(5) 06756(8) 09615385 100(5) 8d

O1 01189(10) -00643(12) 02762(13) 1 143(9) 8d

O2 01900(11) -00665(10) 04093(13) 1 143(9) 8d

O3 02017(11) 00485(12) 10198(11) 1 143(9) 8d

O4 -00964(9) -00573(13) 10736(15) 1 143(9) 8d

O5 01132(9) 00573(12) 07009(13) 1 143(9) 8d

O6 02544(10) 00574(13) 07592(13) 1 143(9) 8d

O7 01249(11) 01569(12) 02676(15) 1 143(9) 8d

O8 01995(12) 01482(9) 04331(13) 1 143(9) 8d

O9 01968(12) 06607(9) 00500(12) 1 143(9) 8d

O10 -00922(10) 01564(11) 10827(17) 1 143(9) 8d

O11 01123(10) 06498(11) 07436(14) 1 143(9) 8d

O12 02420(11) 06557(12) 07396(15) 1 143(9) 8d

O13 02109(9) 00468(11) 03170(12) 1 143(9) 8d

O14 -00793(8) 00525(13) 01708(13) 1 143(9) 8d

O15 -00850(10) 01327(12) 08874(17) 1 143(9) 8d

O16 -01009(10) 00004(11) 09239(15) 1 143(9) 8d

O17 -01006(10) 06343(12) -00444(14) 1 143(9) 8d

O18 01746(10) 01273(11) 06145(13) 1 143(9) 8d

O19 01980(12) 00019(10) 06091(12) 1 143(9) 8d

O20 02014(13) 06300(11) 05761(13) 1 143(9) 8d

O21 -00054(11) 00405(12) 07595(12) 1 143(9) 8d

O22 -00045(12) 06580(13) 07876(13) 1 143(9) 8d

O23 -00801(15) 075 0861(2) 1 143(9) 4c

O24 01839(17) 075 0648(2) 1 143(9) 4c

O25 02011(18) 025 0563(2) 1 143(9) 4c

O26 00863(13) 075 0143(2) 1 143(9) 4c

41

GVLI O1 -00251(15) 08553(18) -0468(2) 0500(3) 06(4) 8d

O2 -0013(2) 07533(17) -0531(3) 0500(3) 06(4) 8d

C1 00570(11) 08446(12) -05861(14) 0500(3) 06(4) 8d

C2 00466(18) 09175(12) -05663(18) 0500(3) 06(4) 8d

C3 0004(2) 09222(15) -0484(2) 0500(3) 06(4) 8d

C4 00038(13) 08112(15) -05293(19) 0500(3) 06(4) 8d

C5 -0034(3) 09728(19) -0448(3) 0500(3) 06(4) 8d

H1a 00999(11) 08315(15) -05641(17) 0500(3) 07(5) 8d

H1b 00528(13) 08360(13) -06553(15) 0500(3) 07(5) 8d

H2a 0088(2) 09384(14) -0553(2) 0500(3) 07(5) 8d

H2b 0026(2) 09378(15) -0622(2) 0500(3) 07(5) 8d

H3 0038(2) 09204(15) -04313(18) 0500(3) 07(5) 8d

H5a -0043(3) 0965(2) -0380(3) 0500(3) 07(5) 8d

H5b -0011(4) 10138(17) -0454(3) 0500(3) 07(5) 8d

H5c -0074(3) 0975(3) -0485(3) 0500(3) 07(5) 8d

GVLII O1 -03289(15) -0778(2) -02817(19) 0500(4) 06(4) 8d

O2 -04372(14) -0757(2) -02733(16) 0500(4) 06(4) 8d

C1 -03730(11) -07204(15) -04150(12) 0500(4) 06(4) 8d

C2 -02990(11) -0718(2) -04230(16) 0500(4) 06(4) 8d

C3 -02738(13) -0762(3) -0350(2) 0500(4) 06(4) 8d

C4 -03856(13) -07518(18) -03175(14) 0500(4) 06(4) 8d

C5 -02129(14) -0768(4) -0308(3) 0500(4) 06(4) 8d

H1a -03908(13) -07461(16) -04681(13) 0500(3) 07(5) 8d

H1b -03904(14) -06762(15) -04174(16) 0500(3) 07(5) 8d

H2a -02856(13) -0732(2) -04875(17) 0500(3) 07(5) 8d

H2b -02835(15) -0674(2) -04093(19) 0500(3) 07(5) 8d

H3 -0275(2) -0803(3) -0389(3) 0500(3) 07(5) 8d

H5a -0208(2) -0812(4) -0281(3) 0500(3) 07(5) 8d

H5b -01797(13) -0762(4) -0357(3) 0500(3) 07(5) 8d

H5c -02080(14) -0735(4) -0257(3) 0500(3) 07(5) 8d

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 42: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

41

GVLI O1 -00251(15) 08553(18) -0468(2) 0500(3) 06(4) 8d

O2 -0013(2) 07533(17) -0531(3) 0500(3) 06(4) 8d

C1 00570(11) 08446(12) -05861(14) 0500(3) 06(4) 8d

C2 00466(18) 09175(12) -05663(18) 0500(3) 06(4) 8d

C3 0004(2) 09222(15) -0484(2) 0500(3) 06(4) 8d

C4 00038(13) 08112(15) -05293(19) 0500(3) 06(4) 8d

C5 -0034(3) 09728(19) -0448(3) 0500(3) 06(4) 8d

H1a 00999(11) 08315(15) -05641(17) 0500(3) 07(5) 8d

H1b 00528(13) 08360(13) -06553(15) 0500(3) 07(5) 8d

H2a 0088(2) 09384(14) -0553(2) 0500(3) 07(5) 8d

H2b 0026(2) 09378(15) -0622(2) 0500(3) 07(5) 8d

H3 0038(2) 09204(15) -04313(18) 0500(3) 07(5) 8d

H5a -0043(3) 0965(2) -0380(3) 0500(3) 07(5) 8d

H5b -0011(4) 10138(17) -0454(3) 0500(3) 07(5) 8d

H5c -0074(3) 0975(3) -0485(3) 0500(3) 07(5) 8d

GVLII O1 -03289(15) -0778(2) -02817(19) 0500(4) 06(4) 8d

O2 -04372(14) -0757(2) -02733(16) 0500(4) 06(4) 8d

C1 -03730(11) -07204(15) -04150(12) 0500(4) 06(4) 8d

C2 -02990(11) -0718(2) -04230(16) 0500(4) 06(4) 8d

C3 -02738(13) -0762(3) -0350(2) 0500(4) 06(4) 8d

C4 -03856(13) -07518(18) -03175(14) 0500(4) 06(4) 8d

C5 -02129(14) -0768(4) -0308(3) 0500(4) 06(4) 8d

H1a -03908(13) -07461(16) -04681(13) 0500(3) 07(5) 8d

H1b -03904(14) -06762(15) -04174(16) 0500(3) 07(5) 8d

H2a -02856(13) -0732(2) -04875(17) 0500(3) 07(5) 8d

H2b -02835(15) -0674(2) -04093(19) 0500(3) 07(5) 8d

H3 -0275(2) -0803(3) -0389(3) 0500(3) 07(5) 8d

H5a -0208(2) -0812(4) -0281(3) 0500(3) 07(5) 8d

H5b -01797(13) -0762(4) -0357(3) 0500(3) 07(5) 8d

H5c -02080(14) -0735(4) -0257(3) 0500(3) 07(5) 8d

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 43: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

42

Table S9 Atomic parameters from the Rietveld refinement of GVLNbS-1(00271) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbS-1(00271) Nb1 09251(6) 00572(8) 08328(9) 002629 227(5) 8d

Nb2 01931(7) 09694(5) 03188(9) 002629 227(5) 8d

Nb3 02217(5) 09372(7) 05309(9) 002629 227(5) 8d

Nb4 01213(6) 00637(8) 00277(9) 002629 227(5) 8d

Nb5 09244(6) 09679(6) 01908(9) 002629 227(5) 8d

Nb6 01872(6) 00598(7) 06750(9) 002629 227(5) 8d

Nb7 09247(6) 06704(6) 08254(10) 002629 227(5) 8d

Nb8 01894(7) 01293(6) 03064(8) 002629 227(5) 8d

Nb9 02224(6) 01748(5) 05331(9) 002629 227(5) 8d

Nb10 01200(6) 06732(6) 00323(10) 002629 227(5) 8d

Nb11 09314(6) 01316(7) 01817(10) 002629 227(5) 8d

Nb12 01877(7) 06731(5) 06788(9) 002629 227(5) 8d

Si1 09251(6) 00572(8) 08328(9) 097371 227(5) 8d

Si2 01931(7) 09694(5) 03188(9) 097371 227(5) 8d

Si3 02217(5) 09372(7) 05309(9) 097371 227(5) 8d

Si4 01213(6) 00637(8) 00277(9) 097371 227(5) 8d

Si5 09244(6) 09679(6) 01908(9) 097371 227(5) 8d

Si6 01872(6) 00598(7) 06750(9) 097371 227(5) 8d

Si7 09247(6) 06704(6) 08254(10) 097371 227(5) 8d

Si8 01894(7) 01293(6) 03064(8) 097371 227(5) 8d

Si9 02224(6) 01748(5) 05331(9) 097371 227(5) 8d

Si10 01200(6) 06732(6) 00323(10) 097371 227(5) 8d

Si11 09314(6) 01316(7) 01817(10) 097371 227(5) 8d

Si12 01877(7) 06731(5) 06788(9) 097371 227(5) 8d

O1 01221(11) 09496(15) 02756(15) 1 174(9) 8d

O2 01978(13) 09454(13) 04211(15) 1 174(9) 8d

O3 01972(12) 00471(12) 00272(12) 1 174(9) 8d

O4 09056(10) 09378(13) 00716(16) 1 174(9) 8d

O5 01130(10) 00568(14) 07093(14) 1 174(9) 8d

O6 02454(11) 00533(17) 07497(15) 1 174(9) 8d

O7 01269(12) 01530(13) 02687(17) 1 174(9) 8d

O8 01911(12) 01511(10) 04246(14) 1 174(9) 8d

O9 01937(13) 06600(9) 00337(13) 1 174(9) 8d

O10 09020(10) 01555(12) 00856(17) 1 174(9) 8d

O11 01074(11) 06549(13) 07344(16) 1 174(9) 8d

O12 02450(13) 06634(12) 07479(18) 1 174(9) 8d

O13 01960(11) 00507(12) 03194(12) 1 174(9) 8d

O14 09235(9) 00522(14) 01839(14) 1 174(9) 8d

O15 09150(11) 01320(12) 08870(18) 1 174(9) 8d

O16 09038(12) 09941(11) 09369(16) 1 174(9) 8d

O17 09046(11) 06318(12) 09459(16) 1 174(9) 8d

O18 01831(12) 01256(10) 06123(15) 1 174(9) 8d

O19 01896(14) 00034(11) 06007(14) 1 174(9) 8d

O20 01988(14) 06274(12) 05850(14) 1 174(9) 8d

O21 09968(11) 00530(16) 07598(12) 1 174(9) 8d

O22 09926(12) 06533(12) 07892(14) 1 174(9) 8d

O23 09115(16) 075 0857(2) 1 174(9) 4c

O24 0190(2) 075 0646(2) 1 174(9) 4c

O25 02087(16) 025 0560(2) 1 174(9) 4c

O26 00950(14) 075 0110(2) 1 174(9) 4c

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 44: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

43

GVLI O1 -0025(2) 0846(2) 0528(2) 0500(3) 38(6) 8d

O2 -0027(3) 0740(2) 0474(3) 0500(3) 38(6) 8d

C1 00385(12) 08245(13) 03876(14) 0500(3) 38(6) 8d

C2 0035(3) 08989(13) 04020(19) 0500(3) 38(6) 8d

C3 0005(3) 09101(16) 0496(2) 0500(3) 38(6) 8d

C4 -00075(16) 07972(18) 04634(18) 0500(3) 38(6) 8d

C5 -0025(5) 0965(2) 0536(3) 0500(3) 38(6) 8d

H1a 00829(13) 0809(2) 03975(17) 0500(3) 46(7) 8d

H1b 00242(14) 08132(16) 03221(15) 0500(3) 46(7) 8d

H2a 0079(3) 09175(19) 0400(2) 0500(3) 46(7) 8d

H2b 0008(3) 09184(18) 0352(2) 0500(3) 46(7) 8d

H3 0045(4) 09082(19) 0537(2) 0500(3) 46(7) 8d

H5a -0024(5) 0961(2) 0607(3) 0500(3) 46(7) 8d

H5b -0000(6) 10039(17) 0519(3) 0500(3) 46(7) 8d

H5c -0069(5) 0968(3) 0513(3) 0500(3) 46(7) 8d

GVLII O1 06915(19) 0222(2) 07132(18) 0499(4) 38(6) 8d

O2 05885(15) 0256(3) 0678(2) 0499(4) 38(6) 8d

C1 06792(13) 02780(16) 05633(11) 0499(4) 38(6) 8d

C2 07520(13) 0271(3) 05843(17) 0499(4) 38(6) 8d

C3 07582(17) 0228(3) 06677(19) 0499(4) 38(6) 8d

C4 06465(15) 0253(2) 06548(15) 0499(4) 38(6) 8d

C5 0809(2) 0217(4) 0733(3) 0499(4) 38(6) 8d

H1a 06675(16) 02519(18) 05066(14) 0500(3) 46(7) 8d

H1b 06686(17) 03239(17) 05516(16) 0500(3) 46(7) 8d

H2a 07739(15) 0252(3) 05277(19) 0500(3) 46(7) 8d

H2b 07704(17) 0313(3) 0601(2) 0500(3) 46(7) 8d

H3 0758(3) 0185(3) 0632(3) 0500(3) 46(7) 8d

H5a 0803(3) 0174(4) 0763(3) 0500(3) 46(7) 8d

H5b 08499(19) 0216(5) 0697(3) 0500(3) 46(7) 8d

H5c 0809(2) 0251(5) 0782(2) 0500(3) 46(7) 8d

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 45: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

44

Table S10 Atomic parameters from the Rietveld refinement of NbAlS-1(00270041) at room

temperature

Species Atom x y z SOF Beq (Aring2) Wyckoff

NbAlS-1

(00270041)

Al1 -00754(10) 00561(13) 08359(14) 003748828 305(9) 8d

Al2 01890(12) -00286(8) 03153(14) 003748828 305(9) 8d

Al3 02210(8) -00584(12) 05262(13) 003748828 305(9) 8d

Al4 01258(8) 00583(13) 10381(14) 003748828 305(9) 8d

Al5 -00785(10) -00393(11) 01783(15) 003748828 305(9) 8d

Al6 01840(10) 00571(12) 06827(14) 003748828 305(9) 8d

Al7 -00778(10) 06746(10) 08244(17) 003748828 305(9) 8d

Al8 01913(12) 01344(10) 03222(14) 003748828 305(9) 8d

Al9 02246(10) 01762(9) 05333(14) 003748828 305(9) 8d

Al10 01123(9) 06767(10) 10236(15) 003748828 305(9) 8d

Al11 -00658(9) 01323(11) 01756(15) 003748828 305(9) 8d

Al12 01888(11) 06738(9) 06779(14) 003748828 305(9) 8d

Nb1 -00754(10) 00561(13) 08359(14) 002530459 305(9) 8d

Nb2 01890(12) -00286(8) 03153(14) 002530459 305(9) 8d

Nb3 02210(8) -00584(12) 05262(13) 002530459 305(9) 8d

Nb4 01258(8) 00583(13) 10381(14) 002530459 305(9) 8d

Nb5 -00785(10) -00393(11) 01783(15) 002530459 305(9) 8d

Nb6 01840(10) 00571(12) 06827(14) 002530459 305(9) 8d

Nb7 -00778(10) 06746(10) 08244(17) 002530459 305(9) 8d

Nb8 01913(12) 01344(10) 03222(14) 002530459 305(9) 8d

Nb9 02246(10) 01762(9) 05333(14) 002530459 305(9) 8d

Nb10 01123(9) 06767(10) 10236(15) 002530459 305(9) 8d

Nb11 -00658(9) 01323(11) 01756(15) 002530459 305(9) 8d

Nb12 01888(11) 06738(9) 06779(14) 002530459 305(9) 8d

Si1 -00754(10) 00561(13) 08359(14) 09372071 305(9) 8d

Si2 01890(12) -00286(8) 03153(14) 09372071 305(9) 8d

Si3 02210(8) -00584(12) 05262(13) 09372071 305(9) 8d

Si4 01258(8) 00583(13) 10381(14) 09372071 305(9) 8d

Si5 -00785(10) -00393(11) 01783(15) 09372071 305(9) 8d

Si6 01840(10) 00571(12) 06827(14) 09372071 305(9) 8d

Si7 -00778(10) 06746(10) 08244(17) 09372071 305(9) 8d

Si8 01913(12) 01344(10) 03222(14) 09372071 305(9) 8d

Si9 02246(10) 01762(9) 05333(14) 09372071 305(9) 8d

Si10 01123(9) 06767(10) 10236(15) 09372071 305(9) 8d

Si11 -00658(9) 01323(11) 01756(15) 09372071 305(9) 8d

Si12 01888(11) 06738(9) 06779(14) 09372071 305(9) 8d

O1 01274(18) -0066(2) 0251(2) 1 223(15) 8d

O2 01862(18) -00622(19) 0426(2) 1 223(15) 8d

O3 02006(17) 0057(2) 10301(18) 1 223(15) 8d

O4 -01059(16) -00699(18) 1074(3) 1 223(15) 8d

O5 01138(17) 0051(2) 0721(2) 1 223(15) 8d

O6 02484(18) 0045(2) 0744(2) 1 223(15) 8d

O7 01323(19) 01542(19) 0272(3) 1 223(15) 8d

O8 02054(19) 01512(17) 0430(2) 1 223(15) 8d

O9 01978(19) 06575(13) 0011(2) 1 223(15) 8d

O10 -00893(17) 01552(18) 1079(3) 1 223(15) 8d

O11 01100(18) 06488(19) 0744(2) 1 223(15) 8d

O12 02379(18) 06545(18) 0782(3) 1 223(15) 8d

O13 01998(19) 00637(16) 0315(2) 1 223(15) 8d

O14 -00726(15) 00356(17) 0165(2) 1 223(15) 8d

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 46: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

45

O15 -00776(17) 01184(18) 0878(3) 1 223(15) 8d

O16 -00937(19) -00147(17) 0915(3) 1 223(15) 8d

O17 -01100(16) 06315(18) -0044(2) 1 223(15) 8d

O18 0194(2) 01298(18) 0614(3) 1 223(15) 8d

O19 0195(3) 00046(16) 0597(2) 1 223(15) 8d

O20 0191(2) 06358(18) 0576(2) 1 223(15) 8d

O21 -00033(19) 0054(3) 0792(2) 1 223(15) 8d

O22 -00138(17) 06582(18) 0786(2) 1 223(15) 8d

O23 -0100(2) 075 0866(4) 1 223(15) 4c

O24 0180(2) 075 0627(4) 1 223(15) 4c

O25 0230(2) 025 0623(4) 1 223(15) 4c

O26 0095(2) 075 0099(4) 1 223(15) 4c

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 47: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

46

Table S11 Atomic parameters from the Rietveld refinement of GVLNbAlS-1(00270041) at

room temperature

Species Atom x y z SOF Beq (Aring2) Wyckof

f

NbAlS-1

(00270041)

Al1 -00749(8) 00601(11) 08387(12) 0037488 276(9) 8d

Al2 01940(10) -00293(8) 03263(13) 0037488 276(9) 8d

Al3 02201(7) -00588(11) 05273(12) 0037488 276(9) 8d

Al4 01234(8) 00573(12) 10237(13) 0037488 276(9) 8d

Al5 -00797(9) -00368(10) 01959(13) 0037488 276(9) 8d

Al6 01840(10) 00634(10) 06792(12) 0037488 276(9) 8d

Al7 -00679(9) 06710(9) 08173(14) 0037488 276(9) 8d

Al8 01903(10) 01354(9) 03122(12) 0037488 276(9) 8d

Al9 02238(9) 01728(9) 05286(12) 0037488 276(9) 8d

Al10 01149(9) 06840(9) 10430(12) 0037488 276(9) 8d

Al11 -00742(9) 01348(10) 01767(14) 0037488 276(9) 8d

Al12 01915(10) 06726(8) 06722(12) 0037488 276(9) 8d

Nb1 -00749(8) 00601(11) 08387(12) 0025305 276(9) 8d

Nb2 01940(10) -00293(8) 03263(13) 0025305 276(9) 8d

Nb3 02201(7) -00588(11) 05273(12) 0025305 276(9) 8d

Nb4 01234(8) 00573(12) 10237(13) 0025305 276(9) 8d

Nb5 -00797(9) -00368(10) 01959(13) 0025305 276(9) 8d

Nb6 01840(10) 00634(10) 06792(12) 0025305 276(9) 8d

Nb7 -00679(9) 06710(9) 08173(14) 0025305 276(9) 8d

Nb8 01903(10) 01354(9) 03122(12) 0025305 276(9) 8d

Nb9 02238(9) 01728(9) 05286(12) 0025305 276(9) 8d

Nb10 01149(9) 06840(9) 10430(12) 0025305 276(9) 8d

Nb11 -00742(9) 01348(10) 01767(14) 0025305 276(9) 8d

Nb12 01915(10) 06726(8) 06722(12) 0025305 276(9) 8d

Si1 -00749(8) 00601(11) 08387(12) 0937207 276(9) 8d

Si2 01940(10) -00293(8) 03263(13) 0937207 276(9) 8d

Si3 02201(7) -00588(11) 05273(12) 0937207 276(9) 8d

Si4 01234(8) 00573(12) 10237(13) 0937207 276(9) 8d

Si5 -00797(9) -00368(10) 01959(13) 0937207 276(9) 8d

Si6 01840(10) 00634(10) 06792(12) 0937207 276(9) 8d

Si7 -00679(9) 06710(9) 08173(14) 0937207 276(9) 8d

Si8 01903(10) 01354(9) 03122(12) 0937207 276(9) 8d

Si9 02238(9) 01728(9) 05286(12) 0937207 276(9) 8d

Si10 01149(9) 06840(9) 10430(12) 0937207 276(9) 8d

Si11 -00742(9) 01348(10) 01767(14) 0937207 276(9) 8d

Si12 01915(10) 06726(8) 06722(12) 0937207 276(9) 8d

O1 01254(16) -0058(2) 0269(2) 1 219(14) 8d

O2 01765(15) -0047(2) 0430(2) 1 219(14) 8d

O3 01958(18) 00612(16) 10243(18) 1 219(14) 8d

O4 -00994(14) -0051(2) 1083(2) 1 219(14) 8d

O5 01199(16) 0056(2) 0722(2) 1 219(14) 8d

O6 02541(15) 0058(3) 0749(2) 1 219(14) 8d

O7 01266(17) 01583(19) 0270(2) 1 219(14) 8d

O8 02009(17) 01568(17) 0430(2) 1 219(14) 8d

O9 01964(17) 06527(13) 00417(18) 1 219(14) 8d

O10 -00930(16) 01626(18) 1066(3) 1 219(14) 8d

O11 01002(14) 06398(16) 0709(2) 1 219(14) 8d

O12 02354(15) 06516(18) 0758(2) 1 219(14) 8d

O13 02055(15) 00562(18) 03224(19) 1 219(14) 8d

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 48: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

47

O14 -00770(13) 0047(2) 0183(2) 1 219(14) 8d

O15 -00723(14) 01326(19) 0881(2) 1 219(14) 8d

O16 -00979(18) -00068(18) 0934(3) 1 219(14) 8d

O17 -01019(16) 06129(15) -0055(3) 1 219(14) 8d

O18 01832(17) 01254(17) 0612(2) 1 219(14) 8d

O19 01997(19) 00041(17) 0611(2) 1 219(14) 8d

O20 01782(16) 06396(16) 0589(2) 1 219(14) 8d

O21 -00018(17) 0058(2) 0793(2) 1 219(14) 8d

O22 -00057(15) 0643(2) 0756(2) 1 219(14) 8d

O23 -0094(2) 075 0823(3) 1 219(14) 4c

O24 0180(2) 075 0616(3) 1 219(14) 4c

O25 0203(2) 025 0580(3) 1 219(14) 4c

O26 0086(2) 075 0130(3) 1 219(14) 4c

GVLI O1 -0026(4) 0852(4) -0450(3) 0500(5) 24(8) 8d

O2 -0033(7) 0746(4) -0501(4) 0500(5) 24(8) 8d

C1 00205(19) 0831(2) -0604(2) 0500(5) 00205(19) 8d

C2 0018(6) 0905(2) -0590(3) 0500(5) 0018(6) 8d

C3 -0001(8) 0917(3) -0491(3) 0500(5) -0001(8) 8d

C4 -0016(3) 0803(3) -0517(3) 0500(5) 24(8) 8d

C5 -0027(13) 0971(4) -0444(4) 0500(5) 24(8) 8d

H1a 0066(2) 0816(4) -0606(3) 0500(5) 29(9) 8d

H1b -0001(2) 0819(3) -0665(2) 0500(5) 29(9) 8d

H2a 0060(8) 0924(4) -0604(4) 0500(5) 29(9) 8d

H2b -0015(8) 0924(4) -0633(3) 0500(5) 29(9) 8d

H3 0043(8) 0916(4) -0460(3) 0500(5) 29(9) 8d

H5a -0018(13) 0968(4) -0374(4) 0500(5) 29(9) 8d

H5b -0005(16) 1010(3) -0468(5) 0500(5) 29(9) 8d

H5c -0073(13) 0974(7) -0455(5) 0500(5) 29(9) 8d

GVLII O1 -0330(2) -0780(4) -0294(2) 0500(6) 24(8) 8d

O2 -0438(2) -0771(4) -0327(3) 0500(6) 24(8) 8d

C1 -03553(19) -0731(2) -04448(16) 0500(6) 24(8) 8d

C2 -0283(2) -0721(4) -0426(2) 0500(6) 24(8) 8d

C3 -0266(2) -0761(4) -0342(3) 0500(6) 24(8) 8d

C4 -0381(2) -0761(3) -0352(2) 0500(6) 24(8) 8d

C5 -0214(2) -0760(6) -0278(3) 0500(6) 24(8) 8d

H1a -0362(2) -0760(3) -0501(2) 0500(5) 29(9) 8d

H1b -0376(2) -0689(3) -0457(2) 0500(5) 29(9) 8d

H2a -0258(2) -0735(4) -0483(3) 0500(5) 29(9) 8d

H2b -0274(3) -0676(4) -0411(3) 0500(5) 29(9) 8d

H3 -0257(3) -0803(4) -0376(4) 0500(5) 29(9) 8d

H5a -0210(3) -0802(7) -0247(4) 0500(5) 29(9) 8d

H5b -0174(2) -0752(7) -0315(4) 0500(5) 29(9) 8d

H5c -0220(3) -0725(7) -0230(3) 0500(5) 29(9) 8d

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 49: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

48

Table S12 Displaying the interatomic distances between the adsorption site and framework atoms

from the Rietveld refinements of the corresponding SXPD data at 25 degC

Interatomic

distances (Aring)

NbAlS-1(00270041) HZSM-5(0041) NbS-1(00271)

O1GVLI O2GVLI O1GVLII O2GVLII O2GVLI O2GVLII O1GVLI O1GVLII

T1 5758(68) 5887(58) 5577(33) 5940(40)

T2 5157(79) 4697(71) 5393(40) 4478(41)

T3 5258(82) 4998(60) 5271(42) 4875(36)

T4 6310(53) 4569(63) 6512(32) 4725(36)

T5 5353(54) 4076(76) 5228(33) 4447(41)

T6 4728(69) 3490(75) 4637(38) 3560(40)

T7 3713(48) 5689(37) 4124(31) 5788(31)

T8 3789(75) 6695(37) 4005(39) 6697(28)

T9 4137(80) 3839(37) 4065(41) 3581(29)

T10 7231(52) 5523(41) 7177(42) 5184(35)

T11 4191(56) 7299(42) 4343(33) 7468(42)

T12 4689(79) 6170(43) 4737(40) 5867(30)

O1 5801(103) 5235(70) 5203(43) 5160(41)

O2 5852(120) 6526(65) 5507(43) 6369(38)

O3 7711(134) 5039(68) 7446(45) 5825(39)

O4 6930(75) 3820(85) 6742(44) 4298(44)

O5 5114(89) 3900(82) 4860(43) 3969(45)

O6 6692(114) 5250(75) 6882(44) 5355(41)

O7 4024(90) 6246(51) 4567(45) 6983(31)

O8 3927(131) 6183(52) 4440(45) 5667(32)

O9 5819(138) 5684(55) 6096(46) 5930(35)

O10 6576(84) 4660(58) 6643(46) 5483(34)

O11 4423(103) 7248(52) 4875(44) 7626(31)

O12 5981(120) 7237(51) 6552(45) 7606(32)

O13 5659(109) 7351(75) 6335(43) 7393(41)

O14 6229(86) 5506(89) 6481(44) 5963(47)

O15 5965(80) 3388(64) 5664(46) 4009(38)

O16 7647(79) 5513(78) 7579(43) 6203(41)

O17 6691(75) 3918(68) 7143(44) 4313(34)

O18 4132(119) 4301(61) 4189(44) 3870(37)

O19 6048(107) 6009(73) 6238(42) 5959(41)

O20 4890(131) 6536(54) 5114(46) 6651(36)

O21 5465(77) 3667(85) 5155(42) 4278(46)

O22 4050(71) 5961(53) 4642(44) 6259(30)

O23 4518(76) 4760(57) 5445(49) 4935(35)

O24 4555(139) 6483(57) 4639(52) 7173(40)

O25 3574(141) 4379(57) 3812(54) 3973(41)

O26 5499(88) 3055(57) 4821(48) 3210(38)

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 50: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

49

Table S13 Summary of different types of Si atoms from the 29Si NMR data and (Al+Nb)Si ratio

Chemical Shift

(ppm) Assignment203233

Area () (Al+Nb)Si

by 29Si NMRa

(Al+Nb)Si

by EDX

HZSM-5 NbAlS-1 HZSM-5 NbAlS-1 HZSM-5 NbAlS-1

-112 to -117 Si(OSi)4 814 674

0037 0066

004 0067

-105 to 108 Si(OSi)3(OAlNb) 149 166

-102 Si(OSi)3(OH) 37 101

-98 Si(OSi)2(OAlNb)2 0 5

-92 Si(OSi)2(OH)2 0 09 a(Al+Nb)Si = 025[ ISi(1Al) + 2ISi(2Al)]I where ISi(1Al) and ISi(2Al) denotes the area of the NMR peak

corresponding to the Si(OSi)3(OAlNb) and Si(OSi)2(OAlNb)2 atoms respectively and I denotes the

total area of the 29Si NMR peaks1934

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 51: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

50

Table S14 Contents of different NbAlH sites on NbAlS-1(00270041)

Types of NbAl

distribution Types of species NbAlH sites Position Nb Position Al O attached H

29Si Chemical shift

(ppm)b

Weight

()c

NbAl adjacent

Species I

NbOSiOAl

(Fig4f)

1 T8 T9 O25

-98 3125 2 T8 T9 O8

3 T8 T9 O18

4 T8 T9 O9

Species II

NbOSiOSiOAl

(Fig4i)

5 T6 T10 O26

-105 3125 6 T6 T10 O15

7 T6 T10 O10

8 T6 T10 O9

NbAl non-

adjacent

Species III

NbO(SiO)nAla

9 T8 T12 O11 -105 5

10 T6 T7 O17

Isolated Al Species IV

(SiO)nAlO(SiO)na

11 - T2 O1 -105 325

12 - T4 O3 an ge 3 bobtained from 29Si NMR cCalculated based on NbAl ratio SXPD and Rietveld refinement results and 29Si NMR results

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 52: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

51

Table S15 Assignment of INS peaks of bare NbAlS-1

Wavenumber in

simulation (cm-1)

Wavenumber in

experiment (cm-1)

Vibrational mode

77 76 OH out-of-plane bending

157 148 Nb-O bending

209 219 OH out-of-plane bending

237 245 Zeolite framework

279 282 Zeolite framework + OH out-of-plane bending

317 331 Zeolite framework + OH out-of-plane bending

394 387 Zeolite framework + OH out-of-plane bending

418 416 Zeolite framework + OH out-of-plane bending

558 534 Zeolite framework

797 798 Zeolite framework

960 964 OH in-plane bending + Si-O stretching

1086 1090 OH in-plane bending

1191 1192 OH in-plane bending + Si-O stretching

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 53: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

52

Table S16 Assignment of INS peaks of GVL

Wavenumber in GVL

(or adsorbed GVL)

simulation (cm-1)a

Wavenumber in GVL

(adsorbed GVL)

experiment (cm-1)a

Vibrational modeb

141 (129) 151 (144) C4 wagging (weaker)

161 (158) 181 (173) O2-C1-C2 twisting (C2 wagging)

249 (205) 273 (234) C4-C5 torsion (weaker)

303 (303) 317 (308) C4-C5 rocking (weaker)

503 512 C1=O2 rocking

515 530 C1 wagging

592 609 Ring deformation

645 655 Ring deformation

785 802 Ring deformation

809 827 Ring stretching

913 899 Ring deformation

1043 (1037) 1060 (1046) C4-O1 stretching (weaker)

1101 (1106) 1127 (1121) C1-O1-C4 asymmetric stretching (weaker)

1170-1443 1196-1456 C-H bending aThe wavenumbers of vibration modes of adsorbed GVL are listed in parentheses bThe vibration modes of adsorbed GVL are listed in parentheses lsquoWeakerrsquo in parentheses means

vibrational mode does not change upon adsorption but only the vibrational intensity becomes weaker

C1

C2 C3

C4C5O2

O1

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 54: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

53

Supplementary References

1 Stoll S amp Schweiger A EasySpin a comprehensive software package for spectral simulation

and analysis in EPR J Magn Reson 178 42ndash55 (2006)

2 Clark S J et al First principles methods using CASTEP Z Fuumlr Krist - Cryst Mater 220 567ndash

570 (2005)

3 Refson K Tulip P R amp Clark S J Variational density-functional perturbation theory for

dielectrics and lattice dynamics Phys Rev B 73 155114 (2006)

4 Perdew J P Burke K amp Ernzerhof M Generalized gradient approximation made simple Phys

Rev Lett 77 3865ndash3868 (1996)

5 McNellis E R Meyer J amp Reuter K Azobenzene at coinage metal surfaces role of dispersive

van der Waals interactions Phys Rev B 80 205414 (2009)

6 Cheng Y Q Daemen L L Kolesnikov A I amp Ramirez-Cuesta A J Simulation of inelastic

neutron scattering spectra using OCLIMAX J Chem Theory Comput 15 1974ndash1982 (2019)

7 Ramirez-Cuesta A J aCLIMAX 401 The new version of the software for analyzing and

interpreting INS spectra Comput Phys Commun 157 226ndash238 (2004)

8 Hutter J Iannuzzi M Schiffmann F amp VandeVondele J cp2k atomistic simulations of

condensed matter systems Wiley Interdiscip Rev Comput Mol Sci 4 15ndash25 (2014)

9 Lippert B G Hutter J amp Parrinello M A hybrid Gaussian and plane wave density functional

scheme Mol Phys 92 477ndash488 (1997)

10 VandeVondele J et al Quickstep fast and accurate density functional calculations using a mixed

Gaussian and plane waves approach Comput Phys Commun 167 103ndash128 (2005)

11 VandeVondele J amp Hutter J Gaussian basis sets for accurate calculations on molecular systems

in gas and condensed phases J Chem Phys 127 114105 (2007)

12 Goedecker S Teter M amp Hutter J Separable dual-space Gaussian pseudopotentials Phys Rev

B 54 1703ndash1710 (1996)

13 Grimme S Antony J Ehrlich S amp Krieg H A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J

Chem Phys 132 154104 (2010)

14 Yang S et al Supramolecular binding and separation of hydrocarbons within a functionalized

porous metalndashorganic framework Nat Chem 7 121ndash129 (2015)

15 Ye L et al Decarboxylation of lactones over ZnZSM-5 elucidation of the structure of the

active site and molecular interactions Angew Chem Int Ed 56 10711ndash10716 (2017)

16 Lo B T W et al Elucidation of adsorbate structures and interactions on Broslashnsted acid sites in

H-ZSM-5 by synchrotron X-ray powder diffraction Angew Chem Int Ed 55 5981ndash5984

(2016)

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 55: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

54

17 Bond J Q Jungong C S amp Chatzidimitriou A Microkinetic analysis of ring opening and

decarboxylation of γ-valerolactone over silica alumina J Catal 344 640ndash656 (2016)

18 Xia Q et al Direct hydrodeoxygenation of raw woody biomass into liquid alkanes Nat

Commun 7 11162 (2016)

19 Sklenak S et al Aluminium siting in the ZSM-5 framework by combination of high resolution

27Al NMR and DFTMM calculations Phys Chem Chem Phys 11 1237ndash1247 (2009)

20 Zhang W et al Methane dehydro-aromatization over MoHZSM-5 in the absence of oxygen a

multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-

5 zeolite with different crystal sizes J Catal 188 393ndash402 (1999)

21 Lemishko T Valencia S Rey F Jimeacutenez-Ruiz M amp Sastre G Inelastic neutron scattering

study on the location of Broslashnsted acid sites in high silica LTA zeolite J Phys Chem C 120

24904ndash24909 (2016)

22 Lemishko T et al Inelastic neutron scattering study of the aluminum and Broslashnsted site location

in aluminosilicate LTA zeolites J Phys Chem C 122 11450ndash11454 (2018)

23 Parry E P An infrared study of pyridine adsorbed on acidic solids Characterization of surface

acidity J Catal 2 371ndash379 (1963)

24 Carniti P Gervasini A Bossola F amp Dal Santo V Cooperative action of Broslashnsted and Lewis

acid sites of niobium phosphate catalysts for cellobiose conversion in water Appl Catal B

Environ 193 93ndash102 (2016)

25 Post J G amp van Hooff J H C Acidity and activity of H-ZSM-5 measured with NH3-TPD and

n-hexane cracking Zeolites 4 9ndash14 (1984)

26 Kim S Park G Woo M H Kwak G amp Kim S K Control of hierarchical structure and

framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on

methanol conversion ACS Catal 9 2880ndash2892 (2019)

27 Butler A C amp Nicolaides C P Catalytic skeletal isomerization of linear butenes to isobutene

Catal Today 18 443ndash471 (1993)

28 Bond J Q Alonso D M Wang D West R M amp Dumesic J A Integrated catalytic

conversion of γ-valerolactone to liquid alkenes for transportation fuels Science 327 1110ndash1114

(2010)

29 Serrano-Ruiz J C Braden D J West R M amp Dumesic J A Conversion of cellulose to

hydrocarbon fuels by progressive removal of oxygen Appl Catal B Environ 100 184ndash189

(2010)

30 Lin W-C et al Zinc-incorporated microporous molecular sieve for mild catalytic hydrolysis of

γ-valerolactone a new selective route for biomass conversion ChemSusChem 11 4214ndash4218

(2018)

31 Kang S et al One-pot production of hydrocarbon oils from biomass derived γ-valerolactone

Fuel 216 747ndash751 (2018)

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)

Page 56: In the format provided by the authors and unedited.10.1038... · 2. International Tomography Center SB RAS and Novosibirsk State University, Novosibirsk, 630090 (Russia) 3. ISIS Facility,

55

32 Cheng Y Miao C Hua W Yue Y amp Gao Z CrZSM-5 for ethane dehydrogenation

enhanced catalytic activity through surface silanol Appl Catal Gen 532 111ndash119 (2017)

33 Fyfe C A Gobbi G C Klinowski J Thomas J M amp Ramdas S Resolving

crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR Nature

296 530ndash533 (1982)

34 Engelhardt G Lohse U Lippmaa E Tarmak M amp Maumlgi M 29Si-NMR-Untersuchungen zur

verteilung der silicium-und aluminiumatome im alumosilicatgitter von zeolithen mit Faujasit-

struktur Z Fuumlr Anorg Allg Chem 482 49ndash64 (1981)