IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

133
Physics of Massive Neutrinos Concha Gonzalez-Garcia Plan of Lectures I. Standard Neutrino Properties and Mass Terms (Beyond Standard) II. Effects of ν Mass: Neutrino Oscillations (Vacuum) III. Neutrino Oscillations in Matter IV. The Emerging Picture and Some Lessons

Transcript of IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Page 1: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Plan of Lectures

I. Standard Neutrino Properties and Mass Terms (Beyond Standard)

II. Effects of ν Mass: Neutrino Oscillations (Vacuum)

III. Neutrino Oscillations in Matter

IV. The Emerging Picture and Some Lessons

Page 2: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Summary I

• In the SM:

– Accidental global symmetry: B × Le × Lµ × Lτ ↔ mν ≡ 0

– neutrinos are left-handed (≡ helicity -1): mν = 0 ⇒ chirality ≡ helicity

– No distinction between Majorana or Dirac Neutrinos

• If mν 6= 0 → Need to extend SM

→ different ways of adding mν to the SM– breaking total lepton number (L = Le + Lµ + Lτ ) → Majorana ν: ν = νC

– conserving total lepton number → Dirac ν: ν 6= νC

• Question: How to search for mν?

Answer: Today

Page 3: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Summary I

• In the SM:

– Accidental global symmetry: B × Le × Lµ × Lτ ↔ mν ≡ 0

– neutrinos are left-handed (≡ helicity -1): mν = 0 ⇒ chirality ≡ helicity

– No distinction between Majorana or Dirac Neutrinos

• If mν 6= 0 → Need to extend SM

→ different ways of adding mν to the SM– breaking total lepton number (L = Le + Lµ + Lτ ) → Majorana ν: ν = νC

– conserving total lepton number → Dirac ν: ν 6= νC

• Question: How to search for mν?

Answer: Today

Page 4: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Summary I

• In the SM:

– Accidental global symmetry: B × Le × Lµ × Lτ ↔ mν ≡ 0

– neutrinos are left-handed (≡ helicity -1): mν = 0 ⇒ chirality ≡ helicity

– No distinction between Majorana or Dirac Neutrinos

• If mν 6= 0 → Need to extend SM

→ different ways of adding mν to the SM– breaking total lepton number (L = Le + Lµ + Lτ ) → Majorana ν: ν = νC

– conserving total lepton number → Dirac ν: ν 6= νC

• Question: How to search for mν?

Answer: Today

Page 5: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Summary I

• In the SM:

– Accidental global symmetry: B × Le × Lµ × Lτ ↔ mν ≡ 0

– neutrinos are left-handed (≡ helicity -1): mν = 0 ⇒ chirality ≡ helicity

– No distinction between Majorana or Dirac Neutrinos

• If mν 6= 0 → Need to extend SM

→ different ways of adding mν to the SM– breaking total lepton number (L = Le + Lµ + Lτ ) → Majorana ν: ν = νC

– conserving total lepton number → Dirac ν: ν 6= νC

• Question: How to search for mν?

Answer: Today

Page 6: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Plan of Lecture II

Effects of ν Mass: Neutrino Oscillations (Vacuum)

Lepton Mixing

Direct Probes of Neutrino Mass ScaleWeak decays, ν-less ββ decay, Cosmology

Neutrino Oscillations in Vacuum

Vacuum Neutrino Oscillations Searches and Findings

Alternative Mechanisms for Neutrino Oscillations

Page 7: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Lepton Mixing

• Charged current and mass for 3 charged leptons `i and N neutrinos νj in weak basis

LCC+LM = − g√2

3∑

i=1

`WL,iγ

µνWi W+

µ −3

i,j=1

`WL,iM`ij`

WR,j−

1

2

N∑

i,j=1

νci

W MνijνWj +h.c.

• Changing to mass basis by rotations

`WL,i = V `

Lij`L,j `WR,i = V `

Rij`R,j νWi = V ν

ijνj

V `L

†M`V

`R = diag(me, mµ, mτ ) V νT MνV ν = diag(m2

1, m22, m

23, . . . , m

2N )

V `L,R≡ Unitary 3 × 3 matrices V ν≡ Unitary N × N matrix.

• The charged current in the mass basis

LCC = − g√2`iL γµ U ij

LEP νj W+µ

ULEP ≡ 3 × N matrix U ijLEP =

3∑

k=1

P `iiV

`L

†ikV νkjP ν

jj

Page 8: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Lepton Mixing

• Charged current and mass for 3 charged leptons `i and N neutrinos νj in weak basis

LCC+LM = − g√2

3∑

i=1

`WL,iγ

µνWi W+

µ −3

i,j=1

`WL,iM`ij`

WR,j−

1

2

N∑

i,j=1

νci

W MνijνWj +h.c.

• Changing to mass basis by rotations

`WL,i = V `

Lij`L,j `WR,i = V `

Rij`R,j νWi = V ν

ijνj

V `L

†M`V

`R = diag(me, mµ, mτ ) V νT MνV ν = diag(m2

1, m22, m

23, . . . , m

2N )

V `L,R≡ Unitary 3 × 3 matrices V ν≡ Unitary N × N matrix.

• The charged current in the mass basis

LCC = − g√2`iL γµ U ij

LEP νj W+µ

ULEP ≡ 3 × N matrix U ijLEP =

3∑

k=1

P `iiV

`L

†ikV νkjP ν

jj

Page 9: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Lepton Mixing

• Charged current and mass for 3 charged leptons `i and N neutrinos νj in weak basis

LCC+LM = − g√2

3∑

i=1

`WL,iγ

µνWi W+

µ −3

i,j=1

`WL,iM`ij`

WR,j−

1

2

N∑

i,j=1

νci

W MνijνWj +h.c.

• Changing to mass basis by rotations

`WL,i = V `

Lij`L,j `WR,i = V `

Rij`R,j νWi = V ν

ijνj

V `L

†M`V

`R = diag(me, mµ, mτ ) V νT MνV ν = diag(m2

1, m22, m

23, . . . , m

2N )

V `L,R≡ Unitary 3 × 3 matrices V ν≡ Unitary N × N matrix.

• The charged current in the mass basis

LCC = − g√2`iL γµ U ij

LEP νj W+µ

ULEP ≡ 3 × N matrix U ijLEP =

3∑

k=1

P `iiV

`L

†ikV νkjP ν

jj

Page 10: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Lepton Mixing

• Charged current and mass for 3 charged leptons `i and N neutrinos νj in weak basis

LCC+LM = − g√2

3∑

i=1

`WL,iγ

µνWi W+

µ −3

i,j=1

`WL,iM`ij`

WR,j−

1

2

N∑

i,j=1

νci

W MνijνWj +h.c.

• Changing to mass basis by rotations

`WL,i = V `

Lij`L,j `WR,i = V `

Rij`R,j νWi = V ν

ijνj

V `L

†M`V

`R = diag(me, mµ, mτ ) V νT MνV ν = diag(m2

1, m22, m

23, . . . , m

2N )

V `L,R≡ Unitary 3 × 3 matrices V ν≡ Unitary N × N matrix.

• The charged current in the mass basis

LCC = − g√2`iL γµ U ij

LEP νj W+µ

ULEP ≡ 3 × N matrix U ijLEP =

3∑

k=1

P `iiV

`L

†ikV νkjP ν

jj

Page 11: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Lepton Mixing

ULEP ≡ 3 × N matrix U ijLEP =

3∑

k=1

P `iiV

`L

†ikV νkjP ν

jj

• P `ii phase absorved in li

• P νkk phase absorved in νi (only possible if νi is Dirac)

• ULEPU †LEP=I3×3 but in general U †

LEPULEP 6=IN×N

• For example for 3 Dirac ν’s : 3 Mixing angles + 1 Dirac Phase

ULEP =

0

B

B

@

1 0 0

0 c23 s23

0 −s23 c23

1

C

C

A

0

B

B

@

c13 0 s13eiδ

0 1 0

−s13e−iδ 0 c13

1

C

C

A

0

B

B

@

c21 s12 0

−s12 c12 0

0 0 1

1

C

C

A

• For 3 Majorana ν’s : 3 Mixing angles + 1 Dirac Phase + 2 Majorana Phases

ULEP =

0

B

B

@

1 0 0

0 c23 s23

0 −s23 c23

1

C

C

A

0

B

B

@

c13 0 s13eiδ

0 1 0

−s13e−iδ 0 c13

1

C

C

A

0

B

B

@

c21 s12 0

−s12 c12 0

0 0 1

1

C

C

A

0

B

B

@

1 0 0

0 eiφ2 0

0 0 eiφ3

1

C

C

A

Page 12: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Lepton Mixing

ULEP ≡ 3 × N matrix U ijLEP =

3∑

k=1

P `iiV

`L

†ikV νkjP ν

jj

• P `ii phase absorved in li

• P νkk phase absorved in νi (only possible if νi is Dirac)

• ULEPU †LEP=I3×3 but in general U †

LEPULEP 6=IN×N

• For example for 3 Dirac ν’s : 3 Mixing angles + 1 Dirac Phase

ULEP =

0

B

B

@

1 0 0

0 c23 s23

0 −s23 c23

1

C

C

A

0

B

B

@

c13 0 s13eiδ

0 1 0

−s13e−iδ 0 c13

1

C

C

A

0

B

B

@

c21 s12 0

−s12 c12 0

0 0 1

1

C

C

A

• For 3 Majorana ν’s : 3 Mixing angles + 1 Dirac Phase + 2 Majorana Phases

ULEP =

0

B

B

@

1 0 0

0 c23 s23

0 −s23 c23

1

C

C

A

0

B

B

@

c13 0 s13eiδ

0 1 0

−s13e−iδ 0 c13

1

C

C

A

0

B

B

@

c21 s12 0

−s12 c12 0

0 0 1

1

C

C

A

0

B

B

@

1 0 0

0 eiφ2 0

0 0 eiφ3

1

C

C

A

Page 13: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Lepton Mixing

ULEP ≡ 3 × N matrix U ijLEP =

3∑

k=1

P `iiV

`L

†ikV νkjP ν

jj

• P `ii phase absorved in li

• P νkk phase absorved in νi (only possible if νi is Dirac)

• ULEPU †LEP=I3×3 but in general U †

LEPULEP 6=IN×N

• For example for 3 Dirac ν’s : 3 Mixing angles + 1 Dirac Phase

ULEP =

0

B

B

@

1 0 0

0 c23 s23

0 −s23 c23

1

C

C

A

0

B

B

@

c13 0 s13eiδ

0 1 0

−s13e−iδ 0 c13

1

C

C

A

0

B

B

@

c21 s12 0

−s12 c12 0

0 0 1

1

C

C

A

• For 3 Majorana ν’s : 3 Mixing angles + 1 Dirac Phase + 2 Majorana Phases

ULEP =

0

B

B

@

1 0 0

0 c23 s23

0 −s23 c23

1

C

C

A

0

B

B

@

c13 0 s13eiδ

0 1 0

−s13e−iδ 0 c13

1

C

C

A

0

B

B

@

c21 s12 0

−s12 c12 0

0 0 1

1

C

C

A

0

B

B

@

1 0 0

0 eiφ2 0

0 0 eiφ3

1

C

C

A

Page 14: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Lepton Mixing

ULEP ≡ 3 × N matrix U ijLEP =

3∑

k=1

P `iiV

`L

†ikV νkjP ν

jj

• P `ii phase absorved in li

• P νkk phase absorved in νi (only possible if νi is Dirac)

• ULEPU †LEP=I3×3 but in general U †

LEPULEP 6=IN×N

• For example for 3 Dirac ν’s : 3 Mixing angles + 1 Dirac Phase

ULEP =

0

B

B

@

1 0 0

0 c23 s23

0 −s23 c23

1

C

C

A

0

B

B

@

c13 0 s13eiδ

0 1 0

−s13e−iδ 0 c13

1

C

C

A

0

B

B

@

c21 s12 0

−s12 c12 0

0 0 1

1

C

C

A

• For 3 Majorana ν’s : 3 Mixing angles + 1 Dirac Phase + 2 Majorana Phases

ULEP =

0

B

B

@

1 0 0

0 c23 s23

0 −s23 c23

1

C

C

A

0

B

B

@

c13 0 s13eiδ

0 1 0

−s13e−iδ 0 c13

1

C

C

A

0

B

B

@

c21 s12 0

−s12 c12 0

0 0 1

1

C

C

A

0

B

B

@

1 0 0

0 eiφ2 0

0 0 eiφ3

1

C

C

A

Page 15: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Lepton Mixing

ULEP ≡ 3 × N matrix U ijLEP =

3∑

k=1

P `iiV

`L

†ikV νkjP ν

jj

• P `ii phase absorved in li

• P νkk phase absorved in νi (only possible if νi is Dirac)

• ULEPU †LEP=I3×3 but in general U †

LEPULEP 6=IN×N

• For example for 3 Dirac ν’s : 3 Mixing angles + 1 Dirac Phase

ULEP =

0

B

B

@

1 0 0

0 c23 s23

0 −s23 c23

1

C

C

A

0

B

B

@

c13 0 s13eiδ

0 1 0

−s13e−iδ 0 c13

1

C

C

A

0

B

B

@

c21 s12 0

−s12 c12 0

0 0 1

1

C

C

A

• For 3 Majorana ν’s : 3 Mixing angles + 1 Dirac Phase + 2 Majorana Phases

ULEP =

0

B

B

@

1 0 0

0 c23 s23

0 −s23 c23

1

C

C

A

0

B

B

@

c13 0 s13eiδ

0 1 0

−s13e−iδ 0 c13

1

C

C

A

0

B

B

@

c21 s12 0

−s12 c12 0

0 0 1

1

C

C

A

0

B

B

@

1 0 0

0 eiφ2 0

0 0 eiφ3

1

C

C

A

Page 16: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Effects of ν Mass

• Neutrino masses can have kinematic effects

• Also if neutrinos have a mass the charged current interactions of leptons are notdiagonal (same as quarks)

g√2W+

µ

ij

(

U ijLEP `i γµ L νj + U ij

CKM U i γµ L Dj)

+ h.c.

j

W+

l_

i

ν

W+

_

i

uj

d

• SM gauge invariance does not imply U(1)Le× U(1)Lµ

× U(1)Lτsymmetry

• Total lepton number U(1)L = U(1)Le+Lµ+Lτcan be or cannot be still a

symmetry depending on whether neutrinos are Dirac or Majorana

Page 17: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Effects of ν Mass• Neutrino masses can have kinematic effects

• Also if neutrinos have a mass the charged current interactions of leptons are notdiagonal (same as quarks)

g√2W+

µ

ij

(

U ijLEP `i γµ L νj + U ij

CKM U i γµ L Dj)

+ h.c.

j

W+

l_

i

ν

W+

_

i

uj

d

• SM gauge invariance does not imply U(1)Le× U(1)Lµ

× U(1)Lτsymmetry

• Total lepton number U(1)L = U(1)Le+Lµ+Lτcan be or cannot be still a

symmetry depending on whether neutrinos are Dirac or Majorana

Page 18: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Effects of ν Mass• Neutrino masses can have kinematic effects

• Also if neutrinos have a mass the charged current interactions of leptons are notdiagonal (same as quarks)

g√2W+

µ

ij

(

U ijLEP `i γµ L νj + U ij

CKM U i γµ L Dj)

+ h.c.

j

W+

l_

i

ν

W+

_

i

uj

d

• SM gauge invariance does not imply U(1)Le× U(1)Lµ

× U(1)Lτsymmetry

• Total lepton number U(1)L = U(1)Le+Lµ+Lτcan be or cannot be still a

symmetry depending on whether neutrinos are Dirac or Majorana

Page 19: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Effects of ν Mass• Neutrino masses can have kinematic effects

• Also if neutrinos have a mass the charged current interactions of leptons are notdiagonal (same as quarks)

g√2W+

µ

ij

(

U ijLEP `i γµ L νj + U ij

CKM U i γµ L Dj)

+ h.c.

j

W+

l_

i

ν

W+

_

i

uj

d

• SM gauge invariance does not imply U(1)Le× U(1)Lµ

× U(1)Lτsymmetry

• Total lepton number U(1)L = U(1)Le+Lµ+Lτcan be or cannot be still a

symmetry depending on whether neutrinos are Dirac or Majorana

Page 20: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Effects of ν Mass• Neutrino masses can have kinematic effects

• Also if neutrinos have a mass the charged current interactions of leptons are notdiagonal (same as quarks)

g√2W+

µ

ij

(

U ijLEP `i γµ L νj + U ij

CKM U i γµ L Dj)

+ h.c.

j

W+

l_

i

ν

W+

_

i

uj

d

• SM gauge invariance does not imply U(1)Le× U(1)Lµ

× U(1)Lτsymmetry

• Total lepton number U(1)L = U(1)Le+Lµ+Lτcan be or cannot be still a

symmetry depending on whether neutrinos are Dirac or Majorana

Page 21: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

g√2W+

µ

ij

(

U ijLEP `i γµ L νj + U ij

CKM U i γµ L Dj)

+ h.c.

• To fully determine the lepton flavour sector we want to know:

* How many, N , neutral states νi and their masses mi

* Their mixing: # angles =

1 for N = 2

3 for N = 3

6 for N = 4

* Their CP properties:

Dirac: νC 6= ν # phases =

0 for N = 2

1 for N = 3

3 for N = 4

Majorana: νC = ν

UMajαj = UDir

αj × e−iηj

# phases =

1 for N = 2

3 for N = 3

6 for N = 4

Page 22: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

g√2W+

µ

ij

(

U ijLEP `i γµ L νj + U ij

CKM U i γµ L Dj)

+ h.c.

• To fully determine the lepton flavour sector we want to know:

* How many, N , neutral states νi and their masses mi

* Their mixing: # angles =

1 for N = 2

3 for N = 3

6 for N = 4

* Their CP properties:

Dirac: νC 6= ν # phases =

0 for N = 2

1 for N = 3

3 for N = 4

Majorana: νC = ν

UMajαj = UDir

αj × e−iηj

# phases =

1 for N = 2

3 for N = 3

6 for N = 4

Page 23: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

g√2W+

µ

ij

(

U ijLEP `i γµ L νj + U ij

CKM U i γµ L Dj)

+ h.c.

• To fully determine the lepton flavour sector we want to know:

* How many, N , neutral states νi and their masses mi

* Their mixing: # angles =

1 for N = 2

3 for N = 3

6 for N = 4

* Their CP properties:

Dirac: νC 6= ν # phases =

0 for N = 2

1 for N = 3

3 for N = 4

Majorana: νC = ν

UMajαj = UDir

αj × e−iηj

# phases =

1 for N = 2

3 for N = 3

6 for N = 4

Page 24: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

g√2W+

µ

ij

(

U ijLEP `i γµ L νj + U ij

CKM U i γµ L Dj)

+ h.c.

• To fully determine the lepton flavour sector we want to know:

* How many, N , neutral states νi and their masses mi

* Their mixing: # angles =

1 for N = 2

3 for N = 3

6 for N = 4

* Their CP properties:

Dirac: νC 6= ν # phases =

0 for N = 2

1 for N = 3

3 for N = 4

Majorana: νC = ν

UMajαj = UDir

αj × e−iηj

# phases =

1 for N = 2

3 for N = 3

6 for N = 4

Page 25: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Neutrino Mass Scale: Tritium β Decay

• Fermi proposed a kinematic search of νe mass from beta spectra in 3H beta decay3H →3 He + e + νe

• For “allowed” nuclear transitions, the electron spectrum is given by phase space alone

K(T ) ≡√

dNdT

1Cp E F (E) ∝

(Q − T )√

(Q − T )2 − m2ν

T = Ee − me, Q= maximum kinetic energy, (for 3H beta decay Q = 18.6 KeV)

• mν 6= 0 ⇒ distortion from the straight-line at the end point of the spectrummν = 0 ⇒ Tmax = Q

mν 6= 0 ⇒ Tmax = Q − mν

νm

K (T)

QT

– At present only a bound:meff

νe≡

m2j |Uej |2 < 2.2 eV (at 95 % CL)

(Mainz & Troisk experiments)

– Katrin proposed to improve present sensitivity to mβeff ∼ 0.3 eV

Page 26: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Neutrino Mass Scale: Tritium β Decay

• Fermi proposed a kinematic search of νe mass from beta spectra in 3H beta decay3H →3 He + e + νe

• For “allowed” nuclear transitions, the electron spectrum is given by phase space alone

K(T ) ≡√

dNdT

1Cp E F (E) ∝

(Q − T )√

(Q − T )2 − m2ν

T = Ee − me, Q= maximum kinetic energy, (for 3H beta decay Q = 18.6 KeV)

• mν 6= 0 ⇒ distortion from the straight-line at the end point of the spectrummν = 0 ⇒ Tmax = Q

mν 6= 0 ⇒ Tmax = Q − mν

νm

K (T)

QT

– At present only a bound:meff

νe≡

m2j |Uej |2 < 2.2 eV (at 95 % CL)

(Mainz & Troisk experiments)

– Katrin proposed to improve present sensitivity to mβeff ∼ 0.3 eV

Page 27: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Neutrino Mass Scale: Tritium β Decay

• Fermi proposed a kinematic search of νe mass from beta spectra in 3H beta decay3H →3 He + e + νe

• For “allowed” nuclear transitions, the electron spectrum is given by phase space alone

K(T ) ≡√

dNdT

1Cp E F (E) ∝

(Q − T )√

(Q − T )2 − m2ν

T = Ee − me, Q= maximum kinetic energy, (for 3H beta decay Q = 18.6 KeV)

• mν 6= 0 ⇒ distortion from the straight-line at the end point of the spectrummν = 0 ⇒ Tmax = Q

mν 6= 0 ⇒ Tmax = Q − mν

νm

K (T)

QT

– At present only a bound:meff

νe≡

m2j |Uej |2 < 2.2 eV (at 95 % CL)

(Mainz & Troisk experiments)

– Katrin proposed to improve present sensitivity to mβeff ∼ 0.3 eV

Page 28: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Neutrino Mass Scale: Tritium β Decay

• Fermi proposed a kinematic search of νe mass from beta spectra in 3H beta decay3H →3 He + e + νe

• For “allowed” nuclear transitions, the electron spectrum is given by phase space alone

K(T ) ≡√

dNdT

1Cp E F (E) ∝

(Q − T )√

(Q − T )2 − m2ν

T = Ee − me, Q= maximum kinetic energy, (for 3H beta decay Q = 18.6 KeV)

• mν 6= 0 ⇒ distortion from the straight-line at the end point of the spectrummν = 0 ⇒ Tmax = Q

mν 6= 0 ⇒ Tmax = Q − mν

νm

K (T)

QT

– At present only a bound:meff

νe≡

m2j |Uej |2 < 2.2 eV (at 95 % CL)

(Mainz & Troisk experiments)

– Katrin proposed to improve present sensitivity to mβeff ∼ 0.3 eV

Page 29: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Neutrino Mass Scale: Tritium β Decay

• Fermi proposed a kinematic search of νe mass from beta spectra in 3H beta decay3H →3 He + e + νe

• For “allowed” nuclear transitions, the electron spectrum is given by phase space alone

K(T ) ≡√

dNdT

1Cp E F (E) ∝

(Q − T )√

(Q − T )2 − m2ν

T = Ee − me, Q= maximum kinetic energy, (for 3H beta decay Q = 18.6 KeV)

• mν 6= 0 ⇒ distortion from the straight-line at the end point of the spectrummν = 0 ⇒ Tmax = Q

mν 6= 0 ⇒ Tmax = Q − mν

νm

K (T)

QT

– At present only a bound:meff

νe≡

m2j |Uej |2 < 2.2 eV (at 95 % CL)

(Mainz & Troisk experiments)

– Katrin proposed to improve present sensitivity to mβeff ∼ 0.3 eV

Page 30: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Neutrino Mass Scale: Other Channels

Muon neutrino mass• From the two body decay at rest

π− → µ− + νµ

• Energy momentum conservation:

mπ =√

p2µ + m2

µ +√

p2µ + m2

ν

m2ν = m2

π + m2µ − 2 + mµ

p2 + m2π

• Measurement of pµ plus the preciseknowledge of mπ and mµ ⇒ mν

• The present experimental result bound:

meffνµ

≡√

m2j |Uµj |2 < 190 KeV

Tau neutrino mass• The τ is much heavier mτ = 1.776 GeV⇒ Large phase space ⇒ difficult precisionfor mν

• The best precision is obtained fromhadronic final states

τ → nπ + ντ with n ≥ 3

• Lep I experiments obtain:

meffντ

≡√

m2j |Uτj|2 < 18.2 MeV

⇒ If mixing angles Uej are not negligibleBest kinematic limit on Neutrino Mass Scale comes from Tritium Beta Decay

Page 31: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Neutrino Mass Scale: Other Channels

Muon neutrino mass• From the two body decay at rest

π− → µ− + νµ

• Energy momentum conservation:

mπ =√

p2µ + m2

µ +√

p2µ + m2

ν

m2ν = m2

π + m2µ − 2 + mµ

p2 + m2π

• Measurement of pµ plus the preciseknowledge of mπ and mµ ⇒ mν

• The present experimental result bound:

meffνµ

≡√

m2j |Uµj |2 < 190 KeV

Tau neutrino mass• The τ is much heavier mτ = 1.776 GeV⇒ Large phase space ⇒ difficult precisionfor mν

• The best precision is obtained fromhadronic final states

τ → nπ + ντ with n ≥ 3

• Lep I experiments obtain:

meffντ

≡√

m2j |Uτj|2 < 18.2 MeV

⇒ If mixing angles Uej are not negligibleBest kinematic limit on Neutrino Mass Scale comes from Tritium Beta Decay

Page 32: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Neutrino Mass Scale: Other Channels

Muon neutrino mass• From the two body decay at rest

π− → µ− + νµ

• Energy momentum conservation:

mπ =√

p2µ + m2

µ +√

p2µ + m2

ν

m2ν = m2

π + m2µ − 2 + mµ

p2 + m2π

• Measurement of pµ plus the preciseknowledge of mπ and mµ ⇒ mν

• The present experimental result bound:

meffνµ

≡√

m2j |Uµj |2 < 190 KeV

Tau neutrino mass• The τ is much heavier mτ = 1.776 GeV⇒ Large phase space ⇒ difficult precisionfor mν

• The best precision is obtained fromhadronic final states

τ → nπ + ντ with n ≥ 3

• Lep I experiments obtain:

meffντ

≡√

m2j |Uτj|2 < 18.2 MeV

⇒ If mixing angles Uej are not negligibleBest kinematic limit on Neutrino Mass Scale comes from Tritium Beta Decay

Page 33: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Neutrino Mass Scale: Other Channels

Muon neutrino mass• From the two body decay at rest

π− → µ− + νµ

• Energy momentum conservation:

mπ =√

p2µ + m2

µ +√

p2µ + m2

ν

m2ν = m2

π + m2µ − 2 + mµ

p2 + m2π

• Measurement of pµ plus the preciseknowledge of mπ and mµ ⇒ mν

• The present experimental result bound:

meffνµ

≡√

m2j |Uµj |2 < 190 KeV

Tau neutrino mass• The τ is much heavier mτ = 1.776 GeV⇒ Large phase space ⇒ difficult precisionfor mν

• The best precision is obtained fromhadronic final states

τ → nπ + ντ with n ≥ 3

• Lep I experiments obtain:

meffντ

≡√

m2j |Uτj|2 < 18.2 MeV

⇒ If mixing angles Uej are not negligibleBest kinematic limit on Neutrino Mass Scale comes from Tritium Beta Decay

Page 34: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Neutrino Mass Scale: ν-less Double-β Decay

(A, Z) → (A, Z + 2) + e− + e−

n

p

W

n

p

W

ν

e−

e−

only for Majorana ν’s

Sensitive to Majorana CP phases

• Amplitude involves the product of two leptonic currents:[

eγµLν][

eγµLν]

– If ν Dirac ⇒ ν annihilates a neutrino and creates an antineutrino⇒ no same state ⇒ Amplitude = 0

– If ν Majorana ⇒ ν = νc annihilates and creates a neutrino=antineutrino⇒ same state ⇒ Amplitude ∝ ν (νc)T

]

6= 0

• Amplitude of ν-less-ββ decay is proportional to |〈mee〉| = |∑

U2ejmj |

– Present bound: |〈mee〉| < 0.35 eV +theor. uncert. < 1.05 eV (90% CL)

– Several proposed experiments to reach |〈mee〉| ∼ 10−2 eV

Page 35: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Neutrino Mass Scale: ν-less Double-β Decay

(A, Z) → (A, Z + 2) + e− + e−

n

p

W

n

p

W

ν

e−

e−

only for Majorana ν’s

Sensitive to Majorana CP phases

• Amplitude involves the product of two leptonic currents:[

eγµLν][

eγµLν]

– If ν Dirac ⇒ ν annihilates a neutrino and creates an antineutrino⇒ no same state ⇒ Amplitude = 0

– If ν Majorana ⇒ ν = νc annihilates and creates a neutrino=antineutrino⇒ same state ⇒ Amplitude ∝ ν (νc)T

]

6= 0

• Amplitude of ν-less-ββ decay is proportional to |〈mee〉| = |∑

U2ejmj |

– Present bound: |〈mee〉| < 0.35 eV +theor. uncert. < 1.05 eV (90% CL)

– Several proposed experiments to reach |〈mee〉| ∼ 10−2 eV

Page 36: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Neutrino Mass Scale: ν-less Double-β Decay

(A, Z) → (A, Z + 2) + e− + e−

n

p

W

n

p

W

ν

e−

e−

only for Majorana ν’s

Sensitive to Majorana CP phases

• Amplitude involves the product of two leptonic currents:[

eγµLν][

eγµLν]

– If ν Dirac ⇒ ν annihilates a neutrino and creates an antineutrino⇒ no same state ⇒ Amplitude = 0

– If ν Majorana ⇒ ν = νc annihilates and creates a neutrino=antineutrino⇒ same state ⇒ Amplitude ∝ ν (νc)T

]

6= 0

• Amplitude of ν-less-ββ decay is proportional to |〈mee〉| = |∑

U2ejmj |

– Present bound: |〈mee〉| < 0.35 eV +theor. uncert. < 1.05 eV (90% CL)

– Several proposed experiments to reach |〈mee〉| ∼ 10−2 eV

Page 37: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Neutrino Mass Scale: ν-less Double-β Decay

(A, Z) → (A, Z + 2) + e− + e−

n

p

W

n

p

W

ν

e−

e−

only for Majorana ν’s

Sensitive to Majorana CP phases

• Amplitude involves the product of two leptonic currents:[

eγµLν][

eγµLν]

– If ν Dirac ⇒ ν annihilates a neutrino and creates an antineutrino⇒ no same state ⇒ Amplitude = 0

– If ν Majorana ⇒ ν = νc annihilates and creates a neutrino=antineutrino⇒ same state ⇒ Amplitude ∝ ν (νc)T

]

6= 0

• Amplitude of ν-less-ββ decay is proportional to |〈mee〉| = |∑

U2ejmj |

– Present bound: |〈mee〉| < 0.35 eV +theor. uncert. < 1.05 eV (90% CL)

– Several proposed experiments to reach |〈mee〉| ∼ 10−2 eV

Page 38: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Neutrino Mass Scale in Cosmology∑

mνihas effects on:

Cosmic MicrowaveBackground TemperatureFluctuations

Most recent from WMAP

Large scale structure:– 2◦ Field GalaxyRedshift Survey(2dFGRS)–Sloan DigitalSky Survey (SDSS)

Tegmark et. al astro-ph/0310723

Prob

lem

:13

para

met

erst

obe

dete

rmin

ed!!

⇒ limit on∑

mνidepends on

prior and data used to constraintother 12 parameters

mνi≤ 0.7 − 2.1 eV at 95 % CL

Page 39: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Neutrino Mass Scale in Cosmology∑

mνihas effects on:

Cosmic MicrowaveBackground TemperatureFluctuations

Most recent from WMAP

Large scale structure:– 2◦ Field GalaxyRedshift Survey(2dFGRS)–Sloan DigitalSky Survey (SDSS)

Tegmark et. al astro-ph/0310723 Prob

lem

:13

para

met

erst

obe

dete

rmin

ed!!

⇒ limit on∑

mνidepends on

prior and data used to constraintother 12 parameters

mνi≤ 0.7 − 2.1 eV at 95 % CL

Page 40: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Neutrino Mass Scale in Cosmology∑

mνihas effects on:

Cosmic MicrowaveBackground TemperatureFluctuations

Most recent from WMAP

Large scale structure:– 2◦ Field GalaxyRedshift Survey(2dFGRS)–Sloan DigitalSky Survey (SDSS)

Tegmark et. al astro-ph/0310723 Prob

lem

:13

para

met

erst

obe

dete

rmin

ed!!

⇒ limit on∑

mνidepends on

prior and data used to constraintother 12 parameters

mνi≤ 0.7 − 2.1 eV at 95 % CL

Page 41: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Effects of ν Mass: Flavour Transitions

• Flavour (≡ Interaction) basis (production and detection): νe, νµ and ντ

• Mass basis (free propagation in space-time): ν1, ν2 and ν3 . . .

• In general interaction eigenstates 6= propagation eigenstates

U(ν1, ν2, ν3, . . .) = (νe, νµ, ντ )

⇒ Flavour is not conserved during propagation⇒ ν can be detected with different (or same) flavour than produced

• The probability Pαβ of producing neutrino with flavour α and detecting withflavour β has to depend on:

– Misalignment between interaction and propagation states (≡ U )– Difference between propagation eigenvalues– Propagation distance

Page 42: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Effects of ν Mass: Flavour Transitions

• Flavour (≡ Interaction) basis (production and detection): νe, νµ and ντ

• Mass basis (free propagation in space-time): ν1, ν2 and ν3 . . .

• In general interaction eigenstates 6= propagation eigenstates

U(ν1, ν2, ν3, . . .) = (νe, νµ, ντ )

⇒ Flavour is not conserved during propagation⇒ ν can be detected with different (or same) flavour than produced

• The probability Pαβ of producing neutrino with flavour α and detecting withflavour β has to depend on:

– Misalignment between interaction and propagation states (≡ U )– Difference between propagation eigenvalues– Propagation distance

Page 43: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Effects of ν Mass: Flavour Transitions

• Flavour (≡ Interaction) basis (production and detection): νe, νµ and ντ

• Mass basis (free propagation in space-time): ν1, ν2 and ν3 . . .

• In general interaction eigenstates 6= propagation eigenstates

U(ν1, ν2, ν3, . . .) = (νe, νµ, ντ )

⇒ Flavour is not conserved during propagation⇒ ν can be detected with different (or same) flavour than produced

• The probability Pαβ of producing neutrino with flavour α and detecting withflavour β has to depend on:

– Misalignment between interaction and propagation states (≡ U )– Difference between propagation eigenvalues– Propagation distance

Page 44: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Effects of ν Mass: Flavour Transitions

• Flavour (≡ Interaction) basis (production and detection): νe, νµ and ντ

• Mass basis (free propagation in space-time): ν1, ν2 and ν3 . . .

• In general interaction eigenstates 6= propagation eigenstates

U(ν1, ν2, ν3, . . .) = (νe, νµ, ντ )

⇒ Flavour is not conserved during propagation⇒ ν can be detected with different (or same) flavour than produced

• The probability Pαβ of producing neutrino with flavour α and detecting withflavour β has to depend on:

– Misalignment between interaction and propagation states (≡ U )– Difference between propagation eigenvalues– Propagation distance

Page 45: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Effects of ν Mass: Flavour Transitions

• Flavour (≡ Interaction) basis (production and detection): νe, νµ and ντ

• Mass basis (free propagation in space-time): ν1, ν2 and ν3 . . .

• In general interaction eigenstates 6= propagation eigenstates

U(ν1, ν2, ν3, . . .) = (νe, νµ, ντ )

⇒ Flavour is not conserved during propagation

⇒ ν can be detected with different (or same) flavour than produced

• The probability Pαβ of producing neutrino with flavour α and detecting withflavour β has to depend on:

– Misalignment between interaction and propagation states (≡ U )– Difference between propagation eigenvalues– Propagation distance

Page 46: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Effects of ν Mass: Flavour Transitions

• Flavour (≡ Interaction) basis (production and detection): νe, νµ and ντ

• Mass basis (free propagation in space-time): ν1, ν2 and ν3 . . .

• In general interaction eigenstates 6= propagation eigenstates

U(ν1, ν2, ν3, . . .) = (νe, νµ, ντ )

⇒ Flavour is not conserved during propagation⇒ ν can be detected with different (or same) flavour than produced

• The probability Pαβ of producing neutrino with flavour α and detecting withflavour β has to depend on:

– Misalignment between interaction and propagation states (≡ U )– Difference between propagation eigenvalues– Propagation distance

Page 47: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Effects of ν Mass: Flavour Transitions

• Flavour (≡ Interaction) basis (production and detection): νe, νµ and ντ

• Mass basis (free propagation in space-time): ν1, ν2 and ν3 . . .

• In general interaction eigenstates 6= propagation eigenstates

U(ν1, ν2, ν3, . . .) = (νe, νµ, ντ )

⇒ Flavour is not conserved during propagation⇒ ν can be detected with different (or same) flavour than produced

• The probability Pαβ of producing neutrino with flavour α and detecting withflavour β has to depend on:

– Misalignment between interaction and propagation states (≡ U )– Difference between propagation eigenvalues– Propagation distance

Page 48: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Effects of ν Mass: Flavour Transitions

• Flavour (≡ Interaction) basis (production and detection): νe, νµ and ντ

• Mass basis (free propagation in space-time): ν1, ν2 and ν3 . . .

• In general interaction eigenstates 6= propagation eigenstates

U(ν1, ν2, ν3, . . .) = (νe, νµ, ντ )

⇒ Flavour is not conserved during propagation⇒ ν can be detected with different (or same) flavour than produced

• The probability Pαβ of producing neutrino with flavour α and detecting withflavour β has to depend on:

– Misalignment between interaction and propagation states (≡ U )

– Difference between propagation eigenvalues– Propagation distance

Page 49: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Effects of ν Mass: Flavour Transitions

• Flavour (≡ Interaction) basis (production and detection): νe, νµ and ντ

• Mass basis (free propagation in space-time): ν1, ν2 and ν3 . . .

• In general interaction eigenstates 6= propagation eigenstates

U(ν1, ν2, ν3, . . .) = (νe, νµ, ντ )

⇒ Flavour is not conserved during propagation⇒ ν can be detected with different (or same) flavour than produced

• The probability Pαβ of producing neutrino with flavour α and detecting withflavour β has to depend on:

– Misalignment between interaction and propagation states (≡ U )– Difference between propagation eigenvalues

– Propagation distance

Page 50: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Effects of ν Mass: Flavour Transitions

• Flavour (≡ Interaction) basis (production and detection): νe, νµ and ντ

• Mass basis (free propagation in space-time): ν1, ν2 and ν3 . . .

• In general interaction eigenstates 6= propagation eigenstates

U(ν1, ν2, ν3, . . .) = (νe, νµ, ντ )

⇒ Flavour is not conserved during propagation⇒ ν can be detected with different (or same) flavour than produced

• The probability Pαβ of producing neutrino with flavour α and detecting withflavour β has to depend on:

– Misalignment between interaction and propagation states (≡ U )– Difference between propagation eigenvalues– Propagation distance

Page 51: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Vacuum Oscillations

• If neutrinos have mass, a weak eigenstate |να〉 produced in lα + N →να + N ′

is a linear combination of the mass eigenstates (|νi〉)

|να〉=n

i=1

Uαi |νi〉

U is the unitary mixing matrix.

• After a distance L (or time t) it evolves

|ν(t)〉=n

i=1

Uαi|νi(t)〉

• it can be detected with flavour β with probability

Pαβ = |〈νβ(t)|να(0)〉|2 = |n

i=1

UαiU∗βi〈νi(t)|νi(0)〉|2

Page 52: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Vacuum Oscillations

• If neutrinos have mass, a weak eigenstate |να〉 produced in lα + N →να + N ′

is a linear combination of the mass eigenstates (|νi〉)

|να〉=n

i=1

Uαi |νi〉

U is the unitary mixing matrix.

• After a distance L (or time t) it evolves

|ν(t)〉=n

i=1

Uαi|νi(t)〉

• it can be detected with flavour β with probability

Pαβ = |〈νβ(t)|να(0)〉|2 = |n

i=1

UαiU∗βi〈νi(t)|νi(0)〉|2

Page 53: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Vacuum Oscillations

• If neutrinos have mass, a weak eigenstate |να〉 produced in lα + N →να + N ′

is a linear combination of the mass eigenstates (|νi〉)

|να〉=n

i=1

Uαi |νi〉

U is the unitary mixing matrix.

• After a distance L (or time t) it evolves

|ν(t)〉=n

i=1

Uαi|νi(t)〉

• it can be detected with flavour β with probability

Pαβ = |〈νβ(t)|να(0)〉|2 = |n

i=1

UαiU∗βi〈νi(t)|νi(0)〉|2

Page 54: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Vacuum Oscillations

• If neutrinos have mass, a weak eigenstate |να〉 produced in lα + N →να + N ′

is a linear combination of the mass eigenstates (|νi〉)

|να〉=n

i=1

Uαi |νi〉

U is the unitary mixing matrix.

• After a distance L (or time t) it evolves

|ν(t)〉=n

i=1

Uαi|νi(t)〉

• it can be detected with flavour β with probability

Pαβ = |〈νβ(t)|να(0)〉|2 = |n

i=1

UαiU∗βi〈νi(t)|νi(0)〉|2

Page 55: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Vacuum Oscillations

• The probability

Pαβ = |〈νβ(t)|να(0)〉|2 = |n

i=1

UαiU∗βi〈νi(t)|νi(0)〉|2

• We call Ei the neutrino energy and mi the neutrino mass

• Under the approximations:

(1) |ν〉 is a plane wave ⇒ |νi(t)〉 = e −i Eit|νi(0)〉

Pαβ = δαβ − 4

nX

j 6=i

Re[U?αiUβiUαjU

?βj ]sin

2

∆ij

2

«

+ 2X

j 6=i

Im[U?αiUβiUαjU

?βj ]sin (∆ij)

with ∆ij = (Ei − Ej)t

(2) relativistic ν

Ei =√

p2i + m2

i ' pi +m2

i

2Ei

(3) Assuming pi ' pj = p ' E

∆ij

2= 1.27

m2i − m2

j

eV2

L/E

Km/GeV

Page 56: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Vacuum Oscillations

• The probability

Pαβ = |〈νβ(t)|να(0)〉|2 = |n

i=1

UαiU∗βi〈νi(t)|νi(0)〉|2

• We call Ei the neutrino energy and mi the neutrino mass

• Under the approximations:

(1) |ν〉 is a plane wave ⇒ |νi(t)〉 = e −i Eit|νi(0)〉

Pαβ = δαβ − 4

nX

j 6=i

Re[U?αiUβiUαjU

?βj ]sin

2

∆ij

2

«

+ 2X

j 6=i

Im[U?αiUβiUαjU

?βj ]sin (∆ij)

with ∆ij = (Ei − Ej)t

(2) relativistic ν

Ei =√

p2i + m2

i ' pi +m2

i

2Ei

(3) Assuming pi ' pj = p ' E

∆ij

2= 1.27

m2i − m2

j

eV2

L/E

Km/GeV

Page 57: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Vacuum Oscillations

• The probability

Pαβ = |〈νβ(t)|να(0)〉|2 = |n

i=1

UαiU∗βi〈νi(t)|νi(0)〉|2

• We call Ei the neutrino energy and mi the neutrino mass

• Under the approximations:

(1) |ν〉 is a plane wave ⇒ |νi(t)〉 = e −i Eit|νi(0)〉

Pαβ = δαβ − 4

nX

j 6=i

Re[U?αiUβiUαjU

?βj ]sin

2

∆ij

2

«

+ 2X

j 6=i

Im[U?αiUβiUαjU

?βj ]sin (∆ij)

with ∆ij = (Ei − Ej)t

(2) relativistic ν

Ei =√

p2i + m2

i ' pi +m2

i

2Ei

(3) Assuming pi ' pj = p ' E

∆ij

2= 1.27

m2i − m2

j

eV2

L/E

Km/GeV

Page 58: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Vacuum Oscillations

• The probability

Pαβ = |〈νβ(t)|να(0)〉|2 = |n

i=1

UαiU∗βi〈νi(t)|νi(0)〉|2

• We call Ei the neutrino energy and mi the neutrino mass

• Under the approximations:

(1) |ν〉 is a plane wave ⇒ |νi(t)〉 = e −i Eit|νi(0)〉

Pαβ = δαβ − 4

nX

j 6=i

Re[U?αiUβiUαjU

?βj ]sin

2

∆ij

2

«

+ 2X

j 6=i

Im[U?αiUβiUαjU

?βj ]sin (∆ij)

with ∆ij = (Ei − Ej)t

(2) relativistic ν

Ei =√

p2i + m2

i ' pi +m2

i

2Ei

(3) Assuming pi ' pj = p ' E

∆ij

2= 1.27

m2i − m2

j

eV2

L/E

Km/GeV

Page 59: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Vacuum Oscillations

• The probability

Pαβ = |〈νβ(t)|να(0)〉|2 = |n

i=1

UαiU∗βi〈νi(t)|νi(0)〉|2

• We call Ei the neutrino energy and mi the neutrino mass

• Under the approximations:

(1) |ν〉 is a plane wave ⇒ |νi(t)〉 = e −i Eit|νi(0)〉

Pαβ = δαβ − 4

nX

j 6=i

Re[U?αiUβiUαjU

?βj ]sin

2

∆ij

2

«

+ 2X

j 6=i

Im[U?αiUβiUαjU

?βj ]sin (∆ij)

with ∆ij = (Ei − Ej)t

(2) relativistic ν

Ei =√

p2i + m2

i ' pi +m2

i

2Ei

(3) Assuming pi ' pj = p ' E

∆ij

2= 1.27

m2i − m2

j

eV2

L/E

Km/GeV

Page 60: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Vacuum Oscillations• The oscillation probability:

Pαβ = δαβ − 4

nX

j 6=i

Re[U?αiUβiUαjU

?βj ]sin

2

∆ij

2

«

+ 2X

j 6=i

Im[U?αiUβiUαjU

?βj ]sin (∆ij)

∆ij

2 =(Ei−Ej)L

2 = 1.27(m2

i−m2

j)

eV2

L/E

Km/GeV

– The first term δαβ − 4n

j 6=i

Re[U?αiUβiUαjU

?βj ]sin

2

(

∆ij

2

)

equal for ν (U → U∗)

→ conserves CP

– The last piece 2∑

j 6=i

Im[U?αiUβiUαjU

?βj ]sin (∆ij) opposite sign for ν

→ violates CP

• Pαβ depends on Theoretical Parameters and on Two Experimental Parameters:• ∆m2

ij = m2i − m2

j The mass differences • E The neutrino energy• Uαj The mixing angles • L Distance ν source to detector

(and Dirac phases)

• No information on mass scale nor Majorana phases

Page 61: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Vacuum Oscillations• The oscillation probability:

Pαβ = δαβ − 4

nX

j 6=i

Re[U?αiUβiUαjU

?βj ]sin

2

∆ij

2

«

+ 2X

j 6=i

Im[U?αiUβiUαjU

?βj ]sin (∆ij)

∆ij

2 =(Ei−Ej)L

2 = 1.27(m2

i−m2

j)

eV2

L/E

Km/GeV

– The first term δαβ − 4n

j 6=i

Re[U?αiUβiUαjU

?βj ]sin

2

(

∆ij

2

)

equal for ν (U → U∗)

→ conserves CP

– The last piece 2∑

j 6=i

Im[U?αiUβiUαjU

?βj ]sin (∆ij) opposite sign for ν

→ violates CP

• Pαβ depends on Theoretical Parameters and on Two Experimental Parameters:• ∆m2

ij = m2i − m2

j The mass differences • E The neutrino energy• Uαj The mixing angles • L Distance ν source to detector

(and Dirac phases)

• No information on mass scale nor Majorana phases

Page 62: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Vacuum Oscillations• The oscillation probability:

Pαβ = δαβ − 4

nX

j 6=i

Re[U?αiUβiUαjU

?βj ]sin

2

∆ij

2

«

+ 2X

j 6=i

Im[U?αiUβiUαjU

?βj ]sin (∆ij)

∆ij

2 =(Ei−Ej)L

2 = 1.27(m2

i−m2

j)

eV2

L/E

Km/GeV

– The first term δαβ − 4n

j 6=i

Re[U?αiUβiUαjU

?βj ]sin

2

(

∆ij

2

)

equal for ν (U → U∗)

→ conserves CP

– The last piece 2∑

j 6=i

Im[U?αiUβiUαjU

?βj ]sin (∆ij) opposite sign for ν

→ violates CP

• Pαβ depends on Theoretical Parameters and on Two Experimental Parameters:• ∆m2

ij = m2i − m2

j The mass differences • E The neutrino energy• Uαj The mixing angles • L Distance ν source to detector

(and Dirac phases)

• No information on mass scale nor Majorana phases

Page 63: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Vacuum Oscillations• The oscillation probability:

Pαβ = δαβ − 4

nX

j 6=i

Re[U?αiUβiUαjU

?βj ]sin

2

∆ij

2

«

+ 2X

j 6=i

Im[U?αiUβiUαjU

?βj ]sin (∆ij)

∆ij

2 =(Ei−Ej)L

2 = 1.27(m2

i−m2

j)

eV2

L/E

Km/GeV

– The first term δαβ − 4n

j 6=i

Re[U?αiUβiUαjU

?βj ]sin

2

(

∆ij

2

)

equal for ν (U → U∗)

→ conserves CP

– The last piece 2∑

j 6=i

Im[U?αiUβiUαjU

?βj ]sin (∆ij) opposite sign for ν

→ violates CP

• Pαβ depends on Theoretical Parameters and on Two Experimental Parameters:• ∆m2

ij = m2i − m2

j The mass differences • E The neutrino energy• Uαj The mixing angles • L Distance ν source to detector

(and Dirac phases)

• No information on mass scale nor Majorana phases

Page 64: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Vacuum Oscillations• The oscillation probability:

Pαβ = δαβ − 4

nX

j 6=i

Re[U?αiUβiUαjU

?βj ]sin

2

∆ij

2

«

+ 2X

j 6=i

Im[U?αiUβiUαjU

?βj ]sin (∆ij)

∆ij

2 =(Ei−Ej)L

2 = 1.27(m2

i−m2

j)

eV2

L/E

Km/GeV

– The first term δαβ − 4n

j 6=i

Re[U?αiUβiUαjU

?βj ]sin

2

(

∆ij

2

)

equal for ν (U → U∗)

→ conserves CP

– The last piece 2∑

j 6=i

Im[U?αiUβiUαjU

?βj ]sin (∆ij) opposite sign for ν

→ violates CP

• Pαβ depends on Theoretical Parameters and on Two Experimental Parameters:• ∆m2

ij = m2i − m2

j The mass differences • E The neutrino energy• Uαj The mixing angles • L Distance ν source to detector

(and Dirac phases)

• No information on mass scale nor Majorana phases

Page 65: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

2-ν Oscillations

• For 2-ν: U =

0

@

cos θ sin θ

− sin θ cos θ

1

A

Posc = sin2(2θ) sin2(

∆m2L4E

)

Appear

Pαα = 1 − Posc Disappear

• ∆m2 → −∆m2 and θ → −θ + π2 is only a redefinition ν1 ↔ ν2

⇒ We can chose the convention ∆m2 > 0 and 0 ≤ θ ≤ π2

• Moreover Posc is symmetric under ∆m2 → −∆m2 or θ → −θ + π2

⇒ We can chose the convention ∆m2 > 0 and 0 ≤ θ ≤ π4

This only happens for 2ν vacuum oscillations

Page 66: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

2-ν Oscillations

• For 2-ν: U =

0

@

cos θ sin θ

− sin θ cos θ

1

A

Posc = sin2(2θ) sin2(

∆m2L4E

)

Appear

Pαα = 1 − Posc Disappear

• ∆m2 → −∆m2 and θ → −θ + π2 is only a redefinition ν1 ↔ ν2

⇒ We can chose the convention ∆m2 > 0 and 0 ≤ θ ≤ π2

• Moreover Posc is symmetric under ∆m2 → −∆m2 or θ → −θ + π2

⇒ We can chose the convention ∆m2 > 0 and 0 ≤ θ ≤ π4

This only happens for 2ν vacuum oscillations

Page 67: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

2-ν Oscillations

• For 2-ν: U =

0

@

cos θ sin θ

− sin θ cos θ

1

A

Posc = sin2(2θ) sin2(

∆m2L4E

)

Appear

Pαα = 1 − Posc Disappear

• ∆m2 → −∆m2 and θ → −θ + π2 is only a redefinition ν1 ↔ ν2

⇒ We can chose the convention ∆m2 > 0 and 0 ≤ θ ≤ π2

• Moreover Posc is symmetric under ∆m2 → −∆m2 or θ → −θ + π2

⇒ We can chose the convention ∆m2 > 0 and 0 ≤ θ ≤ π4

This only happens for 2ν vacuum oscillations

Page 68: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

2-ν Oscillations

• For 2-ν: U =

0

@

cos θ sin θ

− sin θ cos θ

1

A

Posc = sin2(2θ) sin2(

∆m2L4E

)

Appear

Pαα = 1 − Posc Disappear

• ∆m2 → −∆m2 and θ → −θ + π2 is only a redefinition ν1 ↔ ν2

⇒ We can chose the convention ∆m2 > 0 and 0 ≤ θ ≤ π2

• Moreover Posc is symmetric under ∆m2 → −∆m2 or θ → −θ + π2

⇒ We can chose the convention ∆m2 > 0 and 0 ≤ θ ≤ π4

This only happens for 2ν vacuum oscillations

Page 69: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

2-ν Oscillations

• For 2-ν: U =

0

@

cos θ sin θ

− sin θ cos θ

1

A

Posc = sin2(2θ) sin2(

∆m2L4E

)

Appear

Pαα = 1 − Posc Disappear

• ∆m2 → −∆m2 and θ → −θ + π2 is only a redefinition ν1 ↔ ν2

⇒ We can chose the convention ∆m2 > 0 and 0 ≤ θ ≤ π2

• Moreover Posc is symmetric under ∆m2 → −∆m2 or θ → −θ + π2

⇒ We can chose the convention ∆m2 > 0 and 0 ≤ θ ≤ π4

This only happens for 2ν vacuum oscillations

Page 70: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

2-ν Oscillations

Posc = sin2(2θ) sin2(

∆m2LE

)

Appear

Pαα = 1 − Posc Disappear

• In real experimentsneutrinos are not monochromatic

⇒ 〈Pαβ〉=∫

dEνdΦdEν

σCC(Eν)Pαβ(Eν)

• Maximal sensitivity for ∆m2 ∼ E/L

– ∆m2 � E/L ⇒ No time to oscillate⇒ 〈sin2

(

1.27∆m2L/E)

〉 ' 0 → 〈Posc〉 ' 0

– ∆m2 � E/L ⇒ Averaged oscillations⇒ 〈sin2

(

1.27∆m2L/E)

〉 ' 12 → 〈Posc〉 ' 1

2sin2(2θ)

Page 71: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

2-ν Oscillations

Posc = sin2(2θ) sin2(

∆m2LE

)

Appear

Pαα = 1 − Posc Disappear

• In real experimentsneutrinos are not monochromatic

⇒ 〈Pαβ〉=∫

dEνdΦdEν

σCC(Eν)Pαβ(Eν)

• Maximal sensitivity for ∆m2 ∼ E/L

– ∆m2 � E/L ⇒ No time to oscillate⇒ 〈sin2

(

1.27∆m2L/E)

〉 ' 0 → 〈Posc〉 ' 0

– ∆m2 � E/L ⇒ Averaged oscillations⇒ 〈sin2

(

1.27∆m2L/E)

〉 ' 12 → 〈Posc〉 ' 1

2sin2(2θ)

Page 72: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

2-ν Oscillations

Posc = sin2(2θ) sin2(

∆m2LE

)

Appear

Pαα = 1 − Posc Disappear

• In real experimentsneutrinos are not monochromatic

⇒ 〈Pαβ〉=∫

dEνdΦdEν

σCC(Eν)Pαβ(Eν)

• Maximal sensitivity for ∆m2 ∼ E/L

– ∆m2 � E/L ⇒ No time to oscillate⇒ 〈sin2

(

1.27∆m2L/E)

〉 ' 0 → 〈Posc〉 ' 0

– ∆m2 � E/L ⇒ Averaged oscillations⇒ 〈sin2

(

1.27∆m2L/E)

〉 ' 12 → 〈Posc〉 ' 1

2sin2(2θ)

Page 73: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

2-ν Oscillations

Posc = sin2(2θ) sin2(

∆m2LE

)

Appear

Pαα = 1 − Posc Disappear

• In real experimentsneutrinos are not monochromatic

⇒ 〈Pαβ〉=∫

dEνdΦdEν

σCC(Eν)Pαβ(Eν)

• Maximal sensitivity for ∆m2 ∼ E/L

– ∆m2 � E/L ⇒ No time to oscillate⇒ 〈sin2

(

1.27∆m2L/E)

〉 ' 0 → 〈Posc〉 ' 0

– ∆m2 � E/L ⇒ Averaged oscillations⇒ 〈sin2

(

1.27∆m2L/E)

〉 ' 12 → 〈Posc〉 ' 1

2sin2(2θ)

Page 74: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

2-ν Oscillations

Posc = sin2(2θ) sin2(

∆m2LE

)

Appear

Pαα = 1 − Posc Disappear

• In real experimentsneutrinos are not monochromatic

⇒ 〈Pαβ〉=∫

dEνdΦdEν

σCC(Eν)Pαβ(Eν)

• Maximal sensitivity for ∆m2 ∼ E/L

– ∆m2 � E/L ⇒ No time to oscillate⇒ 〈sin2

(

1.27∆m2L/E)

〉 ' 0 → 〈Posc〉 ' 0

– ∆m2 � E/L ⇒ Averaged oscillations⇒ 〈sin2

(

1.27∆m2L/E)

〉 ' 12 → 〈Posc〉 ' 1

2sin2(2θ)

Page 75: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

p

Sources of ν’s

Concha Gonzalez-Garcia

The Big Bangρν = 330/cm3

Eν =0.0004 eVSN1987Eν ∼ MeV

The Sunνe

ΦEarthν = 6 × 1010ν/cm2s

Eν ∼ 0.1–20 MeVAtmospheric ν′s

νe, νµ, νe, νµ

Φν ∼ 1ν/cm2sHuman BodyΦν = 340 × 106ν/day

Nuclear Reactors

νe

Eν ∼ few MeV

AcceleratorsEν ' 0.3–30 GeV

Earth’s radioactivityΦν ∼ 6 × 106ν/cm2s

Page 76: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

To allow observation of neutrino oscillations:

– Nature has to be good: θ �/ 0

– Need the right set up (≡right 〈L

E〉) for ∆m2

Source E (GeV) L (Km) ∆m2 (eV2)

Solar 10−3 107 10−10

Atmospheric 0.1–102 10–103 10−1–10−4

Reactor 10−3 SBL: 0.1–1 10−2–10−3

LBL: 10–102 10−4–10−5

Accelerator 10 SBL: 0.1 & 0.01

LBL: 102– 103 10−2–10−3

Page 77: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

To allow observation of neutrino oscillations:

– Nature has to be good: θ �/ 0

– Need the right set up (≡right 〈L

E〉) for ∆m2

Source E (GeV) L (Km) ∆m2 (eV2)

Solar 10−3 107 10−10

Atmospheric 0.1–102 10–103 10−1–10−4

Reactor 10−3 SBL: 0.1–1 10−2–10−3

LBL: 10–102 10−4–10−5

Accelerator 10 SBL: 0.1 & 0.01

LBL: 102– 103 10−2–10−3

Page 78: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

To allow observation of neutrino oscillations:

– Nature has to be good: θ �/ 0

– Need the right set up (≡right 〈L

E〉) for ∆m2

Source E (GeV) L (Km) ∆m2 (eV2)

Solar 10−3 107 10−10

Atmospheric 0.1–102 10–103 10−1–10−4

Reactor 10−3 SBL: 0.1–1 10−2–10−3

LBL: 10–102 10−4–10−5

Accelerator 10 SBL: 0.1 & 0.01

LBL: 102– 103 10−2–10−3

Page 79: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

To allow observation of neutrino oscillations:

– Nature has to be good: θ �/ 0

– Need the right set up (≡right 〈L

E〉) for ∆m2

Source E (GeV) L (Km) ∆m2 (eV2)

Solar 10−3 107 10−10

Atmospheric 0.1–102 10–103 10−1–10−4

Reactor 10−3 SBL: 0.1–1 10−2–10−3

LBL: 10–102 10−4–10−5

Accelerator 10 SBL: 0.1 & 0.01

LBL: 102– 103 10−2–10−3

Page 80: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

To allow observation of neutrino oscillations:

– Nature has to be good: θ �/ 0

– Need the right set up (≡right 〈L

E〉) for ∆m2

Source E (GeV) L (Km) ∆m2 (eV2)

Solar 10−3 107 10−10

Atmospheric 0.1–102 10–103 10−1–10−4

Reactor 10−3 SBL: 0.1–1 10−2–10−3

LBL: 10–102 10−4–10−5

Accelerator 10 SBL: 0.1 & 0.01

LBL: 102– 103 10−2–10−3

Page 81: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

To allow observation of neutrino oscillations:

– Nature has to be good: θ �/ 0

– Need the right set up (≡right 〈L

E〉) for ∆m2

Source E (GeV) L (Km) ∆m2 (eV2)

Solar 10−3 107 10−10

Atmospheric 0.1–102 10–103 10−1–10−4

Reactor 10−3 SBL: 0.1–1 10−2–10−3

LBL: 10–102 10−4–10−5

Accelerator 10 SBL: 0.1 & 0.01

LBL: 102– 103 10−2–10−3

Page 82: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

ν Interactions

• Due to SM Weak Interactions

σνp ∼ 10−38cm2 Eν

GeV

• Let’s consider for example atmospheric ν ′s?

ΦATMν = 1 ν per cm2 per second and 〈Eν〉 = 1 GeV

• How many interact? In a human body:

Nint = Φν × σνp × Nhumanprot × T human

life (M × T ≡ Exposure)

Nhumanprotons = Mhuman

gr× NA = 80kg × NA ∼ 5 × 1028protons

T human = 80years = 2 × 109 sec

9

=

;

Exposurehuman

∼ Ton × year

Nint = (5 × 1028) (2 × 109) × 10−38 ∼ 1 interaction per lifetime

⇒ Need huge detectors with Exposure ∼ KTon × year

Page 83: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

ν Interactions

• Due to SM Weak Interactions

σνp ∼ 10−38cm2 Eν

GeV

• Let’s consider for example atmospheric ν ′s?

ΦATMν = 1 ν per cm2 per second and 〈Eν〉 = 1 GeV

• How many interact? In a human body:

Nint = Φν × σνp × Nhumanprot × T human

life (M × T ≡ Exposure)

Nhumanprotons = Mhuman

gr× NA = 80kg × NA ∼ 5 × 1028protons

T human = 80years = 2 × 109 sec

9

=

;

Exposurehuman

∼ Ton × year

Nint = (5 × 1028) (2 × 109) × 10−38 ∼ 1 interaction per lifetime

⇒ Need huge detectors with Exposure ∼ KTon × year

Page 84: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

ν Interactions

• Due to SM Weak Interactions

σνp ∼ 10−38cm2 Eν

GeV

• Let’s consider for example atmospheric ν ′s?

ΦATMν = 1 ν per cm2 per second and 〈Eν〉 = 1 GeV

• How many interact?

In a human body:

Nint = Φν × σνp × Nhumanprot × T human

life (M × T ≡ Exposure)

Nhumanprotons = Mhuman

gr× NA = 80kg × NA ∼ 5 × 1028protons

T human = 80years = 2 × 109 sec

9

=

;

Exposurehuman

∼ Ton × year

Nint = (5 × 1028) (2 × 109) × 10−38 ∼ 1 interaction per lifetime

⇒ Need huge detectors with Exposure ∼ KTon × year

Page 85: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

ν Interactions

• Due to SM Weak Interactions

σνp ∼ 10−38cm2 Eν

GeV

• Let’s consider for example atmospheric ν ′s?

ΦATMν = 1 ν per cm2 per second and 〈Eν〉 = 1 GeV

• How many interact? In a human body:

Nint = Φν × σνp × Nhumanprot × T human

life (M × T ≡ Exposure)

Nhumanprotons = Mhuman

gr× NA = 80kg × NA ∼ 5 × 1028protons

T human = 80years = 2 × 109 sec

9

=

;

Exposurehuman

∼ Ton × year

Nint = (5 × 1028) (2 × 109) × 10−38 ∼ 1 interaction per lifetime

⇒ Need huge detectors with Exposure ∼ KTon × year

Page 86: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

ν Interactions

• Due to SM Weak Interactions

σνp ∼ 10−38cm2 Eν

GeV

• Let’s consider for example atmospheric ν ′s?

ΦATMν = 1 ν per cm2 per second and 〈Eν〉 = 1 GeV

• How many interact? In a human body:

Nint = Φν × σνp × Nhumanprot × T human

life (M × T ≡ Exposure)

Nhumanprotons = Mhuman

gr× NA = 80kg × NA ∼ 5 × 1028protons

T human = 80years = 2 × 109 sec

9

=

;

Exposurehuman

∼ Ton × year

Nint = (5 × 1028) (2 × 109) × 10−38 ∼ 1 interaction per lifetime

⇒ Need huge detectors with Exposure ∼ KTon × year

Page 87: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

ν Interactions

• Due to SM Weak Interactions

σνp ∼ 10−38cm2 Eν

GeV

• Let’s consider for example atmospheric ν ′s?

ΦATMν = 1 ν per cm2 per second and 〈Eν〉 = 1 GeV

• How many interact? In a human body:

Nint = Φν × σνp × Nhumanprot × T human

life (M × T ≡ Exposure)

Nhumanprotons = Mhuman

gr× NA = 80kg × NA ∼ 5 × 1028protons

T human = 80years = 2 × 109 sec

9

=

;

Exposurehuman

∼ Ton × year

Nint = (5 × 1028) (2 × 109) × 10−38 ∼ 1 interaction per lifetime

⇒ Need huge detectors with Exposure ∼ KTon × year

Page 88: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

ν Interactions

• Due to SM Weak Interactions

σνp ∼ 10−38cm2 Eν

GeV

• Let’s consider for example atmospheric ν ′s?

ΦATMν = 1 ν per cm2 per second and 〈Eν〉 = 1 GeV

• How many interact? In a human body:

Nint = Φν × σνp × Nhumanprot × T human

life (M × T ≡ Exposure)

Nhumanprotons = Mhuman

gr× NA = 80kg × NA ∼ 5 × 1028protons

T human = 80years = 2 × 109 sec

9

=

;

Exposurehuman

∼ Ton × year

Nint = (5 × 1028) (2 × 109) × 10−38 ∼ 1 interaction per lifetime

⇒ Need huge detectors with Exposure ∼ KTon × year

Page 89: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

ν Interactions

• Due to SM Weak Interactions

σνp ∼ 10−38cm2 Eν

GeV

• Let’s consider for example atmospheric ν ′s?

ΦATMν = 1 ν per cm2 per second and 〈Eν〉 = 1 GeV

• How many interact? In a human body:

Nint = Φν × σνp × Nhumanprot × T human

life (M × T ≡ Exposure)

Nhumanprotons = Mhuman

gr× NA = 80kg × NA ∼ 5 × 1028protons

T human = 80years = 2 × 109 sec

9

=

;

Exposurehuman

∼ Ton × year

Nint = (5 × 1028) (2 × 109) × 10−38 ∼ 1 interaction per lifetime

⇒ Need huge detectors with Exposure ∼ KTon × year

Page 90: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

ν Oscillations: Experimental Probes

• Generically there are two types of experiments to search for ν oscillations :

Disappearance Experiment

αν sourceν να

detector ναdetectorI II

Φα Ι Φα ΙΙLL

I

II

α Ι α ΙΙandCompares ΦΦ to look for loss

Appearance Experiment

L

αν sourceν ν detectorSearches for β

β

αdiff

Page 91: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

ν Oscillations: Experimental Probes

• Generically there are two types of experiments to search for ν oscillations :

Disappearance Experiment

αν sourceν να

detector ναdetectorI II

Φα Ι Φα ΙΙLL

I

II

α Ι α ΙΙandCompares ΦΦ to look for loss

Appearance Experiment

L

αν sourceν ν detectorSearches for β

β

αdiff

Page 92: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

ν Oscillations: Experimental Probes

• Generically there are two types of experiments to search for ν oscillations :

Disappearance Experiment

αν sourceν να

detector ναdetectorI II

Φα Ι Φα ΙΙLL

I

II

α Ι α ΙΙandCompares ΦΦ to look for loss

Appearance Experiment

L

αν sourceν ν detectorSearches for β

β

αdiff

Page 93: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Atmospheric Neutrinos

Atmospheric νe,µ are produced by the interaction of cosmic rays (p, He . . . ) with theatmosphere

-

_

+

( )

( )

( ) ( )

Rµ/e=

Nµν

νe

N

πp , He

νµ

µ+_

e

ννµ e

+_

Nπ+_π+

2N

N

νν µ+

+~

Page 94: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Atmospheric Neutrinos: Data

EVENT CLASSIFICATION

UPGOING MUONS

e,µ

µ

µ

ν νµµ

CONTAINED

νe,µ

µ

µνFullyContained

Partially Contained Thru-going

MuonStopping

Muon0.1 - few GeV few GeV few 10 GeV few 100 GeV

• Total Rates for Contained Events

• Angular Distribution at SKp, He

π , Kµ

e

νeνµ

detector

atmosphere

EARTH

νµ

down-going

up-going

zenithangle

L ≈1.2×104 km

L −~ 10-30 km

L ≈104 km

L ≈500 km

[not to scale]

+−

+− +−

+−

050

100150200250300350400450

-1 -0.5 0 0.5 1cosθ

Num

ber

of E

vent

s Sub-GeV e-like

050

100150200250300350400450

-1 -0.5 0 0.5 1cosθ

Num

ber

of E

vent

s Sub-GeV µ-like

0

20

40

60

80

100

120

140

-1 -0.5 0 0.5 1cosθ

Num

ber

of E

vent

s Multi-GeV e-like

0

50

100

150

200

250

300

350

-1 -0.5 0 0.5 1cosθ

Num

ber

of E

vent

s Multi-GeV µ-like + PC

0

0.5

1

1.5

2

2.5

3

3.5

4

-1 -0.8 -0.6 -0.4 -0.2 0cosθ

Flu

x(10

-13 cm

-2s-1

sr-1

) Upward Through Going µ

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-1 -0.8 -0.6 -0.4 -0.2 0cosθ

Upward Stopping µ

νe

inag

reem

entw

ithSM

→ Deficitgrows with L

→ Decreaseswith E

Page 95: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Atmospheric Neutrinos: Data

EVENT CLASSIFICATION

UPGOING MUONS

e,µ

µ

µ

ν νµµ

CONTAINED

νe,µ

µ

µνFullyContained

Partially Contained Thru-going

MuonStopping

Muon0.1 - few GeV few GeV few 10 GeV few 100 GeV

• Total Rates for Contained Events

• Angular Distribution at SKp, He

π , Kµ

e

νeνµ

detector

atmosphere

EARTH

νµ

down-going

up-going

zenithangle

L ≈1.2×104 km

L −~ 10-30 km

L ≈104 km

L ≈500 km

[not to scale]

+−

+− +−

+−

050

100150200250300350400450

-1 -0.5 0 0.5 1cosθ

Num

ber

of E

vent

s Sub-GeV e-like

050

100150200250300350400450

-1 -0.5 0 0.5 1cosθ

Num

ber

of E

vent

s Sub-GeV µ-like

0

20

40

60

80

100

120

140

-1 -0.5 0 0.5 1cosθ

Num

ber

of E

vent

s Multi-GeV e-like

0

50

100

150

200

250

300

350

-1 -0.5 0 0.5 1cosθ

Num

ber

of E

vent

s Multi-GeV µ-like + PC

0

0.5

1

1.5

2

2.5

3

3.5

4

-1 -0.8 -0.6 -0.4 -0.2 0cosθ

Flu

x(10

-13 cm

-2s-1

sr-1

) Upward Through Going µ

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-1 -0.8 -0.6 -0.4 -0.2 0cosθ

Upward Stopping µ

νe

inag

reem

entw

ithSM

→ Deficitgrows with L

→ Decreaseswith E

Page 96: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Atmospheric Neutrinos: Data

EVENT CLASSIFICATION

UPGOING MUONS

e,µ

µ

µ

ν νµµ

CONTAINED

νe,µ

µ

µνFullyContained

Partially Contained Thru-going

MuonStopping

Muon0.1 - few GeV few GeV few 10 GeV few 100 GeV

• Total Rates for Contained Events

• Angular Distribution at SKp, He

π , Kµ

e

νeνµ

detector

atmosphere

EARTH

νµ

down-going

up-going

zenithangle

L ≈1.2×104 km

L −~ 10-30 km

L ≈104 km

L ≈500 km

[not to scale]

+−

+− +−

+−

050

100150200250300350400450

-1 -0.5 0 0.5 1cosθ

Num

ber

of E

vent

s Sub-GeV e-like

050

100150200250300350400450

-1 -0.5 0 0.5 1cosθ

Num

ber

of E

vent

s Sub-GeV µ-like

0

20

40

60

80

100

120

140

-1 -0.5 0 0.5 1cosθ

Num

ber

of E

vent

s Multi-GeV e-like

0

50

100

150

200

250

300

350

-1 -0.5 0 0.5 1cosθ

Num

ber

of E

vent

s Multi-GeV µ-like + PC

0

0.5

1

1.5

2

2.5

3

3.5

4

-1 -0.8 -0.6 -0.4 -0.2 0cosθ

Flu

x(10

-13 cm

-2s-1

sr-1

) Upward Through Going µ

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-1 -0.8 -0.6 -0.4 -0.2 0cosθ

Upward Stopping µ

νe

inag

reem

entw

ithSM

→ Deficitgrows with L

→ Decreaseswith E

Page 97: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Atmospheric Neutrinos: Data

EVENT CLASSIFICATION

UPGOING MUONS

e,µ

µ

µ

ν νµµ

CONTAINED

νe,µ

µ

µνFullyContained

Partially Contained Thru-going

MuonStopping

Muon0.1 - few GeV few GeV few 10 GeV few 100 GeV

• Total Rates for Contained Events

• Angular Distribution at SKp, He

π , Kµ

e

νeνµ

detector

atmosphere

EARTH

νµ

down-going

up-going

zenithangle

L ≈1.2×104 km

L −~ 10-30 km

L ≈104 km

L ≈500 km

[not to scale]

+−

+− +−

+−

050

100150200250300350400450

-1 -0.5 0 0.5 1cosθ

Num

ber

of E

vent

s Sub-GeV e-like

050

100150200250300350400450

-1 -0.5 0 0.5 1cosθ

Num

ber

of E

vent

s Sub-GeV µ-like

0

20

40

60

80

100

120

140

-1 -0.5 0 0.5 1cosθ

Num

ber

of E

vent

s Multi-GeV e-like

0

50

100

150

200

250

300

350

-1 -0.5 0 0.5 1cosθ

Num

ber

of E

vent

s Multi-GeV µ-like + PC

0

0.5

1

1.5

2

2.5

3

3.5

4

-1 -0.8 -0.6 -0.4 -0.2 0cosθ

Flu

x(10

-13 cm

-2s-1

sr-1

) Upward Through Going µ

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-1 -0.8 -0.6 -0.4 -0.2 0cosθ

Upward Stopping µ

νe

inag

reem

entw

ithSM

→ Deficitgrows with L

→ Decreaseswith E

Page 98: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Atmospheric Neutrinos: Data

EVENT CLASSIFICATION

UPGOING MUONS

e,µ

µ

µ

ν νµµ

CONTAINED

νe,µ

µ

µνFullyContained

Partially Contained Thru-going

MuonStopping

Muon0.1 - few GeV few GeV few 10 GeV few 100 GeV

• Total Rates for Contained Events

• Angular Distribution at SKp, He

π , Kµ

e

νeνµ

detector

atmosphere

EARTH

νµ

down-going

up-going

zenithangle

L ≈1.2×104 km

L −~ 10-30 km

L ≈104 km

L ≈500 km

[not to scale]

+−

+− +−

+−

050

100150200250300350400450

-1 -0.5 0 0.5 1cosθ

Num

ber

of E

vent

s Sub-GeV e-like

050

100150200250300350400450

-1 -0.5 0 0.5 1cosθ

Num

ber

of E

vent

s Sub-GeV µ-like

0

20

40

60

80

100

120

140

-1 -0.5 0 0.5 1cosθ

Num

ber

of E

vent

s Multi-GeV e-like

0

50

100

150

200

250

300

350

-1 -0.5 0 0.5 1cosθ

Num

ber

of E

vent

s Multi-GeV µ-like + PC

0

0.5

1

1.5

2

2.5

3

3.5

4

-1 -0.8 -0.6 -0.4 -0.2 0cosθ

Flu

x(10

-13 cm

-2s-1

sr-1

) Upward Through Going µ

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-1 -0.8 -0.6 -0.4 -0.2 0cosθ

Upward Stopping µ

νe

inag

reem

entw

ithSM

→ Deficitgrows with L

→ Decreaseswith E

Page 99: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Atmospheric Neutrinos: Data

EVENT CLASSIFICATION

UPGOING MUONS

e,µ

µ

µ

ν νµµ

CONTAINED

νe,µ

µ

µνFullyContained

Partially Contained Thru-going

MuonStopping

Muon0.1 - few GeV few GeV few 10 GeV few 100 GeV

• Total Rates for Contained Events

• Angular Distribution at SKp, He

π , Kµ

e

νeνµ

detector

atmosphere

EARTH

νµ

down-going

up-going

zenithangle

L ≈1.2×104 km

L −~ 10-30 km

L ≈104 km

L ≈500 km

[not to scale]

+−

+− +−

+−

050

100150200250300350400450

-1 -0.5 0 0.5 1cosθ

Num

ber

of E

vent

s Sub-GeV e-like

050

100150200250300350400450

-1 -0.5 0 0.5 1cosθ

Num

ber

of E

vent

s Sub-GeV µ-like

0

20

40

60

80

100

120

140

-1 -0.5 0 0.5 1cosθ

Num

ber

of E

vent

s Multi-GeV e-like

0

50

100

150

200

250

300

350

-1 -0.5 0 0.5 1cosθ

Num

ber

of E

vent

s Multi-GeV µ-like + PC

0

0.5

1

1.5

2

2.5

3

3.5

4

-1 -0.8 -0.6 -0.4 -0.2 0cosθ

Flu

x(10

-13 cm

-2s-1

sr-1

) Upward Through Going µ

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-1 -0.8 -0.6 -0.4 -0.2 0cosθ

Upward Stopping µ

νe

inag

reem

entw

ithSM

→ Deficitgrows with L

→ Decreaseswith E

Page 100: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Atmospheric ν Oscillations: Parameter Estimate

• From Total Contained Event Rates:

〈Pµµ〉 = 1 − sin2 2θ sin2 ∆m2L

2E∼ 0.5 − 0.7

⇒ sin2 2θ & 0.6

• From Angular Distribution:

SK sub-GeV e-like

No oscillation

N e

vent

s

0

200

400

L~ 13000Km ~ 500Km ~ 15Km

SK sub-GeV µ-like

SK multi-GeV e-like

N e

vent

sUP HORIZ DOWN

0

100

200

-1 -0.5 0 0.5 1

SK multi-GeV µ-like

cosθ-1 -0.5 0 0.5 1

For E ∼ 1 GeV deficit at L ∼ 102– 104 Km

∆m2(eV2)L(km)

2E(GeV)∼ 1

⇒ ∆m2 ∼ 10−4 − 10−2eV2

Page 101: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Atmospheric ν Oscillations: Parameter Estimate

• From Total Contained Event Rates:

〈Pµµ〉 = 1 − sin2 2θ sin2 ∆m2L

2E∼ 0.5 − 0.7

⇒ sin2 2θ & 0.6

• From Angular Distribution:

SK sub-GeV e-like

No oscillation

N e

vent

s

0

200

400

L~ 13000Km ~ 500Km ~ 15Km

SK sub-GeV µ-like

SK multi-GeV e-like

N e

vent

sUP HORIZ DOWN

0

100

200

-1 -0.5 0 0.5 1

SK multi-GeV µ-like

cosθ-1 -0.5 0 0.5 1

For E ∼ 1 GeV deficit at L ∼ 102– 104 Km

∆m2(eV2)L(km)

2E(GeV)∼ 1

⇒ ∆m2 ∼ 10−4 − 10−2eV2

Page 102: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Atmospheric ν Oscillation Solution: νµ → ντ

0.3 0.5 1 2 3

tan2 θ

0

1

2

3

4

5

∆m2 [1

0-3 e

V2 ]

Best fit:∆m2 = 2.2 × 10−3 eV2

tan2 θ = 1

Page 103: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

ν Oscillations: Lab Searches at Short Distance

• In laboratory experiments ν source: Accelerator or Nuclear Reactor

Appearance Experiment

L

αν sourceν ν detectorSearches for β

β

αdiff

Experiment 〈E/MeV

L/m〉 α β

CCFR 100 FNAL νµ, νe ντ

E531 25 FNAL νµ, νe ντ

Nomad 13 CERN νµ, νe ντ

Chorus 13 CERN νµ, νe ντ

E776 2.5 BNL νµ νe

Karmen2 2.5 Rutherford ν̄µ ν̄e

LSND 3 Los Alamos ν̄µ ν̄e

Miniboone 3 Fermilab νµ νe

Disappearance Experiment

αν sourceν να

detector ναdetectorI II

Φα Ι Φα ΙΙLL

I

II

α Ι α ΙΙandCompares ΦΦ to look for loss

Experiment 〈E/MeV

L/m〉 α

CDHSW 1.4 CERN νµ

BugeyIII 0.05 Reactor ν̄e

Chooz 0.005 Reactor ν̄e

Page 104: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

ν Oscillations: Lab Searches at Short Distance

• In laboratory experiments ν source: Accelerator or Nuclear Reactor

Appearance Experiment

L

αν sourceν ν detectorSearches for β

β

αdiff

Experiment 〈E/MeV

L/m〉 α β

CCFR 100 FNAL νµ, νe ντ

E531 25 FNAL νµ, νe ντ

Nomad 13 CERN νµ, νe ντ

Chorus 13 CERN νµ, νe ντ

E776 2.5 BNL νµ νe

Karmen2 2.5 Rutherford ν̄µ ν̄e

LSND 3 Los Alamos ν̄µ ν̄e

Miniboone 3 Fermilab νµ νe

Disappearance Experiment

αν sourceν να

detector ναdetectorI II

Φα Ι Φα ΙΙLL

I

II

α Ι α ΙΙandCompares ΦΦ to look for loss

Experiment 〈E/MeV

L/m〉 α

CDHSW 1.4 CERN νµ

BugeyIII 0.05 Reactor ν̄e

Chooz 0.005 Reactor ν̄e

Page 105: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

ν Oscillations: Lab Searches at Short Distance

• In laboratory experiments ν source: Accelerator or Nuclear Reactor

Appearance Experiment

L

αν sourceν ν detectorSearches for β

β

αdiff

Experiment 〈E/MeV

L/m〉 α β

CCFR 100 FNAL νµ, νe ντ

E531 25 FNAL νµ, νe ντ

Nomad 13 CERN νµ, νe ντ

Chorus 13 CERN νµ, νe ντ

E776 2.5 BNL νµ νe

Karmen2 2.5 Rutherford ν̄µ ν̄e

LSND 3 Los Alamos ν̄µ ν̄e

Miniboone 3 Fermilab νµ νe

Disappearance Experiment

αν sourceν να

detector ναdetectorI II

Φα Ι Φα ΙΙLL

I

II

α Ι α ΙΙandCompares ΦΦ to look for loss

Experiment 〈E/MeV

L/m〉 α

CDHSW 1.4 CERN νµ

BugeyIII 0.05 Reactor ν̄e

Chooz 0.005 Reactor ν̄e

Page 106: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

ν Oscillations: Lab Searches at Short Distance

• In laboratory experiments ν source: Accelerator or Nuclear Reactor

Appearance Experiment

L

αν sourceν ν detectorSearches for β

β

αdiff

Experiment 〈E/MeV

L/m〉 α β

CCFR 100 FNAL νµ, νe ντ

E531 25 FNAL νµ, νe ντ

Nomad 13 CERN νµ, νe ντ

Chorus 13 CERN νµ, νe ντ

E776 2.5 BNL νµ νe

Karmen2 2.5 Rutherford ν̄µ ν̄e

LSND 3 Los Alamos ν̄µ ν̄e

Miniboone 3 Fermilab νµ νe

Disappearance Experiment

αν sourceν να

detector ναdetectorI II

Φα Ι Φα ΙΙLL

I

II

α Ι α ΙΙandCompares ΦΦ to look for loss

Experiment 〈E/MeV

L/m〉 α

CDHSW 1.4 CERN νµ

BugeyIII 0.05 Reactor ν̄e

Chooz 0.005 Reactor ν̄e

Page 107: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

ν Oscillations: Lab Searches at Short Distance

• In laboratory experiments ν source: Accelerator or Nuclear Reactor

Appearance Experiment

L

αν sourceν ν detectorSearches for β

β

αdiff

Experiment 〈E/MeV

L/m〉 α β

CCFR 100 FNAL νµ, νe ντ

E531 25 FNAL νµ, νe ντ

Nomad 13 CERN νµ, νe ντ

Chorus 13 CERN νµ, νe ντ

E776 2.5 BNL νµ νe

Karmen2 2.5 Rutherford ν̄µ ν̄e

LSND 3 Los Alamos ν̄µ ν̄e

Miniboone 3 Fermilab νµ νe

Disappearance Experiment

αν sourceν να

detector ναdetectorI II

Φα Ι Φα ΙΙLL

I

II

α Ι α ΙΙandCompares ΦΦ to look for loss

Experiment 〈E/MeV

L/m〉 α

CDHSW 1.4 CERN νµ

BugeyIII 0.05 Reactor ν̄e

Chooz 0.005 Reactor ν̄e

Page 108: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

ν Oscillations: Lab Searches at Short Distance

• In laboratory experiments ν source: Accelerator or Nuclear Reactor

Appearance Experiment

L

αν sourceν ν detectorSearches for β

β

αdiff

Experiment 〈E/MeV

L/m〉 α β

CCFR 100 FNAL νµ, νe ντ

E531 25 FNAL νµ, νe ντ

Nomad 13 CERN νµ, νe ντ

Chorus 13 CERN νµ, νe ντ

E776 2.5 BNL νµ νe

Karmen2 2.5 Rutherford ν̄µ ν̄e

LSND 3 Los Alamos ν̄µ ν̄e

Miniboone 3 Fermilab νµ νe

Disappearance Experiment

αν sourceν να

detector ναdetectorI II

Φα Ι Φα ΙΙLL

I

II

α Ι α ΙΙandCompares ΦΦ to look for loss

Experiment 〈E/MeV

L/m〉 α

CDHSW 1.4 CERN νµ

BugeyIII 0.05 Reactor ν̄e

Chooz 0.005 Reactor ν̄e

Page 109: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

LSND

• The only short distance signal for oscillation: L = 30 m with 〈Eν〉 ∼ 30 MeV• Used the proton beam of Los Alamos p + Target → π+ + X

π+ → νµ µ+

µ+ → e+ νe νµ

• observed νµ → νe with probability 〈Peµ〉= (0.26 ± 0.07 ± 0.05)%

• Karmen which searched for the same signal and did not observe oscillations.• MiniBoone in Fermilab is/has been running to solve this.

Page 110: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

LSND

• The only short distance signal for oscillation: L = 30 m with 〈Eν〉 ∼ 30 MeV• Used the proton beam of Los Alamos p + Target → π+ + X

π+ → νµ µ+

µ+ → e+ νe νµ

• observed νµ → νe with probability 〈Peµ〉= (0.26 ± 0.07 ± 0.05)%

• Karmen which searched for the same signal and did not observe oscillations.• MiniBoone in Fermilab is/has been running to solve this.

Page 111: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

LSND

• The only short distance signal for oscillation: L = 30 m with 〈Eν〉 ∼ 30 MeV• Used the proton beam of Los Alamos p + Target → π+ + X

π+ → νµ µ+

µ+ → e+ νe νµ

• observed νµ → νe with probability 〈Peµ〉= (0.26 ± 0.07 ± 0.05)%

• Karmen which searched for the same signal and did not observe oscillations.• MiniBoone in Fermilab is/has been running to solve this.

Page 112: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

LSND

• The only short distance signal for oscillation: L = 30 m with 〈Eν〉 ∼ 30 MeV• Used the proton beam of Los Alamos p + Target → π+ + X

π+ → νµ µ+

µ+ → e+ νe νµ

• observed νµ → νe with probability 〈Peµ〉= (0.26 ± 0.07 ± 0.05)%

• Karmen which searched for the same signal and did not observe oscillations.

• MiniBoone in Fermilab is/has been running to solve this.

Page 113: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

LSND

• The only short distance signal for oscillation: L = 30 m with 〈Eν〉 ∼ 30 MeV• Used the proton beam of Los Alamos p + Target → π+ + X

π+ → νµ µ+

µ+ → e+ νe νµ

• observed νµ → νe with probability 〈Peµ〉= (0.26 ± 0.07 ± 0.05)%

• Karmen which searched for the same signal and did not observe oscillations.• MiniBoone in Fermilab is/has been running to solve this.

Page 114: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

MiniBooNE

• Search for νµ → νe with Eν = 0.3 − 2 GeV and L = 540 m

Observed spectrum of νe

even

ts / M

eV

0 .5

1 .0

1 .5

2 .0

2 .5analysis threshold

osc illationν2

y M iniB ooN E data

µνg ex p ec ted b ac k grou nd

µνeν→µν B G + b est-fit

b ac k grou ndµν

b ac k grou ndeν

3 0 0 6 0 0 9 0 0 1 2 0 0 1 5 0 0

excess e

ven

ts / M

eV

0 .0

0 .2

0 .4

0 .6

0 .8

(MeV)νrec o nstr u c ted E

3 0 0 0

data - ex p ec ted b ac k grou nd

eν→µν b est-fit

µν2= 1 .0 eV2m∆)= 0 .0 0 4 ,θ(22 sin

µν2= 0 .1 eV2m∆)= 0 .2,θ(22 sin

Excluded region

ts

sta -

k g ro u n d

d a sh e d

o sc illa -

e rs

fro m

e x -

re p re se n t

o n d

with

re c o n -

n o r-

sim p le r

)θ(22

s in

-310

-210

-110 1

)4

/c2

| (

eV

2m∆|

-210

-110

1

10

210

LSND 90% C.L.

LSND 99% C.L.

) u p p e r limitθ(22s in

yM in iB o o NE 90% C.L.

M in iB o o NE 90% C.L. s e n s itiv ity

B DT a n a lys is 90% C.L.

Based on this analysis LSND Excluded at 90-98% CL by MiniBooNE.

Page 115: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Summary of Searches at Short Baseline

1

10

10 2

10 3

10 -4 10 -3 10 -2 10 -1 1sin2 2θ

∆m2 (e

V2 /c

4 )

E531CCFR

NOMAD

CHORUS

CDHS

νµ → ντ90% C.L. 10

10 2

10 3

10 -2 10 -1 1sin2 2θ

∆m2 (e

V2 /c

4 )

NOMAD

CHORUS

CHOOZνe → ντ

90% C.L.

• Reactor disappearance experiments⇒ Lower E and longer L⇒ are more sensitive to lower ∆m2

• Accelerator appearance experiments⇒ higher E shorter L more precision⇒ better limits on mixing

• To reach small ∆m2 & 10−4 eV2

⇒ very large L and intermediate E⇒ Long Baseline Exp at Accelerators

• To reach smaller ∆m2 & 10−5 eV2

⇒ Long Baseline Exp at Reactors

Page 116: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Summary of Searches at Short Baseline

1

10

10 2

10 3

10 -4 10 -3 10 -2 10 -1 1sin2 2θ

∆m2 (e

V2 /c

4 )

E531CCFR

NOMAD

CHORUS

CDHS

νµ → ντ90% C.L. 10

10 2

10 3

10 -2 10 -1 1sin2 2θ

∆m2 (e

V2 /c

4 )

NOMAD

CHORUS

CHOOZνe → ντ

90% C.L.

• Reactor disappearance experiments⇒ Lower E and longer L⇒ are more sensitive to lower ∆m2

• Accelerator appearance experiments⇒ higher E shorter L more precision⇒ better limits on mixing

• To reach small ∆m2 & 10−4 eV2

⇒ very large L and intermediate E⇒ Long Baseline Exp at Accelerators

• To reach smaller ∆m2 & 10−5 eV2

⇒ Long Baseline Exp at Reactors

Page 117: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Summary of Searches at Short Baseline

1

10

10 2

10 3

10 -4 10 -3 10 -2 10 -1 1sin2 2θ

∆m2 (e

V2 /c

4 )

E531CCFR

NOMAD

CHORUS

CDHS

νµ → ντ90% C.L. 10

10 2

10 3

10 -2 10 -1 1sin2 2θ

∆m2 (e

V2 /c

4 )

NOMAD

CHORUS

CHOOZνe → ντ

90% C.L.

• Reactor disappearance experiments⇒ Lower E and longer L⇒ are more sensitive to lower ∆m2

• Accelerator appearance experiments⇒ higher E shorter L more precision⇒ better limits on mixing

• To reach small ∆m2 & 10−4 eV2

⇒ very large L and intermediate E⇒ Long Baseline Exp at Accelerators

• To reach smaller ∆m2 & 10−5 eV2

⇒ Long Baseline Exp at Reactors

Page 118: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Summary of Searches at Short Baseline

1

10

10 2

10 3

10 -4 10 -3 10 -2 10 -1 1sin2 2θ

∆m2 (e

V2 /c

4 )

E531CCFR

NOMAD

CHORUS

CDHS

νµ → ντ90% C.L. 10

10 2

10 3

10 -2 10 -1 1sin2 2θ

∆m2 (e

V2 /c

4 )

NOMAD

CHORUS

CHOOZνe → ντ

90% C.L.

• Reactor disappearance experiments⇒ Lower E and longer L⇒ are more sensitive to lower ∆m2

• Accelerator appearance experiments⇒ higher E shorter L more precision⇒ better limits on mixing

• To reach small ∆m2 & 10−4 eV2

⇒ very large L and intermediate E⇒ Long Baseline Exp at Accelerators

• To reach smaller ∆m2 & 10−5 eV2

⇒ Long Baseline Exp at Reactors

Page 119: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Summary of Searches at Short Baseline

1

10

10 2

10 3

10 -4 10 -3 10 -2 10 -1 1sin2 2θ

∆m2 (e

V2 /c

4 )

E531CCFR

NOMAD

CHORUS

CDHS

νµ → ντ90% C.L. 10

10 2

10 3

10 -2 10 -1 1sin2 2θ

∆m2 (e

V2 /c

4 )

NOMAD

CHORUS

CHOOZνe → ντ

90% C.L.

• Reactor disappearance experiments⇒ Lower E and longer L⇒ are more sensitive to lower ∆m2

• Accelerator appearance experiments⇒ higher E shorter L more precision⇒ better limits on mixing

• To reach small ∆m2 & 10−4 eV2

⇒ very large L and intermediate E⇒ Long Baseline Exp at Accelerators

• To reach smaller ∆m2 & 10−5 eV2

⇒ Long Baseline Exp at Reactors

Page 120: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-GarciaATM Test at Long Baseline Experiments

K2K νµ at KEK SK L=250 kmMINOS νµ at Fermilab Soundan L=735 km

Opera νµ at CERN Gran Sasso L=740 km

K2K 2004: spectral distortion

0

4

8

12

Even

ts / 0

.2 (G

eV)

0 1 5432Eν

rec (GeV)

16

Confirmation of ATM oscillations

0.1 1 10

tan2 θ

0

1

2

3

4

5

6

∆m2 [1

0-3 e

V2 ]

K2K

MINOS 2006: spectral distortion

Impact on ∆m2 Determination

0.1 1 10

tan2 θ

0

1

2

3

4

5

6

∆m2 [1

0-3 e

V2 ]

MINOS

Page 121: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-GarciaATM Test at Long Baseline Experiments

K2K νµ at KEK SK L=250 kmMINOS νµ at Fermilab Soundan L=735 km

Opera νµ at CERN Gran Sasso L=740 km

K2K 2004: spectral distortion

0

4

8

12

Even

ts / 0

.2 (G

eV)

0 1 5432Eν

rec (GeV)

16

Confirmation of ATM oscillations

0.1 1 10

tan2 θ

0

1

2

3

4

5

6

∆m2 [1

0-3 e

V2 ]

K2K

MINOS 2006: spectral distortion

Impact on ∆m2 Determination

0.1 1 10

tan2 θ

0

1

2

3

4

5

6

∆m2 [1

0-3 e

V2 ]

MINOS

Page 122: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-GarciaATM Test at Long Baseline Experiments

K2K νµ at KEK SK L=250 kmMINOS νµ at Fermilab Soundan L=735 km

Opera νµ at CERN Gran Sasso L=740 km

K2K 2004: spectral distortion

0

4

8

12

Even

ts / 0

.2 (G

eV)

0 1 5432Eν

rec (GeV)

16

Confirmation of ATM oscillations

0.1 1 10

tan2 θ

0

1

2

3

4

5

6

∆m2 [1

0-3 e

V2 ]

K2K

MINOS 2006: spectral distortion

Impact on ∆m2 Determination

0.1 1 10

tan2 θ

0

1

2

3

4

5

6

∆m2 [1

0-3 e

V2 ]

MINOS

Page 123: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Altenative Oscillation Mechanisms• Oscillations are due to:

– Misalignment between CC-int and propagation states: Mixing ⇒ Amplitude

– Difference phases of propagation states ⇒ Wavelength. For ∆m2-OSC λ =4πE

∆m2

• ν masses are not the only mechanism for oscillations

Violation of Equivalence Principle (VEP): Gasperini 88, Halprin,Leung 01

Non universal coupling of neutrinos γ1 6= γ2 to graviational potential φ

λ =π

E|φ|δγ

Violation of Lorentz Invariance (VLI): Coleman, Glashow 97

Non universal asymptotic velocity of neutrinos c1 6= c2 ⇒ Ei =m2

i

2p+ cip

λ =2π

E∆c

Interactions with space-time torsion: Sabbata, Gasperini 81

Non universal couplings of neutrinos k1 6= k2 to torsion strength Q

λ =2π

Q∆k

Violation of Lorentz Invariance (VLI) Colladay, Kostelecky 97; Coleman, Glashow 99

due to CPT violating terms: ν̄αLbαβ

µ γµνβL ⇒ Ei =

m2

i

2p ± bi λ = ± 2π

∆b

Page 124: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Altenative Oscillation Mechanisms• Oscillations are due to:

– Misalignment between CC-int and propagation states: Mixing ⇒ Amplitude

– Difference phases of propagation states ⇒ Wavelength. For ∆m2-OSC λ =4πE

∆m2

• ν masses are not the only mechanism for oscillations

Violation of Equivalence Principle (VEP): Gasperini 88, Halprin,Leung 01

Non universal coupling of neutrinos γ1 6= γ2 to graviational potential φ

λ =π

E|φ|δγ

Violation of Lorentz Invariance (VLI): Coleman, Glashow 97

Non universal asymptotic velocity of neutrinos c1 6= c2 ⇒ Ei =m2

i

2p+ cip

λ =2π

E∆c

Interactions with space-time torsion: Sabbata, Gasperini 81

Non universal couplings of neutrinos k1 6= k2 to torsion strength Q

λ =2π

Q∆k

Violation of Lorentz Invariance (VLI) Colladay, Kostelecky 97; Coleman, Glashow 99

due to CPT violating terms: ν̄αLbαβ

µ γµνβL ⇒ Ei =

m2

i

2p ± bi λ = ± 2π

∆b

Page 125: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

ATM ν’s: Subdominant NP Effects

Pνµ→νµ= 1 − sin2 2Θ sin2

(

∆m2L

4ER

)

R cos 2Θ = cos 2θ +∑

n

Rn cos 2ξn

R sin 2Θ = sin 2θ +∑

n

Rn sin 2ξn eiηn

Rn = σ+n

∆δnEn

2

4E

∆m2

-1 -0.5 0 0.5 10.5

0.6

0.7

0.8

0.9

1

SK sub-GeV (µ)

OscillationsVLI CPT evenTORSION

-1 -0.5 0 0.5 10.4

0.5

0.6

0.7

0.8

0.9

1

SK multi-GeV (µ)

-1 -0.8 -0.6 -0.4 -0.2 0

cos θ

0.4

0.5

0.6

0.7

0.8

0.9

1

SK stop (µ)

-1 -0.8 -0.6 -0.4 -0.2 0

cos θ

0.6

0.8

1

1.2

1.4

SK thru (µ)

• Questions:

– Do these effects affect our determination of oscillation parameters?

– Can we limit these effects?

Page 126: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

ATM ν’s: Subdominant NP EffectsMCG-G, M. Maltoni 04,07

1

2

3

4

5

∆m2 31

[10-3

eV

2 ]

n=1 CPT even

10-27

10-26

10-25

10-24

10-23

∆δ1

n=1 CPT even

1

2

3

4

5

∆m2 31

[10-3

eV

2 ]

n=0 CPT odd

10-24

10-23

10-22

10-21

∆δ0 [G

eV]

n=0 CPT odd

0 0.25 0.5 0.75 1

sin2 θ23

1

2

3

4

5

∆m2 31

[10-3

eV

2 ]

n=0 CPT even

-1 -0.5 0 0.5 1

sin 2ξn

10-24

10-23

10-22

10-21

∆δ0 [G

eV]

n=0 CPT even

At 90% CL:|∆c|

c≤ 1.2 × 10−24

|φ ∆γ| ≤ 5.9 × 10−25

|∆b| ≤ 3.0 × 10−23 GeV

|Q∆k| ≤ 4.8 × 10−23 GeV

|εdµµ − εd

ττ | ≤ 0.012

|εdµτ | ≤ 0.038

Page 127: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Future Bounds on New Physics: ν Telescopes

At ν Telescopes (Amanda, Antares, IceCube)Eν,thres & 100 GeVLarge # ATM ν′s

(∼ 105νµ events/yr at ICECUBE)⇒ Standard oscillations suppressed⇒ Better sensitivity to Oscillations due to NP

102

103

104

105

Eµ [GeV]

0.6

0.8

1

1.2

1.4

1.6

1.8

2

p horiz

/ p ve

rt

10-2810

-2710-2610

-25

10-24

Solid=νµ+ντ Dashed=νµ only

δc/c = vary, ξ = 45

pi = Ni / Niosc

vert=[-1.0, -0.6] horiz=[-0.6, -0.2]

Expected Sensitivity at IceCube

0 0.25 0.5 0.75 1

sin2 2ξ

10-28

10-27

10-26

10-25

10-24

δc/c

2|φ

| ∆γ

SK excluded (3σ)

Solid = RQPM

Lines = TIG

MCG-G, Halzen,Maltoni, 05

Page 128: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Summary II

• If mν 6= 0 → Lepton Mixing≡ breaking of Le × Lµ × Lτ

• From direct searches of ν-mass: mν ≤ O(eV )

• Neutrino masses and mixing ⇒ Flavour oscillations

• Experiments observing oscillations ⇒ measurement of ∆m2ij and θij

• Atmospheric, K2K and MINOS (+ negative SBL searches)⇒ νµ → ντ with ∆m2 ∼ 2 × 10−3 eV2 and tan2 θ ∼ 1

• Possible alternative oscillation scenarios due to non-universal VLI, VWEP, etc...But Strongly Constrained from Existing Oscillation Data

Page 129: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Summary II

• If mν 6= 0 → Lepton Mixing≡ breaking of Le × Lµ × Lτ

• From direct searches of ν-mass: mν ≤ O(eV )

• Neutrino masses and mixing ⇒ Flavour oscillations

• Experiments observing oscillations ⇒ measurement of ∆m2ij and θij

• Atmospheric, K2K and MINOS (+ negative SBL searches)⇒ νµ → ντ with ∆m2 ∼ 2 × 10−3 eV2 and tan2 θ ∼ 1

• Possible alternative oscillation scenarios due to non-universal VLI, VWEP, etc...But Strongly Constrained from Existing Oscillation Data

Page 130: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Summary II

• If mν 6= 0 → Lepton Mixing≡ breaking of Le × Lµ × Lτ

• From direct searches of ν-mass: mν ≤ O(eV )

• Neutrino masses and mixing ⇒ Flavour oscillations

• Experiments observing oscillations ⇒ measurement of ∆m2ij and θij

• Atmospheric, K2K and MINOS (+ negative SBL searches)⇒ νµ → ντ with ∆m2 ∼ 2 × 10−3 eV2 and tan2 θ ∼ 1

• Possible alternative oscillation scenarios due to non-universal VLI, VWEP, etc...But Strongly Constrained from Existing Oscillation Data

Page 131: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Summary II

• If mν 6= 0 → Lepton Mixing≡ breaking of Le × Lµ × Lτ

• From direct searches of ν-mass: mν ≤ O(eV )

• Neutrino masses and mixing ⇒ Flavour oscillations

• Experiments observing oscillations ⇒ measurement of ∆m2ij and θij

• Atmospheric, K2K and MINOS (+ negative SBL searches)⇒ νµ → ντ with ∆m2 ∼ 2 × 10−3 eV2 and tan2 θ ∼ 1

• Possible alternative oscillation scenarios due to non-universal VLI, VWEP, etc...But Strongly Constrained from Existing Oscillation Data

Page 132: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Summary II

• If mν 6= 0 → Lepton Mixing≡ breaking of Le × Lµ × Lτ

• From direct searches of ν-mass: mν ≤ O(eV )

• Neutrino masses and mixing ⇒ Flavour oscillations

• Experiments observing oscillations ⇒ measurement of ∆m2ij and θij

• Atmospheric, K2K and MINOS (+ negative SBL searches)⇒ νµ → ντ with ∆m2 ∼ 2 × 10−3 eV2 and tan2 θ ∼ 1

• Possible alternative oscillation scenarios due to non-universal VLI, VWEP, etc...But Strongly Constrained from Existing Oscillation Data

Page 133: IceCube Neutrino Observatoryhalzen/notes/week14-2.pdf · IceCube Neutrino Observatory

Physics of Massive Neutrinos Concha Gonzalez-Garcia

Summary II

• If mν 6= 0 → Lepton Mixing≡ breaking of Le × Lµ × Lτ

• From direct searches of ν-mass: mν ≤ O(eV )

• Neutrino masses and mixing ⇒ Flavour oscillations

• Experiments observing oscillations ⇒ measurement of ∆m2ij and θij

• Atmospheric, K2K and MINOS (+ negative SBL searches)⇒ νµ → ντ with ∆m2 ∼ 2 × 10−3 eV2 and tan2 θ ∼ 1

• Possible alternative oscillation scenarios due to non-universal VLI, VWEP, etc...But Strongly Constrained from Existing Oscillation Data