Image Formation Abbé theory of imaging

30
Image Formation Ernst Abbé and Carl Zeiss (1866) 71 Fourier Planes Abbé theory of imaging 72-2

Transcript of Image Formation Abbé theory of imaging

Page 1: Image Formation Abbé theory of imaging

Image FormationErnst Abbé and Carl Zeiss (1866)

71

Fourier Planes

Abbé theory of imaging

72-2

Page 2: Image Formation Abbé theory of imaging
Page 3: Image Formation Abbé theory of imaging
Page 4: Image Formation Abbé theory of imaging
Page 5: Image Formation Abbé theory of imaging
Page 6: Image Formation Abbé theory of imaging
Page 7: Image Formation Abbé theory of imaging

Diffracted orders from high spatial frequencies miss the lens

High spatial frequencies are missing from the image.

θmax defines the numerical aperture… and resolution

Limited Resolution

73

Coherent Illumination ➙ Abbé

object: u0(x0) = t(x0) uin(x0)coherent illumination: uin(x0)object transmission: t(x0)

u0(x0) uf(xf)

ui(xi)

} u

f

(xf

) =1

f

Zu0(x0)e

ix0kxf/fdx0

Fourier transforms

|ui(xi)| / |TF (uf )|

75

Page 8: Image Formation Abbé theory of imaging
Page 9: Image Formation Abbé theory of imaging
Page 10: Image Formation Abbé theory of imaging

TF (uf ) ! ui(xi)

Wavefront Preservation

f1 f1 f2 f2

u0(x0) uf(xf)ui(xi)

sequence oftransformations

TF

(uo

) ! u

f

(xf

)

TF

(TF

(uo

)) / u

i

(xi

) =f1

f2u0(�x

i

f1/f2)

76-1

TF (uf ) ! ui(xi)

Wavefront Preservation

f1 f1 f2 f2

u0(x0) uf(xf)ui(xi)

wavefront

preserved

sequence oftransformations

TF

(uo

) ! u

f

(xf

)

TF

(TF

(uo

)) / u

i

(xi

) =f1

f2u0(�x

i

f1/f2)

76-2

Page 11: Image Formation Abbé theory of imaging
Page 12: Image Formation Abbé theory of imaging
Page 13: Image Formation Abbé theory of imaging

Optical Point-Spread Functionor how to form an image

77

Optical Point-Spread Function

f1 f1 f2 f2

u0(x0) uf(xf)ui(xi)

?H(xf)

Imperfect, filtering function H(xf) acting on uf(xf) convolution

h(xi)

ui(xi) =f1

f2

Zu0(�x

0if1/f2)h(xi � x

0i)dx

0i

PSF

coherent illumination

TF (uf ) = ui(xi)

ui(xi) / TF [uf (xf ) ·Hf (xf )] = TF [uf ]⌦ TF [Hf ]

78

Page 14: Image Formation Abbé theory of imaging

Optical Point-Spread Function

f1 f1 f2 f2

u0(x0) uf(xf)ui(xi)

H(xf)

ui(xi) =f1

f2

Zu0(�x

0if1/f2)h(xi � x

0i)dx

0i

coherent illumination

incoherent illuminationIi(xi) /

f

21

f

22

ZI0(�x

0if1/f2)|h(xi � x

0i)|2dx0

i

h(xi) = TF [Hf ](kxi/f2)

79

Notes on Fraunhofer Diffraction

f1 f1 f2 f2

u0(x0) uf(xf)ui(xi)

H(xf)

ui(xi) =f1

f2

Zu0(�x

0if1/f2)h(xi � x

0i)dx

0i

coherent illumination

incoherent illuminationIi(xi) /

f

21

f

22

ZI0(�x

0if1/f2)|h(xi � x

0i)|2dx0

i

single

sourceu0 = �(x0)

I0 = �(x0)

Ii(xi) / |h(xi)|2

80

Page 15: Image Formation Abbé theory of imaging
Page 16: Image Formation Abbé theory of imaging
Page 17: Image Formation Abbé theory of imaging
Page 18: Image Formation Abbé theory of imaging

Fourierplane

Image plane

Optical Image Processing

81-6

Optical Image Processing

82

Page 19: Image Formation Abbé theory of imaging

a b

a’ b’

(a) and (b) show objects: double helix

at different angle of view

Diffraction patterns of (a) and (b) observed in

Fourier plane

Computer performs Inverse Fourier transform

To find object “shape”

X-Ray Diffraction

83-2

FourierPlane

Schlieren Photography

phase → amplitude modulation

84-2

Page 20: Image Formation Abbé theory of imaging

Schlieren Photography

85

Near Field RegimeFresnel’s wave propagation

F =a2

�D⇡ 1

86

Page 21: Image Formation Abbé theory of imaging

Fresnel‘s Wave Propagation

Fresnel-Kirchhoff diffraction integral

up = � i

��(⇥in, ⇥out)

u0

reikrdS

�(⇥in, ⇥out) =12(cos ⇥in + cos ⇥out)

obliquity factor

eikr �⇤ eikr0 · ei(�xx+�yy)

Fraunhofer (far field) diffraction is a special case

87

Near Field → Talbot Effect

Near-field diffractionof an optical grating

zT = 2d2/�

self-imaging at

88

Page 22: Image Formation Abbé theory of imaging
Page 23: Image Formation Abbé theory of imaging
Page 24: Image Formation Abbé theory of imaging

Phase difference of π at edge of 1st HPZ

Fresnel‘s Theory of Wave Propagation

z

z⇢⇡,n =

p�nz

⇢2⇡2z

=�

2

89-1

Phase difference of π at edge of 1st HPZ

Fresnel‘s Theory of Wave Propagation

z

z⇢⇡,n =

p�nz

⇢2⇡2z

=�

2

1

3

57

2

4

6

89-2

Page 25: Image Formation Abbé theory of imaging
Page 26: Image Formation Abbé theory of imaging

First Half Period Zone

Fresnel‘s Theory of Wave Propagation

R� = 2i�u0⇥

phasor addition

z

(z + �/2)

90

n→∞ ⇒ resultant → ½ diameter of 1st HPZ

Fresnel‘s Theory of Wave Propagation

R� = i�u0⇥!= u0

91

Page 27: Image Formation Abbé theory of imaging
Page 28: Image Formation Abbé theory of imaging

Fresnel Zone Plate24.11.08 01:40http://upload.wikimedia.org/wikipedia/commons/9/97/Zone_plate.svg

Seite 1 von 1

mask out every second HPZ

in every transparent

zone, the phase is running from

0 to π

acting asa focussing

lens

92-2

Fresnel Lens

phase jump by π from HPZ to HPZ

1. HPZ

2. HPZ

3. HPZ4. HPZ5. HPZ

sub-division into HPZ

z

(z + �/2)

93-3

Page 29: Image Formation Abbé theory of imaging

Fresnel Lens

phase jump by π from HPZ to HPZ

section of a lens in every HPZ

nearly perfect focussing lens

1. HPZ

2. HPZ

3. HPZ4. HPZ5. HPZ

93-4

Poisson versus Fresnel

particles waves

94-1

Page 30: Image Formation Abbé theory of imaging

Poisson versus Fresnel

particles waves

94-2

Poisson versus FresnelFrançois

Arago

Poisson Spot

94-5