ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120...

113
Not reviewed, for internal circulation only ATLAS NOTE ATL-COM-PHYS-2016-120 9th May 2016 Draft version 0.6 1 Search for Neutral MSSM Higgs Bosons H / A τ had τ had and 2 Z 0 τ had τ had produced in 13 TeV Collisions with the ATLAS 3 Detector 4 Alvarez Piqueras, Damian a , Beckingham, Matthew b , Blumenschein, Ulrike c , Davey, Will e , 5 Drechsler, Eric c , Duschinger, Dirk f , Fiorini, Luca a , Goussiou, Anna g , Gwilliam, Carl h , 6 Hamity, Guillermo Nicolas i , Hauswald, Lorenz f , Hyneman, Rachel j , Jabbar, Samina k , 7 Koneke, Karsten l , Liu, Hao j , Mader, Wolfgang f , McCarn, Allison j , Moore, Roger k , Mori, 8 Tatsuya m , Morinaga, Masahiro m , Neubauer, Mark d , Pakela, Julia j , Pickering, Mark Andrew 9 n , Pranko, Aliaksandr o , Rompotis, Nikolaos g , Sales De Bruin, Pedro Henrique g , Schwarz, 10 Thomas Andrew j , Straessner, Arno f , Tanaka, Junichi m , Vickey, Trevor i , Zhang, Lei l , 11 Zinonos, Zinonas c 12 a Instituto de Fisica Corpuscular (IFIC), Centro Mixto Universidad de Valencia - CSIC 13 b University of Warwick, Coventry 14 c Georg-August-Universitat Goettingen, II. Physikalisches Institut 15 d University of Illinois at Urbana-Champaign 16 e University of Bonn 17 f Institut fuer Kern- und Teilchenphysik, Technische Universitaet Dresden 18 g Department of Physics, University of Washington, Seattle 19 h University of Liverpool 20 i Department of Physics and Astronomy, University of Sheffield 21 j University of Michigan, Department of Physics 22 k University of Alberta 23 l Albert-Ludwigs-Universitaet Freiburg, Fakultaet fuer Mathematik und Physik 24 m International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo 25 n University of Oxford 26 o Lawrence Berkeley National Laboratory and University of California, Berkeley 27 Abstract 28 We report a search for neutral MSSM Higgs bosons and neutral Z 0 bosons produced in 29 proton–proton collisions delivered by the Large Hadron Collider (LHC) at center-of-mass 30 energy 13 TeVand recorded by the ATLAS detector. The data correspond to an integrated 31 luminosity of 3.21 fb -1 . The resonances are assumed to decay to a τ + τ - pair with both τ 32 leptons decaying hadronically. The results are interpreted in a range of scenarios. 33 © 2016 CERN for the benefit of the ATLAS Collaboration. Reproduction of this article or parts of it is allowed as specified in the CC-BY-3.0 license. 34

Transcript of ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120...

Page 1: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

ATLAS NOTEATL-COM-PHYS-2016-120

9th May 2016Draft version 0.6

1

Search for Neutral MSSM Higgs Bosons H/A → τhadτhad and2

Z′ → τhadτhad produced in 13 TeV Collisions with the ATLAS3

Detector4

Alvarez Piqueras, Damian a, Beckingham, Matthewb, Blumenschein, Ulrike c, Davey, Will e,5

Drechsler, Eric c, Duschinger, Dirk f, Fiorini, Luca a, Goussiou, Anna g, Gwilliam, Carl h,6

Hamity, Guillermo Nicolas i, Hauswald, Lorenzf, Hyneman, Rachel j, Jabbar, Samina k,7

Koneke, Karsten l, Liu, Hao j, Mader, Wolfgang f, McCarn, Allison j, Moore, Roger k, Mori,8

Tatsuya m, Morinaga, Masahiro m, Neubauer, Mark d, Pakela, Julia j, Pickering, Mark Andrew9n, Pranko, Aliaksandr o, Rompotis, Nikolaosg, Sales De Bruin, Pedro Henrique g, Schwarz,10

Thomas Andrew j, Straessner, Arno f, Tanaka, Junichi m, Vickey, Trevor i, Zhang, Lei l,11

Zinonos, Zinonas c12

aInstituto de Fisica Corpuscular (IFIC), Centro Mixto Universidad de Valencia - CSIC13bUniversity of Warwick, Coventry14

cGeorg-August-Universitat Goettingen, II. Physikalisches Institut15dUniversity of Illinois at Urbana-Champaign16

eUniversity of Bonn17fInstitut fuer Kern- und Teilchenphysik, Technische Universitaet Dresden18

gDepartment of Physics, University of Washington, Seattle19hUniversity of Liverpool20

iDepartment of Physics and Astronomy, University of Sheffield21jUniversity of Michigan, Department of Physics22

kUniversity of Alberta23lAlbert-Ludwigs-Universitaet Freiburg, Fakultaet fuer Mathematik und Physik24

mInternational Center for Elementary Particle Physics and Department of Physics, The University of Tokyo25nUniversity of Oxford26

oLawrence Berkeley National Laboratory and University of California, Berkeley27

Abstract28

We report a search for neutral MSSM Higgs bosons and neutral Z ′ bosons produced in29

proton–proton collisions delivered by the Large Hadron Collider (LHC) at center-of-mass30

energy 13 TeVand recorded by the ATLAS detector. The data correspond to an integrated31

luminosity of 3.21 fb−1. The resonances are assumed to decay to a τ+τ− pair with both τ32

leptons decaying hadronically. The results are interpreted in a range of scenarios.33

© 2016 CERN for the benefit of the ATLAS Collaboration.Reproduction of this article or parts of it is allowed as specified in the CC-BY-3.0 license.34

Page 2: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

Contents35

0 Notes 436

1 Introduction 537

2 Data Samples and Monte Carlo Simulation 738

2.1 Monte Carlo Event Samples 739

2.2 Data Samples 840

3 Object Reconstruction 841

3.1 Hadronic tau decays 942

3.2 Electrons 943

3.3 Muons 944

3.4 Jets 945

3.5 Missing transverse energy 1046

3.6 Overlap removal 1047

4 Event Selection 1048

4.1 Event cleaning 1049

4.1.1 Data quality 1050

4.1.2 Jet cleaning 1051

4.1.3 Collision cleaning 1052

4.2 Event preselection 1153

4.3 Final Selection 1154

4.3.1 b-tag category 1555

4.3.2 b-veto category 1556

4.3.3 Z ′ → ττ cut and count selection 1557

4.4 Same-Sign Control Region 1658

5 Background Estimation 3159

5.1 Data-driven QCD background estimation 3160

5.1.1 Multi-jet Validation Region 3361

5.2 W (→ τν)+jets background estimation 3662

5.2.1 Simulation of spin effects 3763

5.2.2 Sherpa Shape Reweighting 3764

5.3 Modelling of fake taus in MC backgrounds 3965

5.3.1 W (→ µν)+jets control region 4066

5.3.2 Top control region 4067

5.3.3 Fake Rate Measurements 4168

6 Systematic Uncertainties 4369

6.1 Luminosity 4370

6.2 Detector-related uncertainties 4471

6.3 Uncertainties on data-driven background estimations 4972

6.4 Uncertainty on W reweighting 5073

6.5 Background Cross section uncertainties 5174

6.6 Uncertainties on signal modelling 5275

2

Page 3: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

6.7 Uncertainties on top modelling 5476

7 Z ′ → ττ Signal models 5477

7.1 Signal estimation using Z/γ∗ → Z ′ reweighting 5478

7.2 Sequential Standard Model 5579

7.3 Modifications to the Sequential Standard Model 5580

7.4 Strong Flavor Model 5681

8 Results 5982

8.1 A/H → ττ search 5983

8.2 Z ′ → ττ search 6484

8.3 Combination of τ τhad and τhadτhad channels for the Z ′ → ττ search 6585

9 Conclusions 7086

Auxiliary material 7787

A Post-fit Distributions for Higgs Search Signal Regions 7788

B Statistical Analysis Fit Results For Separate Categories 8189

C Asymptotic Approximation Checks 8390

D MC Samples 8691

E Signal Samples 9192

E.1 Signal acceptance systematics 9193

E.2 Validation of the bbH fast simulation 9194

E.3 Z/γ∗ → Z ′ reweighting validation 9395

F Mass Reconstruction 9496

F.1 Introduction 9497

F.2 MMC 9598

F.3 mTot 9599

F.4 MOSAIC 97100

F.4.1 The Amplitude Calculation 97101

F.4.2 Tau Lepton Decay Amplitudes 98102

F.4.3 ` mode 99103

F.4.4 1p0n mode 99104

F.4.5 Decay of Vector Meson 100105

F.4.6 Markov Chain Mote Carlo algorithms 101106

G Final Discriminant Studies 103107

G.1 MSSM Higgs search 103108

G.2 Optimisation of the b-tag category definition 104109

G.3 Z ′ → ττ search 104110

H mT(τ1, EmissT

) mismodelling studies 106111

9th May 2016 – 16:38 3

Page 4: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

H.1 Motivation 106112

H.2 Studies 106113

H.3 Conclusion 109114

0. Notes115

The analysis documented here is a continuation of the effort that is documented in ATL-COM-PHYS-116

2015-659 that resulted in ATLAS-CONF-2015-061. This version is for the 2015 data paper.117

Overview of changes with respect to the EOYE version:118

• selection optimisation (leading tau threshold)119

• event selection split in b-tag/veto categories120

• Z’ signal interpretation using inclusive selection121

• updated fake background estimation122

– measured fake factor for b-tag/veto123

– measured fake rates for top and W+jets separately124

– updated W+jets corrections125

Status: All the main features of the analysis are finalised.126

The main updates of the note are: the selection in Section 4, the background estimations in Section 5,127

the Z ′ → ττ signal description is in Section 7. The main changes in the appendix are the addition of the128

Z ′ → ττ validation studies in Appendix E.3 and the optimisation studies in Appendix G.129

Updates since version 0.5130

• added Z’ interpretations: SFM, L/R, narrow/wide decay width131

• (small) update of additional postfit plots in Appendix A (considering the recent changes in lephad132

and the combined workspaces)133

Updates in version 0.5134

• a bug was fixed in the workspaces, resulting in updated limits, pulls and postfit plots. The impact135

is very small.136

• added pull plots for separate b-tag and b-veto fits in Appendix B.137

• post-fit distributions for the combined τlepτhad+τhadτhad conditional µ = 0 fit have been added in138

Appendix A.139

Updates in version 0.4 (circulated for unblinded Higgs approval)140

• fixed a bug related to JES systematic uncertainties. These are relatively small uncertainties and due141

to this fix there was no visible change in the limit fits.142

• unblinded all signal regions and added observed limits and pulls143

• combination of τlepτhad and τhadτhad results of Z’ search144

9th May 2016 – 16:38 4

Page 5: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

• added checks of the asymptotic approximation for selected high mass points (Appendix C)145

Updates in version 0.3 (circulated for unblinding approval)146

• a correction of the top fake rates, due to a true tau contamination of the control region, is applied147

• the binning of the fake factor has been improved148

Updates in version 0.2149

• the QCD background estimation is now corrected for contamination of the fail-ID control region150

and Fake factor derived independently for b-tag and b-veto, plots and cutflows updated accordingly151

• expected limit and Asimov pull plots have been added152

• top modelling systematics153

• W (→ τν)+jets reweighting systematics154

• bbH signal acceptance systematics split in btag/veto, ggH systematics updated155

• several CP recommendation updates, including new systematic variations as part of the updated tau156

energy scale recommendation and new JVT SF systematics157

• (editorial) removed “loose BDT requirement” in from Section 3.1 as it is actually not applied158

• CDS comments implemented159

1. Introduction160

The discovery of a scalar particle at the Large Hadron Collider (LHC) [1, 2] has provided important161

insight into the mechanism of electroweak symmetry breaking. Experimental studies of the new particle162

[3–7] demonstrate consistency with the Standard Model (SM) Higgs boson [8–13]. However, it remains163

possible that the discovered particle is part of an extended scalar sector, a scenario that is favoured by a164

number of theoretical arguments [14, 15].165

TheMinimal Supersymmetric StandardModel (MSSM) [16–20] is an extension of the SM,which provides166

a framework addressing naturalness, gauge coupling unification, and the existence of dark matter. The167

Higgs sector of the MSSM contains two Higgs doublets, which results in five physical Higgs bosons after168

electroweak symmetry breaking. The MSSM Higgs sector is CP-conserving at tree level and assuming169

that higher order corrections conserve CP the Higgs bosons are such that two are neutral and CP-even170

(h, H), one is neutral and CP-odd (A), 1 and the remaining two are charged (H±). At tree level, the171

mass of the light scalar Higgs boson, mh, is restricted to be smaller than the Z boson mass, mZ . This172

bound is weakened due to radiative corrections up to a maximum allowed value of mh ∼ 135 GeV. Only173

two additional parameters are needed with respect to the SM at tree level to describe the MSSM Higgs174

sector. These can be chosen to be the mass of the CP-odd Higgs boson, mA, and the ratio of the vacuum175

expectation values of the twoHiggs doublets, tan β. Beyond lowest order, theMSSMHiggs sector depends176

on additional parameters, which are fixed at specific values in various MSSM benchmark scenarios. For177

example, in the mmaxh

scenario the radiative corrections are chosen such that mh is maximised for a given178

1 By convention the lighter CP-even Higgs boson is denoted h, the heavier CP-even Higgs boson is denoted H . The masses ofthe three bosons are denoted in the following as mh , mH and mA for h, H and A, respectively.

9th May 2016 – 16:38 5

Page 6: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

g

g

h/H/A

(a)

g

g b

b

h/H/A

(b)

g

b

b

h/H/A

(c)

Figure 1: Example Feynman diagrams for (a) gluon fusion and (b) b-associated production in the four-flavour schemeand (c) five-flavour scheme of a neutral MSSM Higgs boson.

tan β and MSUSY [21, 22]. 2 This results for MSUSY = 1 TeV in mh ∼ 130 GeV for large mA and tan β. In179

addition, in the same region the heavy Higgs bosons, H , A and H±, are approximately mass degenerate180

and h has properties very similar to a SM Higgs boson with the same mass. This feature is generic in the181

MSSM Higgs sector: a decoupling limit exists defined by mA mZ in which the heavy Higgs bosons182

have similar masses and the light CP-even Higgs boson in practice becomes identical to a SMHiggs boson183

with the same mass.184

The discovery of a SM-likeHiggs boson, withmass that is nowmeasured to be125.36±0.37 (stat)± 0.18 (syst) GeV185

[24], has prompted the definition of additional MSSM scenarios [23]. Most notably, the mmod+h

and mmod−h

186

scenarios are similar to the mmaxh

scenario, apart from the fact that the choice of radiative corrections is187

such that the maximum light CP-even Higgs boson mass is ∼ 126 GeV. This choice increases the region188

of the parameter space that is compatible with the observed Higgs boson being the lightest CP-even Higgs189

boson of the MSSM with respect to the mmaxh

scenario. There are many other MSSM parameter choices190

beyond these scenarios that are also compatible with the observed SM Higgs boson, for instance, refs.191

[25, 26].192

The couplings of the MSSMHiggs bosons to down-type fermions are enhanced with respect to the SM for193

large tan β values resulting in increased branching fractions to τ leptons and b-quarks, as well as a higher194

cross section for Higgs boson production in association with b-quarks. This has motivated a variety of195

searches in ττ and bb final states at LEP [27], the Tevatron [28–30] and the LHC [31–34].196

Additional heavy Z ′ gauge bosons appear in many models [35–39] and are “one of the best motivated197

extensions of the standard model (SM)” [40]. Z ′ bosons often arise in grand unified theories and198

while they are typically considered to obey lepton universality, this is not necessarily a requirement. In199

particular, somemodels offering an explanation for the highmass of the top-quark, predict that such bosons200

preferentially couple to third-generation fermions [41, 42]. Non-universal Z ′ models can also explain201

the anomalous dimuon production observed at the D0 experiment [43] and the excess in semileptonic202

B-meson decays into τ-leptons observed at the Belle and BaBar experiments [44]. Searches in the ditau203

channel are also sensitive to sgoldstino-like scalars in supersymmetric models [45, 46], hidden sector Z ′204

models [47] and to the anomalous τ-lepton dipole moments and higher order τ-gluon couplings [48].205

2 The supersymmetry scale, MSUSY, is defined here as the geometric average of the mass of the third generation squarksfollowing refs. [21–23].

9th May 2016 – 16:38 6

Page 7: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

Direct searches for high-mass ditau resonances have been performed by the ATLAS [49] and CMS [50]206

collaborations using 5 fb−1 of integrated luminosity at√

s = 7 TeV. Both searches exclude Z ′SSM with207

masses below 1.4 TeV at 95% CL. ATLAS [51] updated the result using 20 fb−1 of integrated luminosity208

at√

s = 8 TeV to exclude Z ′SSM with masses below 1.9 TeV at 95% CL. The Sequential Standard Model209

(SSM) contains a single additional Z ′ boson with the same couplings as the SM Z boson, and while210

not theoretically well motivated, serves as a benchmark. Indirect limits on Z ′ bosons with non-universal211

flavour couplings have been set using measurements from LEP and LEP II [52] and translate to a lower212

bound on the Z ′mass of 1.09 TeV. For comparison, the most stringent limits on Z ′SSM in the dielectron and213

dimuon decay channels combined are 2.90 TeV from ATLAS [53] and 2.96 TeV from CMS [54]. While214

searches in these channels are in general more sensitive than in the ditau channel, they may be evaded by215

models with weak couplings to electrons and muons.216

This note presents the results of a search for a neutral MSSMHiggs boson as well as high-mass resonances217

into two tau leptons using 3.2 fb−1 of proton–proton collision data collected with the ATLAS detector218

[55] in 2015 at a centre-of-mass energy of 13 TeV. Tau leptons can decay into a charged lepton and219

two neutrinos (τlep = τe or τµ), or hadronically (τhad), predominantly into one or three charged pions, a220

neutrino and often additional neutral pions. The τhadτhad decay channel with a branching ratio of BR=42%221

is analysed in this document. Higgs boson production through gluon fusion or in association with b-quarks222

is considered (see figure 1), with the latter mode dominating for high tan β values. The results of the223

search are interpreted in various MSSM scenarios. Limits on the cross section times τ+τ− branching224

fraction of a generic neutral resonance are reported. The impact on the signal acceptance from altering Z ′225

couplings is evaluated and limits are also placed on a particular model that exhibits enhanced couplings226

to tau-leptons. Limits on the various Z ′ models are obtained by performing a counting experiment from227

events that pass a high-mass requirement.228

2. Data Samples and Monte Carlo Simulation229

2.1. Monte Carlo Event Samples230

Monte Carlo samples used by this analysis are produced with the ATLAS simulation infrastructure [56]231

as part of the ATLAS mc15 production campaign. The following samples and generators listed in232

Tables 19–22 of Appendix D have been used.233

Simulated samples that have been used for the following processes: W+jets, Z+jets, tt, single top and234

diboson. The W+jets process is modelled with Sherpa 2.1.1 generator [57], while the Z+jets the235

POWHEG [58] generator was used and the events were subsequently showered with Pythia8 [59, 60]. For236

the tt and single top samples POWHEG was used as well, but the events were showered with Pythia6 [59].237

Diboson samples have been generated and showered with Sherpa. The Z+jets samples are simulated in238

slices with different masses of the off-shell boson mass. In order to avoid the overlap the inclusive samples239

are truncated keeping only events with m? < 120 GeV, where m? denotes the the off-shell boson mass.240

The procedure used is in agreement with the physics modelling group recommendations.241

Two production processes of heavy neutral MSSM Higgs bosons have relevant cross sections for this242

analysis: gluon fusion and b-associated production. Samples of b-associated production events at 11243

different Higgs masses have been generated using the MadGraph5_aMC@NLO 2.1.2 generator [61, 62].244

Gluon fusion samples with the same masses were generated using POWHEG [58]. The generation of245

parton shower, underlying event and hadronisation was performed using Pythia 8.2 [63] for both signal246

9th May 2016 – 16:38 7

Page 8: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

processes. Due to the fact that MadGraph5_aMC@NLO 2.1.2 generator produces a lot of events with247

negative weights, a fact that has been confirmed by the package developers in the LHC Higgs cross248

sections group, much larger statistics with respect to the gluon-fusion samples have to be generated. For249

this reason the ALTFAST-II simulation has been used to simulate these events. The fast simulation has250

been validated against full simulation for a single mass point and the results of this study are shown in251

Appendix E.252

The contributions of the various Z ′ signal models are estimated by reweighting the leading order Z/γ∗ →253

ττ sample using the TauSpinner algorithm [64], which correctly accounts for spin effects in the tau254

decays.255

The used Z/γ∗ → ττ sample, enriched in high-mass events, is generated with PYTHIA 8.165[60]. The256

A14 tune is used together with the NNPDF2.3LO PDF set[65]. A leading-order generator was chosen so257

that the sample could also be reweighted as Z ′ signal. A detailed description of the reweighting procedure258

is given in Section E.3. Interference of the Z ′ signals with the SM Z/γ∗ is not included. For each signal259

model, 18 mass hypotheses are considered, ranging from 500 to 1000 GeV in steps of 100 GeV and up to260

4000 GeV in steps of 125 GeV.261

Each sample was passed through the full GEANT4 [56, 66] simulation of the ATLAS detector and is262

reconstructed with the same software as used for data. The only exception is the bbH signal samples that263

have used the fast simulation.264

2.2. Data Samples265

The data used for this version of the note corresponds to 3.2 fb−1. Events which the trigger is unable to266

process in time or causing errors in the online reconstruction are redirected to the debug stream. These267

events are taken into account in the analysis to avoid bias in the event selection. The events from the268

debug stream were processed and no event passed the analysis selection criteria.269

Data where the IBL was not fully operational have not been used, since we use b-tagging to define signal270

region categories. Data from the 50ns configuration are not used as well, since they correspond to a small271

fraction of the data without a visible impact in sensitivity.272

3. Object Reconstruction273

The topology of A/H/h → ττ events makes it necessary to reconstruct hadronically decaying τ leptons274

and missing transverse energy EmissT . In order to suppress backgrounds, it is also important to reconstruct275

electrons, muons and jets.276

The pre-recommendation of the Combined performance groups are used in this analysis.277

9th May 2016 – 16:38 8

Page 9: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

3.1. Hadronic tau decays278

The tau reconstruction [67] is seeded by jets formed by the anti-kt algorithm applied on calibrated topo279

clusters with a distance parameter of R = 0.4. To discriminate the visible decay products of hadronically280

decaying tau leptons τhad-visfrom jets initiated by quarks or gluons, which are much more common at the281

LHC, an identification algorithm based on Boosted Decision Trees is applied to τhad-vis candidate objects.282

Only candidates with pT > 40 GeV and |η | < 2.5 are considered. Requirements on the BDT jet rejection283

are applied at a later stage (see Sec. 4). In the baseline object selection for the analysis presented here284

τhad-vis are required to have one or three charged tracks, an absolute charge of one, a minimum pT of285

20 GeV and to be located in |η | < 2.5 (excluding the crack region 1.37 < |η | < 1.52). Tau candidates286

with one core track that overlap (∆R < 0.4) with an electron candidate (pT > 5GeV) which has a high287

electron ID Likelihood score are rejected. The cut on the Likelihood score is parametrised in η and pT288

such that the tau efficiency is constant at 95% (loose ID) [68].289

3.2. Electrons290

Electron reconstruction begins with tracks in the inner detector that are matched to clustered energy291

deposits in the electromagnetic calorimeter. Electron candidates are required to pass a “loose” likelihood-292

based identification selection point, have pT > 15 GeV and to be in the fiducial volume of the detector,293

|η | < 2.47. The transition region between the barrel and end-cap calorimeters (1.37 < |η | < 1.52) is294

excluded.295

3.3. Muons296

Objects are considered as muon candidates if an inner detector track matches a track reconstructed in the297

muon spectrometer [69]. Muon candidates are required to have pT > 7 GeV and |η | < 2.5. Muons must298

be reconstructed with the muid algorithm, and pass a gradient isolation criterion that is expected to be299

90(99)% efficient for muons of pT 25 (60) GeV.300

3.4. Jets301

Jets are reconstructed using the anti-kt algorithm [70, 71] with a distance parameter R = 0.4 applied to302

topological clusters of calorimeter cells. The jet energy is calibrated using the electromagnetic scaling303

scheme (EM). In order to identify the jets initiated by b-quarks, theMV2c20 algorithm is used [72], which304

uses variables constructed by the IP2D, IP3D, SV1 and JetFitter algorithms into amultivariate discriminant305

“w” with values between minus and plus one. A working point that corresponds to an average efficiency306

of 70% for b-jets in tt events is chosen (corresponding to a weight wMV2C20 > −0.0436). Tagging307

and mis-tagging efficiency scale factors relate efficiencies as determined in various data samples to their308

counterparts in simulation. They are used in all simulated events, after having applied the b-tagging309

algorithm to the jets. The b-tagged jets are required to pass the pT > 20 GeV and |η | < 2.4 requirements.310

Jets with pT < 50 GeV and |η | < 2.4 are required as well to have |JVT| > 0.64. JVT is the is the output of311

the jet vertex tagger algorithm, used to identify and select jets originating from the hard-scatter interaction312

through the use of tracking and vertexing information [73].313

9th May 2016 – 16:38 9

Page 10: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

3.5. Missing transverse energy314

Themissing transversemomentum (EmissT ) definition used in this analysis is an object-based definition [74].315

It is computed using fully calibrated and reconstructed physics objects. The SoftTerm of the EmissT is316

computed using the TrackSoftTerm (TST) algorithm as it is the default for Run II analysis.317

3.6. Overlap removal318

Geometric overlap between objects passing the above selection creates ambiguity in the identity of the ob-319

jects. Thus an overlap removal is applied between the objects whose ∆R (defined as: ∆R ≡√∆φ2 + ∆η2)320

is less than a certain threshold. When two objects do not matching this requirement, the one that is kept321

is given by following this order: muons, electron, taus and jets.322

323

The ∆R threshold is not the same for the different combinations and hence, is defined below:324

• Jets within a ∆R = 0.2 cone of the leading pT τhad are excluded.325

• Jets within a ∆R = 0.4 cone of an electron or muon are excluded.326

• τhad within a ∆R = 0.2 cone of electrons or muons are excluded.327

• Electrons within a ∆R = 0.2 cone of muons are excluded.328

4. Event Selection329

4.1. Event cleaning330

4.1.1. Data quality331

Only data eventswithin luminosity blocks thatwere recordedwhile all detector subsystemswhere operating332

on good conditions are considered. The luminosity blocks are filtered using the file333

data15_13TeV.periodAllYear_DetStatus-v73-pro19-08_DQDefects-00-01-02_PHYS_StandardGRL_All_Good_25ns.xml.334

4.1.2. Jet cleaning335

A suppression of jets not associated to real energy deposits, among others due to hardware problems,336

beam conditions and cosmic showers, is performed at the “LooseBad” working point of the ATLAS jet337

cleaning tool. Events containing bad jets are discarded.338

4.1.3. Collision cleaning339

Only events that contain at least one primary vertex with at least two associated tracks are analysed.340

9th May 2016 – 16:38 10

Page 11: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

4.2. Event preselection341

Events are required to be accepted by the single-tau trigger HLT_tau80_medium1_tracktwo_L1TAU60.342

The leading tau candidate must be matched to the trigger with an angular distance of R = 0.2. A cut on343

pT is applied to the leading tau candidate at 110 GeV and to the subleading tau candidate at 55 GeV.344

Furthermore the leading tau candidate has to pass the “medium” jet BDT rejection, whereas the sublead-345

ing tau candidate is required to pass the “loose” jet BDT discrimination. Leading and subleading tau346

candidates must have a back-to-back topology in the transverse plane, i.e. ∆φ(τ0, τ1) > 2.7, and have347

opposite electric charge. The selection criteria are summarised below:348

349

1. Preselection: At least 2 τhad with pT > 100 GeV and 45 GeV and veto of any electron or muon350

passing loose identification.351

2. PassHLT_tau80_medium1_tracktwo_L1TAU60 single-tau trigger and leading tau candidatematches352

to the trigger.353

3. Leading tau pass the medium jet BDT discrimination.354

4. Leading tau pT > 110 GeV.355

5. subleading tau candidate is required to pass the “loose” jet BDT discrimination.356

6. Subleading tau pT > 55 GeV.357

7. ∆φ(τ0, τ1) > 2.7.358

8. τ1 and τ2 have opposite charge.359

4.3. Final Selection360

After the event preselection different signal regions are defined to provide best separation from signal361

to background. Two orthogonal categories favouring MSSM Higgs from gluon fusion or b-associated362

production are utilized, in the following referred to as the b-veto and b-tag categories, respectively. For the363

search for heavy Z ′ bosons no further cuts on physics objects are applied, rather a cut and count analysis364

is performed.365

Table 1 summarises the opposite sign signal region and same sign control region expected electroweak,366

multijet and top backgrounds as well as data events after the different stages in the cutflow for the b-veto367

and b-tag categories. Table 2 summarises the expected gluon fusion signal sample yields for cross sections368

of 1 pb in the opposite sign b-veto signal region. Table 3 summarises the expected b-associated production369

signal sample yields for cross sections of 1 pb in the opposite sign b-tag signal region.370

9th May 2016 – 16:38 11

Page 12: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

Cut

Data

QCD

stat.

Ztautau

stat.

Wtaun

ustat.

Top

stat.

Others

stat.

Preselectio

n24

0015

4-

-17

974.72

177.75

6606

7.83

677.08

7369

1.51

249.53

1617

0.66

387.53

Trigger&

τID

lead

2367

95-

-14

07.37

44.36

3168

.64

67.25

2955

.93

19.29

343.93

10.75

Leadτ

p T10

6016

--

641.75

29.13

1208

.45

32.04

775.45

9.34

86.26

3.75

Subleadτ

p T71

177

--

509.09

25.56

902.61

28.77

548.84

7.86

61.07

3.41

∆φ

5002

3-

-26

8.02

16.07

503.92

25.08

214.22

4.92

30.28

2.60

Expected

eventy

ieldsfor

SMbackgrou

ndsa

ndob

served

eventsthroug

htheeventselectio

ncommon

tobo

thb-tagand

b-veto

catego

ries

b-veto

4827

0-

-26

0.60

15.77

489.12

25.01

63.66

2.58

28.20

2.37

subleadτID

1034

759.93

7.41

105.56

1.95

47.00

2.24

8.98

0.64

4.54

0.40

Opp

osite

Sign

628

394.35

5.39

100.80

1.89

38.48

1.97

3.98

0.48

4.03

0.38

SameSign

406

366.52

5.10

3.55

0.42

7.51

0.99

0.48

0.05

0.43

0.10

b-tag

1753

--

7.18

2.95

14.39

1.23

149.61

4.15

2.09

1.11

subleadτID

4635

.47

1.87

1.49

0.21

1.17

0.13

23.41

1.02

0.06

0.02

Opp

osite

Sign

2317

.21

1.35

1.33

0.19

0.92

0.12

11.45

0.83

0.05

0.01

SameSign

2316

.58

1.27

0.12

0.06

0.21

0.04

1.14

0.13

0.01

0.00

Table1:

Expected

eventy

ieldsfor

SMbackgroundsa

ndobserved

eventsin

theeventselectio

n.Th

etopsectionof

thetableshow

sthe

eventselectio

ncommon

toboth

categorie

s.Th

esecond

sectionshow

sthe

continuedeventselectio

nin

the

b-veto

category

andthesplit

betweenoppositesign

andsamesign

charge

product

ofthetwotauparticles.Th

ethird

sectionshow

stheeventselectio

nin

the

b-tagcategory

andthesplit

betweenopposite

sign

andsamesign

charge

producto

fthetwotauparticles.A

llnumberscorrespond

toan

integrated

luminosity

of3.21

fb−

1 .

9th May 2016 – 16:38 12

Page 13: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

Cut

ggH30

0W2

stat.

ggH35

0W3

stat.

ggH40

0W5

stat.

ggH50

0W5

stat.

ggH60

0W10

stat.

Preselectio

n39

6.72

3.80

447.59

4.04

491.31

4.26

533.42

4.42

563.12

5.06

Trigger&

τID

lead

178.91

2.58

229.94

2.90

265.98

3.11

301.39

3.25

328.52

3.77

Leadτ

p T12

2.48

2.12

183.11

2.57

228.93

2.87

278.87

3.12

312.92

3.67

Subleadτ

p T10

7.23

1.98

161.89

2.42

208.14

2.73

257.96

2.99

293.52

3.55

∆φ

85.70

1.78

139.07

2.24

184.17

2.57

229.61

2.83

264.11

3.37

b-veto

84.36

1.77

136.94

2.22

182.14

2.56

226.10

2.81

259.60

3.34

subleadτID

64.29

1.54

110.20

2.00

147.09

2.30

187.07

2.55

215.04

3.04

Opp

osite

Sign

63.55

1.53

108.40

1.98

145.26

2.29

184.39

2.53

211.70

3.02

Cut

ggH70

0W20

stat.

ggH80

0W20

stat.

ggH10

00W30

stat.

ggH12

00W40

stat.

Preselectio

n56

5.83

5.07

572.12

5.07

561.37

4.99

542.38

4.91

Trigger&

τID

lead

323.69

3.72

327.61

3.72

320.66

3.65

303.61

3.55

Leadτ

p T31

2.40

3.65

318.79

3.66

315.80

3.62

300.55

3.53

Subleadτ

p T29

6.63

3.55

304.06

3.57

301.48

3.54

287.35

3.45

∆φ

264.46

3.35

273.83

3.39

272.39

3.36

259.59

3.28

b-veto

260.14

3.33

267.54

3.35

265.86

3.32

252.26

3.24

subleadτID

216.72

3.04

222.60

3.06

221.05

3.03

209.47

2.95

Opp

osite

Sign

212.17

3.00

218.63

3.03

216.03

2.99

203.10

2.90

Table2:Ex

pected

eventyieldsfor

gluonfusion

signalsamples

intheoppositesign

signalregion

forthe

b-vetocategory

foranintegrated

luminosity

of3.21

fb−

1 .Allcrosss

ectio

nsaresetto1pb.

9th May 2016 – 16:38 13

Page 14: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

Cut

bbH30

0stat.

bbH35

0stat.

bbH40

0stat.

bbH50

0stat.

bbH60

0stat.

Preselectio

n41

4.20

4.25

466.99

4.51

498.00

3.99

544.37

4.88

553.82

5.49

Trigger&

τID

lead

204.06

2.97

246.84

3.28

277.76

2.94

312.98

3.62

323.29

4.09

Leadτ

p T14

0.05

2.43

198.37

2.89

238.09

2.70

290.78

3.47

308.30

3.98

Subleadτ

p T12

1.07

2.27

176.53

2.72

214.39

2.56

268.70

3.33

289.94

3.85

∆φ

96.30

2.06

143.78

2.50

174.99

2.36

225.42

3.08

247.64

3.58

b-tag

27.26

1.04

46.21

1.31

56.56

1.28

77.26

1.74

87.43

2.07

subleadτID

21.53

0.92

37.03

1.17

44.90

1.15

63.67

1.58

72.59

1.89

Opp

osite

Sign

21.23

0.91

36.51

1.16

44.33

1.14

62.51

1.57

71.59

1.87

Cut

bbH70

0stat.

bbH80

0stat.

bbH10

00stat.

bbH12

00stat.

Preselectio

n56

1.02

5.55

565.52

5.56

548.54

4.92

519.67

5.23

Trigger&

τID

lead

334.64

4.13

338.21

4.12

321.14

3.62

294.02

3.83

Leadτ

p T32

3.58

4.05

331.22

4.07

316.60

3.59

291.91

3.81

Subleadτ

p T30

5.89

3.93

314.34

3.95

301.36

3.50

279.50

3.70

∆φ

261.48

3.66

271.91

3.69

260.61

3.26

241.46

3.45

b-tag

96.54

2.17

105.52

2.22

106.16

2.02

99.32

2.16

subleadτID

81.22

1.98

88.30

2.03

89.12

1.85

82.75

1.98

Opp

osite

Sign

79.54

1.96

86.75

2.02

87.09

1.82

80.21

1.96

Table3:

Expected

eventy

ieldsforb

-associatedproductio

nsignalsamples

intheoppositesign

signalregion

forthe

b-tagcategory

fora

nintegrated

luminosity

of3.21

fb−

1 .Allcrosss

ectio

nsaresetto1pb.

9th May 2016 – 16:38 14

Page 15: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

4.3.1. b-tag category371

This category is dedicated to the search of MSSM Higgs produced in association with b-quarks. It is372

defined by requiring the presence in the event of at least 1 jet with pT> 20GeV tagged as a b-jet according373

to the identification criteria in Section 3.4. The main backgrounds in this category are the multijet and top374

production processes. Variable distributions after the full selection without the ∆φ(τ1, τ2) requirement, as375

well as after the complete selection are shown in Fig. 2-5. Signal selection efficiencies for selected mass376

points are listed in Table 4.377

Mass Hypothesis [GeV] 200 300 600 1000 1200gluon fusion 0.00 0.07 0.27 0.38 0.40b-associated prod. 0.08 1.56 5.29 6.48 5.93

Table 4: Signal selection efficiency in percent for the b-tag category.

4.3.2. b-veto category378

This category is complementary to the b-tag category and is devoted prevalently to the selection of MSSM379

Higgs bosons produced via the gluon fusion mechanism. Events with no jets with pT> 20GeV tagged as380

a b-jets are selected in this category. The main background processes are the multijet and the Z-boson381

production. Variable distributions after after the complete selection are shown in Fig. 6-7. Signal selection382

efficiencies for selected mass points are listed in Table 5.

Mass Hypothesis [GeV] 200 300 600 1000 1200gluon fusion 0.13 4.70 15.62 16.01 14.98b-associated prod. 0.15 4.01 9.71 9.40 8.50

Table 5: Signal selection efficiency in percent for the b-veto category.383

4.3.3. Z ′ → ττ cut and count selection384

The selection used to define the Z ′ → ττ signal region is based on the total transversemass mtotT . This mass385

definition has been proven numerous times to yield best background rejection, while keeping the signal386

efficiency high[49, 51]. A mass-dependent lower threshold on mtotT is applied, which defines the Z ′ → ττ387

signal region. A study justifying the choice of the specific lower thresholds is described in Section G.3.388

The thresholds are summarised in Table 6. It is ensured, that there is at least one expected background389

event in the final mass window. The main background processes are the irreducible Z/γ∗ → ττ and the390

multijet backgrounds. The key distribution of the total transverse mass including signal hypotheses for 3391

different mZ′ are shown in Fig. 8.392

Mass Point [GeV] 500 – 700 800 900 1000 1250 1500 – 2500mtot

T [GeV] >400 >450 >500 >550 >650 >750

Table 6: Lower thresholds on mtotT used to define Z ′ → ττ signal regions.

9th May 2016 – 16:38 15

Page 16: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

4.4. Same-Sign Control Region393

The selection criteria used in this search require that the two tau candidates have opposite charge. This394

requirement enhances the purity of the event selection and at the same time offers the opportunity to define395

a control region composed by the events passing the same selection criteria of the signal region, but where396

the charge requirement of the taus is reverted. Figs 9-10 show the variable distributions of the events of397

the same-sign control region of the b-tag category after removing the ∆φ(τ1, τ2) requirement, which is398

composed primarily by events with fake taus: multi-jet and W (→ τν)+jets backgrounds. The variable399

distributions of the events of the same-sign control region of the b-tag category after full event selection400

are shown in Figs 11-12. Figs 13-14 show the variable distributions of the events of the same-sign control401

region of the b-veto category. Figure 15 shows the mtotT distribution with several signal hypotheses for 3402

different mZ′.403

9th May 2016 – 16:38 16

Page 17: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

[GeV] 0τT

p

Eve

nts/

50

GeV

1−10

1

10

210

310=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/APre-fit

[GeV] 0τT

p100 150 200 250 300 350 400D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(a)

[GeV]0τη

Eve

nts/

0.5

GeV

2

4

6

8

10

12

14

16

18 =400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/APre-fit

[GeV]0τη2.5− 2− 1.5− 1− 0.5− 0 0.5 1 1.5 2 2.5D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(b)

[GeV] 1τT

p

Eve

nts/

42

GeV

1−10

1

10

210

310

=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/APre-fit

[GeV] 1τT

p50 100 150 200 250 300D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(c)

[GeV]1τη

Eve

nts/

0.5

GeV

2

4

6

8

10

12

14

16

18 =400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/APre-fit

[GeV]1τη2.5− 2− 1.5− 1− 0.5− 0 0.5 1 1.5 2 2.5D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(d)

[GeV]missTE

Eve

nts/

33

GeV

1−10

1

10

210

310=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/APre-fit

[GeV]missTE

0 20 40 60 80 100 120 140 160 180 200Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(e)

[GeV]TsumE

Eve

nts/

100

GeV

1−10

1

10

210

310 =400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/APre-fit

[GeV]TsumE0 200 400 600 800 1000 1200D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(f)

Figure 2: Variable distributions in the b-tag category after complete selection criteria without the ∆φ(τ1, τ2)requirement: (a) Leading τhad pT, (b) Leading τhad η, (c) Sub-leading τhad pT, (d) Sub-leading τhad η, (e)Emiss

T , (f)Scalar sum of the ET of the objects used in the Emiss

T calculation, ΣET. The distributions correspond to an integratedluminosity of 1 fb−1 and the signal is normalised to 1 pb−1 for illustration purpose.

9th May 2016 – 16:38 17

Page 18: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

>20 GeV)T

p (bjetN

Eve

nts/

1

1−10

1

10

210

310

=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/APre-fit

>20 GeV)T

p (bjetN0 1 2 3 4 5D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(a)

[GeV]jet0

Tp

Eve

nts/

83

GeV

1−10

1

10

210

310=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/APre-fit

[GeV]jet0

Tp

0 50 100 150 200 250 300 350 400 450 500Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(b)

) [GeV]missTE,0τ (Tm

Eve

nts/

75

GeV

1−10

1

10

210

310=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/APre-fit

) [GeV]missTE,0τ (Tm

0 100 200 300 400 500 600Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(c)

) [GeV]missTE,1τ (Tm

Eve

nts/

40

GeV

1−10

1

10

210

310=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/APre-fit

) [GeV]missTE,1τ (Tm

0 20 40 60 80 100 120 140 160 180 200Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(d)

ττmvis

Eve

nts/

GeV

3−10

2−10

1−10

1

10=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/APre-fit

ττmvis0 200 400 600 800 1000 1200D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(e)

[GeV]TotTm

Eve

nts/

GeV

3−10

2−10

1−10

1

10=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/APre-fit

[GeV]TotTm

0 100 200 300 400 500 600Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(f)

Figure 3: Variable distributions in the b-tag category after the complete selection criteria without the ∆φ(τ1, τ2)requirement: (a) Nb−jet, (b) Leading jet pT, (c) mT(τ0, Emiss

T ), (d) mT(τ1, EmissT ), (e) mvis(f) mtot

T . The distributionscorrespond to an integrated luminosity of 1 fb−1 and the signal is normalised to 1 pb−1 for illustration purpose.

9th May 2016 – 16:38 18

Page 19: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

[GeV] 0τT

p

Eve

nts/

50

GeV

1−10

1

10

210

310 =400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/APre-fit

[GeV] 0τT

p100 150 200 250 300 350 400D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(a)

[GeV]0τη

Eve

nts/

0.5

GeV

1

2

3

4

5

6

7

8 =400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/APre-fit

[GeV]0τη2.5− 2− 1.5− 1− 0.5− 0 0.5 1 1.5 2 2.5D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(b)

[GeV] 1τT

p

Eve

nts/

42

GeV

1−10

1

10

210

310 =400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/APre-fit

[GeV] 1τT

p50 100 150 200 250 300D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(c)

[GeV]1τη

Eve

nts/

0.5

GeV

1

2

3

4

5

6

7

8=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/APre-fit

[GeV]1τη2.5− 2− 1.5− 1− 0.5− 0 0.5 1 1.5 2 2.5D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(d)

[GeV]missTE

Eve

nts/

33

GeV

1−10

1

10

210

310 =400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/APre-fit

[GeV]missTE

0 20 40 60 80 100 120 140 160 180 200Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(e)

[GeV]TsumE

Eve

nts/

100

GeV

1−10

1

10

210

=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/APre-fit

[GeV]TsumE0 200 400 600 800 1000 1200D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(f)

Figure 4: Variable distributions in the b-tag category after complete selection criteria: (a) Leading τhad pT, (b)Leading τhad η, (c) Sub-leading τhad pT, (d) Sub-leading τhad η, (e)Emiss

T , (f) Scalar sum of the ET of the objects usedin the Emiss

T calculation, ΣET. The distributions correspond to an integrated luminosity of 1 fb−1 and the signal isnormalised to 1 pb−1 for illustration purpose.

9th May 2016 – 16:38 19

Page 20: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

>20 GeV)T

p (bjetN

Eve

nts/

1

1−10

1

10

210

310=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/APre-fit

>20 GeV)T

p (bjetN0 1 2 3 4 5D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(a)

[GeV]jet0

Tp

Eve

nts/

83

GeV

1−10

1

10

210

310 =400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/APre-fit

[GeV]jet0

Tp

0 50 100 150 200 250 300 350 400 450 500Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(b)

) [GeV]missTE,0τ (Tm

Eve

nts/

75

GeV

1−10

1

10

210

=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/APre-fit

) [GeV]missTE,0τ (Tm

0 100 200 300 400 500 600Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(c)

) [GeV]missTE,1τ (Tm

Eve

nts/

40

GeV

1−10

1

10

210

310 =400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/APre-fit

) [GeV]missTE,1τ (Tm

0 20 40 60 80 100 120 140 160 180 200Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(d)

ττmvis

Eve

nts/

GeV

3−10

2−10

1−10

1

10 =400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/APre-fit

ττmvis0 200 400 600 800 1000 1200D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(e)

[GeV]TotTm

Eve

nts/

GeV

3−10

2−10

1−10

1

10 =400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/APre-fit

[GeV]TotTm

0 100 200 300 400 500 600Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(f)

Figure 5: Variable distributions in the b-tag category after the complete selection criteria: (a) Nb−jet, (b) Leadingjet pT, (c) mT(τ0, Emiss

T ), (d) mT(τ1, EmissT ), (e) mvis(f) mtot

T . The distributions correspond to an integrated luminosityof 1 fb−1 and the signal is normalised to 1 pb−1 for illustration purpose.

9th May 2016 – 16:38 20

Page 21: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

[GeV] 0τT

p

Eve

nts/

15

GeV

1−10

1

10

210

310

410 =400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/APre-fit

[GeV] 0τT

p100 150 200 250 300 350 400D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(a)

[GeV]0τη

Eve

nts/

0.5

GeV

20

40

60

80

100

120

140=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/APre-fit

[GeV]0τη2.5− 2− 1.5− 1− 0.5− 0 0.5 1 1.5 2 2.5D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(b)

[GeV] 1τT

p

Eve

nts/

22

GeV

1−10

1

10

210

310

410 =400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/APre-fit

[GeV] 1τT

p50 100 150 200 250 300 350 400 450D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(c)

[GeV]1τη

Eve

nts/

0.5

GeV

20

40

60

80

100

120

140=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/APre-fit

[GeV]1τη2.5− 2− 1.5− 1− 0.5− 0 0.5 1 1.5 2 2.5D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(d)

[GeV]missTE

Eve

nts/

20

GeV

1−10

1

10

210

310

410 =400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/APre-fit

[GeV]missTE

0 20 40 60 80 100 120 140 160 180 200Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(e)

[GeV]TsumE

Eve

nts/

50

GeV

1−10

1

10

210

310

410 =400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/APre-fit

[GeV]TsumE0 200 400 600 800 100012001400160018002000D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(f)

Figure 6: Variable distributions in the b-veto category after complete selection criteria: (a) Leading τhad pT, (b)Leading τhad η, (c) Sub-leading τhad pT, (d) Sub-leading τhad η, (e)Emiss

T , (f) Scalar sum of the ET of the objects usedin the Emiss

T calculation, ΣET. The signal is normalised to 1 pb−1 for illustration purpose.

9th May 2016 – 16:38 21

Page 22: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

>20 GeV)T

p (bjetN

Eve

nts/

1

1−10

1

10

210

310

410=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/APre-fit

>20 GeV)T

p (bjetN0 1 2 3 4 5D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(a)

[GeV]jet0

Tp

Eve

nts/

25

GeV

1−10

1

10

210

310

410 =400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/APre-fit

[GeV]jet0

Tp

0 50 100 150 200 250 300 350 400 450 500Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(b)

) [GeV]missTE,0τ (Tm

Eve

nts/

20

GeV

1−10

1

10

210

310

=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/APre-fit

) [GeV]missTE,0τ (Tm

0 100 200 300 400 500 600Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(c)

) [GeV]missTE,1τ (Tm

Eve

nts/

20

GeV

1−10

1

10

210

310

410 =400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/APre-fit

) [GeV]missTE,1τ (Tm

0 20 40 60 80 100 120 140 160 180 200Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(d)

ττmvis

Eve

nts/

50

GeV

1−10

1

10

210

310

410 =400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/APre-fit

ττmvis0 200 400 600 800 1000 1200 1400D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(e)

[GeV]TotTm

Eve

nts/

GeV

3−10

2−10

1−10

1

10

210=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/APre-fit

[GeV]TotTm

0 100 200 300 400 500 600 700 800 900 1000Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(f)

Figure 7: Variable distributions in the b-veto category after the complete selection criteria: (a) Nb−jet, (b) Leading jetpT, (c) mT(τ0, Emiss

T ), (d) mT(τ1, EmissT ), (e) mvis(f) mtot

T . The signal is normalised to 1 pb−1 for illustration purpose.

9th May 2016 – 16:38 22

Page 23: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

1

10

210

310

410

510

610

710

eve

nts

Dataττ→*γZ/

QCDντ→W

TopOthers

ττ→(0.500TeV)SSMZ’ττ→(1.000TeV)SSMZ’ττ→(1.500TeV)SSMZ’

= 13 TeVs

­1dt L = 3.2 fb∫

InternalATLAS Dataττ→*γZ/

QCDντ→W

TopOthers

ττ→(0.500TeV)SSMZ’ττ→(1.000TeV)SSMZ’ττ→(1.500TeV)SSMZ’

= 13 TeVs

­1dt L = 3.2 fb∫

InternalATLAS Dataττ→*γZ/

QCDντ→W

TopOthers

ττ→(0.500TeV)SSMZ’ττ→(1.000TeV)SSMZ’ττ→(1.500TeV)SSMZ’

= 13 TeVs

­1dt L = 3.2 fb∫

InternalATLAS Dataττ→*γZ/

QCDντ→W

TopOthers

ττ→(0.500TeV)SSMZ’ττ→(1.000TeV)SSMZ’ττ→(1.500TeV)SSMZ’

= 13 TeVs

­1dt L = 3.2 fb∫

InternalATLAS

0.6

0.8

1

1.2

1.4

[GeV]totTm

200 300 400 500

Da

ta/M

C

stat. syst.stat. syst.stat. syst.stat. syst.

Figure 8: mtotT distribution in the inclusive category after the complete selection criteria including exemplary Z ′

signals for mZ′ of 0.5, 1.0 and 1.5 TeV stacked on top of the SM background. The x-axis is in logarithmic scale andbins have been sized equally in that scale. The last bin includes the overflow bin. The distribution correspond to anintegrated luminosity of 1 fb−1.

9th May 2016 – 16:38 23

Page 24: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

[GeV] 0τT

p

Eve

nts/

50

GeV

1−10

1

10

210

310=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/ASame-sign CR

[GeV] 0τT

p100 150 200 250 300 350 400D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(a)

[GeV]0τη

Eve

nts/

0.5

GeV

2

4

6

8

10

12 =400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/ASame-sign CR

[GeV]0τη2.5− 2− 1.5− 1− 0.5− 0 0.5 1 1.5 2 2.5D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(b)

[GeV] 1τT

p

Eve

nts/

42

GeV

1−10

1

10

210

310=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/ASame-sign CR

[GeV] 1τT

p50 100 150 200 250 300D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(c)

[GeV]1τη

Eve

nts/

0.5

GeV

2

4

6

8

10=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/ASame-sign CR

[GeV]1τη2.5− 2− 1.5− 1− 0.5− 0 0.5 1 1.5 2 2.5D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(d)

[GeV]missTE

Eve

nts/

33

GeV

1−10

1

10

210

310=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/ASame-sign CR

[GeV]missTE

0 20 40 60 80 100 120 140 160 180 200Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(e)

[GeV]TsumE

Eve

nts/

100

GeV

1−10

1

10

210

310 =400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/ASame-sign CR

[GeV]TsumE0 200 400 600 800 1000 1200D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(f)

Figure 9: Variable distributions in the same-sign control region of the b-tag category without the ∆φ(τ1, τ2)requirement. The integrated luminosity corresponds to 3.21 fb−1. The signal is normalised to 1 pb−1 for illustrationpurpose: (a) Leading τhad pT, (b) Leading τhad η, (c) Sub-leading τhad pT, (d) Sub-leading τhad η, (e)Emiss

T , (f) ΣET.

9th May 2016 – 16:38 24

Page 25: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

>20 GeV)T

p (bjetN

Eve

nts/

1

1−10

1

10

210

310=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/ASame-sign CR

>20 GeV)T

p (bjetN0 1 2 3 4 5D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(a)

[GeV]jet0

Tp

Eve

nts/

83

GeV

1−10

1

10

210

310 =400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/ASame-sign CR

[GeV]jet0

Tp

0 50 100 150 200 250 300 350 400 450 500Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(b)

) [GeV]missTE,0τ (Tm

Eve

nts/

75

GeV

1−10

1

10

210

310 =400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/ASame-sign CR

) [GeV]missTE,0τ (Tm

0 100 200 300 400 500 600Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(c)

) [GeV]missTE,1τ (Tm

Eve

nts/

40

GeV

1−10

1

10

210

310 =400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/ASame-sign CR

) [GeV]missTE,1τ (Tm

0 20 40 60 80 100 120 140 160 180 200Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(d)

ττmvis

Eve

nts/

GeV

3−10

2−10

1−10

1

10 =400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/ASame-sign CR

ττmvis0 200 400 600 800 1000 1200D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(e)

[GeV]TotTm

Eve

nts/

GeV

3−10

2−10

1−10

1

10=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/ASame-sign CR

[GeV]TotTm

0 100 200 300 400 500 600Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(f)

Figure 10: Variable distributions in the same-sign control region of the b-tag category without the ∆φ(τ1, τ2)requirement. The integrated luminosity corresponds to 3.21 fb−1. The signal is normalised to 1 pb−1 for illustrationpurpose: (a) Nb−jet, (b) Leading jet pT, (c) mT(τ0, Emiss

T ), (d) mT(τ1, EmissT ), (e) mvis, (f) mtot

T .

9th May 2016 – 16:38 25

Page 26: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

[GeV] 0τT

p

Eve

nts/

50

GeV

1−10

1

10

210

310 =400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/ASame-sign CR

[GeV] 0τT

p100 150 200 250 300 350 400D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(a)

[GeV]0τη

Eve

nts/

0.5

GeV

1

2

3

4

5

6

7=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/ASame-sign CR

[GeV]0τη2.5− 2− 1.5− 1− 0.5− 0 0.5 1 1.5 2 2.5D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(b)

[GeV] 1τT

p

Eve

nts/

42

GeV

1−10

1

10

210

=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/ASame-sign CR

[GeV] 1τT

p50 100 150 200 250 300D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(c)

[GeV]1τη

Eve

nts/

0.5

GeV

1

2

3

4

5

6

7=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/ASame-sign CR

[GeV]1τη2.5− 2− 1.5− 1− 0.5− 0 0.5 1 1.5 2 2.5D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(d)

[GeV]missTE

Eve

nts/

33

GeV

1−10

1

10

210

310=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/ASame-sign CR

[GeV]missTE

0 20 40 60 80 100 120 140 160 180 200Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(e)

[GeV]TsumE

Eve

nts/

100

GeV

1−10

1

10

210

=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/ASame-sign CR

[GeV]TsumE0 200 400 600 800 1000 1200D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(f)

Figure 11: Variable distributions in the same-sign control region of the b-tag category. The integrated luminositycorresponds to 3.21 fb−1. The signal is normalised to 1 pb−1 for illustration purpose: (a) Leading τhad pT, (b)Leading τhad η, (c) Sub-leading τhad pT, (d) Sub-leading τhad η, (e)Emiss

T , (f) ΣET.

9th May 2016 – 16:38 26

Page 27: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

>20 GeV)T

p (bjetN

Eve

nts/

1

1−10

1

10

210

310 =400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/ASame-sign CR

>20 GeV)T

p (bjetN0 1 2 3 4 5D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(a)

[GeV]jet0

Tp

Eve

nts/

83

GeV

1−10

1

10

210

310 =400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/ASame-sign CR

[GeV]jet0

Tp

0 50 100 150 200 250 300 350 400 450 500Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(b)

) [GeV]missTE,0τ (Tm

Eve

nts/

75

GeV

1−10

1

10

210

=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/ASame-sign CR

) [GeV]missTE,0τ (Tm

0 100 200 300 400 500 600Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(c)

) [GeV]missTE,1τ (Tm

Eve

nts/

40

GeV

1−10

1

10

210

=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/ASame-sign CR

) [GeV]missTE,1τ (Tm

0 20 40 60 80 100 120 140 160 180 200Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(d)

ττmvis

Eve

nts/

GeV

3−10

2−10

1−10

1

10 =400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/ASame-sign CR

ττmvis0 200 400 600 800 1000 1200D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(e)

[GeV]TotTm

Eve

nts/

GeV

3−10

2−10

1−10

1

10 =400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/ASame-sign CR

[GeV]TotTm

0 100 200 300 400 500 600Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(f)

Figure 12: Variable distributions in the same-sign control region of the b-tag category. The integrated luminositycorresponds to 3.21 fb−1. The signal is normalised to 1 pb−1 for illustration purpose: (a) Nb−jet, (b) Leading jet pT,(c) mT(τ0, Emiss

T ), (d) mT(τ1, EmissT ), (e) mvis, (f) mtot

T .

9th May 2016 – 16:38 27

Page 28: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

[GeV] 0τT

p

Eve

nts/

15

GeV

1−10

1

10

210

310

410 =400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/ASame-sign CR

[GeV] 0τT

p100 150 200 250 300 350 400D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(a)

[GeV]0τη

Eve

nts/

0.5

GeV

10

20

30

40

50

60

70

80 =400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/ASame-sign CR

[GeV]0τη2.5− 2− 1.5− 1− 0.5− 0 0.5 1 1.5 2 2.5D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(b)

[GeV] 1τT

p

Eve

nts/

22

GeV

1−10

1

10

210

310

410=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/ASame-sign CR

[GeV] 1τT

p50 100 150 200 250 300 350 400 450D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(c)

[GeV]1τη

Eve

nts/

0.5

GeV

10

20

30

40

50

60

70

80=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/ASame-sign CR

[GeV]1τη2.5− 2− 1.5− 1− 0.5− 0 0.5 1 1.5 2 2.5D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(d)

[GeV]missTE

Eve

nts/

20

GeV

1−10

1

10

210

310

410 =400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/ASame-sign CR

[GeV]missTE

0 20 40 60 80 100 120 140 160 180 200Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(e)

[GeV]TsumE

Eve

nts/

50

GeV

1−10

1

10

210

310

410=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/ASame-sign CR

[GeV]TsumE0 200 400 600 800 100012001400160018002000D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(f)

Figure 13: Variable distributions in the same-sign control region of the b-veto category. The integrated luminositycorresponds to 3.21 fb−1. The signal is normalised to 1 pb−1 for illustration purpose: (a) Leading τhad pT, (b)Leading τhad η, (c) Sub-leading τhad pT, (d) Sub-leading τhad η, (e)Emiss

T , (f) ΣET.

9th May 2016 – 16:38 28

Page 29: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

>20 GeV)T

p (bjetN

Eve

nts/

1

1−10

1

10

210

310

410=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/ASame-sign CR

>20 GeV)T

p (bjetN0 1 2 3 4 5D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(a)

[GeV]jet0

Tp

Eve

nts/

25

GeV

1−10

1

10

210

310

410=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/ASame-sign CR

[GeV]jet0

Tp

0 50 100 150 200 250 300 350 400 450 500Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(b)

) [GeV]missTE,0τ (Tm

Eve

nts/

20

GeV

1−10

1

10

210

310

=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/ASame-sign CR

) [GeV]missTE,0τ (Tm

0 100 200 300 400 500 600Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(c)

) [GeV]missTE,1τ (Tm

Eve

nts/

20

GeV

1−10

1

10

210

310

410 =400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/ASame-sign CR

) [GeV]missTE,1τ (Tm

0 20 40 60 80 100 120 140 160 180 200Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(d)

ττmvis

Eve

nts/

50

GeV

1−10

1

10

210

310

=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/ASame-sign CR

ττmvis0 200 400 600 800 1000 1200 1400D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(e)

[GeV]TotTm

Eve

nts/

GeV

3−10

2−10

1−10

1

10

210=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/ASame-sign CR

[GeV]TotTm

0 100 200 300 400 500 600 700 800 900 1000Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(f)

Figure 14: Variable distributions in the same-sign control region of the b-veto category. The integrated luminositycorresponds to 3.21 fb−1. The signal is normalised to 1 pb−1 for illustration purpose: (a) Nb−jet, (b) Leading jet pT,(c) mT(τ0, Emiss

T ), (d) mT(τ1, EmissT ), (e) mvis, (f) mtot

T .

9th May 2016 – 16:38 29

Page 30: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

­110

1

10

210

310

410

510

610

710

eve

nts

Dataττ→*γZ/

QCDντ→W

TopOthers

ττ→(0.500TeV)SSMZ’ττ→(1.000TeV)SSMZ’ττ→(1.500TeV)SSMZ’

= 13 TeVs

­1dt L = 3.2 fb∫

InternalATLAS Dataττ→*γZ/

QCDντ→W

TopOthers

ττ→(0.500TeV)SSMZ’ττ→(1.000TeV)SSMZ’ττ→(1.500TeV)SSMZ’

= 13 TeVs

­1dt L = 3.2 fb∫

InternalATLAS Dataττ→*γZ/

QCDντ→W

TopOthers

ττ→(0.500TeV)SSMZ’ττ→(1.000TeV)SSMZ’ττ→(1.500TeV)SSMZ’

= 13 TeVs

­1dt L = 3.2 fb∫

InternalATLAS Dataττ→*γZ/

QCDντ→W

TopOthers

ττ→(0.500TeV)SSMZ’ττ→(1.000TeV)SSMZ’ττ→(1.500TeV)SSMZ’

= 13 TeVs

­1dt L = 3.2 fb∫

InternalATLAS

0.5

1

1.5

[GeV]totTm

200 300 400 500

Da

ta/M

C

stat. syst.stat. syst.stat. syst.stat. syst.stat. syst.stat. syst.stat. syst.stat. syst.

Figure 15: mtotT distribution in the inclusive category in the same sign region including exemplary Z ′signals for

mZprime of 0.5, 1.0 and 1.5 TeV stacked on top of the SM background. The x-axis is in logarithmic scale and binshave been sized equally in that scale. The last bin includes the overflow bin. The distribution correspond to anintegrated luminosity of 1 fb−1.

9th May 2016 – 16:38 30

Page 31: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

5. Background Estimation404

The dominant background is multi-jet production, whose cross section is several orders of magnitude405

higher than that of the signal processes. Despite the big suppression of this background due to the event406

selection, a sizeable contribution remains, therefore its estimation is very important for this analysis. This407

process contributes to the final distribution because in a fraction of events two jets are misidentified as408

hadronically decaying tau leptons. Since the theoretical description of multi-jet processes at the LHC409

is not sufficiently advanced, the background is estimated using a data-driven method. This technique is410

described in detail in Sec. 5.1.411

All of the following background processes are estimated using Monte Carlo simulation.412

A background contribution comes fromW (→ τν)+jets events, where one of the additional jets is misiden-413

tified as a τhad-vis.414

Other backgrounds from W decays arise when the muon or electron along with at least one additional jet415

in W (→ `ν)+jets are misidentified as hadronically decaying tau leptons. Due to the electron and muon416

veto this background is highly suppressed.417

A significant and irreducible background contribution arises from Z/γ∗ → ττ processes where both tau418

leptons decay hadronically.419

Due to the lepton veto Z decays to two electrons or muons play a very minor role.420

Since top quarks predominantly haveW bosons in their decay final states, tt aswell as single-top production,421

can pass the event selection. This happens when both top quarks in tt have true τhad-vis final states or due422

to misidentified leptons or jets.423

Also in di-boson production processes pairs of misidentified τhad-vis can emerge.424

5.1. Data-driven QCD background estimation425

A control region, which almost exclusively contains multi-jet events, is obtained by inverting the tau ID426

requirement of the leading τhad-vis. Fake factors, depending on pT(τhad-vis) and the number of tracks in the427

tau core region, are obtained in a tag-and-probe analysis.428

The tau ID fake factors, fτ−ID, are defined as the number of probe-jets in the di-jet analysis that pass tau429

ID, Npass τ−ID, divided by the number that fail, N fail τ−ID:430

fτ−ID(pT, Ntrack) ≡Npass τ−ID(pT, Ntrack)N fail τ−ID(pT, Ntrack)

di−jet. (1)

The shape and normalisation of the multijet contribution where the sub-leading tau candidate passes tau431

ID, Nmultijet, in a given kinematic variable ‘x’, is predicted by weighting the events where the sub-leading432

tau candidate fails tau ID by their fake factor:433

Nmultijet(pT, Ntrack, x) = fτ−ID(pT, Ntrack) ×(N fail τ−ID

data(pT, Ntrack, x))

A correction for the contamination of the fail-ID region with non-multijet backgrounds is applied by434

subtracting the Monte Carlo estimated backgrounds weighted by the fake factors. The tau ID fake factors435

9th May 2016 – 16:38 31

Page 32: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

aremeasured using a dijet tag and probe analysis, designed to be as similar to the signal selection as possible,436

while avoiding contamination from real taus. The analysis considers events which fire one of the single437

jet triggers (HLT_j460, HLT_j440, HLT_j420, HLT_j400, HLT_j380, HLT_j360, HLT_j330, HLT_j320,438

HLT_j300, HLT_j260, HLT_j200, HLT_j175, HLT_j150, HLT_j110, HLT_j85, HLT_j60, HLT_j55,439

HLT_j35, HLT_j25) Events are required to contain at least two tau candidates with pT > 55 GeV. The440

leading tau is defined as the tag and the sub-leading as the probe. The tag is required to have pT > 100 GeV,441

and pass a tight electron veto. A loose pT balance is applied such that the pT of the sub-leading tau is at442

least 30% of the leading tau pT. Some selection criteria have been relaxed with respect to the signal region443

definition to increase sensibly the statistics of the control region, after verifying that this has no impact444

on the fake factor measurement within statistical uncertainties. Events with taus of opposite and same445

charge are simultaneously considered in the fake factors measurement. Consistency of the fake factors for446

same-sign and opposite-sign configurations of the two leading τhad has been checked and good agreement447

is found within statistical uncertainties. No requirement is applied on the number of tracks in the tau448

core region for the leading tau candidate, nor on the transverse plane distance ∆φ between the tag and the449

probe. Fake factors are determined as a function of τhad pT. Table 7 shows the cutflow corresponding to450

the dijet control region event selection.451

(a)

Figure 16: Distribution of the ∆φ(ττ) versus the ratio of the pT of the sub-leading tau divided by the leading tau pTin the multi-jet control region before applying the selection criteria on those variables.

Figure 16 shows the distribution of the ∆φ(ττ) versus the ratio of the pT of the sub-leading tau divided by452

the leading tau pT in the multi-jet control region before applying these two selection criteria. The events453

selected for the fake factor measurement are located in the top right corner.454

Figure 17 shows the fake factors for 1-prong and 3-prong probe tau candidates. These are displayed for455

scenarios where the charges of the leading and subleading jets are opposite sign, same sign and inclusive.456

Figure 18 shows the distribution of the pT of all τhad in various regions. As described above the shape of457

the multijet estimation in the signal region (shown in Subfig. a) is taken from the control region where458

the subleading τhad fails the ID criterion (shown in Subfig. b). For validation the same is shown for the459

pass-ID and fail-ID regions where the two leading τhad have the same charge.460

9th May 2016 – 16:38 32

Page 33: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

The fake factors have been evaluated for events fulfilling the b-tag requirement and failing it. Figure 19461

shows the fake factor distributions for events passing and failing the b-tag requirement: a significant462

difference between the two classes of events is observed for 1-prong probes. A smaller, but still non-463

negligible difference is observed for 3-prong events. Therefore fake factors are determined separately for464

the b-tag and b-veto categories.465

Cut dataPreselection 137486jet trigger 137440tag pT 100 GeV 51357probe pT> 55 GeV 32210pprobeT > 0.3xptagT 21764∆φ 102681-prong 1605Pass loose BDT jet score 164Fail loose BDT jet score 14413-prong 8663Pass loose BDT jet score 49Fail loose BDT jet score 8614

Table 7: Observed number of events in the dijet control region for 3.21 fb−1. The Control region is divided between1-prong and 3-prong candidate taus passing or failing the loose BDT jet ID requirement

(a) (b)

Figure 17: Inclusive TAU ID fake factors fτ−IDfor 1-prong (left) and 3-prong (right) tau candidates, as measured inthe dijet tag and probe analysis, and separated by the charge product of the two candidates.

5.1.1. Multi-jet Validation Region466

The validation of multi-jet fake factor measurement is performed in the multi-jet validation region. The467

region is defined by applying the selection criteria outlined at the beginning of this section with the468

exception that the sub-leading τhadis required to pass the loose ID requirement:469

470

9th May 2016 – 16:38 33

Page 34: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

) [GeV]1τ (T

p100 200 300 400 500 600 700 800 900 1000

0

0.05

0.1

0.15

0.2

0.251-prong

< 2.7φ∆ > 2.7φ∆

1-prong

(a)

) [GeV]1τ (T

p100 200 300 400 500 600 700 800 900 1000

0

0.01

0.02

0.03

0.04

0.05

3-prongs

< 2.7φ∆ > 2.7φ∆

3-prongs

(b)

) [GeV]1τ (T

p100 200 300 400 500 600 700 800 900 1000

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.221-prong

1-prong or 3-prong Tag

No track requirement

1-prong

(c)

) [GeV]1τ (T

p100 200 300 400 500 600 700 800 900 1000

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.0163-prongs

1-prong or 3-prong Tag

No track requirement

3-prongs

(d)

Figure 18: Comparison of fake factor measurement for different selection criteria: (a) ∆φ selection comparisonfor 1-prong tau candidates , (b) ∆φ selection comparison for 3-prong candidates, (c) Ntrk selection comparison for1-prong candidates (d) Ntrk selection comparison for 3-prong candidates.

(a) (b)

Figure 19: TAU ID fake factors fτ−IDof 1-prong (left) and 3-prong (right) tau candidates for events passing andfailing the b-tag requirement.

• fire one of the single jet triggers (HLT_j460, HLT_j440, HLT_j420, HLT_j400, HLT_j380,471

HLT_j360, HLT_j330, HLT_j320, HLT_j300, HLT_j260, HLT_j200, HLT_j175, HLT_j150, HLT_j110,472

HLT_j85, HLT_j60, HLT_j55, HLT_j35, HLT_j25)473

474

9th May 2016 – 16:38 34

Page 35: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

• Events are required to contain at least two tau candidates with pT > 55 GeV.475

476

• The leading tau is required to have pT > 100 GeV, and pass a tight electron veto.477

478

• The leading tau is required to fail the medium identification requirement.479

480

• The sub-leading tau is required to pass the loose identification requirement481

• pT balance: pT of the sub-leading tau is at least 30% of the leading tau pT.482

483

The multi-jet background in this validation region is evaluated by applying the fake factor method, hence484

providing a closure check of the multi-jet estimation method.485

[GeV] 0τT

p

Eve

nts/

14

GeV

10

20

30

40

50

60

70

80

90Multi-jet Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/A

[GeV] 0τT

p150 200 250 300 350 400D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(a)

[GeV] 1τT

p

Eve

nts/

22

GeV

20

40

60

80

100

120 Multi-jet Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/A

[GeV] 1τT

p50 100 150 200 250 300 350 400 450D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(b)

[GeV]1τη

Eve

nts/

0.5

GeV

20

40

60

80

100

120 Multi-jet Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/A

[GeV]1τη2.5− 2− 1.5− 1− 0.5− 0 0.5 1 1.5 2 2.5D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(c)

>25 GeV)T

p (jetN

Eve

nts/

1

1−10

1

10

210

310

410Multi-jet Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/A

>25 GeV)T

p (jetN0 2 4 6 8 10 12D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(d)

Figure 20: Validation region distributions: (a) leading τhad pT, (b) sub-leading τhad pT, (c) sub-leading τhad η, (d)Njet.

9th May 2016 – 16:38 35

Page 36: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

[GeV]TsumE

Eve

nts/

50

GeV

10

20

30

40

50

60

70

80

90Multi-jet Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/A

[GeV]TsumE0 200 400 600 800 100012001400160018002000D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(a)

[GeV]missTE

Eve

nts/

10

GeV

20

40

60

80

100

120

140

160

180 Multi-jet Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/A

[GeV]missTE

0 20 40 60 80 100 120 140 160 180 200Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(b)

ττmvis

Eve

nts/

50

GeV

10

20

30

40

50

60

70

80

90 Multi-jet Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/A

ττmvis0 200 400 600 800 1000 1200 1400D

ata/

Bkg

Rat

io

0.20.40.60.8

11.21.41.61.8

(c)

[GeV]TotTm

Eve

nts/

GeV

0.5

1

1.5

2

2.5

3Multi-jet Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/A

[GeV]TotTm

0 100 200 300 400 500 600 700 800 900 1000Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(d)

Figure 21: Validation region distributions: (a) ΣET, (b) EmissT , (c) visible mass mvis

ττ , (d) mTotT .

Figs 20 and 21 show the distributions of the taus kinematics and event variables in the multi-jet validation486

region.487

5.2. W (→ τν)+jets background estimation488

Additional to the correction using the fake rates described in Section 5.3, special care has to be taken489

to estimate the W (→ τν)+jets background. In order that enough events remain after the event selection490

for a sufficient modelling of the W (→ τν)+jets background, Sherpa-generated samples that are split up491

using cuts on the W pT at the level of the matrix element calculation are used. This slicing of the sample492

phase space enhances the statistical population of events in regions relevant for this analysis significantly.493

Samples sliced in boson mass instead, generated by Powheg and showered using Pythia8, were tested, too,494

but the number of events in the signal region was far too small to estimate the background correctly. In the495

Sherpa samples modelling issues were observed and corrected as described in the following sections.496

9th May 2016 – 16:38 36

Page 37: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

5.2.1. Simulation of spin effects497

The version of Sherpa used to generate the samples exceeded the acceptable generation time and hence498

the spin correlation of the W and its decay products was switched off. This results in incorrectly modelled499

tau decay distributions. To correct this the W (→ τν)+jets events are weighted using the TauSpinner500

program [75–77], developed to simulate spin effects in taus from boson decays. A validation of this501

reweighting at generator level for Sherpa is described in [78], the key plots are shown in Fig 22.502

)0π+E±π

)/(E0π-E±π

= (EΥ-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Υ1/

N d

N/d

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035τν0h±h→±τ

Sherpa

Sherpa + TauSpinner

Powheg

ATLAS Internal

(a)

)0π+E±π

)/(E0π-E±π

= (EΥ-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Υ1/

N d

N/d

0

0.01

0.02

0.03

0.04

0.05

τν02h±h→±τSherpa

Sherpa + TauSpinner

Powheg

ATLAS Internal

(b)

)0π+E±π

)/(E0π-E±π

= (EΥ-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Υ1/

N d

N/d

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

τν0h±3h→±τSherpa

Sherpa + TauSpinner

Powheg

ATLAS Internal

(c)

*)θcos(

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

*)θ1/

N d

N/d

cos(

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035 decaysτall

Sherpa

Sherpa + TauSpinner

Powheg

ATLAS Internal

(d)

Figure 22: Validation plots for TauSpinner reweighting of W (→ τν)+jets Sherpa samples. The reweighted distri-butions are compared to corresponding Powheg samples. The Y variable corresponds to the asymmetry betweenthe energy of charged and neutral hadrons in the tau decay. [78]

5.2.2. Sherpa Shape Reweighting503

The W+jets description for Sherpa and Powheg samples is compared in a W (→ µν)+jets control region.504

Based on lepton universality, the selection is representative for the main region.505

The same data quality requirements (GRL, error flags) as in the main selection (cf. 4) are required. Events506

are triggered by either one of the single muon triggers HLT_mu24_iloose_L1Mu15 and HLT_mu50. After507

the tau candidates are selected to have at least 55GeVin pT, additionally to the preselection criteria508

described in Section 3.1, the event is required to have at least one remaining τhad-vis candidate. A veto of509

9th May 2016 – 16:38 37

Page 38: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

events with electrons with pT > 15GeVand loose LLH identification is applied. There has to be exactly510

one muon with pT > 110GeV, medium quality and matched to the trigger for the event to pass. Events511

with additional muons with pT > 7GeVand loose quality are vetoed. To reduce contributions from the512

multijet background, the muon has to be isolated using a gradient isolation algorithm which is expected513

to be 90(99)% efficient for muons of pT = 25(60) GeV. To suppress the multijet contamination, a cut on514

∆φ > 2.4 is applied.515

A clear disagreement between data and background prediction is observed when using Sherpa to simulate516

the W (→ µν)+jets contribution. In Figures 23 and 24 some distributions are shown for comparison using517

Powheg and Sherpa.518

even

ts

1

10

210

310

410

510DataWmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS

[GeV]T

pµ50 100 150 200 250 300 350 400 450 500

Dat

a/M

C

0.5

1

1.5stat.stat.stat.stat.

(a)

even

ts

10

210

310

DataWmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS

[GeV]T

pτ50 100 150 200 250 300

Dat

a/M

C

0.5

1

1.5 stat.stat.stat.stat.

(b)ev

ents

1

10

210

310

410DataWmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS

[GeV]missTE

0 50 100 150 200 250 300 350 400

Dat

a/M

C

0.5

1

1.5 stat.stat.stat.stat.

(c)

even

ts

1

10

210

310

410

510DataWmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS

[GeV]T

pµ50 100 150 200 250 300 350 400 450 500

Dat

a/M

C

0.5

1

1.5 stat.stat.stat.stat.

(d)

even

ts

10

210

310

410 DataWmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS

[GeV]T

pτ50 100 150 200 250 300

Dat

a/M

C

0.5

1

1.5 stat.stat.stat.stat.

(e)

even

ts

1

10

210

310

410DataWmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS

[GeV]missTE

0 50 100 150 200 250 300 350 400

Dat

a/M

C

0

1

2

3 stat.stat.stat.stat.

(f)

Figure 23: Distributions for muon pT (a, d), tau pT (b, e) and EmissT (c, e) are shown with W+jets estimation by

Sherpa (top) and Powheg (bottom).

To correct for this behaviour a reweighting function is determined, to be applied on the W (→ τν)+jets519

Sherpa samples in the signal region and same-sign control region. A one-dimensional exponential520

correction in dependence of the total transversemass proved to yield the best results. The resulting function521

is exp(a+ b×mtotT ), with mtot

T given in GeV and a = 0.321±0.053, b = −(2.03±0.17)×10−3 GeV−1. It is522

obtained by fitting the ratio of the difference of data and all background predictions besidesW (→ µν)+jets523

to the MC estimate for W (→ µν)+jets. 3 As shown in Fig. 25 the correction results in a greatly improved524

description for all considered observables.525

3 This reweighting procedure changed compared to the preliminary result of December 2015. Before the reweighting wasdetermined using the ratio between PowhegPythia8 and Sherpa W+jets samples. Additionally a global scale factor and

9th May 2016 – 16:38 38

Page 39: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

even

ts

1

10

210

310

410DataWmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS

[GeV]totTm

100 200 300 400 500 600 700 800 900 1000

Dat

a/M

C

0.5

1

1.5 stat.stat.stat.stat.

(a)ev

ents

10

210

310

410DataWmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS

[GeV]Tm0 50 100 150 200 250 300

Dat

a/M

C

0.5

1

1.5stat.stat.stat.stat.

(b)

even

ts

1

10

210

310

410

510DataWmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLASData

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLASData

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLASData

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS

φ ∆ cos ∑1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

Dat

a/M

C

0.5

1

1.5 stat.stat.stat.stat.

(c)

even

ts

1

10

210

310

410

DataWmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS

[GeV]totTm

100 200 300 400 500 600 700 800 900 1000

Dat

a/M

C

0.5

1

1.5 stat.stat.stat.stat.

(d)

even

ts

10

210

310

410DataWmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS

[GeV]Tm0 50 100 150 200 250 300

Dat

a/M

C

0.6

0.8

1

1.2

1.4stat.stat.stat.stat.

(e)

even

ts

1−10

1

10

210

310

410

510 DataWmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLASData

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLASData

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLASData

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS

φ ∆ cos ∑1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

Dat

a/M

C0.5

1

1.5 stat.stat.stat.stat.

(f)

Figure 24: Distributions for mtotT (a, d), mT

(µ, Emiss

T

)(b, e) and

∑cos∆φ (c, e) are shown with W+jets estimation

by Sherpa (top) and Powheg (bottom).

5.3. Modelling of fake taus in MC backgrounds526

Backgrounds that are estimated using Monte Carlo simulation mostly contain at least one jet that is527

misidentified as a τhad-vis. As shown in Fig. 26 and 27, the tau misidentification efficiency (fake rate) is not528

modelled well in Monte Carlo events and therefore a data-driven correction is applied to the Monte Carlo.529

For τhad-vis in MC that are known to be misidentified, i.e. they are not truth-matched, instead of checking530

the jet BDT rejection discriminant, a fake rate is applied as an event weight. In addition to correcting the531

background yield this also increases the statistics of these fake backgrounds, allowing for a more precise532

description especially in the high energy tails of the distributions.533

In a control region similar to the W (→ µν)+jets region described in Sec. 5.2.2, but lower pT thresholds534

(muon pT > 55 GeV, tau pT > 50 GeV), the fake rates are measured separately for top and W (→ µν)+jets535

backgrounds.536

The further selection for the W (→ µν)+jets control region is described in Sec. 5.3.1, for the top control537

region in Sec. 5.3.2.538

uncertainty was applied, which according to more recent studies is no longer necessary.

9th May 2016 – 16:38 39

Page 40: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

even

ts

1

10

210

310

410

510DataWmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS

[GeV]T

pµ50 100 150 200 250 300 350 400 450 500

Dat

a/M

C

0.5

1

1.5 stat.stat.stat.stat.

(a)ev

ents

10

210

310

DataWmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS

[GeV]T

pτ50 100 150 200 250 300

Dat

a/M

C

0.60.8

1

1.21.4

stat.stat.stat.stat.

(b)

even

ts

1

10

210

310

DataWmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS

[GeV]missTE

0 50 100 150 200 250 300 350 400

Dat

a/M

C

0.5

1

1.5 stat.stat.stat.stat.

(c)

even

ts

1

10

210

310

410DataWmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS

[GeV]totTm

100 200 300 400 500 600 700 800 900 1000

Dat

a/M

C

0.5

1

1.5 stat.stat.stat.stat.

(d)

even

ts

10

210

310

410DataWmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS

[GeV]Tm0 50 100 150 200 250 300

Dat

a/M

C

0.8

1

1.2stat.stat.stat.stat.

(e)

even

ts

1

10

210

310

410

DataWmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLASData

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLASData

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLASData

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS

φ ∆ cos ∑1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

Dat

a/M

C0.5

1

1.5 stat.stat.stat.stat.

(f)

Figure 25: Distributions for muon pT (a), tau pT (b) and EmissT (c), mtot

T (d), mT(µ, Emiss

T

)(e) and

∑cos∆φ (f) are

shown after applying a reweighting determined from data in mtotT to the Sherpa W (→ µν)+jets.

5.3.1. W (→ µν)+jets control region539

To further suppress the multijet contamination, cuts on∑`=µ,τ cos∆φ(`, Emiss

T ) < 0 and ∆φ > 2.4 are540

applied. On top of that, events with b-tagged jets are vetoed, primarily reducing the amount of top541

background. The same definition of b-tagged jets as in the main analysis is used.542

The selection results in a purity of 88%W (→ µν)+jets, measured as the number of events in Monte Carlo543

divided by the data yield. In Fig. 28 there are distributions of several event observables in this control544

region.545

5.3.2. Top control region546

A control region with 81% purity is achieved by requiring at least one b-tagged jet, using the same b-jet547

identification as in the main analysis. Distributions of this control region are shown in Fig. 29.548

This control region has a similar composition of top Monte Carlo samples as the signal region. The549

fraction of tt is 89% in both cases. The control region has 7% Wt and 4% single-top, while the signal550

region has 10% Wt and 1% single-top.551

9th May 2016 – 16:38 40

Page 41: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

[GeV]T

pτ50 100 150 200 250 300

fake

rat

e

0.1

0.15

0.2

0.25

0.3

0.35 data

top MC = 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS

(a) 1-prong opposite-sign

[GeV]T

pτ50 100 150 200 250 300

fake

rat

e

0

5

10

15

20

25

30

3−10×

data

top MC = 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS

(b) 3-prong opposite-sign

[GeV]T

pτ50 100 150 200 250 300

fake

rat

e

0.05

0.1

0.15

0.2

0.25data

top MC = 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS

(c) 1-prong same-sign

[GeV]T

pτ50 100 150 200 250 300

fake

rat

e

2

4

6

8

10

12

14

16

18

20

22

3−10×

data

top MC = 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS

(d) 3-prong same-sign

Figure 26: Shown is the fake rate for the loose ID working point in the top control region in data compared to thetop Monte Carlo sample. It is split into opposite-sign (top) and same-sign (bottom), as well as 1-prong (left) and3-prong (right)

The top control region has a significant contamination of true tau background. For the fake rate calculation552

this contribution is subtracted using Monte Carlo prediction.553

5.3.3. Fake Rate Measurements554

The tau trigger also applies a jet BDT similar to the offline tau identification BDT and is behaving555

differently on Monte Carlo. Therefore, if the leading tau is not truth-matched, the trigger is not applied556

and instead a fake rate that includes the trigger criterion is applied. To check the result of the online tau ID,557

the subleading tau is matched to the resurrected trigger decision of the HLT_tau25_medium1_tracktwo558

trigger, which uses the same jet BDT as the single-tau trigger used for the main selection. The fake rates559

are binned in the pT of the τhad-vis and are measured for the same-sign and opposite-sign categories, for560

9th May 2016 – 16:38 41

Page 42: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

[GeV]T

pτ50 100 150 200 250 300

fake

rat

e

0.08

0.1

0.12

0.14

0.16

0.18

0.2data

W MC = 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS

(a) 1-prong opposite-sign

[GeV]T

pτ50 100 150 200 250 300

fake

rat

e

5

10

15

20

25

30

35

40

453−10×

data

W MC = 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS

(b) 3-prong opposite-sign

[GeV]T

pτ50 100 150 200 250 300

fake

rat

e

0.05

0.1

0.15

0.2

0.25

data

W MC = 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS

(c) 1-prong same-sign

[GeV]T

pτ50 100 150 200 250 300

fake

rat

e

0

2

4

6

8

10

12

14

16

18

3−10×

data

W MC = 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS

(d) 3-prong same-sign

Figure 27: Shown is the fake rate for the loose ID working point in the W (→ µν)+jets control region in datacompared to the W (→ µν)+jets Monte Carlo sample. It is split into opposite-sign (top) and same-sign (bottom), aswell as 1-prong (left) and 3-prong (right)

1prong and 3prong taus each. In Fig. 30 the fake rates for loose (to be applied for fake subleading taus)561

and medium+trigger (to be applied for fake leading taus) are shown. The fake rates measured for W+jets562

are applied to other MC backgrounds, besides top, as well.563

In the region with a b-tag cut theW (→ µν)+jets process is no longer the leading contribution and therefore564

it is not feasible to explicitly measure W+jets fake rates for the b-tag category. To estimate the difference565

of these fake rates between b-tag and b-veto categories, the fraction of quark initiated jets that are matched566

to the tau candidate is studied in Monte Carlo, since this fraction is the main determinant of the fake rate.567

As shown in Fig. 31 there is no significant difference in the fraction of tau fakes matched to a quark jet568

between an inclusive and b-tagged selection and therefore fake rates measured in the b-veto control region569

are applicable in b-tag regions as well.570

However, the fraction of quark → tau fakes is different between top and W backgrounds (cf. Fig. 32),571

9th May 2016 – 16:38 42

Page 43: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

even

ts

1

10

210

310

410

DataWmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS

[GeV]totTm

100 200 300 400 500 600 700 800 900 1000

Dat

a/M

C

0.5

1

1.5 stat.stat.stat.stat.

(a)

even

ts

10

210

310

410

DataWmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS

[GeV]T

pτ50 100 150 200 250 300

Dat

a/M

C

0.8

1

1.2stat.stat.stat.stat.

(b)

even

ts

1

10

210

310

410

DataWmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS

[GeV]T

pµ50 100 150 200 250 300 350 400 450 500

Dat

a/M

C

0.5

1

1.5 stat.stat.stat.stat.

(c)

even

ts

1

10

210

310

410

DataWmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

WmunuTopWtaunuZmumuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS

[GeV]missTE

0 50 100 150 200 250 300 350 400

Dat

a/M

C

0.5

1

1.5 stat.stat.stat.stat.

(d)

Figure 28: Event observables in the W (→ µν)+jets control region. Reweighted Sherpa samples are used for theW+jets background. Plotted are: mtot

T (a), τpT (b), muon pT (c) and EmissT (d)

which results in different fake rates and emphasises the importance of the separate control regions. The572

W (→ τν)+jets fake fraction measurement suffers from low statistics, especially in the b-tagged category.573

However, the W (→ τν)+jets background plays a very minor role in the b-tag category.574

6. Systematic Uncertainties575

6.1. Luminosity576

The integrated luminositymeasurement has an uncertainty of 5%. This systematic uncertainty is applied to577

all the signal and backgrounds processes with the exception of the QCD background, which it is estimated578

from data.579

9th May 2016 – 16:38 43

Page 44: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

even

ts

1−10

1

10

210

310

410DatattbarWtSingleTopWmunuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

ttbarWtSingleTopWmunuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

ttbarWtSingleTopWmunuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS

[GeV]totTm

100 200 300 400 500 600 700 800 900 1000

Dat

a/M

C

0.5

1

1.5 stat.stat.stat.stat.

(a)

even

ts

10

210

310

DatattbarWtSingleTopWmunuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

ttbarWtSingleTopWmunuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

ttbarWtSingleTopWmunuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS

[GeV]T

pτ50 100 150 200 250 300

Dat

a/M

C

0.5

1

1.5 stat.stat.stat.stat.

(b)

even

ts

1−10

1

10

210

310

410DatattbarWtSingleTopWmunuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

ttbarWtSingleTopWmunuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

ttbarWtSingleTopWmunuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS

[GeV]T

pµ50 100 150 200 250 300 350 400 450 500

Dat

a/M

C

0.5

1

1.5 stat.stat.stat.stat.

(c)

even

ts

1−10

1

10

210

310

410DatattbarWtSingleTopWmunuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

ttbarWtSingleTopWmunuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Data

ttbarWtSingleTopWmunuOthers

= 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS

[GeV]missTE

0 50 100 150 200 250 300 350 400

Dat

a/M

C

0.5

1

1.5 stat.stat.stat.stat.

(d)

Figure 29: Event observables in the top control region. Reweighted Sherpa samples are used for the W+jetsbackground. Plotted are: mtot

T (a), τpT (b), muon pT (c) and EmissT (d)

6.2. Detector-related uncertainties580

Uncertainties relating to the detector simulation are included for signal and for backgrounds that are581

estimated using simulated samples. These systematics include uncertainty associated with:582

• the τhad reconstruction and identification efficiencies,583

• the τhad trigger scale factor,584

• the τhad electron veto,585

• the electron and muon trigger, reconstruction and identification efficiencies,586

• jet, electron, muon and τhad energy scales,587

• jet energy resolution and calibration,588

9th May 2016 – 16:38 44

Page 45: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

[GeV]T

pτ50 100 150 200 250 300

fake

rat

e

0.05

0.1

0.15

0.2

0.25

0.3

0.35 SS top

OS top

SS W+jets

OS W+jets = 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS

(a) Loose-ID 1-prong

[GeV]T

pτ50 100 150 200 250 300

fake

rat

e

0

5

10

15

20

25

30

3−10×

SS top

OS top

SS W+jets

OS W+jets = 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS

(b) Loose-ID 3-prong

[GeV]T

pτ50 100 150 200 250 300

fake

rat

e

0

0.05

0.1

0.15

0.2

0.25

0.3 SS top

OS top

SS W+jets

OS W+jets = 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS

(c) Trigger+Medium-ID 1-prong

[GeV]T

pτ50 100 150 200 250 300

fake

rat

e

0

2

4

6

8

10

12

14

163−10×

SS top

OS top

SS W+jets

OS W+jets = 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS

(d) Trigger+Medium-ID 3-prong

Figure 30: Tau fake rates measured in the W (→ µν)+jets and top control regions in data for the loose working point(top) and medium working point including the trigger (bottom). It is split in 1-prong (left) and 3-prong (right) andaccording to the charge product of the two leading taus.

• calibration of the EmissT ,589

• jet flavour tagging systematics.590

Any systematic effect on the the overall normalisation or shape of the mTotT distribution in the signal region591

is considered. These uncertainties are also taken into account for simulated samples that are used in the592

development of data-driven methods. The electron, muon, jet and EmissT systematics described above are593

found to produce negligible effect in the signal region. The dominant largest up and down systematic594

deviations in MC background and signal are shown in Tables 8 and 9 for the tagged and veto categories,595

respectively. Figure. 33 shows the effect of the τ energy scale systematic on a gluon fusion signal sample,596

as well as various MC background, where a shape systematic is clearly visible in the former. AtlasFast-II597

simulation has been used for the detector simulation of the bbH samples and corresponding detector598

uncertainties have been used. The tau reconstruction and energy scale uncertainties contain additional599

9th May 2016 – 16:38 45

Page 46: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

[GeV]T

pτ50 100 150 200 250 300

rela

tive

diffe

renc

e

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8Top

ντ→W

= 13 TeVs SimulationATLAS

(a) opposite sign

[GeV]T

pτ50 100 150 200 250 300

rela

tive

diffe

renc

e

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8Top

ντ→W

= 13 TeVs SimulationATLAS

(b) same sign

Figure 31: Relative difference of fractions of fake subleading taus that are matched to a quark-initiated jet, for theb-tag divided by inclusive category.

[GeV]T

pτ50 100 150 200 250 300

frac

tion

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Top

ντ→W

= 13 TeVs

SimulationATLAS

(a) opposite sign

[GeV]T

pτ50 100 150 200 250 300

frac

tion

0.75

0.8

0.85

0.9

0.95

1

1.05

Top

ντ→W

= 13 TeVs SimulationATLAS

(b) same sign

Figure 32: Fraction of fake subleading taus that are matched to a quark-initiated jet for opposite sign (left) andsame-sign (right) for top and W (→ τν)+jets for the inclusive selection.

high-pT uncertainties.600

Using the b-tag and b-veto categories introduces additional systematics uncertainties on the event selection601

and final distributions. These come from the jets themselves as well as from flavour tagging of the jets.602

These systematics where assessed in both signal and control regions and are tested for normalisation and603

shape effects. Grouped jet systematic distributions for the tagged and veto signal regions for different604

backgrounds are shown in Figure. 34 and don’t show a statistically significant systematic effect. The605

effect of uncertainties in the flavour tagging scale factors where also accessed in both the tagged and veto606

categories and found to be negligible, as seen in Figure. 35607

9th May 2016 – 16:38 46

Page 47: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

Table 8: The effect in % of the dominant detector systematic uncertainties on the final event yield in backgroundevents passing the b-tag event selection. Many systematic uncertainties that have little effect (< 1 %) on overallyield are not shown.

b-tagSystematic QCD Top Wtaunu Ztautau Others bbH (500 GeV) ggH (500 GeV)

fake factor 17.1−17.1 - - - - - -

τ trigger −1.61.9

18.0−15.4

7.2−6.1

21.9−19.3

8.4−7.4

26.3−24.1

24.9−22.3

τ ID - 10.9−10.3

6.2−6.2

12.6−11.9

3.9−3.9

12.0−11.3

11.8−11.1

τ ID high-pT - 1.0−1.0 - 1.6

−1.6 - 2.4−2.4

2.2−2.2

τ e-veto - 2.7−2.7

1.5−1.5

3.3−3.2

1.0−1.0

4.7−4.7

4.0−3.9

τ Reco - 3.9−3.8

2.5−2.5

4.7−4.6

1.5−1.5

4.5−4.4

4.6−4.5

TES “DETECTOR” - 8.6−7.4

4.5−4.8

4.9−10.8

0.0−0.8

1.8−2.2

0.0−4.5

TES “MODEL” - 1.8−0.4

0.9−1.7

2.6−0.1

0.0−0.0

0.3−0.4

0.0−0.0

TES “INSITU” - 6.8−4.3

2.3−6.7

4.5−6.8

0.0−1.0

1.2−1.3

0.0−0.9

fake rate - 4.9−5.7

9.3−8.5 - 12.4

−11.0 - -

pileup reweighting - 3.6−3.4

−15.52.1

−5.14.6

−25.92.1

3.8−1.7

6.51.3

JVT SF - 3.9−3.7

3.9−3.7

2.9−2.9

4.6−4.4

3.4−3.3

3.6−3.5

btag eff. (L 0) - - −3.83.8

−4.54.5

−7.67.6 - −5.9

5.9

btag eff. (L 1) - - - - - - −1.21.2

btag eff. (B 0) - −2.22.1

−2.32.3

−1.91.9

−1.41.3

−3.63.6

−2.82.8

btag eff. (C 0) - - −4.64.6

−4.14.2

−3.93.8 - −3.1

3.0

btag eff. (C 1) - - 2.5−2.5

2.4−2.4

2.2−2.2 - 2.0

−2.0JES NP 1 - 0.0

−0.50.8−0.1

2.7−1.9

0.3−0.2

1.2−1.3

1.4−3.1

JES NP 2 - 0.0−0.0

0.0−0.3

0.0−0.1

0.1−0.1

0.4−0.0

0.0−0.0

JES NP 3 - 0.0−0.0

0.1−0.2

0.0−0.1

0.0−0.1

0.5−0.0

2.0−2.0

JER - 0.6−0.6

1.0−1.0

1.6−1.6

5.9−5.9

0.7−0.7

0.5−0.5

9th May 2016 – 16:38 47

Page 48: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

Table 9: The effect in % of the dominant detector systematic uncertainties on the final event yield in backgroundevents passing the full b-veto event selection. Many systematic uncertainties that have little effect (< 1 %) on overallyield are not shown.

b-vetoSystematic QCD Top Wtaunu Ztautau Others bbH (500 GeV) ggH (500 GeV)

fake factor 6.8−6.8 - - - - - -

τ trigger - 18.3−15.9

5.6−4.6

21.1−18.2

11.9−10.4

26.0−23.9

25.7−23.5

τ ID - 10.5−10.0

6.6−6.6

12.5−11.8

6.9−6.5

12.0−11.4

11.9−11.2

τ ID high-pT - 1.0−1.0 - 1.5

−1.4 - 2.3−2.3

2.3−2.2

τ e-veto - 2.7−2.6

1.3−1.3

3.3−3.2

1.7−1.7

4.7−4.7

3.8−3.8

τ Reco - 3.8−3.7

2.4−2.4

4.6−4.5

2.6−2.5

4.5−4.4

4.5−4.4

TES “DETECTOR” - 6.7−6.2

5.4−4.6

11.0−10.1

6.1−3.6

1.4−1.5

2.0−2.3

TES “MODEL” - 0.8−1.9

1.2−0.0

1.4−1.6

2.0−0.7

0.3−0.5

0.4−0.5

TES “INSITU” - 5.8−5.5

4.3−2.4

6.3−4.9

3.5−2.4

0.9−0.8

1.2−1.4

fake rate - 5.4−6.2

9.5−8.7 - 8.0

−7.0 - -

pileup reweighting - −3.84.3

6.11.7 - −1.5

1.2 - 1.1−0.6

JVT SF - 3.6−3.4

2.1−2.0

1.2−1.2

1.9−1.8

1.8−1.8

1.7−1.6

btag eff. (B 0) - 4.4−4.2 - - - 1.7

−1.7 -

btag eff. (B 1) - 1.6−1.6 - - - - -

JES NP 1 - 1.5−0.2

0.2−0.3

0.1−0.1

0.2−0.2

0.8−0.7

0.2−0.1

JES NP 2 - 0.2−0.0

0.0−0.0

0.0−0.0

0.0−0.0

0.0−0.2

0.0−0.0

JES NP 3 - 0.1−0.0

0.0−0.0

0.0−0.0

0.0−0.0

0.0−0.2

0.0−0.0

JER - 1.9−1.9

0.0−0.0

0.0−0.0

0.2−0.2

0.6−0.6

0.1−0.1

9th May 2016 – 16:38 48

Page 49: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

TAU_TAU_MTOT200 300 400 500 600 700 800 900 1000

Syste

matic / N

om

inal

0

0.5

1

1.5

2

2.5

TAUS_TRUEHADTAU_SME_TES_TOTAL_1down

Nominal (Stat. Unc.)

ATLAS MC Internal PoPy8_ggH500W5 BTAG OS

TAU_TAU_MTOT200 300 400 500 600 700 800 900 1000

Syste

matic / N

om

inal

0

0.5

1

1.5

2

2.5

TAUS_TRUEHADTAU_SME_TES_TOTAL_1up

Nominal (Stat. Unc.)

ATLAS MC Internal PoPy8_ggH500W5 BTAG OS

(a)

TAU_TAU_MTOT200 300 400 500 600 700 800 900 1000

Syste

matic / N

om

inal

0

0.5

1

1.5

2

2.5

TAUS_TRUEHADTAU_SME_TES_TOTAL_1down

Nominal (Stat. Unc.)

ATLAS MC Internal PoPy8_Ztautau BTAG OS

TAU_TAU_MTOT200 300 400 500 600 700 800 900 1000

Syste

matic / N

om

inal

0

0.5

1

1.5

2

2.5

TAUS_TRUEHADTAU_SME_TES_TOTAL_1up

Nominal (Stat. Unc.)

ATLAS MC Internal PoPy8_Ztautau BTAG OS

(b)

TAU_TAU_MTOT200 300 400 500 600 700 800 900 1000

Syste

matic / N

om

inal

0

0.5

1

1.5

2

2.5

TAUS_TRUEHADTAU_SME_TES_TOTAL_1down

Nominal (Stat. Unc.)

ATLAS MC Internal Sh_Wtaunu BTAG OS

TAU_TAU_MTOT200 300 400 500 600 700 800 900 1000

Syste

matic / N

om

inal

0

0.5

1

1.5

2

2.5

TAUS_TRUEHADTAU_SME_TES_TOTAL_1up

Nominal (Stat. Unc.)

ATLAS MC Internal PoPy_top BTAG OS

(c)

TAU_TAU_MTOT200 300 400 500 600 700 800 900 1000

Syste

matic / N

om

inal

0

0.5

1

1.5

2

2.5

TAUS_TRUEHADTAU_SME_TES_TOTAL_1down

Nominal (Stat. Unc.)

ATLAS MC Internal PoPy_top BTAG OS

TAU_TAU_MTOT200 300 400 500 600 700 800 900 1000

Syste

matic / N

om

inal

0

0.5

1

1.5

2

2.5

TAUS_TRUEHADTAU_SME_TES_TOTAL_1up

Nominal (Stat. Unc.)

ATLAS MC Internal Sh_Wtaunu BTAG OS

(d)

Figure 33: Ratio of down (left) and up (right) τ energy scale systematic w.r.t nominal in the mTotT distribution for (a)

500 gluon fusion signal and (b) Z → ττ (c) W → τν and (d) Top.

6.3. Uncertainties on data-driven background estimations608

Fake Factor measurement:609

The estimation of the QCD multi-jet background is performed by measuring the TauID fake factor for610

jets in the dijet control region, as described in Section 5. The uncertainty on the fake factor measurement611

is obtained as the sum in quadrature of the statistical uncertainty of the measurement and the difference612

between the fake factor for same-sign and opposite-sign events. The corresponding fake factor measure-613

ment and uncertainties are shown in Table. 10. The effect of the fake factor measurement uncertainty is614

propagated to the QCD background in the statistical analysis.615

Fake rate measurement:616

As the fake rates are determined from data, the main systematic uncertainty comes from the statistical617

9th May 2016 – 16:38 49

Page 50: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

TAU_TAU_MTOT200 300 400 500 600 700 800 900 1000

Syste

matic / N

om

inal

0

0.5

1

1.5

2

2.5

JET_GroupedNP_1_1down

Nominal (Stat. Unc.)

ATLAS MC Internal PoPy8_Ztautau BTAG OS

TAU_TAU_MTOT200 300 400 500 600 700 800 900 1000

Syste

matic / N

om

inal

0

0.5

1

1.5

2

2.5

JET_GroupedNP_1_1down

Nominal (Stat. Unc.)

ATLAS MC Internal PoPy8_Ztautau BVETO OS

(a)

TAU_TAU_MTOT200 300 400 500 600 700 800 900 1000

Syste

matic / N

om

inal

0

0.5

1

1.5

2

2.5

JET_GroupedNP_1_1down

Nominal (Stat. Unc.)

ATLAS MC Internal Sh_Wtaunu BTAG OS

TAU_TAU_MTOT200 300 400 500 600 700 800 900 1000

Syste

matic / N

om

inal

0

0.5

1

1.5

2

2.5

JET_GroupedNP_1_1down

Nominal (Stat. Unc.)

ATLAS MC Internal Sh_Wtaunu BVETO OS

(b)

TAU_TAU_MTOT200 300 400 500 600 700 800 900 1000

Syste

matic / N

om

inal

0

0.5

1

1.5

2

2.5

JET_GroupedNP_1_1down

Nominal (Stat. Unc.)

ATLAS MC Internal PoPy_top BTAG OS

TAU_TAU_MTOT200 300 400 500 600 700 800 900 1000

Syste

matic / N

om

inal

0

0.5

1

1.5

2

2.5

JET_GroupedNP_1_1down

Nominal (Stat. Unc.)

ATLAS MC Internal PoPy_top BVETO OS

(c)

TAU_TAU_MTOT200 300 400 500 600 700 800 900 1000

Syste

matic / N

om

inal

0

0.5

1

1.5

2

2.5

JET_GroupedNP_1_1down

Nominal (Stat. Unc.)

ATLAS MC Internal Other_BKG BTAG OS

TAU_TAU_MTOT200 300 400 500 600 700 800 900 1000

Syste

matic / N

om

inal

0

0.5

1

1.5

2

2.5

JET_GroupedNP_1_1down

Nominal (Stat. Unc.)

ATLAS MC Internal Other_BKG BVETO OS

(d)

Figure 34: Ratio of b-tag (left) and b-veto (right) grouped jet systematic w.r.t the nominal in the mTotT distribution

for (a) Z+τν (b) W+τν (c) Top and (d) Other backgrounds.

uncertainty of the fake rate measurement. The fake rate systematic variation is of ±30%.618

6.4. Uncertainty on W reweighting619

As a systematic uncertainty for the exponential reweighting described in Sec. 5.2.2, the envelope of the620

fit parameter uncertainties are used, i.e. a and b are varied up and down simultaneously. This variation621

results in a significant dependence on mtotT , as shown in Fig 36, and is therefore taken as shape uncertainty622

in the limit fits.623

9th May 2016 – 16:38 50

Page 51: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

TAU_TAU_MTOT200 300 400 500 600 700 800 900 1000

Syste

matic / N

om

inal

0

0.5

1

1.5

2

2.5

sf_MVX_FT_EFF_Eigen_Light_0_1down

Nominal (Stat. Unc.)

ATLAS MC Internal PoPy8_Ztautau BTAG OS

TAU_TAU_MTOT200 300 400 500 600 700 800 900 1000

Syste

matic / N

om

inal

0

0.5

1

1.5

2

2.5

sf_MVX_FT_EFF_Eigen_Light_0_1up

Nominal (Stat. Unc.)

ATLAS MC Internal PoPy8_Ztautau BTAG OS

(a)

TAU_TAU_MTOT200 300 400 500 600 700 800 900 1000

Syste

matic / N

om

inal

0

0.5

1

1.5

2

2.5

sf_MVX_FT_EFF_Eigen_B_0_1down

Nominal (Stat. Unc.)

ATLAS MC Internal PoPy8_Ztautau BTAG OS

TAU_TAU_MTOT200 300 400 500 600 700 800 900 1000

Syste

matic / N

om

inal

0

0.5

1

1.5

2

2.5

sf_MVX_FT_EFF_Eigen_B_0_1up

Nominal (Stat. Unc.)

ATLAS MC Internal PoPy8_Ztautau BTAG OS

(b)

TAU_TAU_MTOT200 300 400 500 600 700 800 900 1000

Syste

matic / N

om

inal

0

0.5

1

1.5

2

2.5

sf_MVX_FT_EFF_Eigen_C_0_1down

Nominal (Stat. Unc.)

ATLAS MC Internal PoPy8_Ztautau BTAG OS

TAU_TAU_MTOT200 300 400 500 600 700 800 900 1000

Syste

matic / N

om

inal

0

0.5

1

1.5

2

2.5

sf_MVX_FT_EFF_Eigen_C_0_1up

Nominal (Stat. Unc.)

ATLAS MC Internal PoPy8_Ztautau BTAG OS

(c)

Figure 35: Ratio of down (left) and up (right) jet flavour tagging scale factor systematics w.r.t the nominal in themTot

T distribution for (a) light (b) b-jets and (c) c-jets in Z+τν.

Table 10: Fake factor measurement and relative uncertainty for 1-prong and 3-prong events as a function of thesub-leading tau candidate pT.

50-110 GeV 110-160 GeV 160-210 GeV 210-1000 GeV1-prong b-tag 0.11 ± 15% 0.16 ± 12% 0.19 ± 16% 0.20 ± 13%1-prong b-veto 0.077 ± 3.9% 0.120 ± 4.1% 0.151 ± 4.5% 0.174 ± 2.4%3-prong b-tag 0.0051 ± 26% 0.0073 ± 17% 0.0093 ± 32% 0.0107 ± 12%3-prong b-veto 0.0033 ± 6.2% 0.0065 ± 7.0% 0.0076 ± 9.4% 0.0103 ± 8.0%

6.5. Background Cross section uncertainties624

Theoretical cross section uncertainties have been applied to the MC background samples used in this625

analysis. The uncertainties for Z+jets and diboson production are 5% and 6%, respectively, from [79].626

For top pair and single top production the uncertainty is 6% following the twiki recommendations4.627

4 https://twiki.cern.ch/twiki/bin/view/LHCPhysics/SingleTopRefXsec#Predictions_at_7_8_13_and_14_TeV andhttps://twiki.cern.ch/twiki/bin/view/LHCPhysics/TtbarNNLO#Top_quark_pair_cross_sections_at

9th May 2016 – 16:38 51

Page 52: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

even

ts

1−10

1Nominal

WTAUNUREWEIGHT__1 up

WTAUNUREWEIGHT__1 down = 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Nominal

WTAUNUREWEIGHT__1 up

WTAUNUREWEIGHT__1 down = 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Nominal

WTAUNUREWEIGHT__1 up

WTAUNUREWEIGHT__1 down = 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS

totTm

150 200 250 300 350 400 450 500 550 600Rat

io to

Nom

inal

0.60.8

11.21.4

(a) b-tagev

ents

1−10

1

10

Nominal

WTAUNUREWEIGHT__1 up

WTAUNUREWEIGHT__1 down = 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS Nominal

WTAUNUREWEIGHT__1 up

WTAUNUREWEIGHT__1 down = 13 TeVs

-1dt L = 3.2 fb∫ InternalATLAS

totTm

200 300 400 500 600 700 800 900 1000Rat

io to

Nom

inal

0.8

1

1.2

(b) b-veto

Figure 36: Impact of W (→ τν)+jets reweighting uncertainty on mtotT distributions in the b-tag and b-veto categories.

6.6. Uncertainties on signal modelling628

Uncertainties related to signal modelling include the uncertainties associated with the initial and final629

state radiation, the modelling of multi-parton interactions, the normalisation and factorisation scale, and630

the parton distribution function.631

To estimate the impact of uncertainties of factorisation and renormalisation scales, these were varied by a632

factor of 2 up and down, including correlated and anti-correlated variations. The results of these variations633

are provided by the respective matrix element generator (aMcAtNlo for the b-associated production signal634

and Powheg for the gluon fusion signal) as vector of weights stored per event in the LHEF event record [80]635

and propagated to the showered samples. A selection close to the full analysis selection was implemented636

at particle level and the change in acceptance due to the differently weighted events was evaluated. The637

largest deviation from the nominal in each direction was taken as final scale uncertainty.638

To estimate the uncertainty due to the parton density function on the gluon fusion signal samples, LHEF639

weights vectors containing a weight for every PDF in PDF4LHC15_nlo_100 [81] are generated and640

variations of acceptance are evaluated like for the variation of the scales. For the b-associated production641

sample the nominal PDF is CT10_nlo_nf4 [82] and since at this time the 4-flavour scheme version of642

the PDF4LHC15 pdfs is not yet available instead the following pdfs are used to model the uncertainty:643

NNPDF30_nlo_as_0118_nf_4 [83], CT14nlo_NF4 [84] andMSTW2008nlo68cl_nf4 [85]. As an estimate644

for the acceptance for these pdfs in the b-associated signal samples the LHAPDF software package [86] was645

utilized to compute event weights. The envelope of the resulting variations in acceptance was chosen as646

combined pdf uncertainty.647

For the estimation of uncertainties arising due to ISR, FSR and MPI modelling, tune variations of the648

Pythia8 A14 tune [87] for the b-associated signal samples and of the AZNLO Pythia8 tune [88] for the649

gluon fusion samples were studied.650

9th May 2016 – 16:38 52

Page 53: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

variation 400 GeV 700 GeV 1000 GeV

scales +19.2−19.2

+20.3−20.1

+22.3−21.1

PDF +6.0−5.5

+13.1−15.5

+16.2−9.5

tune ±5 ±4 ±3

total (pos.) +20.7 +24.5 +27.7

total (neg.) -20.6 -25.7 - 23.3

Table 11: Signal acceptance uncertainties for b-associated production, b-tag category

variation 400 GeV 700 GeV 1000 GeV

scales +19.3−18.1

+21.4−20.3

+24.4−21.7

PDF +6.5−5.2

+10.5−9.0

+15.1−9.2

tune ±4 ±3 ±3

total (pos.) +20.8 +24.0 +28.9

total (neg.) -19.3 -22.4 - 23.8

Table 12: Signal acceptance uncertainties for b-associated production, b-veto category

variation 400 GeV 700 GeV 1000 GeV

scales +19−15

+19−16

+18−15

PDF ±4.9 ±4.7 ±4.1

tune ±21.3 ±17.4 ±16.1

total (pos.) +29.0 +26.2 +24.5

total (neg.) -26.5 -24.1 -22.4

Table 13: Signal acceptance uncertainties for gluon fusion production in btag category

The uncertainties are summarised in Tables 11, 12 and 13, 14. None of the considered generator parameter651

variations resulted in a statistically significant effect on the shape of the reconstructed mass distribution,652

so all the systematic effects are considered as normalisation uncertainties. In the limit only the combined653

uncertainty per mass point will be considered. The uncertainties for mass points that were not explicitly654

determined and listed here, are interpolated or extrapolated from the others.655

9th May 2016 – 16:38 53

Page 54: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

variation 400 GeV 700 GeV 1000 GeV

scales +15−13

+15−14

+15−14

PDF ±4.8 ±4.7 ±4.4

tune ±3.1 ±2.6 ±1.2

total (pos.) +16.1 +16.0 +15.7

total (neg.) -14.2 -15.0 -14.7

Table 14: Signal acceptance uncertainties for gluon fusion production in bveto category

category QCD scales Shower generator hard scatter generator combined

b-tag +26.6−17.6 ±4.5 ±26.9 +38.1

−32.5

b-veto +13.3−17.1 ±6.2 ±3.4 +15.0

−18.5

Table 15: The effect on the final event yield of the total top background for the uncertainty arising from the choiceof shower generator and hard scatter generator, given in percent.

6.7. Uncertainties on top modelling656

Uncertainties related to tt modelling include the uncertainties associated with the shower radiation and657

hadronisation model. To estimate the impact of these systematics, the POWHEG+Pythia6 factorisation658

and renormalisation scales are varied by a factor of 2 up and down, and the fragmentation model is659

also compared to the POWHEG+Herwig simulation. Additional uncertainties arising due to the hard scatter660

generation are estimated by comparison of a sample generated by aMcAtNlo and showered usingHerwig++661

to the sample generated by Powheg and showered by Herwig++. tt is the dominant contribution to the662

overall top background in the b-tag category, contributing 89% in total.663

Based on samples available, no statistically significant shape effect is observed for these systematic664

variations, only the effect on the normalisation is considered. The quadratically combined normalisa-665

tion systematic was determined as +15.0−18.5 % in b-veto and +38.1

−32.5 % in the b-tag category. The individual666

components are listed in Table 15.667

7. Z′ → ττ Signal models668

7.1. Signal estimation using Z/γ∗ → Z′ reweighting669

The Z ′ signal templates used in this analysis are obtained by reweighting the simulated Z/γ∗ → ττ sample670

in a similar fashion to what is done in the dilepton analysis [89]. However, a more sophisticated treatment671

is required to correctly account for the polarisation of the tau-leptons, which directly impacts the tau decay672

kinematics. Of most importance is the effect on the neutrino momentum fraction, as this directly impacts673

the reconstructed mtotT .674

9th May 2016 – 16:38 54

Page 55: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

A very detailed description of the reweighting technique using the TauSpinner algorithm [64] can be found675

in [90]. For completeness the main aspects shall be mentioned again.676

Since version 1.2 of TauSpinner, the algorithm allows reweighting for new resonances, such as Z ′ [91].677

The reweighting relies on information about the spin of the two tau leptons, which is obtained from the678

TauSpinner algorithm. This algorithm allows one to create samples with different tau polarisations from679

an initial sample by re-weighting events. The spin weight is defined as:680

wspin = Ri jhih j , (2)

where Ri j is a matrix describing the full spin correlation between the two taus as well as the individual681

spin states of the taus and hi, h j are the polarimetric vectors of the taus. The weight w used to reweight682

for new resonances is broken into three components: wSMspin, the spin weight for the SM Z/γ∗ process (as683

described above), wBSMspin , the spin weight for the new resonance and wσ , the cross section reweighting684

factor. The latter is defined as the the fraction of squared matrix elements of the new resonance and the685

SM DY process. The full weight to reweight Z/γ∗ events to Z ′ is:686

w =wBSM

spin

wSMspin

wσ =wBSM

spin

wSMspin

MZ′→ττf i

2

MZ/γ∗→ττf i

2 . (3)

The Z ′ decay width is calculated using Pythia8 for each model. In all models interference between Z ′ and687

Z/γ∗ is not included.688

7.2. Sequential Standard Model689

The SSM is utilized as a benchmark model, in various existing analyses, including searches for Z ′ → ``.690

In this model the couplings of the Z ′ are the same as for the SM Z boson.691

The reweighting provided by the TauSpinner algorithm, including the extension to allow reweighting for692

BSM processes, has been extensively validated [64, 90–92]. An additional cross-check to validate the693

reweighting at 13 TeV a simulated Z ′ signal sample is compared to Z/γ∗ → ττ reweighted to a signal694

with the same mass is described in Appendix E.3. Good agreement was found between simulated and695

reweighted signal.696

7.3. Modifications to the Sequential Standard Model697

Changes to the parameter of the Z ′ → ττ can have significant impact on the signal acceptance. In698

particular altering couplings to tau leptons changes polarisation and decay kinematics. This largely699

impacts the visible momentum fraction and this change in turn enters the analysis primarily through the700

pT thresholds of the reconstructed visible tau decay products and via the threshold on mtotT . The tau701

polarisation is most significantly affected by the ratio of the left and right handed coupling strengths of702

the tau-lepton. The polarisation can also be affected, but to a lesser degree, by the ratio of the left and703

right handed coupling strengths of the initial-state quarks.704

The total decay width of the Z ′ is dependent on the couplings to fermions. Naively one would expect705

that since the total decay width for most Z ′ models is much smaller than the experimental ditau mass706

9th May 2016 – 16:38 55

Page 56: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

resolution, the width would have little impact on the acceptance. This is not true, however, as the width has707

a large impact on the size of the low-mass “parton luminosity” tail (a low mass tail in the true resonance708

mass distribution). In turn, the decay width is a large factors in the Z ′ acceptance.709

A summary of the impact of the couplings on the Z ′ acceptance times efficiency with respect to the710

SSM is given in Fig. 37 for models with altered fermion couplings or decay width. Two models have are711

investigated to cover extreme cases of altered fermion couplings, one which purely couples to left handed712

fermions (g fL = gZ and g

fL = 0), Z ′L, and one that purely couples to right handed fermions (g f

L = 0 and713

gfL = gZ ), Z ′L. For both models the decay width is taken to be the same as for the SSM. The coupling714

definitions have changed with respect to a similar measurement done in Ref. [51] in terms of that in the715

previous study only the couplings to the tau leptons were changed. However, the impact of altered quark716

couplings has already been shown to have less effect on the acceptance than altered couplings to tau717

leptons. The transverse momentum of left handed taus is in general more soft than for right handed taus718

due to their polarisation. Thus the mtotT of Z ′ bosons with purely left handed couplings tend to smaller719

values than the reference of Z ′ bosons in the SSM. On the same note, the opposite is true for Z ′ with720

purely right handed couplings. The impact on the acceptance is largest for small masses due to the pT721

and mtotT thresholds. There the alteration of the couplings leads to changes of up to +67% and −25%.722

With higher mZ′ the impact off the tau kinematics on the acceptance decreases. In the τhadτhad channel723

for mZ′ > 2.2 TeV the total impact of the reconstruction efficiency of the hadronic tau decays at high pT724

is larger than the gain in acceptance.725

Fig. 37 also shows the impact of altered decay widths on the acceptance times efficiency compared to the726

SSM (Γ/mZ′ ≈ 3%). Considered are a model with a narrower decay width Z ′narrow (Γ/mZ′ = 1%) and727

one with a wider decay width of Z ′wide (Γ/mZ′ = 20%). The considered mass range in this study is not as728

sensitive to the large parton luminosity observed in a comparable study done in Ref. [51] due to the higher729

center of mass energy. Therefore the change in acceptance times efficiency is not as large and is found to730

be up to +10% and −25%. An increase in change with increasing mZ′ is observed but is not as prominent731

as in Ref. [51].732

7.4. Strong Flavor Model733

In addition we investigate the presence of possible Z ′ → ττ bosons arise from an additional SU (2)734

gauge group. The so called “Strong Flavour Model” (SFM) is described in [42]. An extremely similar,735

if not identical model called Topflavour was also published around the same time [93]. The models736

were later classified as non-universal types of a more general class of models called G(221) models [94],737

which extend the SM gauge group by adding an additional SU (2) symmetry. Nevertheless, we will stick738

to the name SFM for simplicity’s sake. The authors of the SFM speculate that the large mass of the739

top-quark may suggest a different dynamical behaviour of the third fermion generation from the first two740

generations. They then build a model in which the SM weak SU (2) gauge group is split in two parts: one741

coupling to light fermions (the first two generations), SU (2)l and one coupling to heavy fermions (the742

third generation), SU (2)h. The extended gauge group breaks to the SM SU (2) at some high-energy scale,743

u, and then eventually to U (1)em at the usual electroweak scale, v = 246 GeV. The breaking pattern can744

be written as:745

SU (2)l × SU (2)h ×U (1)Yu→ SU (2)l+h ×U (1)Y

v→ U (1)em (4)

The light fermions have their mass generated via the usual Higgs mechanism, while the heavy fermion746

masses are generated via higher order operators. The model predicts additional weak gauge bosons Z ′ and747

9th May 2016 – 16:38 56

Page 57: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

[GeV]Z’

m

500 1000 1500 2000 2500

SS

A/ε

A

0.6

0.8

1

1.2

1.4

1.6

1.8

2 = 13 TeVs Internal, Simulation, ATLAS

LZ’ RZ’ wideZ’ narrowZ’LZ’ RZ’ wideZ’ narrowZ’

hadτ

hadτ

hadτ

lepτ

Figure 37: Signal acceptance times efficiency for Z ′L, Z ′R, Z ′narrow and Z ′wide divided by the acceptance times efficiencyfor Z ′SSM as a function of m′Z , separately for the τhadτhad, τµτhad and τeτhad channels.

W ′± (which couple preferentially to third generation fermions), altered couplings of the standard model748

weak bosons, and flavour changing neutral currents (FCNCs). Limits on FCNCs in the first two fermion749

generations are extremely strict, so only µ − τ mixing is considered. The model can be described by just750

three additional parameters:751

• sin2 φ: mixing between SU (2)l and SU (2)h. sin2 φ ∼ 0 corresponds to strong coupling of the Z ′ to752

heavy fermions.753

• x: ratio of the SU (2)l/h breaking scale to the electroweak scale, x = u2/v2.754

• sin2 β: µ-τ mixing (sin2 β = 0 corresponds to no mixing and sin2 β = 1 is maximal mixing).755

Limits on the model are derived from fits to electroweak precision data, shown in Figure 38. The limits756

are strongest at high values of sin2 φ, since most of the data involves measurements of the first two fermion757

generations. A lower limit of mZ′ > 1.3 TeV is placed regardless of sin2 φ. More recent indirect limits have758

been calculated in which the authors use an updated set of 37 electroweak precision measurements [95].759

Limits from other authors have also been derived, which use in addition, constraints from CKM unitarity760

9th May 2016 – 16:38 57

Page 58: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

and lepton flavour violation [96–98]. These limits are shown in Figure 39. The updated limits raise the761

mass exclusion to ∼ 1.8 TeV.762

Figure 38: Limits on the SFM from fits to electroweak precision data [42].

Figure 39: Left: Limits on the SFM (called “Top-Flavour-Doublet model”) from an updated fit of 37 electroweakprecision measurements (green) and from direct searches at the Tevatron (red) and LHC at 7 TeV (blue) [95]. Right:Limits from considering CKM unitarity violation and lepton flavor violation [96].

Fig. 40 (left) shows the ratio of the SFM to SSM cross sections, rσ . For much of the parameter space763

the cross section in the SFM is larger than for the SSM. The cross section of the SFM for values of764

sin2 φ ∼ 1 is suppressed via the decay to tau leptons. The cross section ratio has a peak at moderate765

values of sin2 φ ∼ 0.4. For smaller values the ratio decreases due to a suppression of production via light766

quarks until sin2 φ ∼ 0.1. For even smaller values, the ratio starts increasing steeply as the production via767

b-quarks is getting the dominant production for the SFM. This effect was not properly accounted for in768

the 8 TeV ATLAS Z ′ → ττ search [99], which caused an underestimation of the SFM production cross769

section for small values of sin2 φ.770

Fig. 40 (middle left to right) show the ratios of acceptance times efficiency of the SFM to the SSM for771

9th May 2016 – 16:38 58

Page 59: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

the τhadτhad, τµτhad and τeτhad channels. In general the acceptance is lower than for the SSM. At low-mass772

this is mainly due to the left-handed couplings, which result in softer visible hadronic tau decays (more773

prominent in the τhadτhad channel). Near sin2 φ ∼ 0 and sin2 φ ∼ 1, the acceptance loss comes mainly774

from the significantly increased decay width, which causes a large fraction of the signal to be produced775

off-shell. The impact from Z ′ interference is expected to be negligible as the couplings are almost purely776

left-handed.777

Figure 40: Signal production cross section times τ+τ− branching fraction for Z ′SFM, σBSFM , divided by σBSFM(left) and acceptance times efficiency for Z ′SFM, AεSFM, divided by AεSSM for the τhadτhad (middle left), τµτhad(middle right) and τeτhad (right) channels, as a function of sin2 φ and m′Z .

8. Results778

8.1. A/H → ττ search779

The parameter of interest in this search is the signal strength, µ, defined as the ratio of the fitted signal780

cross section times branching fraction to the signal cross section times branching fraction predicted by781

the particular MSSM signal assumption. The value µ = 0 corresponds to the absence of signal, whereas782

the value µ = 1 suggests signal presence as predicted by the theoretical model under study. The statistical783

analysis of the data employs a binned likelihood function constructed as the product of Poisson probability784

terms. Signal and background predictions depend on systematic uncertainties, which are parametrised785

as nuisance parameters and are constrained using Gaussian functions. The binned likelihood function is786

constructed in bins of the mtotT mass.787

The final mass discriminant mtotT with post-fit systematic uncertainties for b-tag and b-veto categories are788

shown in Fig. 41. Yields in the signal regions and their uncertainties are summarised in Table 16.789

The data are in good agreement with the predicted background yields and exclusion limits are calculated.790

The significance of any small observed excess in data is evaluated by quoting p-values to quantify the791

level of consistency of the data with the µ = 0 hypothesis. Exclusion limits use the modified frequentist792

method known as CLs [100]. Both the exclusion limits and p-values are calculated using the asymptotic793

approximation [101]. The test statistic used for the exclusion limits derivation is the qµ test statistic and794

9th May 2016 – 16:38 59

Page 60: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

b-veto

Process Yield uncertaintystat. det. syst. theory syst. total

Multijet 393 5 18 0 19Z/γ∗ → ττ 107 2 29 8 30W → τν 38.7 2.0 7.0 2.7 7.8top, tt 4.0 0.5 1.0 0.7 1.3Others 5.2 0.5 0.9 0.4 1.1Total SM 548 6 34 8 36Data 628 25 0 0 25

b-tag

Process Yield uncertaintystat. det. syst. theory syst. total

Multijet 17.3 1.4 3.0 0.0 3.3Z/γ∗ → ττ 1.42 0.20 0.40 0.10 0.46W → τν 0.90 0.12 0.19 0.06 0.24top, tt 11.4 0.8 2.7 4.1 5.0Others 0.117 0.023 0.027 0.009 0.037Total SM 31.1 1.6 4.0 4.1 6.0Data 23 5 0 0 5

Table 16: Pre-fit signal region yields for data and SM prediction.

for the p-values the q0 test statistic5 [101].795

The limits are interpreted in the MSSM mA − tan β space in the context of the mmod+h

scenario in Fig. 42796

and are compared to the previous result. In Fig. 43 the limits of the individual categories are shown.797

The systematics used for the limit reflect the uncertainties values discussed in Section 6. In Figure 44798

the impact of the systematic uncertainties on the fitted signal strength and variations of the nuisance799

parameters from their nominal values in units of their uncertainty values is shown for mA/H = 300 GeV,800

500 GeV and 1000 GeV. Similar plots for separate b-tag and b-veto categories are listed in Appendix B801

in Figures 54-55.802

Validity checks of the asymptotic approximation have been performed and are shown in Appendix C. The803

result presented here sets the strongest limit so far in the high-mA region of the MSSM parameter space.804

5 The definition of the test statistics used in this search is the following:

qµ =

−2 ln(L(µ, ˆθ)/L(0, ˆθ)) if µ < 0−2 ln(L(µ, ˆθ)/L( µ, θ)) if 0 ≤ µ ≤ µ

0 if µ > µ

and

q0 =−2 ln(L(0, ˆθ)/L( µ, θ)) if µ ≥ 00 if µ < 0

where L(µ, θ) denotes the binned likelihood function, µ is the parameter of interest (i.e. the signal strength parameter), andθ denotes the nuisance parameters. The pair ( µ, θ) corresponds to the global maximum of the likelihood, whereas (x, ˆθ)corresponds to a conditional maximum in which µ is fixed to a given value x.

9th May 2016 – 16:38 60

Page 61: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

Eve

nts

/ G

eV

4−10

3−10

2−10

1−10

1

10

210

Data ττ→H/A

= 20β= 500 GeV, tan AmMulti­jet

+ jetsττ→Z + jetsντ→W

ttbar, single topOthersUncertaintyPre­fit background

ATLAS Internal

­1

Ldt = 3.2 fb∫ = 13 TeV s

hadτ

hadτ→H/A

b­veto

[GeV]totTm

200 300 400 500 600 700 800 900 1000Da

ta/P

red

.

00.5

11.5

2

(a) b-veto category

Eve

nts

/ G

eV

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35Data

ττ→H/A = 20β= 500 GeV, tan Am

Multi­jet + jetsττ→Z + jetsντ→W

ttbar, single topUncertaintyPre­fit background

ATLAS Internal

­1

Ldt = 3.2 fb∫ = 13 TeV s

hadτ

hadτ→H/A

b­tag

[GeV]totTm

150 200 250 300 350 400 450 500 550 600Da

ta/P

red

.

0.5

1

1.5

(b) b-tag category

Figure 41: Distribution of final mass discriminant mtotT with post-fit uncertainties. The binning shown corresponds

to the one used for the fit.

A combination with the τlepτhad channel has been performed to improve the overall sensitivity. The results805

of the combination are shown in the supporting document for the τlepτhad analysis [102].806

9th May 2016 – 16:38 61

Page 62: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

mA [GeV]200 400 600 800 1000 1200

βta

n

15

20

25

30

35

40

45

50

55

60combined - observedcombined - expected

σ 1±combined - σ 2±combined -

b-tag - expectedb-veto - expectedhh EOYE - expected

combined - observedcombined - expected

σ 1±combined - σ 2±combined -

b-tag - expectedb-veto - expectedhh EOYE - expected

combined - observedcombined - expected

σ 1±combined - σ 2±combined -

b-tag - expectedb-veto - expectedhh EOYE - expected

combined - observedcombined - expected

σ 1±combined - σ 2±combined -

b-tag - expectedb-veto - expectedhh EOYE - expected

-1 = 13 TeV, 3.2 fbs > 0µ, mod+

h, mhadτ hadτ →A/H

95% CL

Figure 42: The 95% CL upper limit on the mA–tan β plane of the MSSM parameter space in the mmod+h

scenario for3.21 fb−1of integrated luminosity at 13 TeV. In addition, the previous sensitivity from ATLAS-CONF-2015-061 isshown.

9th May 2016 – 16:38 62

Page 63: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

mA [GeV]200 400 600 800 1000 1200

βta

n

15

20

25

30

35

40

45

50

55

60

b-veto - observedb-veto - expected

σ 1±b-veto - σ 2±b-veto -

hh EOYE - expected

b-veto - observedb-veto - expected

σ 1±b-veto - σ 2±b-veto -

hh EOYE - expected

-1 = 13 TeV, 3.2 fbs > 0µ, mod+

h, mhadτ hadτ →A/H

95% CL

(a) b-veto category

mA [GeV]200 400 600 800 1000 1200

βta

n

15

20

25

30

35

40

45

50

55

60

b-tag - observedb-tag - expected

σ 1±b-tag - σ 2±b-tag -

hh EOYE - expected

b-tag - observedb-tag - expected

σ 1±b-tag - σ 2±b-tag -

hh EOYE - expected

-1 = 13 TeV, 3.2 fbs > 0µ, mod+

h, mhadτ hadτ →A/H

95% CL

(b) b-tag category

Figure 43: The 95% CL upper limit on the mA–tan β plane of the MSSM parameter space in the mmod+h

scenario for3.21 fb−1of integrated luminosity at 13 TeV.

2− 1− 0 1 2

alpha_ATLAS_xsec_Diboson

alpha_ATLAS_btagEffSfEigen_B_1

alpha_ATLAS_btagEffSfEigen_C_1

alpha_ATLAS_btagEffSfEigen_C_0

alpha_ATLAS_JETNP3

alpha_ATLAS_btagEffSfEigen_Light_0

alpha_ATLAS_HADHAD_WTAUNUREWEIGHT

alpha_ATLAS_TES_AF2

alpha_ATLAS_TAUID_HIGHPT

alpha_ATLAS_AU_ggH_MA300

alpha_ATLAS_JERNP1

alpha_ATLAS_TES_MODEL

alpha_ATLAS_PRW

alpha_ATLAS_xsec_Top

alpha_ATLAS_xsec_Z

alpha_ATLAS_TAUELEOLR

alpha_ATLAS_HADHAD_FR

alpha_ATLAS_TAURECO

alpha_ATLAS_JVT

alpha_ATLAS_JETNP1

alpha_ATLAS_TES_INSITU

alpha_ATLAS_AU_bbH_MA300

alpha_ATLAS_LUMI

alpha_ATLAS_TES_DETECTOR

alpha_ATLAS_btagEffSfEigen_B_0

alpha_ATLAS_TAUID

alpha_ATLAS_TAUTRIG

alpha_ATLAS_TTBAR_NORM

alpha_ATLAS_HADHAD_FF

µ∆

0.15− 0.1− 0.05− 0 0.05 0.1 0.15

θ∆)/0θ - θ(1.5− 1− 0.5− 0 0.5 1 1.5

1 standard deviation

µPrefit Impact on

µPostfit Impact on =15β=300 GeV, tanAm

(a)

2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

alpha_ATLAS_btagEffSfEigen_B_1

alpha_ATLAS_JETNP3

alpha_ATLAS_btagEffSfEigen_Light_1

alpha_ATLAS_TAUELEOLR

alpha_ATLAS_xsec_Diboson

alpha_ATLAS_AU_ggH_MA500

alpha_ATLAS_JETNP1

alpha_ATLAS_TAUID_HIGHPT

alpha_ATLAS_btagEffSfEigen_B_0

alpha_ATLAS_JERNP1

alpha_ATLAS_btagEffSfEigen_C_1

alpha_ATLAS_btagEffSfEigen_C_0

alpha_ATLAS_TES_MODEL

alpha_ATLAS_btagEffSfEigen_Light_0

alpha_ATLAS_PRW

alpha_ATLAS_TAURECO

alpha_ATLAS_JVT

alpha_ATLAS_HADHAD_WTAUNUREWEIGHT

alpha_ATLAS_LUMI

alpha_ATLAS_xsec_Z

alpha_ATLAS_xsec_Top

alpha_ATLAS_TAUTRIG

alpha_ATLAS_HADHAD_FR

alpha_ATLAS_HADHAD_FF

alpha_ATLAS_TAUID

alpha_ATLAS_TES_INSITU

alpha_ATLAS_TES_DETECTOR

alpha_ATLAS_AU_bbH_MA500

alpha_ATLAS_TTBAR_NORM

µ∆

0.2− 0.15− 0.1− 0.05− 0 0.05 0.1 0.15 0.2

θ∆)/0θ - θ(1− 0.5− 0 0.5 1

1 standard deviation

µPrefit Impact on

µPostfit Impact on =20β=500 GeV, tanAm

(b)

8− 6− 4− 2− 0 2 4 6 8

alpha_ATLAS_xsec_Diboson

alpha_ATLAS_btagEffSfEigen_C_1

alpha_ATLAS_TAURECO_HIGHPT

alpha_ATLAS_btagEffSfEigen_Light_2

alpha_ATLAS_JETNP2

alpha_ATLAS_JETNP3

alpha_ATLAS_AU_ggH_MA1000

alpha_ATLAS_JERNP1

alpha_ATLAS_btagEffSfEigen_B_1

alpha_ATLAS_JETNP1

alpha_ATLAS_PRW

alpha_ATLAS_btagEffSfEigen_C_0

alpha_ATLAS_btagEffSfEigen_Light_0

alpha_ATLAS_btagEffSfEigen_B_0

alpha_ATLAS_HADHAD_WTAUNUREWEIGHT

alpha_ATLAS_TAUID_HIGHPT

alpha_ATLAS_TES_MODEL

alpha_ATLAS_xsec_Z

alpha_ATLAS_HADHAD_FR

alpha_ATLAS_TAURECO

alpha_ATLAS_TES_INSITU

alpha_ATLAS_LUMI

alpha_ATLAS_TAUELEOLR

alpha_ATLAS_JVT

alpha_ATLAS_xsec_Top

alpha_ATLAS_TES_DETECTOR

alpha_ATLAS_TAUID

alpha_ATLAS_HADHAD_FF

alpha_ATLAS_AU_bbH_MA1000

alpha_ATLAS_TAUTRIG

alpha_ATLAS_TTBAR_NORM

µ∆

0.06− 0.04− 0.02− 0 0.02 0.04 0.06

θ∆)/0θ - θ(2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

1 standard deviation

µPrefit Impact on

µPostfit Impact on =50β=1000 GeV, tanAm

(c)

Figure 44: Impact of the systematic uncertainties on the fitted signal strength and variations of the nuisance parametersfrom their nominal values in units of their uncertainty values for mA/H = 300 GeV, 500 GeV and 1000 GeV. Thevalues of tan β correspond to the mmod+

hscenario and are chosen to be close to the expected limit.

9th May 2016 – 16:38 63

Page 64: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

mtotT cut Signal Z/γ∗ → ττ QCD W → τν Top Others Data

400 GeV mZ′ = 0.50TeV 14.7 ± 5.2 8.7 ± 1.2 4.5 ± 0.9 1.6 ± 1.5 1.0 ± 0.3 29 ± 5.4373.1 ± 139.2

400 GeV mZ′ = 0.60TeV 14.7 ± 5.2 8.7 ± 1.2 4.5 ± 0.9 1.6 ± 1.5 1.0 ± 0.3 29 ± 5.4349.6 ± 114.8

400 GeV mZ′ = 0.70TeV 14.7 ± 5.2 8.7 ± 1.2 4.5 ± 0.9 1.6 ± 1.5 1.0 ± 0.3 29 ± 5.4269.1 ± 86.2

450 GeV mZ′ = 0.80TeV 9.4 ± 3.3 3.8 ± 0.8 2.7 ± 0.6 0.8 ± 1.2 0.8 ± 0.2 17 ± 4.1164.2 ± 53.2

500 GeV mZ′ = 0.90TeV 6.2 ± 2.2 1.7 ± 0.6 1.7 ± 0.4 0.4 ± 1.3 0.6 ± 0.2 11 ± 3.3100.4 ± 33.1

550 GeV mZ′ = 1.00TeV 3.9 ± 1.5 1.1 ± 0.4 1.0 ± 0.2 0.2 ± 0.6 0.4 ± 0.2 6 ± 2.464.9 ± 21.7

650 GeV mZ′ = 1.25TeV 1.9 ± 0.7 0.4 ± 0.3 0.4 ± 0.1 0.0 ± 0.0 0.2 ± 0.1 2 ± 1.424.5 ± 8.4

750 GeV mZ′ = 1.50TeV 0.9 ± 0.4 0.0 ± 0.1 0.2 ± 0.0 0.0 ± 0.0 0.2 ± 0.1 1 ± 1.09.8 ± 3.5

750 GeV mZ′ = 1.75TeV 0.9 ± 0.4 0.0 ± 0.1 0.2 ± 0.0 0.0 ± 0.0 0.2 ± 0.1 1 ± 1.04.7 ± 1.7

750 GeV mZ′ = 2.00TeV 0.9 ± 0.4 0.0 ± 0.1 0.2 ± 0.0 0.0 ± 0.0 0.2 ± 0.1 1 ± 1.02.4 ± 0.9

750 GeV mZ′ = 2.25TeV 0.9 ± 0.4 0.0 ± 0.1 0.2 ± 0.0 0.0 ± 0.0 0.2 ± 0.1 1 ± 1.01.2 ± 0.4

750 GeV mZ′ = 2.50TeV 0.9 ± 0.4 0.0 ± 0.1 0.2 ± 0.0 0.0 ± 0.0 0.2 ± 0.1 1 ± 1.00.6 ± 0.2

Table 17: Signal region yields for Z ′ → ττ signal and SM prediction for various cuts on mtotT . Event yields for the

different masses of the signal model are only given for the threshold used to define the final mass window. Thetotal uncertainty includes besides the statistical and systematical uncertainties from detector-related sources also theuncertainty on the luminosity (5%) and, where applicable, the uncertainty of the calculated cross section (5-6%).

8.2. Z′ → ττ search807

The event yields in the final mass windows for all mass hypotheses for the Z ′ → ττ in the SSM are808

summarised in Table 17.809

For the statistical analysis a likelihood fit is utilised. The limits are interpreted in the SSM in Fig. 45. The810

systematics used for the limit reflect the uncertainties values discussed in Section 6. The resulting 95 %811

CL observed and expected lower limits on the mass of a Z ′SSM are 1.77 TeV and 1.73 TeV, respectively. The812

observed limit is not reaching the corresponding already set lower mass limit on Z ′SSM of 1.89 TeV [51] in813

the τhadτhad channel, but it is competitive. In Figure 46 the impact of the systematic uncertainties on the814

fitted signal strength and variations of the nuisance parameters from their nominal values in units of their815

uncertainty values is shown for mZ′ = 100 GeV, 1500 GeV and 2000 GeV.816

9th May 2016 – 16:38 64

Page 65: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

[GeV]Z’m

500 1000 1500 2000 2500

) [p

b]

ττ

→Z

’(

B ×

+ X

) Z

’→

pp

2−10

1−10

1

10

210

310σ 2±Expected Limit

σ 1±Expected Limit

Expected Limit

Observed Limit

SSMZ’ channelhad

τhad

τ = 13 TeVs

­1dt L = 3.2 fb∫ InternalATLAS σ 2±Expected Limit

σ 1±Expected Limit

Expected Limit

Observed Limit

SSMZ’ channelhad

τhad

τ = 13 TeVs

­1dt L = 3.2 fb∫ InternalATLAS σ 2±Expected Limit

σ 1±Expected Limit

Expected Limit

Observed Limit

SSMZ’ channelhad

τhad

τ = 13 TeVs

­1dt L = 3.2 fb∫ InternalATLAS σ 2±Expected Limit

σ 1±Expected Limit

Expected Limit

Observed Limit

SSMZ’ channelhad

τhad

τ = 13 TeVs

­1dt L = 3.2 fb∫ InternalATLAS

Figure 45: The 95 % CL upper limit on the cross section times ditau branching fraction for a Z ′ → ττ in theSequential Standard Model in the τhadτhad channel including the 1σ and 2σ uncertainty bands for 3.21 fb−1 ofintegrated luminosity at 13 TeV. The observed and expected lower limits on the mass of a Z ′SSM are 1.77 TeV and1.73 TeV, respectively.

8.3. Combination of τ`τhad and τhadτhad channels for the Z′ → ττ search817

A combination of all channels, τhadτhad, τµτhad and τeτhad, is performed for the Z ′SSM interpretation.818

The resulting upper limits on the cross section times ditau branching fraction are shown in Figure 47.819

A breakdown of contributions to the combined limit of the individual τhadτhad and τ τhad is shown in820

Figure 48.821

The resulting 95% CL observed (expected) lower limits on the mass of a Z ′SSM are 1.90 TeV (1.84 TeV).822

The observed limit is not reaching the highest existing lower mass limit on Z ′SSM of 2.02 TeV [51] for823

the same channel combination, but they are competitive. Table 18 summarises all lower limits set on the824

Z ′SSM mass.825

Limits on the Strong Flavor model are also calculated. The signal contributions in the τhadτhad, τµτhad and826

τeτhad channels are rescaled by σBSFM/σBSSM · AεSFM/AεSSM (as derived in Section 7.4). In addition,827

the systematic uncertainties are re-evaluated for each point in parameter space. Figure 49 shows the region828

in the Z ′SFM parameter space excluded at 95% CL: Z ′SFM bosons with masses below 1.82–2.18 TeV are829

9th May 2016 – 16:38 65

Page 66: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

2− 1− 0 1 2

alpha_ATLAS_JETNP1

alpha_ATLAS_TES_MODEL

alpha_ATLAS_HADHAD_QCDFF

alpha_ATLAS_JETNP2

alpha_ATLAS_LPX_KFACTOR_SCALE_Z

alpha_ATLAS_xsec_Diboson

alpha_ATLAS_xsec_Top

alpha_ATLAS_JETNP3

alpha_ATLAS_JET_EtaIntercalibration_NonClosure

alpha_ATLAS_TAURECOHIGHPT

alpha_ATLAS_LPX_KFACTOR_PI

alpha_ATLAS_HADHAD_FAKERATE

alpha_ATLAS_HADHAD_WTAUNUREWEIGHT

alpha_ATLAS_TAURECO

alpha_ATLAS_TAUELEOLR

alpha_ATLAS_LPX_KFACTOR_PDF

alpha_ATLAS_LUMI

alpha_ATLAS_xsec_Z

alpha_ATLAS_TAUIDHIGHPT

alpha_ATLAS_PRW

alpha_ATLAS_TES_INSITU

alpha_ATLAS_TTBAR_RAD

alpha_ATLAS_TAUID

alpha_ATLAS_TES_DETECTOR

alpha_ATLAS_TAUTRIGGER

µ∆

0.04− 0.03− 0.02− 0.01− 0 0.01 0.02 0.03 0.04

θ∆)/0

θ ­ θ(

2− 1− 0 1 2

1 standard deviation

µPrefit Impact on

µPostfit Impact on = 1000 GeVZ’

m

(a)

4− 2− 0 2 4

alpha_ATLAS_TES_MODEL

alpha_ATLAS_TAURECOHIGHPT

alpha_ATLAS_LPX_KFACTOR_SCALE_Z

alpha_ATLAS_xsec_Diboson

alpha_ATLAS_JET_EtaIntercalibration_NonClosure

alpha_ATLAS_HADHAD_QCDFF

alpha_ATLAS_xsec_Top

alpha_ATLAS_JETNP2

alpha_ATLAS_JETNP3

alpha_ATLAS_LPX_KFACTOR_PI

alpha_ATLAS_JETNP1

alpha_ATLAS_TAUELEOLR

alpha_ATLAS_TAURECO

alpha_ATLAS_TTBAR_RAD

alpha_ATLAS_HADHAD_WTAUNUREWEIGHT

alpha_ATLAS_HADHAD_FAKERATE

alpha_ATLAS_LUMI

alpha_ATLAS_LPX_KFACTOR_PDF

alpha_ATLAS_xsec_Z

alpha_ATLAS_PRW

alpha_ATLAS_TAUIDHIGHPT

alpha_ATLAS_TES_INSITU

alpha_ATLAS_TAUID

alpha_ATLAS_TAUTRIGGER

alpha_ATLAS_TES_DETECTOR

µ∆

0.1− 0.05− 0 0.05 0.1

θ∆)/0

θ ­ θ(

4− 2− 0 2 4

1 standard deviation

µPrefit Impact on

µPostfit Impact on = 1500 GeVZ’

m

(b)

4− 3− 2− 1− 0 1 2 3 4

alpha_ATLAS_xsec_Top

alpha_ATLAS_JET_EtaIntercalibration_NonClosure

alpha_ATLAS_HADHAD_QCDFF

alpha_ATLAS_JETNP2

alpha_ATLAS_JETNP3

alpha_ATLAS_LPX_KFACTOR_SCALE_Z

alpha_ATLAS_JETNP1

alpha_ATLAS_xsec_Diboson

alpha_ATLAS_TES_MODEL

alpha_ATLAS_TAURECOHIGHPT

alpha_ATLAS_TTBAR_RAD

alpha_ATLAS_LPX_KFACTOR_PI

alpha_ATLAS_TAUELEOLR

alpha_ATLAS_TAURECO

alpha_ATLAS_HADHAD_WTAUNUREWEIGHT

alpha_ATLAS_HADHAD_FAKERATE

alpha_ATLAS_LUMI

alpha_ATLAS_LPX_KFACTOR_PDF

alpha_ATLAS_xsec_Z

alpha_ATLAS_TAUIDHIGHPT

alpha_ATLAS_PRW

alpha_ATLAS_TES_INSITU

alpha_ATLAS_TAUID

alpha_ATLAS_TAUTRIGGER

alpha_ATLAS_TES_DETECTOR

µ∆

0.4− 0.3− 0.2− 0.1− 0 0.1 0.2 0.3 0.4

θ∆)/0

θ ­ θ(

4− 3− 2− 1− 0 1 2 3 4

1 standard deviation

µPrefit Impact on

µPostfit Impact on = 2000 GeVZ’

m

(c)

Figure 46: Impact of the systematic uncertainties on the fitted signal strength and variations of the nuisance parametersfrom their nominal values in units of their uncertainty values for mZ′ = 1000 GeV, 1500 GeV and 2000 GeV.

lower limit on mZ′ in the SSMchannel observed [TeV] expected [TeV]τeτhad 1.49 1.47τµτhad 1.55 1.52τ τhad 1.68 1.64τhadτhad 1.77 1.73combined 1.90 1.84

Table 18: Summary of observed and expected lower limits on the mass of a Z ′ in the SSM for the individual channelsand their combination.

excluded in the range 0.1 < sin2 φ < 0.5 assuming no µ− τ mixing. For the smallest value of sin2 φ under830

investigation the limit lower limit on the mass of a Z ′SFM is 2.11 TeV, which exceeds all previous direct831

and indirect searches by more than 300 GeV.832

9th May 2016 – 16:38 66

Page 67: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

[GeV]Z’m

500 1000 1500 2000 2500

) [p

b]

ττ

→Z

’(

B ×

+ X

) Z

’→

pp

2−10

1−10

1

10

σ 2±Expected Limit

σ 1±Expected Limit

Expected Limit

Observed Limit

SSMZ’

= 13 TeVs

­1dt L = 3.2 fb∫ InternalATLAS σ 2±Expected Limit

σ 1±Expected Limit

Expected Limit

Observed Limit

SSMZ’

= 13 TeVs

­1dt L = 3.2 fb∫ InternalATLAS σ 2±Expected Limit

σ 1±Expected Limit

Expected Limit

Observed Limit

SSMZ’

= 13 TeVs

­1dt L = 3.2 fb∫ InternalATLAS

Figure 47: The 95% CL upper limit on the cross section times ditau branching fraction for a Z ′ → ττ in theSequential Standard Model for the combination of the τhadτhad, τµτhad and τeτhad channels including the 1σ and 2σuncertainty bands for 3.21 fb−1 of integrated luminosity at 13 TeV. The observed (expected) lower limits on themass of a Z ′SSM are 1.90 TeV (1.84 TeV).

9th May 2016 – 16:38 67

Page 68: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

[GeV]Z’m

500 1000 1500 2000 2500

) [p

b]

ττ

→Z

’(

B ×

+ X

) Z

’→

pp

2−10

1−10

1

10Observed Limit all Expected Limit all

Observed Limit hadhad Expected Limit hadhad

Observed Limit lephad Expected Limit lephad

SSMZ’

= 13 TeVs

­1dt L = 3.2 fb∫ InternalATLAS

Observed Limit all Expected Limit all

Observed Limit hadhad Expected Limit hadhad

Observed Limit lephad Expected Limit lephad

SSMZ’

= 13 TeVs

­1dt L = 3.2 fb∫ InternalATLAS

Figure 48: The 95% CL upper limit on the cross section times ditau branching fraction for a Z ′ → ττ in theSequential Standard Model for the τhadτhad and τ τhad channels and their combination for 3.21 fb−1 of integratedluminosity at 13 TeV.

9th May 2016 – 16:38 68

Page 69: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

φ2sin

0.1 0.2 0.3 0.4 0.5

[G

eV

]Z

’m

500

1000

1500

2000

2500

3000

3500 (13 TeV)ττ→Z’ATLAS

(8 TeV)ττ→Z’ATLAS

Indirect (EWPT)

Indirect (LFV)

Indirect (CKM)

­pole)ZIndirect (

­1dt L = 3.2 fb∫

InternalATLAS (13 TeV)ττ→Z’ATLAS

(8 TeV)ττ→Z’ATLAS

Indirect (EWPT)

Indirect (LFV)

Indirect (CKM)

­pole)ZIndirect (

­1dt L = 3.2 fb∫

InternalATLAS (13 TeV)ττ→Z’ATLAS

(8 TeV)ττ→Z’ATLAS

Indirect (EWPT)

Indirect (LFV)

Indirect (CKM)

­pole)ZIndirect (

­1dt L = 3.2 fb∫

InternalATLAS

Figure 49: Observed 95% CL exclusion on the SFM parameter space from the combination of the τhadτhad, τµτhadand τeτhad channels channels (blue). Direct limits from the ATLAS Z ′ → ττ 8TeV search[99] and indirect limits at95% CL from fits to electroweak precision measurements (EWPT)[95], lepton flavour violation (LFV)[98], CKMunitarity[97] and the original Z-pole data[42] are overlaid.

9th May 2016 – 16:38 69

Page 70: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

9. Conclusions833

A search for a heavy ττ resonances with the ATLAS detector at the LHC using 13 TeV data was presented834

in this note. Event distributions are shown based on simulated samples from the MC15 25 ns campaign835

and 13 TeV data that correspond to 3.21 fb−1.836

No excess is found in data with respect to the predicted background yields and exclusion limits are837

calculated. The interpretation of the Higgs result is performed in form of the limit in the MSSM838

mA − tan β parameter space. Upper limits on σ(pp → Z ′ + X ) × B(Z ′ → ττ) and lower limits on the839

mass of a Z ′ are set in the Sequential Standard Model.840

References841

[1] ATLAS Collaboration, Observation of a new particle in the search for the Standard Model Higgs842

boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1–29,843

arXiv: 1207.7214 [hep-ex].844

[2] CMS Collaboration,845

Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC,846

Phys. Lett. B 716 (2012) 30–61, arXiv: 1207.7235 [hep-ex].847

[3] ATLAS Collaboration, Measurements of Higgs boson production and couplings in diboson final848

states with the ATLAS detector at the LHC, Phys. Lett. B 726 (2013) 88–119,849

arXiv: 1307.1427 [hep-ex].850

[4] ATLAS Collaboration, Evidence for the spin-0 nature of the Higgs boson using ATLAS data,851

Phys. Lett. B 726 (2013) 120–144, arXiv: 1307.1432 [hep-ex].852

[5] CMS Collaboration, Evidence for the direct decay of the 125 GeV Higgs boson to fermions,853

Nature Phys. 10 (2014), arXiv: 1401.6527 [hep-ex].854

[6] CMS Collaboration,855

Measurement of the properties of a Higgs boson in the four-lepton final state,856

Phys.Rev. D 89 (2014) 092007, arXiv: 1312.5353 [hep-ex].857

[7] CMS Collaboration, Measurement of Higgs boson production and properties in the WW decay858

channel with leptonic final states, JHEP 01 (2014) 096, arXiv: 1312.1129 [hep-ex].859

[8] F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons,860

Phys. Rev. Lett. 13 (1964) 321–323.861

[9] P. W. Higgs, Broken symmetries, massless particles and gauge fields,862

Phys. Lett. 12 (1964) 132–133.863

[10] P. W. Higgs, Broken symmetries and the masses of gauge bosons,864

Phys. Rev. Lett. 13 (1964) 508–509.865

[11] P. W. Higgs, Spontaneous symmetry breakdown without massless bosons,866

Phys. Rev. 145 (1966) 1156–1163.867

[12] G. Guralnik, C. Hagen and T. Kibble, Global conservation laws and massless particles,868

Phys. Rev. Lett. 13 (1964) 585–587.869

[13] T. Kibble, Symmetry breaking in non-Abelian gauge theories, Phys. Rev. 155 (1967) 1554–1561.870

9th May 2016 – 16:38 70

Page 71: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

[14] A. Djouadi, The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the871

minimal supersymmetric model, Phys. Rept. 459 (2008) 1–241,872

arXiv: hep-ph/0503173 [hep-ph].873

[15] G. Branco et al., Theory and phenomenology of two-Higgs-doublet models,874

Phys. Rept. 516 (2012) 1–102, arXiv: 1106.0034 [hep-ph].875

[16] P. Fayet, Supersymmetry and Weak, Electromagnetic and Strong Interactions,876

Phys. Lett. B 64 (1976) 159.877

[17] P. Fayet, Spontaneously Broken Supersymmetric Theories of Weak, Electromagnetic and Strong878

Interactions, Phys. Lett. B 69 (1977) 489.879

[18] G. R. Farrar and P. Fayet, Phenomenology of the Production, Decay, and Detection of New880

Hadronic States Associated with Supersymmetry, Phys. Lett. B 76 (1978) 575–579.881

[19] P. Fayet, Relations Between the Masses of the Superpartners of Leptons and Quarks, the882

Goldstino Couplings and the Neutral Currents, Phys. Lett. B 84 (1979) 416.883

[20] S. Dimopoulos and H. Georgi, Softly Broken Supersymmetry and SU(5),884

Nucl. Phys. B 193 (1981) 150.885

[21] S. Heinemeyer, W. Hollik and G. Weiglein, Constraints on tan Beta in the MSSM from the upper886

bound on the mass of the lightest Higgs boson, JHEP 06 (2000) 009,887

arXiv: hep-ph/9909540 [hep-ph].888

[22] M. Carena, S. Heinemeyer, C. E. M. Wagner and G. Weiglein,889

Suggestions for benchmark scenarios for MSSM Higgs boson searches at hadron colliders,890

Eur. Phys. J. C 26 (2003) 601, arXiv: hep-ph/0202167 [hep-ph].891

[23] M. Carena et al., MSSM Higgs Boson Searches at the LHC: Benchmark Scenarios after the892

Discovery of a Higgs-like Particle, Eur. Phys. J. C 73 (2013) 2552,893

arXiv: 1302.7033 [hep-ph].894

[24] ATLAS Collaboration, Measurement of the Higgs boson mass from the H → γγ and895

H → Z Z∗ → 4` channels with the ATLAS detector using 25 fb−1 of pp collision data,896

Phys. Rev. D90.5 (2014) 052004, arXiv: 1406.3827 [hep-ex].897

[25] P. Bechtle et al., MSSM Interpretations of the LHC Discovery: Light or Heavy Higgs?,898

Eur. Phys. J. C 73 (2013) 2354, arXiv: 1211.1955 [hep-ph].899

[26] A. Arbey et al.,900

The Higgs sector of the phenomenological MSSM in the light of the Higgs boson discovery,901

JHEP 09 (2012) 107, arXiv: 1207.1348 [hep-ph].902

[27] DELPHI, OPAL, ALEPH, LEP Working Group for Higgs Boson Searches, L3,903

Search for neutral MSSM Higgs bosons at LEP, Eur. Phys. J. C47 (2006) 547–587,904

arXiv: hep-ex/0602042 [hep-ex].905

[28] T. N. P. . H. W. Group, Combined CDF and D0 Upper Limits on MSSM Higgs Boson Production906

in tau-tau Final States with up to 2.2 fb-1 (2010), arXiv: 1003.3363 [hep-ex].907

[29] CDF Collaboration, T. Aaltonen et al., Search for Higgs bosons predicted in two-Higgs-doublet908

models via decays to τ lepton pairs in 1.96 TeV proton–antiproton collisions,909

Phys. Rev. Lett. 103 (2009) 201801, arXiv: 0906.1014 [hep-ex].910

9th May 2016 – 16:38 71

Page 72: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

[30] D0 Collaboration, V. M. Abazov et al.,911

Search for Higgs bosons decaying to τ pairs in pp collisions with the D0 detector,912

Phys. Rev. Lett. 101 (2008) 071804, arXiv: 0805.2491 [hep-ex].913

[31] ATLAS Collaboration, Search for neutral Higgs bosons of the minimal supersymmetric standard914

model in pp collisions at√

s = 8 TeV with the ATLAS detector, JHEP 1411 (2014) 056,915

arXiv: 1409.6064 [hep-ex].916

[32] ATLAS Collaboration, Search for the neutral Higgs bosons of the minimal supersymmetric917

standard model in pp collisions at√

s = 7 TeV with the ATLAS detector, JHEP 02 (2013) 095,918

arXiv: 1211.6956 [hep-ex].919

[33] CMS Collaboration,920

Search for neutral MSSM Higgs bosons decaying to a pair of tau leptons in pp collisions,921

JHEP 10 (2014) 160, arXiv: 1408.3316 [hep-ex].922

[34] LHCb Collaboration, R. Aaij et al.,923

Limits on neutral Higgs boson production in the forward region in pp collisions at√

s = 7 TeV,924

JHEP 05 (2013) 132, arXiv: 1304.2591 [hep-ex].925

[35] J. L. Hewett and T. G. Rizzo, Low-energy phenomenology of superstring-inspired E6 models,926

Phys. Rept. 183 (1989) 193–381.927

[36] M. Cvetic and S. Godfrey, Discovery and identification of extra gauge bosons (1995),928

arXiv: hep-ph/9504216.929

[37] A. Leike, The Phenomenology of extra neutral gauge bosons, Phys. Rept. 317 (1999) 143–250,930

arXiv: hep-ph/9805494.931

[38] T. G. Rizzo, Z ′ phenomenology and the LHC932

(2006) 537–575, Published in Boulder, 2006, Colliders and Neutrinos (TASI 2006),933

arXiv: hep-ph/0610104.934

[39] R. Diener, S. Godfrey and T. A. Martin,935

Unravelling an Extra Neutral Gauge Boson at the LHC using Third Generation Fermions,936

83 (2011) 115008, arXiv: 1006.2845 [hep-ph].937

[40] P. Langacker, The Physics of Heavy Z ′ Gauge Bosons, 81 (2009) 1199–1228,938

arXiv: 0801.1345 [hep-ph].939

[41] K. R. Lynch et al.,940

Finding Z ′ bosons coupled preferentially to the third family at LEP and the Tevatron,941

63 (2001) 035006, arXiv: hep-ph/0007286.942

[42] E. Malkawi, T. Tait and C.-P. Yuan, A model of strong flavor dynamics for the top quark,943

385 (1996) 304–310, arXiv: hep-ph/9603349.944

[43] H. D. Kim, S.-G. Kim and S. Shin,945

D0 dimuon charge asymmetry from Bs system with Z′ couplings and the recent LHCb result,946

88, 015005 (2013) 015005, arXiv: 1205.6481 [hep-ph].947

[44] X.-G. He and G. Valencia, B decays with τ leptons in nonuniversal left-right models,948

87, 014014 (2013) 014014, arXiv: 1211.0348 [hep-ph].949

[45] E. Dudas, C. Petersson and R. Torre,950

Collider signatures of low scale supersymmetry breaking: A Snowmass 2013 White Paper (),951

arXiv: 1309.1179 [hep-ph].952

9th May 2016 – 16:38 72

Page 73: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

[46] C. Petersson, A. Romagnoni and R. Torre, Liberating Higgs couplings in supersymmetry,953

87, 013008 (2013) 013008, arXiv: 1211.2114 [hep-ph].954

[47] V. Barger, D. Marfatia and A. Peterson, LHC and dark matter signals of Z′ bosons,955

87, 015026 (2013) 015026, arXiv: 1206.6649 [hep-ph].956

[48] A. Hayreter and G. Valencia,957

Constraining τ-lepton dipole moments and gluon couplings at the LHC,958

88, 013015 (2013) 013015, arXiv: 1305.6833 [hep-ph].959

[49] ATLAS Collaboration, A search for high-mass resonances decaying to tau+tau- in pp collisions960

at sqrt(s) = 7 TeV with the ATLAS detector, 719 (2013) 242 –260, arXiv: 1210.6604 [hep-ex].961

[50] CMS Collaboration, Search for high-mass resonances decaying into tau-lepton pairs in pp962

collisions at sqrt(s) = 7 TeV, 716 (2012) 82 –102, arXiv: 1206.1725 [hep-ex].963

[51] ATLAS Collaboration, A search for high-mass resonances decaying to τ+τ− in pp collisions at964√

s = 8 TeV with the ATLAS detector, J. High Energy Phys. 07 (2015), arXiv: 1502.07177.965

[52] R. S. Chivukula and E. H. Simmons, Electroweak limits on nonuniversal Z ′ bosons,966

66 (1 2002) 015006, arXiv: hep-ph/0205064.967

[53] Search for high-mass dilepton resonances in pp collisions at√

s = 8 TeV with the ATLAS968

detector, submitted to Phys. Rev. D (2014), arXiv: 1405.4123 [hep-ex].969

[54] Search for Resonances in the Dilepton Mass Distribution in pp Collisions at√

s = 8 TeV,970

CMS-PAS-EXO-12-061 ().971

[55] ATLAS Collaboration, The ATLAS experiment at the CERN Large Hadron Collider,972

JINST 3 (2008) S08003.973

[56] ATLAS Collaboration, The ATLAS simulation infrastructure, Eur. Phys. J. C 70 (2010) 823–874,974

arXiv: 1005.4568 [physics.ins-det].975

[57] T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007,976

arXiv: 0811.4622 [hep-ph].977

[58] S. Alioli et al.,978

NLO Higgs boson production via gluon fusion matched with shower in POWHEG,979

JHEP 04 (2009) 002, arXiv: 0812.0578 [hep-ph].980

[59] T. Sjöstrand, S. Mrenna and P. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026,981

arXiv: hep-ph/0603175 [hep-ph].982

[60] T. Sjöstrand, S. Mrenna and P. Skands, A Brief Introduction to PYTHIA 8.1,983

Comput. Phys. Commun. 178 (2008) 852–867, arXiv: 0710.3820 [hep-ph].984

[61] J. A. et al, The automated computation of tree-level and next-to-leading order differential cross985

sections, and their matching to parton shower simulations, JHEP 07 (2014) 079,986

arXiv: 1405.0301 [hep-ph].987

[62] M. Wiesemann et al, Higgs production in association with bottom quarks, JHEP 02 (2015) 132,988

arXiv: 1409.5301 [hep-ph].989

[63] T. S. et al., An Introduction to PYTHIA 8.2, Comput.Phys.Commun. 191 (2015) 159–177,990

arXiv: 1410.3012 [hep-ph].991

[64] Z. Czyczula, T. Przedzinski and Z. Was,992

TauSpinner Program for Studies on Spin Effect in tau Production at the LHC, 72 (2012) 1988,993

arXiv: 1201.0117 [hep-ph].994

9th May 2016 – 16:38 73

Page 74: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

[65] R. D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B867 (2013) 244–289,995

arXiv: 1207.1303 [hep-ph].996

[66] GEANT4 Collaboration, S. Agostinelli et al., GEANT4 - a simulation toolkit,997

Nucl. Instrum. Meth. A 506 (2003) 250–303.998

[67] ATLAS Collaboration, Identification and energy calibration of hadronically decaying tau999

leptons with the ATLAS experiment in pp collisions at√

s=8 TeV,1000

submitted to Eur. Phys. J. C (2014), arXiv: 1412.7086 [hep-ex].1001

[68] ATLAS Collaboration, Reconstruction, Energy Calibration, and Identification of Hadronically1002

Decaying Tau Leptons in the ATLAS Experiment for Run-2 of the LHC (2015 (to be published)).1003

[69] ATLAS Collaboration, Measurement of the muon reconstruction performance of the ATLAS1004

detector using 2011 and 2012 LHC proton-proton collision data,1005

Eur.Phys.J. C 74.11 (2014) 3130, arXiv: 1407.3935 [hep-ex].1006

[70] M. Cacciari, G. P. Salam and G. Soyez, The Anti-kt jet clustering algorithm,1007

JHEP 0804 (2008) 063, arXiv: 0802.1189 [hep-ph].1008

[71] M. Cacciari and G. P. Salam, Dispelling the N**3 myth for the kt jet-finder,1009

Phys.Lett. B641 (2006) 57–61, arXiv: hep-ph/0512210 [hep-ph].1010

[72] A. F. T. Group, ATLAS Flavour Tagging group recommendation for 2015 data (),1011

url: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/BTagCalib2015.1012

[73] ATLAS Collaboration, Pile-up subtraction and suppression for jets in ATLAS,1013

ATLAS-CONF-2013-083 (2013), url: http://cds.cern.ch/record/1570994..1014

[74] ATLAS Collaboration, Performance of Missing Transverse Momentum Reconstruction in ATLAS1015

studied in Proton–Proton Collisions recorded in 2012 at 8 TeV,1016

ATLAS-CONF-2013-082 (2013), url: https://cds.cern.ch/record/1570993.1017

[75] Z. Czyczula, T. Przedzinski and Z. Was,1018

TauSpinner Program for Studies on Spin Effect in tau Production at the LHC,1019

Eur.Phys.J. C72 (2012) 1988, arXiv: 1201.0117 [hep-ph].1020

[76] A. Kaczmarska et al., Application of TauSpinner for Studies on τ-Lepton Polarization and Spin1021

Correlations in Z , W and H Decays at the LHC, Acta Phys.Polon. B45.10 (2014) 1921–1946,1022

arXiv: 1402.2068 [hep-ph].1023

[77] S. Banerjee et al.,1024

Ascertaining the spin for new resonances decaying into tau+ tau- at Hadron Colliders,1025

Eur.Phys.J. C73.2 (2013) 2313, arXiv: 1212.2873 [hep-ph].1026

[78] P. Bechtle et al., ‘Search for strongly produced supersymmetry in 13 TeV p–p collisions with1027

tau-leptons, jets and missing transverse energy in the final state.’,1028

tech. rep. ATL-COM-PHYS-2015-1126,1029

support note for planned SUSY CONF or paper on 2015 LHC data: CERN, 2015,1030

url: https://cds.cern.ch/record/2050716.1031

[79] J Butterworth et al.,1032

‘Single Boson and Diboson Production Cross Sections in pp Collisions at sqrts=7 TeV’,1033

tech. rep. ATL-COM-PHYS-2010-695, CERN, 2010,1034

url: https://cds.cern.ch/record/1287902.1035

9th May 2016 – 16:38 74

Page 75: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

[80] J. M. B. et al., THE TOOLS AND MONTE CARLO WORKING GROUP Summary Report from1036

the Les Houches 2009 Workshop on TeV Colliders (2010), arXiv: 1003.1643 [hep-ph].1037

[81] J. M. B. et al., PDF4LHC recommendations for LHC Run II (2015),1038

arXiv: 1510.03865 [hep-ph].1039

[82] H.-L. L. et al., New parton distributions for collider physics (2010),1040

arXiv: 1007.2241 [hep-ph].1041

[83] N. Collaboration, Parton distributions for the LHC Run II (2014), arXiv: 1410.8849 [hep-ph].1042

[84] S. D. et al., The CT14 Global Analysis of Quantum Chromodynamics (2015),1043

arXiv: 1506.07443 [hep-ph].1044

[85] A. M. et al.,1045

Heavy-quark mass dependence in global PDF analyses and 3- and 4-flavour parton distributions1046

(2010), arXiv: 1007.2624 [hep-ph].1047

[86] A. B. et al., LHAPDF6: parton density access in the LHC precision era (2014),1048

arXiv: 1412.7420 [hep-ph].1049

[87] ATLAS Run 1 Pythia8 tunes (2014), url: https://cds.cern.ch/record/1966419.1050

[88] Measurement of the transverse momentum distribution of Z/gamma* bosons in proton-proton1051

collisions at roots = 7 TeV with the ATLAS detector : Update with 4.7 fb-1 of the previous1052

measurement at this energy. (2013), url: https://cds.cern.ch/record/1513133.1053

[89] G. Artoni et al., ‘Search for resonant and non-resonant phenomena in the dilepton channel using1054

proton-proton collisions at√

s = 13 TeV with the ATLAS detector’,1055

tech. rep. ATL-COM-PHYS-2015-526, CERN, 2015,1056

url: https://cds.cern.ch/record/2025566.1057

[90] O Boeriu et al., A search for high-mass resonances decaying to τ+τ− in pp collisions at√

s = 81058

TeV with the ATLAS detector, ATL-PHYS-INT-2015-006 (2015),1059

url: https://cds.cern.ch/record/2006867.1060

[91] S. Banerjee et al.,1061

Ascertaining the spin for new resonances decaying into tau+ tau- at Hadron Colliders,1062

73 (2013) 2313, arXiv: 1212.2873 [hep-ph].1063

[92] A. Kaczmarska et al., Application of TauSpinner for studies on tau-lepton polarization and spin1064

correlations in Z, W and H decays at LHC (2014), arXiv: 1402.2068 [hep-ph].1065

[93] D. J. Muller and S. Nandi, Topflavor: a separate SU (2) for the third family,1066

Physics Letters B 383 (Feb. 1996) 345–350, eprint: hep-ph/9602390.1067

[94] K. Hsieh et al., Global analysis of general SU (2) × SU (2) ×U (1) models with precision data,1068

82, 035011 (Aug. 2010) 035011, arXiv: 1003.3482 [hep-ph].1069

[95] Q.-H. Cao et al.,1070

Discovery and identification of W ′ and Z ′ in SU (2)1 ⊗ SU (2)2 ⊗ U (1)X models at the LHC,1071

86, 095010 (Nov. 2012) 095010, arXiv: 1205.3769 [hep-ph].1072

[96] Y. G. Kim and K. Y. Lee,1073

Direct search for heavy gauge bosons at the LHC in the nonuniversal SU (2) model (May 2014),1074

arXiv: 1405.7762 [hep-ph].1075

[97] K. Y. Lee, Unitarity violation of the CKM matrix in a nonuniversal gauge interaction model,1076

71, 115008 (June 2005) 115008, eprint: hep-ph/0410381.1077

9th May 2016 – 16:38 75

Page 76: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

[98] K. Y. Lee, Lepton flavor violation in a nonuniversal gauge interaction model,1078

82, 097701 (Nov. 2010) 097701, arXiv: 1009.0104 [hep-ph].1079

[99] O Boeriu et al., A search for high-mass resonances decaying to τ+τ− in pp collisions at√

s = 81080

TeV with the ATLAS detector, ATL-COM-PHYS-2014-276 (2014),1081

url: https://cds.cern.ch/record/1694306.1082

[100] A. L. Read, Presentation of search results: the CLs technique, J. Phys. G 28 (2002) 2693–2704.1083

[101] G. Cowan, K. Cranmer, E. Gross and O. Vitells,1084

Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554,1085

arXiv: 1007.1727 [physics.data-an].1086

[102] Search for Neutral MSSM Higgs Bosons H/A to τlepτhad and Z’ to τlepτhad produced in 13 TeV1087

collisions with the ATLAS detector (2016), url: https://cds.cern.ch/record/2131232.1088

[103] A. Elagin et al., A New Mass Reconstruction Technique for Resonances Decaying to di-tau1089

(2010), * Temporary entry *, arXiv: 1012.4686 [hep-ex].1090

[104] B. Bullock, K. Hagiwara and A. D. Martin,1091

Tau polarization and its correlations as a probe of new physics,1092

Nucl.Phys. B395 (1993) 499–533.1093

[105] A. Rouge, Tau decays as polarization analysers, In *Orsay 1990, Proceedings, Tau lepton1094

physics* (QCD161:W671:1990) 213-222, and Preprint - Rouge, A. (rec.Mar.91) 10 p (1991).1095

[106] Search for Neutral MSSM Higgs Bosons H/A to τhadτhad produced in 13 TeV collisions with the1096

ATLAS detector (2015), url: https://cds.cern.ch/record/2033060.1097

9th May 2016 – 16:38 76

Page 77: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

Auxiliary material1098

A. Post-fit Distributions for Higgs Search Signal Regions1099

In Figures 50-53 a selection of post-fit distributions for the combined τhadτhad + τlepτhad conditional µ = 01100

fit is shown for the b-veto and b-tag categories.1101

Eve

nts

/ G

eV

4−10

3−10

2−10

1−10

1

10

210

Data ττ→H/A

= 20β= 500 GeV, tan AmMulti­jet

+ jetsττ→Z + jetsντ→W

ttbar, single topOthersUncertaintyPre­fit background

ATLAS Internal

­1

Ldt = 3.2 fb∫ = 13 TeV s

hadτ

hadτ→H/A

b­veto

[GeV]totTm

200 300 400 500 600 700 800 900 1000Da

ta/P

red

.

00.5

11.5

2

(a)

Eve

nts

/ G

eV

3−10

2−10

1−10

1

10

210

310

Data ττ→H/A

= 20β= 500 GeV, tan AmMulti­jet

+ jetsττ→Z + jetsντ→W

ttbar, single topOthersUncertaintyPre­fit background

ATLAS Internal

­1

Ldt = 3.2 fb∫ = 13 TeV s

hadτ

hadτ→H/A

b­veto

[GeV]miss

TE

0 20 40 60 80 100 120 140 160 180 200Da

ta/P

red

.

0.81

1.2

(b)

Eve

nts

/ G

eV

3−10

2−10

1−10

1

10

210

310

Data ττ→H/A

= 20β= 500 GeV, tan AmMulti­jet

+ jetsττ→Z + jetsντ→W

ttbar, single topOthersUncertaintyPre­fit background

ATLAS Internal

­1

Ldt = 3.2 fb∫ = 13 TeV s

hadτ

hadτ→H/A

b­veto

[GeV] 0τ

Tp

100 150 200 250 300 350 400Da

ta/P

red

.

00.5

11.5

2

(c)

Eve

nts

/ G

eV

3−10

2−10

1−10

1

10

210

Data ττ→H/A

= 20β= 500 GeV, tan AmMulti­jet

+ jetsττ→Z + jetsντ→W

ttbar, single topOthersUncertaintyPre­fit background

ATLAS Internal

­1

Ldt = 3.2 fb∫ = 13 TeV s

hadτ

hadτ→H/A

b­veto

[GeV] 1τ

Tp

60 80 100 120 140 160 180 200 220 240 260Da

ta/P

red

.

00.5

11.5

2

(d)

Figure 50: Postfit variable distributions in the b-veto category for the combined τhadτhad + τlepτhad fit: (a) mtotT , (b)

EmissT , (c) Leading τhad pT, (d) Subleading τhad pT.

9th May 2016 – 16:38 77

Page 78: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

Eve

nts

1

10

210

310

410

Data ττ→H/A

= 20β= 500 GeV, tan AmMulti­jet

+ jetsττ→Z + jetsντ→W

ttbar, single topOthersUncertaintyPre­fit background

ATLAS Internal

­1

Ldt = 3.2 fb∫ = 13 TeV s

hadτ

hadτ→H/A

b­veto

0τη2.5− 2− 1.5− 1− 0.5− 0 0.5 1 1.5 2 2.5D

ata

/Pre

d.

0.8

1

1.2

(a)

Eve

nts

1

10

210

310

410

Data ττ→H/A

= 20β= 500 GeV, tan AmMulti­jet

+ jetsττ→Z + jetsντ→W

ttbar, single topOthersUncertaintyPre­fit background

ATLAS Internal

­1

Ldt = 3.2 fb∫ = 13 TeV s

hadτ

hadτ→H/A

b­veto

1τη2.5− 2− 1.5− 1− 0.5− 0 0.5 1 1.5 2 2.5D

ata

/Pre

d.

0.8

1

1.2

(b)

Eve

nts

1−10

1

10

210

310

410

510 Data

ττ→H/A = 20β= 500 GeV, tan Am

Multi­jet + jetsττ→Z + jetsντ→W

ttbar, single topOthersUncertaintyPre­fit background

ATLAS Internal

­1

Ldt = 3.2 fb∫ = 13 TeV s

hadτ

hadτ→H/A

b­veto

jetN

0 1 2 3 4 5Da

ta/P

red

.

0.5

1

1.5

(c)

Eve

nts

3−10

2−10

1−10

1

10

210

310

410

510 Data

ττ→H/A = 20β= 500 GeV, tan Am

Multi­jet + jetsττ→Z + jetsντ→W

ttbar, single topOthersUncertaintyPre­fit background

ATLAS Internal

­1

Ldt = 3.2 fb∫ = 13 TeV s

hadτ

hadτ→H/A

b­veto

b­jetN

0 1 2 3 4 5Da

ta/P

red

.

0.9

1

1.1

(d)

Eve

nts

/ G

eV

3−10

2−10

1−10

1

10

210

310

Data ττ→H/A

= 20β= 500 GeV, tan AmMulti­jet

+ jetsττ→Z + jetsντ→W

ttbar, single topOthersUncertaintyPre­fit background

ATLAS Internal

­1

Ldt = 3.2 fb∫ = 13 TeV s

hadτ

hadτ→H/A

b­veto

[GeV]jet 0

Tp

0 50 100 150 200 250 300Da

ta/P

red

.

0.5

1

1.5

(e)

Eve

nts

/ G

eV

3−10

2−10

1−10

1

10

210Data

ττ→H/A = 20β= 500 GeV, tan Am

Multi­jet + jetsττ→Z + jetsντ→W

ttbar, single topOthersUncertaintyPre­fit background

ATLAS Internal

­1

Ldt = 3.2 fb∫ = 13 TeV s

hadτ

hadτ→H/A

b­veto

[GeV]T

E∑200 300 400 500 600 700 800D

ata

/Pre

d.

00.5

11.5

2

(f)

Figure 51: Postfit variable distributions in the b-veto category for the combined τhadτhad + τlepτhad fit: (a) Leadingτhad η, (b) Subleading τhad η, (c) Njet, (d) Nb−jet, (e) Leading jet pT, (f) Scalar sum of the ET of the objects used inthe Emiss

T calculation, ΣET.

9th May 2016 – 16:38 78

Page 79: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

Eve

nts

/ G

eV

4−10

3−10

2−10

1−10

1

10Data

ττ→H/A = 20β= 500 GeV, tan Am

Multi­jet + jetsττ→Z + jetsντ→W

ttbar, single topOthersUncertaintyPre­fit background

ATLAS Internal

­1

Ldt = 3.2 fb∫ = 13 TeV s

hadτ

hadτ→H/A

b­tag

[GeV]totTm

150 200 250 300 350 400 450 500 550 600Da

ta/P

red

.

0.5

1

1.5

(a)

Eve

nts

/ G

eV

4−10

3−10

2−10

1−10

1

10 Data ττ→H/A

= 20β= 500 GeV, tan AmMulti­jet

+ jetsττ→Z + jetsντ→W

ttbar, single topOthersUncertaintyPre­fit background

ATLAS Internal

­1

Ldt = 3.2 fb∫ = 13 TeV s

hadτ

hadτ→H/A

b­tag

[GeV]miss

TE

0 20 40 60 80 100 120 140 160 180 200Da

ta/P

red

.

00.5

11.5

2

(b)

Eve

nts

/ G

eV

5−10

4−10

3−10

2−10

1−10

1

10Data

ττ→H/A = 20β= 500 GeV, tan Am

Multi­jet + jetsττ→Z + jetsντ→W

ttbar, single topOthersUncertaintyPre­fit background

ATLAS Internal

­1

Ldt = 3.2 fb∫ = 13 TeV s

hadτ

hadτ→H/A

b­tag

[GeV] 0τ

Tp

100 150 200 250 300 350 400Da

ta/P

red

.

0.5

1

1.5

(c)

Eve

nts

/ G

eV

5−10

4−10

3−10

2−10

1−10

1

10Data

ττ→H/A = 20β= 500 GeV, tan Am

Multi­jet + jetsττ→Z + jetsντ→W

ttbar, single topOthersUncertaintyPre­fit background

ATLAS Internal

­1

Ldt = 3.2 fb∫ = 13 TeV s

hadτ

hadτ→H/A

b­tag

[GeV] 1τ

Tp

60 80 100 120 140 160 180 200 220 240 260Da

ta/P

red

.

0.5

1

1.5

(d)

Figure 52: Postfit variable distributions in the b-tag category for the combined τhadτhad + τlepτhad fit: (a) mtotT , (b)

EmissT , (c) Leading τhad pT, (d) Subleading τhad pT.

9th May 2016 – 16:38 79

Page 80: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

Eve

nts

2−10

1−10

1

10

210

310

Data ττ→H/A

= 20β= 500 GeV, tan AmMulti­jet

+ jetsττ→Z + jetsντ→W

ttbar, single topOthersUncertaintyPre­fit background

ATLAS Internal

­1

Ldt = 3.2 fb∫ = 13 TeV s

hadτ

hadτ→H/A

b­tag

0τη2.5− 2− 1.5− 1− 0.5− 0 0.5 1 1.5 2 2.5D

ata

/Pre

d.

0

0.5

1

1.5

2

(a)

Eve

nts

2−10

1−10

1

10

210

310 Data

ττ→H/A = 20β= 500 GeV, tan Am

Multi­jet + jetsττ→Z + jetsντ→W

ttbar, single topOthersUncertaintyPre­fit background

ATLAS Internal

­1

Ldt = 3.2 fb∫ = 13 TeV s

hadτ

hadτ→H/A

b­tag

1τη2.5− 2− 1.5− 1− 0.5− 0 0.5 1 1.5 2 2.5D

ata

/Pre

d.

0.5

1

1.5

(b)

Eve

nts

3−10

2−10

1−10

1

10

210

310

410 Data ττ→H/A

= 20β= 500 GeV, tan AmMulti­jet

+ jetsττ→Z + jetsντ→W

ttbar, single topOthersUncertaintyPre­fit background

ATLAS Internal

­1

Ldt = 3.2 fb∫ = 13 TeV s

hadτ

hadτ→H/A

b­tag

jetN

0 1 2 3 4 5Da

ta/P

red

.

0.5

1

1.5

(c)

Eve

nts

3−10

2−10

1−10

1

10

210

310

Data ττ→H/A

= 20β= 500 GeV, tan AmMulti­jet

+ jetsττ→Z + jetsντ→W

ttbar, single topOthersUncertaintyPre­fit background

ATLAS Internal

­1

Ldt = 3.2 fb∫ = 13 TeV s

hadτ

hadτ→H/A

b­tag

b­jetN

0 1 2 3 4 5Da

ta/P

red

.

0.5

1

1.5

(d)

Eve

nts

/ G

eV

4−10

3−10

2−10

1−10

1

10Data

ττ→H/A = 20β= 500 GeV, tan Am

Multi­jet + jetsττ→Z + jetsντ→W

ttbar, single topOthersUncertaintyPre­fit background

ATLAS Internal

­1

Ldt = 3.2 fb∫ = 13 TeV s

hadτ

hadτ→H/A

b­tag

[GeV]jet 0

Tp

0 50 100 150 200 250 300Da

ta/P

red

.

0.5

1

1.5

(e)

Eve

nts

/ G

eV

4−10

3−10

2−10

1−10

1Data

ττ→H/A = 20β= 500 GeV, tan Am

Multi­jet + jetsττ→Z + jetsντ→W

ttbar, single topOthersUncertaintyPre­fit background

ATLAS Internal

­1

Ldt = 3.2 fb∫ = 13 TeV s

hadτ

hadτ→H/A

b­tag

[GeV]T

E∑200 300 400 500 600 700 800D

ata

/Pre

d.

00.5

11.5

2

(f)

Figure 53: Postfit variable distributions in the b-tag category for the combined τhadτhad + τlepτhad fit: (a) Leadingτhad η, (b) Subleading τhad η, (c) Njet, (d) Nb−jet, (e) Leading jet pT, (f) Scalar sum of the ET of the objects used inthe Emiss

T calculation, ΣET.

9th May 2016 – 16:38 80

Page 81: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

B. Statistical Analysis Fit Results For Separate Categories1102

This section lists plots for the separate b-tag and b-veto fits with the impact of systematic uncertainties1103

on the fitted signal strength and variations of the nuisance parameters from their nominal values in units1104

of their uncertainty values. For each mass point a value of tan β close to the limit was chosen for the1105

selection of plots shown here.1106

2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

alpha_ATLAS_btagEffSfEigen_C_1

alpha_ATLAS_JERNP1

alpha_ATLAS_xsec_Diboson

alpha_ATLAS_AU_ggH_MA300

alpha_ATLAS_JETNP3

alpha_ATLAS_TES_AF2

alpha_ATLAS_JETNP1

alpha_ATLAS_HADHAD_WTAUNUREWEIGHT

alpha_ATLAS_btagEffSfEigen_C_0

alpha_ATLAS_btagEffSfEigen_Light_0

alpha_ATLAS_xsec_Z

alpha_ATLAS_btagEffSfEigen_B_0

alpha_ATLAS_TES_MODEL

alpha_ATLAS_TAUID_HIGHPT

alpha_ATLAS_PRW

alpha_ATLAS_TAUELEOLR

alpha_ATLAS_TAURECO

alpha_ATLAS_JVT

alpha_ATLAS_LUMI

alpha_ATLAS_TES_INSITU

alpha_ATLAS_TES_DETECTOR

alpha_ATLAS_xsec_Top

alpha_ATLAS_HADHAD_FR

alpha_ATLAS_TAUID

alpha_ATLAS_AU_bbH_MA300

alpha_ATLAS_TAUTRIG

alpha_ATLAS_HADHAD_FF

alpha_ATLAS_TTBAR_NORM

µ∆

0.2− 0.15− 0.1− 0.05− 0 0.05 0.1 0.15 0.2

θ∆)/0θ - θ(1.5− 1− 0.5− 0 0.5 1 1.5

1 standard deviation

µPrefit Impact on

µPostfit Impact on

b-tag category

=15β=300 GeV, tanAm

(a)

2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

alpha_ATLAS_AU_ggH_MA500

alpha_ATLAS_btagEffSfEigen_Light_1

alpha_ATLAS_JETNP3

alpha_ATLAS_xsec_Diboson

alpha_ATLAS_JETNP1

alpha_ATLAS_TAUID_HIGHPT

alpha_ATLAS_JERNP1

alpha_ATLAS_btagEffSfEigen_C_1

alpha_ATLAS_btagEffSfEigen_B_0

alpha_ATLAS_btagEffSfEigen_C_0

alpha_ATLAS_btagEffSfEigen_Light_0

alpha_ATLAS_xsec_Z

alpha_ATLAS_TAUELEOLR

alpha_ATLAS_TES_MODEL

alpha_ATLAS_HADHAD_WTAUNUREWEIGHT

alpha_ATLAS_PRW

alpha_ATLAS_TAURECO

alpha_ATLAS_JVT

alpha_ATLAS_LUMI

alpha_ATLAS_HADHAD_FF

alpha_ATLAS_xsec_Top

alpha_ATLAS_HADHAD_FR

alpha_ATLAS_TES_INSITU

alpha_ATLAS_TAUID

alpha_ATLAS_TAUTRIG

alpha_ATLAS_TES_DETECTOR

alpha_ATLAS_AU_bbH_MA500

alpha_ATLAS_TTBAR_NORM

µ∆

0.15− 0.1− 0.05− 0 0.05 0.1 0.15

θ∆)/0θ - θ(1− 0.5− 0 0.5 1

1 standard deviation

µPrefit Impact on

µPostfit Impact on

b-tag category

=25β=500 GeV, tanAm

(b)

3− 2− 1− 0 1 2 3

alpha_ATLAS_JETNP3

alpha_ATLAS_JETNP2

alpha_ATLAS_xsec_Diboson

alpha_ATLAS_btagEffSfEigen_Light_2

alpha_ATLAS_AU_ggH_MA1000

alpha_ATLAS_JERNP1

alpha_ATLAS_btagEffSfEigen_C_1

alpha_ATLAS_TES_MODEL

alpha_ATLAS_btagEffSfEigen_C_0

alpha_ATLAS_btagEffSfEigen_Light_0

alpha_ATLAS_xsec_Z

alpha_ATLAS_HADHAD_WTAUNUREWEIGHT

alpha_ATLAS_HADHAD_FF

alpha_ATLAS_JETNP1

alpha_ATLAS_TAURECO_HIGHPT

alpha_ATLAS_TES_INSITU

alpha_ATLAS_PRW

alpha_ATLAS_xsec_Top

alpha_ATLAS_TES_DETECTOR

alpha_ATLAS_HADHAD_FR

alpha_ATLAS_btagEffSfEigen_B_0

alpha_ATLAS_JVT

alpha_ATLAS_TAURECO

alpha_ATLAS_TAUELEOLR

alpha_ATLAS_TTBAR_NORM

alpha_ATLAS_TAUID_HIGHPT

alpha_ATLAS_LUMI

alpha_ATLAS_TAUID

alpha_ATLAS_AU_bbH_MA1000

alpha_ATLAS_TAUTRIG

µ∆

0.2− 0.1− 0 0.1 0.2

θ∆)/0θ - θ(2− 1− 0 1 2

1 standard deviation

µPrefit Impact on

µPostfit Impact on

b-tag category

=60β=1000 GeV, tanAm

(c)

Figure 54: b-tag category: Impact of the systematic uncertainties on the fitted signal strength and variations of thenuisance parameters from their nominal values in units of their uncertainty values for mA/H = 300 GeV, 500 GeVand 1000 GeV. The values of tan β correspond to the mmod+

hscenario and are chosen to be close to the expected

limit.

9th May 2016 – 16:38 81

Page 82: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

alpha_ATLAS_xsec_Diboson

alpha_ATLAS_xsec_Top

alpha_ATLAS_btagEffSfEigen_B_1

alpha_ATLAS_TTBAR_NORM

alpha_ATLAS_JETNP1

alpha_ATLAS_JERNP1

alpha_ATLAS_btagEffSfEigen_B_0

alpha_ATLAS_PRW

alpha_ATLAS_TES_AF2

alpha_ATLAS_TAUID_HIGHPT

alpha_ATLAS_AU_ggH_MA300

alpha_ATLAS_HADHAD_WTAUNUREWEIGHT

alpha_ATLAS_JVT

alpha_ATLAS_HADHAD_FR

alpha_ATLAS_TES_MODEL

alpha_ATLAS_xsec_Z

alpha_ATLAS_TAUELEOLR

alpha_ATLAS_TES_INSITU

alpha_ATLAS_TAURECO

alpha_ATLAS_LUMI

alpha_ATLAS_TES_DETECTOR

alpha_ATLAS_AU_bbH_MA300

alpha_ATLAS_HADHAD_FF

alpha_ATLAS_TAUID

alpha_ATLAS_TAUTRIG

µ∆

0.4− 0.3− 0.2− 0.1− 0 0.1 0.2 0.3 0.4

θ∆)/0θ - θ(1.5− 1− 0.5− 0 0.5 1 1.5

1 standard deviation

µPrefit Impact on

µPostfit Impact on

b-veto category

=15β=300 GeV, tanAm

(a)

2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

alpha_ATLAS_TTBAR_NORM

alpha_ATLAS_JETNP1

alpha_ATLAS_xsec_Diboson

alpha_ATLAS_xsec_Top

alpha_ATLAS_JERNP1

alpha_ATLAS_btagEffSfEigen_B_1

alpha_ATLAS_btagEffSfEigen_B_0

alpha_ATLAS_AU_ggH_MA500

alpha_ATLAS_TES_MODEL

alpha_ATLAS_TAUID_HIGHPT

alpha_ATLAS_PRW

alpha_ATLAS_JVT

alpha_ATLAS_TAUELEOLR

alpha_ATLAS_HADHAD_FR

alpha_ATLAS_HADHAD_WTAUNUREWEIGHT

alpha_ATLAS_AU_bbH_MA500

alpha_ATLAS_TAURECO

alpha_ATLAS_LUMI

alpha_ATLAS_xsec_Z

alpha_ATLAS_TES_INSITU

alpha_ATLAS_HADHAD_FF

alpha_ATLAS_TAUID

alpha_ATLAS_TAUTRIG

alpha_ATLAS_TES_DETECTOR

µ∆

0.2− 0.1− 0 0.1 0.2

θ∆)/0θ - θ(1.5− 1− 0.5− 0 0.5 1 1.5

1 standard deviation

µPrefit Impact on

µPostfit Impact on

b-veto category

=25β=500 GeV, tanAm

(b)

3− 2− 1− 0 1 2 3

alpha_ATLAS_btagEffSfEigen_B_1

alpha_ATLAS_JERNP1

alpha_ATLAS_xsec_Top

alpha_ATLAS_TTBAR_NORM

alpha_ATLAS_AU_ggH_MA1000

alpha_ATLAS_JETNP1

alpha_ATLAS_PRW

alpha_ATLAS_JVT

alpha_ATLAS_xsec_Diboson

alpha_ATLAS_TAURECO_HIGHPT

alpha_ATLAS_TES_MODEL

alpha_ATLAS_btagEffSfEigen_B_0

alpha_ATLAS_TAURECO

alpha_ATLAS_TAUELEOLR

alpha_ATLAS_TAUTRIG

alpha_ATLAS_LUMI

alpha_ATLAS_HADHAD_WTAUNUREWEIGHT

alpha_ATLAS_HADHAD_FR

alpha_ATLAS_TAUID

alpha_ATLAS_TAUID_HIGHPT

alpha_ATLAS_xsec_Z

alpha_ATLAS_TES_DETECTOR

alpha_ATLAS_HADHAD_FF

alpha_ATLAS_TES_INSITU

alpha_ATLAS_AU_bbH_MA1000

µ∆

0.2− 0.15− 0.1− 0.05− 0 0.05 0.1 0.15 0.2

θ∆)/0θ - θ(2− 1− 0 1 2

1 standard deviation

µPrefit Impact on

µPostfit Impact on

b-veto category

=60β=1000 GeV, tanAm

(c)

Figure 55: b-veto category: Impact of the systematic uncertainties on the fitted signal strength and variations of thenuisance parameters from their nominal values in units of their uncertainty values for mA/H = 300 GeV, 500 GeVand 1000 GeV. The values of tan β correspond to the mmod+

hscenario and are chosen to be close to the expected

limit.

9th May 2016 – 16:38 82

Page 83: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

C. Asymptotic Approximation Checks1107

For the highest mtotT bin in the b-tag category of the Higgs analysis and the high mass hypotheses in1108

the Z’ analysis, the number of expected events is rather small (∼ 1). To make sure that the asymptotic1109

approximation is still valid for these cases, and therefore the asymptotic calculation can be used to1110

determine the limits, toys have been generated with µ = 0 and are compared to the χ2-distribution with1111

one degree of freedom. This is shown for selected high mass points in Figures 56-58.1112

test statistic

0 2 4 6 8 10 12 14 16 18 20

a.u.

4−10

3−10

2−10

1−10 = 0µ

= 1dof distribution for n2χ

Figure 56: Distribution of the test statistic qµ of µ = 0 toys generated for the b-tag+b-veto workspace for the hadhadHiggs search at mA = 1000 GeV, tan β = 50. A χ2 distribution with one degree of freedom is drawn and showsgood agreement with the toys.

9th May 2016 – 16:38 83

Page 84: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

test statistic

0 2 4 6 8 10 12 14 16 18

a.u.

4−10

3−10

2−10

1−10 = 0µ

= 1dof distribution for n2χ

Figure 57: Distribution of the test statistic qµ of µ = 0 toys generated for the τlepτhad+τhadτhad workspace for the Z’SSM search at mZ′ = 2500 GeV. A χ2 distribution with one degree of freedom is drawn and shows good agreementwith the toys.

9th May 2016 – 16:38 84

Page 85: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

test statistic

0 2 4 6 8 10 12 14 16 18

a.u.

4−10

3−10

2−10

1−10 = 0µ

= 1dof distribution for n2χ

Figure 58: Distribution of the test statistic qµ of µ = 0 toys generated for the τlepτhad+τhadτhad workspace for the Z’SSM search at mZ′ = 2500 GeV.. A χ2 distribution with one degree of freedom is drawn and shows good agreementwith the toys.

9th May 2016 – 16:38 85

Page 86: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

D. MC Samples1113

This section contains the names and the cross sections of the MC samples used. Unless otherwise stated1114

samples are used from theHIGG4D4derivationwith sample tage4213_s2608_s2183_r7326_r6282_p2463.1115

9th May 2016 – 16:38 86

Page 87: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

Table 19: MC15 samples used in this version of the note.DID Sample name cross section [pb]

341877 aMCNloPy8_bbH300_yb2_tautauhh341878 aMCNloPy8_bbH350_yb2_tautauhh341879 aMCNloPy8_bbH400_yb2_tautauhh341880 aMCNloPy8_bbH500_yb2_tautauhh341881 aMCNloPy8_bbH600_yb2_tautauhh341882 aMCNloPy8_bbH700_yb2_tautauhh341883 aMCNloPy8_bbH800_yb2_tautauhh341885 aMCNloPy8_bbH1000_yb2_tautauhh341917 aMCNloPy8_bbH1200_yb2_tautauhh342311 PoPy8_ggH300W2_tautauhh342313 PoPy8_ggH350W3_tautauhh342315 PoPy8_ggH400W5_tautauhh342317 PoPy8_ggH500W5_tautauhh342319 PoPy8_ggH600W10_tautauhh342321 PoPy8_ggH700W20_tautauhh342323 PoPy8_ggH800W20_tautauhh342327 PoPy8_ggH1000W30_tautauhh342331 PoPy8_ggH1200W40_tautauhh410000 PowhegPythiaEvtGen_P2012_ttbar_hdamp172p5_nonallhad 696.12410001 PowhegPythiaEvtGen_P2012radHi_ttbar_hdamp345_down_nonallhad.merge 696.12410002 PowhegPythiaEvtGen_P2012radLo_ttbar_hdamp172_up_nonallhad 696.12410003 aMcAtNloHerwigppEvtGen_ttbar_nonallhad 696.12410004 PowhegHerwigppEvtGen_UEEE5_ttbar_hdamp172p5_nonallhad 696.12410006 PowhegPythia8EvtGen_A14_ttbar_hdamp172p5_nonallhad 696.12410007 .PowhegPythiaEvtGen_P2012_ttbar_hdamp172p5_allhad 696.21410011 PowhegPythiaEvtGen_P2012_singletop_tchan_lept_top 43.739410012 PowhegPythiaEvtGen_P2012_singletop_tchan_lept_antitop 25.778410013 PowhegPythiaEvtGen_P2012_Wt_inclusive_top 34.009410014 PowhegPythiaEvtGen_P2012_Wt_inclusive_antitop 33.989410015 PowhegPythiaEvtGen_P2012_Wt_dilepton_top 3.5835410016 PowhegPythiaEvtGen_P2012_Wt_dilepton_antitop 3.5814407018 PowhegPythiaEvtGen_P2012CT10_Wt_inclusive_top_HT500 3.00848407019 PowhegPythiaEvtGen_P2012CT10_Wt_inclusive_top_MET200 0.383707407020 PowhegPythiaEvtGen_P2012CT10_Wt_inclusive_tbar_HT500 3.00514407021 PowhegPythiaEvtGen_P2012CT10_Wt_inclusive_tbar_MET200 0.382686410025 PowhegPythiaEvtGen_P2012_SingleTopSchan_noAllHad_top 2.0517410026 PowhegPythiaEvtGen_P2012_SingleTopSchan_noAllHad_antitop 1.2615361106 PowhegPythia8EvtGen_AZNLOCTEQ6L1_Zee 97.5316361107 PowhegPythia8EvtGen_AZNLOCTEQ6L1_Zmumu 97.5316361108 PowhegPythia8EvtGen_AZNLOCTEQ6L1_Ztautau 97.5316361063 Sherpa_CT10_llll 12.583361064 Sherpa_CT10_lllvSFMinus 1.8446361065 Sherpa_CT10_lllvOFMinus 3.6235361066 Sherpa_CT10_lllvSFPlus 2.5656361067 Sherpa_CT10_lllvOFPlus 5.0169

9th May 2016 – 16:38 87

Page 88: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

Table 20: MC15 samples used in this version of the note.DID Sample name cross section [pb]

301015 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYee_3500M4000 2.9e-06301005 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYee_800M1000 0.010607301017 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYee_4500M5000 3e-07301003 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYee_400M600 0.1955301013 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYee_2750M3000 1.25e-05301002 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYee_250M400 1.082301011 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYee_2250M2500 4.94e-05301008 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYee_1500M1750 0.0005452301004 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYee_600M800 0.037401301007 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYee_1250M1500 0.0014219301001 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYee_180M250 2.9212301000 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYee_120M180 17.478301010 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYee_2000M2250 0.0001039301006 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYee_1000M1250 0.0042582301012 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYee_2500M2750 2.45e-05301009 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYee_1750M2000 0.0002299301018 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYee_5000M 1e-07301016 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYee_4000M4500 9e-07301014 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYee_3000M3500 1e-05301027 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYmumu_1250M1500 0.0014219301026 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYmumu_1000M1250 0.0042582301031 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYmumu_2250M2500 4.94e-05301021 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYmumu_180M250 2.9212301020 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYmumu_120M180 17.478301038 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYmumu_5000M 1e-07301022 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYmumu_250M400 1.082301023 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYmumu_400M600 0.1955301030 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYmumu_2000M2250 0.0001039301033 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYmumu_2750M3000 1.25e-05301024 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYmumu_600M800 0.037399301028 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYmumu_1500M1750 0.0005452301035 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYmumu_3500M4000 2.9e-06301025 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYmumu_800M1000 0.010607301037 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYmumu_4500M5000 3e-07301034 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYmumu_3000M3500 1e-05301032 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYmumu_2500M2750 2.45e-05301029 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYmumu_1750M2000 0.0002299301036 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYmumu_4000M4500 9e-07301045 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYtautau_800M1000 0.010607301053 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYtautau_2750M3000 1.25e-05301058 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYtautau_5000M 1e-07301044 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYtautau_600M800 0.037401301041 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYtautau_180M250 2.9209301057 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYtautau_4500M5000 3e-07301054 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYtautau_3000M3500 1e-05301048 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYtautau_1500M1750 0.0005452301050 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYtautau_2000M2250 0.0001039301042 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYtautau_250M400 1.082301049 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYtautau_1750M2000 0.0002299301047 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYtautau_1250M1500 0.001422301055 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYtautau_3500M4000 2.9e-06301040 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYtautau_120M180 17.48301043 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYtautau_400M600 0.1955301051 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYtautau_2250M2500 4.94e-05301056 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYtautau_4000M4500 9e-07301052 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYtautau_2500M2750 2.45e-05301046 PowhegPythia8EvtGen_AZNLOCTEQ6L1_DYtautau_1000M1250 0.0042584

9th May 2016 – 16:38 88

Page 89: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

Table 21: MC15 samples used in this version of the note.DID Sample name cross section [pb]

361300 Sherpa_CT10_Wenu_Pt0_70_CVetoBVeto 2.138e+04361301 Sherpa_CT10_Wenu_Pt0_70_CFilterBVeto 2.138e+04361302 Sherpa_CT10_Wenu_Pt0_70_BFilter 2.138e+04361303 Sherpa_CT10_Wenu_Pt70_140_CVetoBVeto 632.8361304 Sherpa_CT10_Wenu_Pt70_140_CFilterBVeto 632.8361305 Sherpa_CT10_Wenu_Pt70_140_BFilter 632.8361306 Sherpa_CT10_Wenu_Pt140_280_CVetoBVeto 90.12361307 Sherpa_CT10_Wenu_Pt140_280_CFilterBVeto 90.12361308 Sherpa_CT10_Wenu_Pt140_280_BFilter 90.12361309 Sherpa_CT10_Wenu_Pt280_500_CVetoBVeto 5.747361310 Sherpa_CT10_Wenu_Pt280_500_CFilterBVeto 5.747361311 Sherpa_CT10_Wenu_Pt280_500_BFilter 5.747361312 Sherpa_CT10_Wenu_Pt500_700_CVetoBVeto 0.3479361313 Sherpa_CT10_Wenu_Pt500_700_CFilterBVeto 0.3479361314 Sherpa_CT10_Wenu_Pt500_700_BFilter 0.3479361315 Sherpa_CT10_Wenu_Pt700_1000_CVetoBVeto 0.06107361316 Sherpa_CT10_Wenu_Pt700_1000_CFilterBVeto 0.06107361317 Sherpa_CT10_Wenu_Pt700_1000_BFilter 0.06107361318 Sherpa_CT10_Wenu_Pt1000_2000_CVetoBVeto 0.006643361319 Sherpa_CT10_Wenu_Pt1000_2000_CFilterBVeto 0.006643361320 Sherpa_CT10_Wenu_Pt1000_2000_BFilter 0.006643361321 Sherpa_CT10_Wenu_Pt2000_E_CMS_CVetoBVeto 2.659e-05361322 Sherpa_CT10_Wenu_Pt2000_E_CMS_CFilterBVeto 2.659e-05361323 Sherpa_CT10_Wenu_Pt2000_E_CMS_BFilter 2.659e-05361324 Sherpa_CT10_Wmunu_Pt0_70_CVetoBVeto 2.138e+04361325 Sherpa_CT10_Wmunu_Pt0_70_CFilterBVeto 2.138e+04361326 Sherpa_CT10_Wmunu_Pt0_70_BFilter 2.138e+04361327 Sherpa_CT10_Wmunu_Pt70_140_CVetoBVeto 632.8361328 Sherpa_CT10_Wmunu_Pt70_140_CFilterBVeto 632.8361329 Sherpa_CT10_Wmunu_Pt70_140_BFilter 632.8361330 Sherpa_CT10_Wmunu_Pt140_280_CVetoBVeto 90.12361331 Sherpa_CT10_Wmunu_Pt140_280_CFilterBVeto 90.12361332 Sherpa_CT10_Wmunu_Pt140_280_BFilter 90.12361333 Sherpa_CT10_Wmunu_Pt280_500_CVetoBVeto 5.747361334 Sherpa_CT10_Wmunu_Pt280_500_CFilterBVeto 5.747361335 Sherpa_CT10_Wmunu_Pt280_500_BFilter 5.747361336 Sherpa_CT10_Wmunu_Pt500_700_CVetoBVeto 0.3479361337 Sherpa_CT10_Wmunu_Pt500_700_CFilterBVeto 0.3479361338 Sherpa_CT10_Wmunu_Pt500_700_BFilter 0.3479361339 Sherpa_CT10_Wmunu_Pt700_1000_CVetoBVeto 0.06107361340 Sherpa_CT10_Wmunu_Pt700_1000_CFilterBVeto 0.06107361341 Sherpa_CT10_Wmunu_Pt700_1000_BFilter 0.06107361342 Sherpa_CT10_Wmunu_Pt1000_2000_CVetoBVeto 0.006643361343 Sherpa_CT10_Wmunu_Pt1000_2000_CFilterBVeto 0.006643361344 Sherpa_CT10_Wmunu_Pt1000_2000_BFilter 0.006643361345 Sherpa_CT10_Wmunu_Pt2000_E_CMS_CVetoBVeto 2.659e-05361346 Sherpa_CT10_Wmunu_Pt2000_E_CMS_CFilterBVeto 2.659e-05361347 Sherpa_CT10_Wmunu_Pt2000_E_CMS_BFilter 2.659e-05

9th May 2016 – 16:38 89

Page 90: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

Table 22: MC15 samples used in this version of the note.DID Sample name cross section [pb]

361348 Sherpa_CT10_Wtaunu_Pt0_70_CVetoBVeto 2.138e+04361349 Sherpa_CT10_Wtaunu_Pt0_70_CFilterBVeto 2.138e+04361350 Sherpa_CT10_Wtaunu_Pt0_70_BFilter 2.138e+04361351 Sherpa_CT10_Wtaunu_Pt70_140_CVetoBVeto 632.8361352 Sherpa_CT10_Wtaunu_Pt70_140_CFilterBVeto 632.8361353 Sherpa_CT10_Wtaunu_Pt70_140_BFilter 632.8361354 Sherpa_CT10_Wtaunu_Pt140_280_CVetoBVeto 90.12361355 Sherpa_CT10_Wtaunu_Pt140_280_CFilterBVeto 90.12361356 Sherpa_CT10_Wtaunu_Pt140_280_BFilter 90.12361357 Sherpa_CT10_Wtaunu_Pt280_500_CVetoBVeto 5.747361358 Sherpa_CT10_Wtaunu_Pt280_500_CFilterBVeto 5.747361359 Sherpa_CT10_Wtaunu_Pt280_500_BFilter 5.747361360 Sherpa_CT10_Wtaunu_Pt500_700_CVetoBVeto 0.3479361361 Sherpa_CT10_Wtaunu_Pt500_700_CFilterBVeto 0.3479361362 Sherpa_CT10_Wtaunu_Pt500_700_BFilter 0.3479361363 Sherpa_CT10_Wtaunu_Pt700_1000_CVetoBVeto 0.06107361364 Sherpa_CT10_Wtaunu_Pt700_1000_CFilterBVeto 0.06107361365 Sherpa_CT10_Wtaunu_Pt700_1000_BFilter 0.06107361366 Sherpa_CT10_Wtaunu_Pt1000_2000_CVetoBVeto 0.006643361367 Sherpa_CT10_Wtaunu_Pt1000_2000_CFilterBVeto 0.006643361368 Sherpa_CT10_Wtaunu_Pt1000_2000_BFilter 0.006643361369 Sherpa_CT10_Wtaunu_Pt2000_E_CMS_CVetoBVeto 2.659e-05361370 Sherpa_CT10_Wtaunu_Pt2000_E_CMS_CFilterBVeto 2.659e-05361371 Sherpa_CT10_Wtaunu_Pt2000_E_CMS_BFilter 2.659e-05

Table 23: MC15 samples used in this version of the note.DID Sample name cross section [pb]

303437 Pythia8EvtGen_A14NNPDF23LO_DYtautau_120M180 1.3842e+01303438 Pythia8EvtGen_A14NNPDF23LO_DYtautau_180M250 2.3352e+00303439 Pythia8EvtGen_A14NNPDF23LO_DYtautau_250M400 8.6526e-01303440 Pythia8EvtGen_A14NNPDF23LO_DYtautau_400M600 1.5594e-01303441 Pythia8EvtGen_A14NNPDF23LO_DYtautau_600M800 2.9643e-02303442 Pythia8EvtGen_A14NNPDF23LO_DYtautau_800M1000 8.3148e-03303443 Pythia8EvtGen_A14NNPDF23LO_DYtautau_1000M1250 3.3072e-03303444 Pythia8EvtGen_A14NNPDF23LO_DYtautau_1250M1500 1.0955e-03303445 Pythia8EvtGen_A14NNPDF23LO_DYtautau_1500M1750 4.1817e-04303446 Pythia8EvtGen_A14NNPDF23LO_DYtautau_1750M2000 1.7610e-04303447 Pythia8EvtGen_A14NNPDF23LO_DYtautau_2000M2250 7.9838e-05303448 Pythia8EvtGen_A14NNPDF23LO_DYtautau_2250M2500 3.8223e-05303449 Pythia8EvtGen_A14NNPDF23LO_DYtautau_2500M2750 1.9088e-05303450 Pythia8EvtGen_A14NNPDF23LO_DYtautau_2750M3000 9.8673e-06303451 Pythia8EvtGen_A14NNPDF23LO_DYtautau_3000M3500 8.0521e-06303452 Pythia8EvtGen_A14NNPDF23LO_DYtautau_3500M4000 2.4178e-06303453 Pythia8EvtGen_A14NNPDF23LO_DYtautau_4000M4500 7.5696e-07303454 Pythia8EvtGen_A14NNPDF23LO_DYtautau_4500M5000 2.4277e-07303455 Pythia8EvtGen_A14NNPDF23LO_DYtautau_5000M 1.1662e-07

9th May 2016 – 16:38 90

Page 91: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

E. Signal Samples1116

E.1. Signal acceptance systematics1117

E.2. Validation of the bbH fast simulation1118

Signal samples for the bbH production processwere generated usingAltfast-II (AF2) [email protected]

Validation tests were performed to ensure that AF2 and Full Simulation (FS)n results were comparable.1120

Test samples of 280500(277348) events were generated using AF2(FS) at the 1 TeV mass point, with a1121

scale factor applied to FS samples to account for the difference in sample size.1122

In the lep-had channel, the leading Tau pT (Figures 59 and 64), EmissT (Figures 60 and 65), Visible1123

Mass (Figures 61 and 66), MOSAIC (mH ) mass reconstruction (Figures 62 and 67) and MMC mass1124

reconstruction (Figures 63 and 68) variables were compared directly. For both samples, no scale factors1125

(other than that accounting for the event number discrepancy) or weights are included; raw numbers only1126

are used. Variables are compared both before the lep-had cutflow (with all high-level trigger cuts applied)1127

(Figures 59,60,61,62 and 63) and after the full lep-had cutflow (Figures 64,65,66,67 and 68).1128

Figure 59: Tau pT (HLT Cuts Only), separately for e-channel (left) and µ-channel (right).

Figure 60: EmissT (HLT Cuts Only), separately for e-channel (left) and µ-channel (right).

Variations between the fast and full simulation methods are minimal, with the exception of consistently1129

lower yields in EmissT in the fast simulation. In the e-had channel, the yield of the full (fast) simulation1130

is 40002.50 ± 201.14 (40089 ± 200.22) events, giving a discrepancy of 0.216%. In the mu-had channel,1131

9th May 2016 – 16:38 91

Page 92: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

Figure 61: Visible Mass (HLT Cuts Only), separately for e-channel (left) and µ-channel (right).

Figure 62: MOSAIC (mH ) (HLT Cuts Only), separately for e-channel (left) and µ-channel (right).

Figure 63: MMC (HLT Cuts Only), separately for e-channel (left) and µ-channel (right).

the full (fast) yield is 45652 ± 214.87 (46331 pm 215.24), giving a discrepancy of 1.49%. These results1132

suggest that the fast simulation method is consistent with the full simulation method within approximately1133

2%.1134

9th May 2016 – 16:38 92

Page 93: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

Figure 64: Tau pT (All Cuts Applied), separately for e-channel (left) and µ-channel (right).

Figure 65: EmissT (All Cuts Applied), separately for e-channel (left) and µ-channel (right).

Figure 66: Visible Mass (All Cuts Applied), separately for e-channel (left) and µ-channel (right).

E.3. Z/γ∗ → Z′ reweighting validation1135

The reweighting provided by the TauSpinner algorithm, including the extension to allow reweighting for1136

BSM processes, has been extensively validated [64, 90–92]. In this section the validation of the Born-level1137

cross sections for Z ′ production that has been provided to TauSpinner is described.1138

As an additional cross-check to validate the reweighting at 13 TeV a simulated Z ′ signal sample with a1139

resonance mass of 3 TeVis compared to Z/γ∗ → ττ reweighted to a signal with the same mass. Figure 691140

9th May 2016 – 16:38 93

Page 94: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

Figure 67: MOSAIC (mH ) (All Cuts Applied), separately for e-channel (left) and µ-channel (right).

Figure 68: MMC (All Cuts Applied), separately for e-channel (left) and µ-channel (right).

depicts the generator level resonance mass. Reasonable agreement is found over the whole mass range.1141

Major deviations are seen at low mass due to missing inclusive Z/γ∗ → ττ sample below 120 GeV and1142

at high mass are due to statistical limitations from the Z ′ → ττ sample. The former is unproblematic as1143

none of the events will enter the final mass window.1144

Figures 70 and 71 shows various kinematic distributions of the tau leptons at generator level and the mass1145

variables of the missing transverse mass and the total transverse mass mtotT . Again1146

F. Mass Reconstruction1147

F.1. Introduction1148

In this analysis the reconstruction of the invariant mass is done mainly through three complex algorithms:1149

MMC,MOSAIC and mtotT . Studies are being done to figure out which one is the most suitable for the anal-1150

ysis. These studies focuses in several aspects of their performance, among which are the discrimination1151

power (studied as the significance of the ratio signal over background), the exactness of the reconstruction,1152

the computation-time consumption and the complexity.1153

1154

9th May 2016 – 16:38 94

Page 95: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

resonance mass [TeV]

0 1 2 3 4 5 6

a.u

.

6−10

5−10

4−10

3−10

2−10

1−10

1

10

210

310

410 (3000GeV)ττZ’­> (120­180GeV)ττ*­>γZ/ (180­250GeV)ττ*­>γZ/ (250­400GeV)ττ*­>γZ/

(400­600GeV)ττ*­>γZ/ (600­800GeV)ττ*­>γZ/ (800­1000GeV)ττ*­>γZ/ (1000­1250GeV)ττ*­>γZ/

(1250­1500GeV)ττ*­>γZ/ (1500­1750GeV)ττ*­>γZ/ (1750­2000GeV)ττ*­>γZ/ (2000­2250GeV)ττ*­>γZ/

(2250­2500GeV)ττ*­>γZ/ (2500­2750GeV)ττ*­>γZ/ (2750­3000GeV)ττ*­>γZ/ (3000­3500GeV)ττ*­>γZ/

(3500­4000GeV)ττ*­>γZ/ (4000­4500GeV)ττ*­>γZ/ (4500­5000GeV)ττ*­>γZ/ (5000­GeV)ττ*­>γZ/

(3000GeV)ττZ’­> (120­180GeV)ττ*­>γZ/ (180­250GeV)ττ*­>γZ/ (250­400GeV)ττ*­>γZ/

(400­600GeV)ττ*­>γZ/ (600­800GeV)ττ*­>γZ/ (800­1000GeV)ττ*­>γZ/ (1000­1250GeV)ττ*­>γZ/

(1250­1500GeV)ττ*­>γZ/ (1500­1750GeV)ττ*­>γZ/ (1750­2000GeV)ττ*­>γZ/ (2000­2250GeV)ττ*­>γZ/

(2250­2500GeV)ττ*­>γZ/ (2500­2750GeV)ττ*­>γZ/ (2750­3000GeV)ττ*­>γZ/ (3000­3500GeV)ττ*­>γZ/

(3500­4000GeV)ττ*­>γZ/ (4000­4500GeV)ττ*­>γZ/ (4500­5000GeV)ττ*­>γZ/ (5000GeV)ττ*­>γZ/

­410

­310

­210

­110

1

a.u

.

(3000GeV)ττZ’­>

ττ*­>γZ/

(3000GeV)ττZ’­>

ττ*­>γZ/

0

1

2

3

4

truth resonance mass [TeV]0 1 2 3 4 5 6

(

3000G

eV

τZ

’­>

Ratio to

Figure 69: Generator-level resonance mass for Z ′ with mZ′ = 3 TeV events generated with Pythia8, and also forZ/γ∗ → ττ events generated with Pythia8 reweighted to the same mass. The left plot shows Z/γ∗ → ττ samplessplitted in the various slices while the right plot shows the inclusive Z/γ∗ → ττ.

A brief description of each algorithm is given, along with the preliminary results of the comparison1155

studies. These studies are still ongoing and the conclusions subject to later changes.1156

F.2. MMC1157

MMC stands for Missing Mass Calculator. It is an algorithm [103] developed for the Run I analysis1158

of τ decays involving neutrinos. This algorithm assumes that the missing transverse momentum is due1159

entirely to the neutrinos and performs a scan over the angles between the neutrinos and the visible τ1160

decay products. Each solution is weighted according to probability density functions that are derived from1161

simulated τ decays. Three outputs can be obtained from that analysis:1162

MaximumWeight Mass obtained from the point of phase space which has the maximum weight1163

Most Likely Mass Value of mass with the higher probability after the integration - this was the default1164

result used for Run I1165

Most Likely Neutrino 3P Mass obtained from the point with the most likely neutrinos, both optimised1166

separately.1167

MMC algorithm has to be optimised by tuning the MET resolution, especially for high mass points.1168

Studies for tuning the MMC and comparing the performance of the three different outputs are being done1169

at the moment, both for LepHad and HadHad channels.1170

F.3. mTot1171

In the Run I, the mass reconstruction was done also using the total transverse mass, (mtotT ), defined as1172

follows:1173

1174

9th May 2016 – 16:38 95

Page 96: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

­410

­310

­210

­110

1

a.u

.

(3000GeV)ττZ’­>

ττ*­>γZ/

(3000GeV)ττZ’­>

ττ*­>γZ/

0

0.5

1

1.5

[GeV]T

pτtruth 500 1000 1500 2000 2500 3000 3500 4000

(

3000G

eV

τZ

’­>

Ratio to

­410

­310

­210

­110

a.u

.

(3000GeV)ττZ’­>

ττ*­>γZ/

(3000GeV)ττZ’­>

ττ*­>γZ/

0

0.5

1

1.5

2

[GeV]T

vis pτtruth 500 1000 1500 2000 2500 3000 3500 4000

(

3000G

eV

τZ

’­>

Ratio to

0.05

0.1

0.15

0.2

0.25

0.3

0.35a.u

.

(3000GeV)ττZ’­>

ττ*­>γZ/

(3000GeV)ττZ’­>

ττ*­>γZ/

0.5

1

1.5

η τtruth 5− 4− 3− 2− 1− 0 1 2 3 4 5

(

3000G

eV

τZ

’­>

Ratio to

0.05

0.1

0.15

0.2

0.25

0.3

0.35a.u

.

(3000GeV)ττZ’­>

ττ*­>γZ/

(3000GeV)ττZ’­>

ττ*­>γZ/

0.5

1

visη τtruth 5− 4− 3− 2− 1− 0 1 2 3 4 5

(

3000G

eV

τZ

’­>

Ratio to

0.020.040.060.08

0.10.120.140.160.180.2

0.220.24

a.u

.

(3000GeV)ττZ’­>

ττ*­>γZ/

(3000GeV)ττZ’­>

ττ*­>γZ/

(3000GeV)ττZ’­>

ττ*­>γZ/

(3000GeV)ττZ’­>

ττ*­>γZ/

0.95

1

1.05

φ τtruth 4− 3− 2− 1− 0 1 2 3 4

(

3000G

eV

)ττ

Z’­>

Ratio to

0.020.040.060.08

0.10.120.140.160.180.2

0.220.24

a.u

.

(3000GeV)ττZ’­>

ττ*­>γZ/

(3000GeV)ττZ’­>

ττ*­>γZ/

(3000GeV)ττZ’­>

ττ*­>γZ/

(3000GeV)ττZ’­>

ττ*­>γZ/

0.95

1

1.05

visφ τtruth

4− 3− 2− 1− 0 1 2 3 4

(

3000G

eV

)ττ

Z’­>

Ratio to

Figure 70: Generator-level full and visible kinematic variables of tau leptons from for Z ′ with mZ′ = 3 TeV eventsgenerated with Pythia8, and also for Z/γ∗ → ττ events generated with Pythia8 reweighted to the same mass.9th May 2016 – 16:38 96

Page 97: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

­410

­310

­210

­110

a.u

.

(3000GeV)ττZ’­>

ττ*­>γZ/

(3000GeV)ττZ’­>

ττ*­>γZ/

0

1

2

3

[GeV]miss

Ttruth m

500 1000 1500 2000 2500 3000 3500 4000

(

3000G

eV

τZ

’­>

Ratio to

­410

­310

­210

a.u

.

(3000GeV)ττZ’­>

ττ*­>γZ/

(3000GeV)ττZ’­>

ττ*­>γZ/

0

1

2

[GeV]tot

Ttruth m

500 1000 1500 2000 2500 3000 3500 4000

(

3000G

eV

τZ

’­>

Ratio to

Figure 71: Generator-level event mass distributions EmissT and mtot

T for Z ′ with mZ′ = 3 TeV events generated withPythia8, and also for Z/γ∗ → ττ events generated with Pythia8 reweighted to the same mass.

mtotT =

√m2T (τ1, τ2) + m2

T

(τ1, EMiss

T

)+ m2

T

(τ2, EMiss

T

)where the mT between two objects is defined as:1175

mT =√

2pT1pT2 (1 − cos∆φ)

F.4. MOSAIC1176

The new approach is proposed formττ reconstruction using thematrix element basedmaximum likelihood.TheMatrix-elementOriented SAmplIngCalculator (MOSAIC) is similar technique to theMMC in termsof using likelihood function and probability density function. However there are a couple of differences.We firstly denote the likelihood definition:

L(mττ | pτ1µ , pτ2

µ , EmissT ) =

∫Ω

| M | 2 Pr(xττu |D) σ(mττ − mττ (xττu )) (5)

where pτ1µ , pτ2

µ are observed 4-momentum of each visible tau decay products,M is the amplitude for that1177

particular transition which is known from theory. xττu are unknown parameter sets for each τ lepton, Ω1178

is a volume in the xττu parameter space, subject to possible physical constrains. Pr(xττu |D) is posterior1179

probability according to unknown parameter sets xττu to observed result D in Bayesian statistics.1180

F.4.1. The Amplitude Calculation1181

As a ττ resonances, we can assume that three physics process can bee discussed. Z0, H0 and A0 can1182

decay into ττ final state.1183

9th May 2016 – 16:38 97

Page 98: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

• Z0 is the Standard Model weak boson1184

• H0 is the (beyond) Standard Model Higgs boson with CP-even.1185

• A0 is the beyond Standard Model Higgs boson with CP-odd.1186

We can denote three amplitudes as following:1187

|M|2 ∝∑λ1,λ2

∑λ1,λ2

Pλ1λ2λ1λ2D1

λ1λ1D2

λ2λ2,Pλ1λ2

λ1λ2=

∑σ

Mλ1λ2σ (Mλ1λ2

σ )∗, Diλiλi=Mλi (Mλi )

∗ (6)

where P is the amplitude of tau pair production, D is the amplitude term of the decay of each tau lepton.λ1,2 are helicity state of each tau lepton and σ is initial particle helicity states. One of important thingin calculation of these amplitude is the spin correlations between the two taus. This correlation canautomatically take into account in Equation (6). In other words, there is no need for a particular simulationto get the transverse spin effects. We firstly denote the amplitude of production term, for Z0 boson andtwo Higgs boson reduced amplitude is:

Mλ1λ2σ (Z ) ∝

−gqσ

2[gτ+ + g

τ− + (gτ+ − g

τ−)λ β

](σλ + cosΘ) for λ1 , λ2

mλgqσ√

s(gτ+ + g

τ−) sinΘ for λ1 = λ2

,Mλ1λ2σ (H) ∝

βλ for H0

i for A0

The Z0 amplitude has two cases according to two tau helicity correlation. However, in case of λ1 = λ2 is1188

negligible because of√

s m. We reduce the propagator term in order to avoid bias from q2.1189

F.4.2. Tau Lepton Decay Amplitudes1190

The tau lepton decay summarise in Table 24, it can be divided by five mode.1191

In following section, we describe the tau decay density. In the method, an energy fraction between

Table 24: Summary of τ lepton decay mode.

Mode Decay BR(%)1p0n τ− → π−ντ 11.061p1n τ− → ρ−ντ → π−π0ντ 25.421pXn τ− → a−1 ντ → ρ0π−ντ → 2π0π−ντ 10.253p0n τ− → a−1 ντ → ρ−π0ντ → 2π−π+ντ 9.163pXn τ− → ωπ−ντ → 2π−π+π0ντ 4.80

1192

τ lepton and visible decay products x = Evis/Eτ are commonly used for both hadronic and leptonic1193

decay mode. For the leptonic decay the missing system invariant mass fraction b = mmis/mτ cannot be1194

neglected.We should be calculate with (x, b) plane.1195

Let’s start from the tau rest frame, we need to obtain information about invisible term of the τ lepton1196

decay, in other words missing system momentum and its direction. An equally good choice of parameters1197

is to replace the opening angle cos θ∗ with the energy fraction x, where θ∗ is the polar decay angle of the1198

visible decay products in the tau rest frame with respect to the polarization axis if the tau, which for a state1199

of definite helicity corresponds to the direction of flight in the laboratory frame.1200

9th May 2016 – 16:38 98

Page 99: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

The relation between x and cos θ∗ can be obtained by solving for the visible energy Evis in the laboratoryframe, after a Lorentz boost from the rest frame:

cos θ∗ =Evis − γE∗visγ βp∗vis

, E∗vis =m2τ + m2

vis + m2mis

2mτ

where γ = Eτ/mτ, β =√

1 − 1/γ2, E∗vis and p∗vis are the energy and momentum of the visible decay1201

products in the tau rest frame. The energy and momentum in the rest frame are given by:1202

p∗vis =λ(m2

τ,m2vis,m

2mis)

1/2

2mτ(7)

where λ(a, b, c) = a2+ b2+ c2−2(ab+ bc+ ca). After substitution into Equation (F.4.2), we obtained:

cos θ∗ =2x − (1 + a2 + b2)√

λ(1, a2, b2)(1 − (xmτ/Evis)2), E∗vis =

2(1 + a2 + b2) (8)

where a, b = mvis/mτ,mmis/mτ are mass fraction of each tau decay products.1203

Finally in the MOSAIC calculation, we use1204

xu = (x, b, φ) (9)

where φ is angle specifying the orientation of the tau lepton momentum vector with respect to the1205

momentum vector of the visible decay products. Hence xττu for each decay mode are :1206

xττu =

(x1, x2, φ1, φ2) for had-had(x1, x2, φ1, φ2, b1) for lep-had(x1, x2, φ1, φ2, b1, b2) for lep-lep

(10)

F.4.3. ` mode1207

In terms of the parameters, the probability density functions for τ− → `− ν`ντ with a tau polarizationPτ = ±1, is given by

dΓdxdb

=bm3

τ

8β3

(2 − x

m2τ

E2`

(1 + a2 − b2))×

[(1 − a2)2 + b2 (1 + a2 − 2b2) +

Pτ (2x + (1 + a2 − b2)(1 − a2 − 2b2))β

]

(11)

where β =√

1 − (xmτ/E` )2, which has been obtained from [104] using the transformation of Equation (8).1208

The distributions for the two polarization states are shown in Figure 72 in the form of a density plot in the1209

(x, b) plane.1210

F.4.4. 1p0n mode1211

For the 1p0n mode τ− → π−ντ with tau polarization Pτ = ±1, the decay width differential in the poin x1212

fraction is given by [104]1213

dΓdx=

2 − x m2τ

E2π

(1 + a2)

(2 − 2a2) β3

[1 +

Pτ (2x − 1 − a2)(1 − a2) β

](12)

where β =√

1 − (xmτ/Eπ )2. Figure 73(a) black lines shows the mode matrix element of this 1p0nmode.1214

The solid(dashed) line show Pτ = +1(−1).1215

9th May 2016 – 16:38 99

Page 100: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

(a) (b)

0.0 0.2 0.4 0.6 0.8 1.0

x=E`/Eτ

0.0

0.2

0.4

0.6

0.8

1.0

b=mνν/m

τ

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.0 0.2 0.4 0.6 0.8 1.0

x=E`/Eτ

0.0

0.2

0.4

0.6

0.8

1.0

b=mνν/m

τ

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Figure 72: Probability density function of the visible energy fraction x and missing invariant mass fraction b in `mode. Left(right) plot shows Pτ = +1(−1) states. As a lepton both plots use muon and the energy of muon is30GeV.

F.4.5. Decay of Vector Meson1216

In the case of decay of vector meson, we should take into account which are longitudinally (L) ortransversely (T) polarised. In order to consider it, the decay widths are separately computed in [104] asHαv (x,m2) defined by following:

1BRΓ

dΓα

dx=

cos2 ω + a2 sin2 ω + Pτ cos2 ω + a sin 2ω tan θ − a2 sin2 ω)(1 − a2)(1 + 2a2)

(α = L)

sin2 ω + a2(1 + cos2 ω) + Pτ sin2 ω − a sin 2ω tan θ − a2(1 + cos2 ω)(1 − a2)(1 + 2a2)

(α = T )(13)

where BR and Γ are branching ratio and total decay width, hL, hT , cosω are given by

cosω =1 − a2 + (1 + a2) β cos θ√

((1 − a2) sin θ/γ)2 + (cos θ + β(1 + a2))2

From Equation (13), eliminate following variable θ, ω, β, γ, we obtained the probability density function.However, vector meson, i.e. ρ, a1, has non-zero mass width. Thus we should take into account mass widthgiven by

1BRΓ

dΓα

dx=

BRN

∫ xm2τ

(nmπ )2dm2Hα

v (x,m2)Fv (m2)

where n is the number of pion in final state. N, Fv (m2), Dv (m2), Γv (m2) are the normalisation factor, thevector resonance shape function, the vector meson propagator with invariant mass m2 and the runningwidth which defined by

Fv (m2) = (1 − a2)2(1 + 2a2)Dv (m2)2

fv (m2), N =∫ m2

τ

(nmπ )2dm2Fv (m2),

Dv (m2) =1

m2 − m2v + imΓv (m2)

, Γv (m2) = Γvm fv (m2)mv fv (m2

v)

9th May 2016 – 16:38 100

Page 101: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

where fv is line shape factor:

fρ(m2) = (1 − 4m2π/m

2τ )3/2

fa1 (m2) =

4.1m2 (m2 − 9m2

π )[1 − 3.3(m2 − 9m2

π ) + 5.8(m2 − 9m2π )2

]for m2 < (mρ + m2

π )

1.623 +10.38

m2 −9.32m4 +

0.65m6 for m2 > (mρ + m2

π )

After integrate over dm2 space, we obtained the probability density function as shown in Figure 731217

Thus we can calculate the amplitude of the vector meson decay if we could know its polarization state.In order to get information of vector meson polarization state, we introduce helicity angle as polarizationanalyser referenced in [105]. In this reference, a combined decay width defined by

1BRΓ

dΓα

dx=

3(1 + Pτ )W+(θ, ψ) + 3(1 − Pτ )W−(θ, ψ)(m2

τ + 2m2)W±(θ, ψ) = w±0 (cos θ)hρ,a1

0 (cosψ) + w±1 (cos θ)hρ,a11 (cosψ)

where w±0,1 and h0,1 are

w+0 =(mτ cosω cos

θ

2+ m sinω sin

θ

2)2, hρ0 = 2 cos2 ψ

w−0 =(mτ cosω sin

θ

2− m sinω cos

θ

2)2, hρ1 = sin2 ψ

w+1 =(mτ sinω cos

θ

2− m cosω sin

θ

2)2+ m2 sin2 θ

2, ha1

0 = sin2 ψ

w−1 =(mτ sinω sin

θ

2+ m cosω cos

θ

2)2+ m2 cos2 θ

2, ha1

1 = (1 + cos2 ψ))/2

where cosψ is the spin analyser defined by following

cosψ =

m√m2 − 4m2

π

E1 − E2

| ~p1 + ~p2 |for ρ meson

8m2 ~p1 · ( ~p2 × ~p3)/| ~p1 + ~p2 + ~p3 |√−λ(λ3, λ2, λ1)

for a1 meson

where λ1,2,3 = λ( m2,m223,31,12,m

2π ), these amplitude should also be integrated with the line shape factor.1218

Thus, we obtained four 2-dimensional density as shown in Figure 73 (b-e).1219

F.4.6. Markov Chain Mote Carlo algorithms1220

The MOSAIC use the Markov Chain Monte Carlo (MCMC) as a parameters scan instead of a grid point1221

scan. The MCMC methods are a class of algorithms which are used for simulating samples from a1222

posterior distribution that has the desired true posterior distribution as its stationary distribution. The1223

Metropolis-Hastings algorithms is one of best algorithms to get Markov chain τ1, τ2, · · · , τt, · · · with1224

equilibrium distribution π(τi | X), where τi are parameter set at state i. Let q(τ∗ | τt ) be the proposal1225

density which is a function that depends on the current state ~τt ans a new proposed sample τ∗ . This1226

proposed values τ∗ is accepted as the next value τt+1 if a value αt ∈ U (0, 1) satisfies If the proposal is1227

9th May 2016 – 16:38 101

Page 102: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

(a) (b) (c)

0.0 0.2 0.4 0.6 0.8 1.0

x=Eπ,ρ,a1/Eτ

0.0

0.1

0.2

0.3

0.4

0.5

1 Γτ

dΓα v

dx

π,Pτ= +1

a1,Pτ= +1 longitudinallya1,Pτ=−1 longitudinallya1,Pτ= +1 transversea1,Pτ=−1 transverse

π,Pτ=−1

ρ,Pτ= +1 longitudinallyρ,Pτ=−1 longitudinallyρ,Pτ= +1 transverseρ,Pτ=−1 transverse

0.0 0.2 0.4 0.6 0.8 1.0

x=Eρ/Eτ

0.0

0.2

0.4

0.6

0.8

1.0

Eπ∓/E

ρ

0.000.040.080.120.160.200.240.280.320.36

0.0 0.2 0.4 0.6 0.8 1.0

x=Eρ/Eτ

0.000

0.024

0.048

0.072

0.096

0.120

0.144

(d) (e)

0.0 0.2 0.4 0.6 0.8 1.0

x=Ea1/Eτ

1.0

0.5

0.0

0.5

1.0

cosψ

0.0000.0160.0320.0480.0640.0800.0960.1120.1280.144

0.0 0.2 0.4 0.6 0.8 1.0

x=Ea1/Eτ

0.000.040.080.120.160.200.240.280.320.36

Figure 73: Probability density function of the visible energy fraction x with non-zero mass width. Blue(red)distribution shows ρ(a1) meson. The solid(dot) line shows Pτ = ±1 in transverse polarised tau and the dashed(dash-dot) line shows Pτ = ±1 in transversely polarised tau. Left(right) shows zero(non-zero) mass width calculation.

not accepted, then τt+1 = τt . That is, the chain remains in its current state in time t + 1. The proposal1228

function might generate new values of a parameter that are accepted with very low probability, thus the1229

parameter will stay in the same state for long time periods before moving. Such chain has very strong1230

autocorrelation. Therefore, we need to do thinning that described after this sub-section. The sampling1231

points from the MCMC has to be checked a convergence, an autocorrelation and burn-in period.1232

Autocorrelation The MH algorithm has a strong autocorrelation within the chain. The k-lag autocor-relation ρk is the correlation between every draw and its kth lag given by:

ρk =

∑n−ki=1 (θi − θ)(θi+k − θ)∑n

i=1(θi − θ)2

In order to reduce the autocorrelation, the MOSAIC algorithm use sampling points every optimal ACF1233

k-lag.1234

Burn-in period The MCMC has a period where has strong effect from initial values, so-called burn-inperiod, should be removed from the chain. To estimate optimal burn-in size, the Effective Sample Size(ESS) are used in the MOSAIC algorithm given by following:

ESS(m) =n

1 + 2∑∞

k=1 ρk (m), ρk (m) =

∑n−ki=1+m(θi − x)(θi+k − θ)∑n

i=1+m(θi − θ)2

where ρk is the autocorrelation as a function of k-lag and burn-in period m. The optimal burn-in period1235

is size m which make the ESS maximum.1236

9th May 2016 – 16:38 102

Page 103: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

Estimating Convergence To checking convergence of the sampling is important. In the MOSAICsapling, the chains runs in parallel. All the chains must have reasonably same results. The Gelman &Rubin method for checking convergence is

B =n

N − 1

N∑j=1

(θ j − ¯θ)2,W =1

N (n − 1)

N∑j=1

n∑i=1

(θi j − θ j )2, Var(θ) = (1 −1n

)W +Bn, R =

√Var(θ)

W

where B,W are between and within variance, Var(θ) is combined variance. If it satisfy R < 1.01 then it1237

converged.1238

G. Final Discriminant Studies1239

G.1. MSSM Higgs search1240

The results of this search are extracted from a binned likelihood function constructed from themττ invariant1241

mass distribution, as explained in Section 8. Different mττ mass reconstruction have been evaluated in this1242

search: the visible mass mvis, mtotT , the Missing Mass Calculator mMMC and Mosaic mττ . The invariant1243

mass reconstruction algorithms are described in Appendix F. Their performance has been evaluated using1244

the figure of merit defined by Asimov’s formula [101] given as1245

Z =

√2((s + b)ln

(1 +

sb

)− s

), (14)

where b is the background expectation for 3.21 fb−1and s is the signal expectation for the different1246

mass points. The results of the study are summarised in Table 25. For high mass signal samples, mtotT1247

performance is significantly better than the rest of mass reconstruction algorithms. For lower mass signal1248

samples, mtotT , Mosaic and MMC algorithms have similar performance. Even if Mosaic and MMC are1249

able to reconstruct with more accuracy the peak position of the signal, the mtotT variable achieves a better1250

separation between the multi-jet background and the signal. For this reason, the mtotT has been chosen as1251

discriminant variable in the statistical analysis of this search.1252

Mass Point mtotT mMMC Mosaic mvis

H/A 200 GeV 0.003 0.010 0.006 0.007H/A 300 GeV 0.183 0.266 0.252 0.266H/A 500 GeV 5.078 4.827 4.068 4.119H/A 600 GeV 7.179 6.125 5.256 5.300H/A 700 GeV 8.625 6.937 6.046 6.209H/A 800 GeV 9.875 7.986 6.734 6.886H/A 900 GeV 10.101 9.018 7.566 7.732

Table 25: Statistical significance of the different mass reconstruction algorithms as a function of the signal masspoint. The numbers correspond to an integrated luminosity of 3.21 fb−1and a conventional signal cross-section of1 pb−1.

9th May 2016 – 16:38 103

Page 104: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

G.2. Optimisation of the b-tag category definition1253

The definition of the b-tag and b-veto categories is based on the identification of of least 1 jet of the event1254

as a b-jet. The choice of the jets to be considered in the definition of the categories has been optimised1255

based on the figure of merit of the binned statistical significance of the mtotT distribution. The significance1256

is calculated using the Asimov’s formula defined in Appendix G.1. The following options have been1257

considered in the optimisation:1258

• Event is selected for the b-tag category if the leading jet is tagged.1259

1260

• Event is selected for the b-tag category if the leading or sub-leading jets is tagged.1261

1262

• Event is selected for the b-tag category if any jet in the event is tagged1263

1264

In all cases, the jets must fulfil the requirement of pT > 25GeV. Table 26 shows the combined statistical1265

significance of the b-tag and b-veto categories for the different category definition options. Based on this1266

study, events are selected for the b-tag category if any jet in the event is identified as a b-jet.1267

Combined significance of the b-tag and b-veto categoriesMass Point Leading jet Lead. or sub-lead. jet Any jetH/A 300 GeV 2.20 2.50 2.60H/A 500 GeV 13.1 13.8 14.0H/A 600 GeV 2.16 2.18 2.19H/A 700 GeV 2.91 2.93 2.93H/A 800 GeV 3.65 3.66 3.66H/A 1000 GeV 4.77 4.77 4.77

Table 26: Statistical significance of the different options for the definition of the b-tag category as a function of thesignal mass point. The numbers correspond to an integrated luminosity of 3.21 fb−1and a conventional total signalcross-section of 1 pb−1.

G.3. Z′ → ττ search1268

A scan over lower thresholds on mtotT is performed in the range between 400 GeV and 900 GeV evaluating1269

the significance 14 for each masspoint. The results are depicted in Figure 74. The white semi-transparent1270

line indicates mass thresholds yielding largest significance for each masspoint under the requirement that1271

there is at least one expected background event, which is ensured for mass thresholds up to 800 GeV.1272

9th May 2016 – 16:38 104

Page 105: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

sign

ifica

nce

Z0.20.3

1

23

10

2030

[TeV]Z'm

0.5000.6000.700 0.8000.900 1.0001.250 1.5001.750 2.0002.2502.500

thre

shol

dto

tT

m

400

450

500

550

600

650

700

750

800

850

900

36.5

934

.91

28.8

322

.33

16.7

912

.56

5.75

2.69

1.20

0.58

0.28

0.14

22.8

1

30.1

828

.13

22.8

717

.66

13.7

46.

703.

261.

500.

740.

360.

18

9.16

22.5

725

.34

22.2

617

.92

14.3

97.

483.

781.

800.

910.

440.

22

2.31

14.1

1

20.9

820

.95

17.4

914

.56

8.06

4.29

2.11

1.08

0.54

0.27

1.14 5.

2615

.86

17.8

816

.13

14.1

48.

304.

532.

311.

210.

610.

31

0.78

2.15

9.92

14.5

214

.76

13.5

38.

564.

892.

571.

380.

710.

37

0.57

1.07

4.15

10.8

712

.81

12.4

68.

535.

052.

761.

530.

800.

42

0.47

0.68

1.71

7.12

10.3

711

.41

8.50

5.26

2.98

1.71

0.92

0.49

0.36

0.50

0.94

3.26

7.78

9.68

8.08

5.26

3.05

1.80

0.98

0.54

0.28

0.38

0.51

1.55

4.85

7.66

7.50

5.17

3.08

1.85

1.03

0.57

0.22

0.29

0.35

0.62

2.40

5.24

6.74

4.99

3.01

1.87

1.06

0.60

Figure 74: Significance computed using Equation 14 for each Z ′ masspoint for various lower thresholds on the totaltransverse mass mtot

T . The white semi-transparent line indicates thresholds providing the largest significance.

9th May 2016 – 16:38 105

Page 106: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

H. mT(τ1, EmissT

) mismodelling studies1273

H.1. Motivation1274

A mismodelling in the mT(τ1, EmissT ) distribution in b-veto category for OS region is observed (as can be1275

seen in Figure 7 (d) and it is reproduced here in Figure 75 (a) ). The mismodelling only appears in b-veto1276

OS (a) and it has also a reflection in mtotT distribution. However, the SS region of the b-veto category1277

does not show any disagreement, neither for mT(τ1, EmissT ) (Figure 75 (b)) nor mtot

T . This feature was not1278

observed in the same plot for EOYE CONF NOTE (Figure 75 (c)) [106].1279

1280

This disagreement raised concerns about the validity of the background model, so several studies were1281

performed in order to figure out the reason of the disagreement.1282

1283

) [GeV]missTE,1τ (Tm

Eve

nts/

20

GeV

1−10

1

10

210

310=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 0.41 fbs

hadτhadτ→H/APre-fit

) [GeV]missTE,1τ (Tm

0 20 40 60 80 100 120 140 160 180 200Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(a)

) [GeV]missTE,1τ (Tm

Eve

nts/

20

GeV

1−10

1

10

210

310

410 =400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/ASame-sign CR

) [GeV]missTE,1τ (Tm

0 20 40 60 80 100 120 140 160 180 200Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(b)

) [GeV]missTE,1τ (Tm

Eve

nts/

20

GeV

1−10

1

10

210

310

410=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/APre-fit

) [GeV]missTE,1τ (Tm

0 20 40 60 80 100 120 140 160 180 200Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(c)

Figure 75: mT(τ1, EmissT ) for: (a) current b-veto OS, showing the mismodelling (b) current b-veto SS showing a good

agreement, (c) EOYE plot, showing good agreement

H.2. Studies1284

Since the mT variable depends directly of the ∆φ angle between the objects, the angular distributions1285

(∆φ, ∆R) between both τ and EmissT in b-veto category for SS and OS regions were checked to find1286

any mismodelling that could explain the behaviour of mT plot. For this, the current analysis cut on ∆φ1287

(∆φ > 2.7) was removed.1288

As it is observed in figures 76 and 77, there is a good general agreement between data and background1289

for all the distributions. Especially in SS region (figure 77), that has higher statistics, data points show1290

almost no deviation from the background prediction. In OS region (figure 76), with significantly less1291

events, data points fluctuate more. However, there is not trace of a general mismodelling, rather than1292

statistical fluctuations. Most points are within the error bands and so, due to the lack of statistics, no1293

strong conclusion can be reached.1294

1295

9th May 2016 – 16:38 106

Page 107: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

)missTE,0τ)(φ(∆

Eve

nts/

0 G

eV

5

10

15

20

25

30

=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 0.41 fbs

hadτhadτ→H/APre-fit

)missTE,0τ)(φ(∆

0 0.5 1 1.5 2 2.5 3Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(a)

)missTE,1τ)(φ(∆

Eve

nts/

0 G

eV

10

20

30

40

50=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 0.41 fbs

hadτhadτ→H/APre-fit

)missTE,1τ)(φ(∆

0 0.5 1 1.5 2 2.5 3Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(b)

missT

E0,τ R∆

Eve

nts/

0.2

5

10

15

20

25 =400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 0.41 fbs

hadτhadτ→H/APre-fit

miss

TE0,τ R∆

0 0.5 1 1.5 2 2.5 3 3.5 4Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(c)

missT

E1,τ R∆

Eve

nts/

0.2

5

10

15

20

25 =400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 0.41 fbs

hadτhadτ→H/APre-fit

miss

TE1,τ R∆

0 0.5 1 1.5 2 2.5 3 3.5 4Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(d)

Figure 76: Angular distributions for b-veto OS: (a) ∆φ(τ0, EmissT ), (b) ∆φ(τ1, Emiss

T ), (c) ∆R(τ0, EmissT ), (d)

∆R(τ1, EmissT ).

Since the angular distributions did not show any mismodelling that could be related to the mismodelling1296

in mT(τ1, EmissT ), the main changes from EOYE analysis were revised in order to see if the disagreement1297

was introduced later. Two main changes were reverted, in separately studies: first, the plots were redone1298

using the Fake Factors computed at EOYE time and, second, the leading τ pT cut was changed back from1299

110 GeV (current threshold) to 135 GeV (EOYE threshold). Neither of them, however, was conclusive.1300

For a correct comparison with respect to EOYE selection, current plots had to be done in the inclusive1301

category, before the b-tagging cut, as this cut was not present at EOYE.1302

1303

The result of the first test, comparing plots with different Fake Factors (from EOYE time and current1304

values) is shown in figure 78. The conclusion is that the change in the FF value has very little effect in the1305

final distribution. Both figures are practically identical, so updating the FF cannot have been the reason1306

of the mismodelling in mT(τ1, EmissT ).1307

9th May 2016 – 16:38 107

Page 108: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

)missTE,0τ)(φ(∆

Eve

nts/

0 G

eV

20

40

60

80

100

120

140

160=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/ASame-sign CR

)missTE,0τ)(φ(∆

0 0.5 1 1.5 2 2.5 3Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(a)

)missTE,1τ)(φ(∆

Eve

nts/

0 G

eV

20

40

60

80

100

120

140=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/ASame-sign CR

)missTE,1τ)(φ(∆

0 0.5 1 1.5 2 2.5 3Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(b)

missT

E0,τ R∆

Eve

nts/

0.2

20

40

60

80

100 =400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/ASame-sign CR

miss

TE0,τ R∆

0 0.5 1 1.5 2 2.5 3 3.5 4Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(c)

missT

E1,τ R∆

Eve

nts/

0.2

10

20

30

40

50

60

70 =400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 3.21 fbs

hadτhadτ→H/ASame-sign CR

miss

TE1,τ R∆

0 0.5 1 1.5 2 2.5 3 3.5 4Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(d)

Figure 77: Angular distributions for b-veto SS: (a) ∆φ(τ0, EmissT ), (b) ∆φ(τ1, Emiss

T ), (c) ∆R(τ0, EmissT ), (d)

∆R(τ1, EmissT ).

1308

The result of the second test, changing back the leading τ pT cut from 110 GeV to 135 GeV, is shown in1309

figure 79. This change indeed has a visible effect, mainly in matter of statistics. The threshold set for the1310

EOYE was tighter, and so, less events made to the final plots. The shape of the plot is not significantly1311

altered, but the statistical error of the data points and background prediction, depending directly of the1312

number of events passing the selection, is increased. Due to the bigger errors, data and background seem1313

more compatible.1314

1315

However, there is a another subtle difference between the EOYE plot and the current one that has to be1316

taken into account: the luminosity. Figure 75 compared two plots with significantly different amount of1317

data: EOYE plot is fully unblinded (3.21 fb−1) but the current plot is only shown for the first 0.4 fb−1of1318

data, since the analysis was blinded again. In order to compare the plots consistently, the EOYE plot was1319

9th May 2016 – 16:38 108

Page 109: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

re-blinded for the same 0.4 fb−1 of data. The comparison between those plots is shown in figure 80 and1320

in this, the reblinded EOYE plot shows a similar mismodelling as the one being studied. The pattern is1321

not exactly the same in all points the there is a big similarity between both shapes. This mismodelling1322

was not seen in previous studies because the EOYE plot, due to the tighter leading τ pT cut, has larger1323

error bands (both for data and background) that makes the disagreement less evident. A direct comparison1324

of both plots show, however, that they have similar shapes and themismodelling is consistent between them.1325

1326

H.3. Conclusion1327

This result points to the mismodelling being a statistical fluctuation that appears in the first part of the1328

dataset. This is based in the fact that reblinding the EOYE plot to the current allowed luminosity shows1329

a similar mismodelling and none of the studies of angular distributions or recent changes in the analysis1330

(FF, pT cut) could give a satisfactory explanation of the disagreement. None of them, indeed, showed any1331

clear mismodelling, more than statistical fluctuations within the error band. The fact that, at the time of1332

EOYE, the cuts were tighter and hence, the error bands were wider, made the mismodelling not so evident.1333

After fully unblinding the EOYE plot, any trace of the mismodelling disappeared and the agreement of1334

the plot improved.1335

9th May 2016 – 16:38 109

Page 110: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

) [GeV]missTE,0τ (Tm

Eve

nts/

20

GeV

2

4

6

8

10

12

14

16

18 =400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 0.41 fbs

hadτhadτ→H/APre-fit

) [GeV]missTE,0τ (Tm

0 20 40 60 80 100 120 140 160 180 200Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(a)

) [GeV]missTE,0τ (Tm

Eve

nts/

20

GeV

2

4

6

8

10

12

14

16

18 =400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 0.41 fbs

hadτhadτ→H/APre-fit

) [GeV]missTE,0τ (Tm

0 20 40 60 80 100 120 140 160 180 200Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(b)

) [GeV]missTE,1τ (Tm

Eve

nts/

20

GeV

5

10

15

20

25

30

35

40

45=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 0.41 fbs

hadτhadτ→H/APre-fit

) [GeV]missTE,1τ (Tm

0 20 40 60 80 100 120 140 160 180 200Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(c)

) [GeV]missTE,1τ (Tm

Eve

nts/

20

GeV

5

10

15

20

25

30

35

40

45=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 0.41 fbs

hadτhadτ→H/APre-fit

) [GeV]missTE,1τ (Tm

0 20 40 60 80 100 120 140 160 180 200Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(d)

[GeV]TotTm

Eve

nts/

GeV

0.2

0.4

0.6

0.8

1=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 0.41 fbs

hadτhadτ→H/APre-fit

[GeV]TotTm

0 100 200 300 400 500 600 700 800 900 1000Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(e)

[GeV]TotTm

Eve

nts/

GeV

0.2

0.4

0.6

0.8

1=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 0.41 fbs

hadτhadτ→H/APre-fit

[GeV]TotTm

0 100 200 300 400 500 600 700 800 900 1000Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(f)

Figure 78: Comparison of transverse mass variables using different FakeFactors, current numbers on the left column,FakeFactors for EOYE on the right column, for inclusive SS: (a) mT(τ0, Emiss

T ), (b) mT(τ0, EmissT ) with EOYE FF, (c)

mT(τ1, EmissT ) , (d) mT(τ1, Emiss

T ) with EOYE FF, (e) mtotT , (f) mtot

T with EOYE FF

9th May 2016 – 16:38 110

Page 111: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

) [GeV]missTE,0τ (Tm

Eve

nts/

20

GeV

2

4

6

8

10

12

14

16

18 =400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 0.41 fbs

hadτhadτ→H/APre-fit

) [GeV]missTE,0τ (Tm

0 20 40 60 80 100 120 140 160 180 200Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(a)

) [GeV]missTE,0τ (Tm

Eve

nts/

20

GeV

2

4

6

8

10

12

14=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 0.41 fbs

hadτhadτ→H/APre-fit

) [GeV]missTE,0τ (Tm

0 20 40 60 80 100 120 140 160 180 200Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(b)

) [GeV]missTE,1τ (Tm

Eve

nts/

20

GeV

5

10

15

20

25

30

35

40

45=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 0.41 fbs

hadτhadτ→H/APre-fit

) [GeV]missTE,1τ (Tm

0 20 40 60 80 100 120 140 160 180 200Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(c)

) [GeV]missTE,1τ (Tm

Eve

nts/

20

GeV

24

68

101214

1618

2022

=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 0.41 fbs

hadτhadτ→H/APre-fit

) [GeV]missTE,1τ (Tm

0 20 40 60 80 100 120 140 160 180 200Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(d)

[GeV]TotTm

Eve

nts/

GeV

0.2

0.4

0.6

0.8

1=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 0.41 fbs

hadτhadτ→H/APre-fit

[GeV]TotTm

0 100 200 300 400 500 600 700 800 900 1000Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(e)

[GeV]TotTm

Eve

nts/

GeV

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45 =400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 0.41 fbs

hadτhadτ→H/APre-fit

[GeV]TotTm

0 100 200 300 400 500 600 700 800 900 1000Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(f)

Figure 79: Comparison of transverse mass variables using different threshold in leading τ pT cut, 110 GeV (current)on the left column, 135 GeV (EOYE threshold) on the right column: (a) mT(τ0, Emiss

T ) 110 GeV, (b) mT(τ0, EmissT )

135 GeV, (c) mT(τ1, EmissT ) 110 GeV, (d) mT(τ1, Emiss

T ) 135 GeV, (e) mtotT 110 GeV, (f) mtot

T 135 GeV

9th May 2016 – 16:38 111

Page 112: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

) [GeV]missTE,1τ (Tm

Eve

nts/

20

GeV

1−10

1

10

210

310=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 0.41 fbs

hadτhadτ→H/APre-fit

) [GeV]missTE,1τ (Tm

0 20 40 60 80 100 120 140 160 180 200Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(a)

) [GeV]missTE,1τ (Tm

Eve

nts/

20

GeV

1−10

1

10

210

310=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 0.41 fbs

hadτhadτ→H/APre-fit

) [GeV]missTE,1τ (Tm

0 20 40 60 80 100 120 140 160 180 200Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(b)

[GeV]TotTm

Eve

nts/

GeV

3−10

2−10

1−10

1

10

=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 0.41 fbs

hadτhadτ→H/APre-fit

[GeV]TotTm

0 100 200 300 400 500 600 700 800 900 1000Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(c)

[GeV]TotTm

Eve

nts/

GeV

3−10

2−10

1−10

1

10=400 GeV Am =500 GeV Am=1000 GeV Am Multi-jet

+jetsττ→Z +jetsντ→W+single-toptt Others

Data Bkg. uncert.

-1=13 TeV, 0.41 fbs

hadτhadτ→H/APre-fit

[GeV]TotTm

0 100 200 300 400 500 600 700 800 900 1000Dat

a/B

kg R

atio

0.20.40.60.8

11.21.41.61.8

(d)

Figure 80: mT(τ1, EmissT ) for: (a) current inclusive OS (b) EOYE reblinded to 0.4 fb−1

9th May 2016 – 16:38 112

Page 113: ific.uv.esific.uv.es/~fiorini/forAdam/ATL-COM-PHYS-2016-120.pdfonly ATLAS NOTE ATL-COM-PHYS-2016-120 9thMay2016 Draftversion0.6 1 2 SearchforNeutralMSSMHiggsBosonsH=A !˝ had had and

Not

revi

ewed

,for

inte

rnal

circ

ulat

ion

only

DRAFT

List of contributions1336

Alvarez Piqueras, Damian Editor, Ntuple production, mass reconstruction sensitivity, fake fac-tor studies, multijet control region studies.

Beckingham, Matthew LepHad Channel, trigger studies.Blumenschein, Ulrike xTau framework and derivations.Davey, Will Tau systematics, high pT taus, background estimation.Drechsler, Eric xTau frameworkDuschinger, Dirk Z ′ → ττ search (HadHad channel), Z ′ → ττ combination, TauA-

nalysisTools developer.Fiorini, Luca Fake factor optimisation and systematics, editing of the note, Same

sign region studies, pre-fit plots, Supervisor of Damian Alvarez.Goussiou, Anna Supervisor, LepHad Channel.Gwilliam, Carl HBSM convenor, post-fit plots.Hamity, Guillermo Nicolas Detector systematics studies, editing of the note.Hauswald, Lorenz Editor, Fake rates and systematics, bbH signal validation, derivation

definition, W+jets corrections and systematics, theory systematics,limit.

Hyneman, Rachel LepHad Channel, Z ′ → ττ searchJabbar, Samina b-associated production signal studies.Koneke, Karsten Supervisor, LepHad Channel.Liu, Hao LepHad Channel, gluon fusion acceptance uncertainties.Mader, Wolfgang Supervisor.McCarn, Allison HBSM convenor, LepHad Channel, combination.Moore, Roger Supervisor.Mori, Tatsuya Tau systematics studies.Morinaga, Masahiro LepHad Channel, Mass reconstruction.Neubauer, Mark Supervisor.Pakela, Julia LepHad Channel.Pickering, Mark Andrew cutflows, ntuple production, high pT tau studies, trigger studies,

editing of the note.Pranko, Aliaksandr Mass reconstruction studies.Rompotis, Nikolaos LepHad Channel, combination.Sales De Bruin, PedroHenrique

LepHad Channel, xTau framework.

Schwarz, Thomas Andrew Supervisor, LepHad Channel, editor of the conference note.Straessner, Arno Supervisor.Tanaka, Junichi Supervisor, LepHad Channel.Vickey, Trevor Supervisor.Zhang, Lei LepHad Channel.Zinonos, Zinonas xTau framework and derivations.

1337

1338

9th May 2016 – 16:38 113