I. Grigorieva, L. Vinnikov, A. Geim (Manchester) V. Oboznov, S. Dubonos (Chernogolovka)

22
I. Grigorieva, L. Vinnikov, A. Geim (Manchester) V. Oboznov, S. Dubonos (Chernogolovka)

Transcript of I. Grigorieva, L. Vinnikov, A. Geim (Manchester) V. Oboznov, S. Dubonos (Chernogolovka)

Page 1: I. Grigorieva, L. Vinnikov, A. Geim (Manchester) V. Oboznov, S. Dubonos (Chernogolovka)

I. Grigorieva, L. Vinnikov, A. Geim(Manchester)

V. Oboznov, S. Dubonos (Chernogolovka)

Page 2: I. Grigorieva, L. Vinnikov, A. Geim (Manchester) V. Oboznov, S. Dubonos (Chernogolovka)

• Vortices in small superconductors (size R ~ ξ,λ) expected to behave similar to electrons in artificial atoms, i.e. obey specific rules for shell filling, exhibit magic numbers, etc.

• In confined geometries, superconducting wave function must obey boundary conditions which determine total vorticity L

• Vortex states are further influenced by vortex interactions with screening currents (for R > λ)

• Numerical studies of vortex states exist but so far no direct observations

• We present direct observations of vortex states in small superconducting dots by magnetic decoration

Motivation

Page 3: I. Grigorieva, L. Vinnikov, A. Geim (Manchester) V. Oboznov, S. Dubonos (Chernogolovka)

Starting Nb films: λ(0) 90 nm; ξ(0) 15 nm; Hc2(0) 1.5 T;

6; Tc=9.1 K; thickness d = 150 nm > ξ, λ

Vortex structure in a macroscopic Nb film. External field Hext = 80 Oe

Page 4: I. Grigorieva, L. Vinnikov, A. Geim (Manchester) V. Oboznov, S. Dubonos (Chernogolovka)

200 µm

20 µm

5 µm

Each structure contained circular disks, squares and triangles of four different sizes: 1µm; 2 µm; 3µm; 5 µm

Over 500 dots decorated in each experiment (same field, temperature, decoration conditions)

Page 5: I. Grigorieva, L. Vinnikov, A. Geim (Manchester) V. Oboznov, S. Dubonos (Chernogolovka)

field-cooling in perpendicular magnetic field

external magnetic field varying between 20 and 160 Oe, i.e., H/Hc2 = 0.002 – 0.016, where Hc2(3.5 K) 1 T;

experimental details

H decoration captures snapshotsof vortex states at T 3.5 K =0.4Tc;

thickness of all nanostructured samples d = 150 nm > ξ, λ

Page 6: I. Grigorieva, L. Vinnikov, A. Geim (Manchester) V. Oboznov, S. Dubonos (Chernogolovka)

L = 9

L = 25 (3,8,14)

L = 94

despite strong pinning, confinement has dominating effect on vortex states:

well defined shell structures observed for L 35 in circular disks;

a variety of states with triangular / square symmetries observed for L 15 for triangular and square dots

for larger L (L>30-35), vortex arrangements are less well defined and for L > 50 become disordered, similar to macroscopic films

due to many different combinations of Hext

values and dot sizes, almost all possible vorticities between L=0 and L 50 were observed (L = 0,1,2,3,4,5,6,…)

Page 7: I. Grigorieva, L. Vinnikov, A. Geim (Manchester) V. Oboznov, S. Dubonos (Chernogolovka)

for all values of vorticity L, external filed (total flux) required for nucleation of L vorticies significantly exceeds corresponding field for a macroscopic film

0

10

20

30

40

0 5 10 15 20 25

(0)(1)(2)(3)(4)(5)(1,5)(1,6)(1,7)(1,8)(2,7)(2,8)(3,7)(3,8)(4,10)(1,5,11) (1,6,12)(1,6,13)(1,6,14)

L = /0

L

/ 0

Vorticity vs field

Page 8: I. Grigorieva, L. Vinnikov, A. Geim (Manchester) V. Oboznov, S. Dubonos (Chernogolovka)

B.J. Baelus and F.M. Peeters, Phys. Rev. B 65, 104515, 2002

experiment, disk size R 100ξ

nucleation of the first vortex requires magnetic flux corresponding to over 30

states with small vorticities are stable overappreciable field intervals, e.g. for a 2µm disk, H 20 Oe for transition to L=1; H 10 Oefor transition to L=2

numerical study, R = 6ξ

0

1

2

3

4

0 5 10 15 20 25

L

(-

0L)/

L 0

Vorticity vs field

Page 9: I. Grigorieva, L. Vinnikov, A. Geim (Manchester) V. Oboznov, S. Dubonos (Chernogolovka)

0

10

20

30

40

frequency

(2,7) (2,8) (3,3,3)(1,8) (3,7)

0

20

40

60

fre

qu

en

cy

(2,8)(2,7) (3,7)(3,3,3) (1,8)

at least two or three different states observed in every experiment in dots of nominally the same size

2 m dots, Hext= 80 Oe

3 m dots, Hext= 60 Oe

Multiplicity of vortex arrangements

variations in dot sizes, shape irregularities lead to variations in flux up to 0

small differences in energy of different states with same L implied

Page 10: I. Grigorieva, L. Vinnikov, A. Geim (Manchester) V. Oboznov, S. Dubonos (Chernogolovka)

21

22

23

7 8 9 10 11 12 13

(1,8)(2,8)(3,7)(3,8)

L

/ 0 0.50

Multiplicity of vortex arrangements

Page 11: I. Grigorieva, L. Vinnikov, A. Geim (Manchester) V. Oboznov, S. Dubonos (Chernogolovka)

0

5

10

15

20

0 4 8 12

L

/ 0

(0)(1)

(2)(3)

(5)(1,5)

(6)

(4)

(1,6)

(1,7) (1,8)

(2,7)

(2,8)

(3,7) (3,8)

Evolution of vortex states

Page 12: I. Grigorieva, L. Vinnikov, A. Geim (Manchester) V. Oboznov, S. Dubonos (Chernogolovka)

Comparison with theory

B.J. Baelus, L.R.E. Cabral,F.M. Peeters, Phys.Rev.B69, 064506 (2004)

observed vortex states in good agreement with numerical simulations

Page 13: I. Grigorieva, L. Vinnikov, A. Geim (Manchester) V. Oboznov, S. Dubonos (Chernogolovka)

Magic numbers

we are able to

identify magic numbers (maximum numbers of vortices in each shell before the next shell nucleates) identify shell filling rules

L = 5

L = 6

L = 7 L = 8

Page 14: I. Grigorieva, L. Vinnikov, A. Geim (Manchester) V. Oboznov, S. Dubonos (Chernogolovka)

…after that new vortices appear in either the first or second shell:

L=11 (3,8)L=10 (3,7)

L=10 (2,8)

L=9 (2,7)

Magic numbers

… and this continues until the total vorticity reaches L=14 (L1=4; L2=10)

Page 15: I. Grigorieva, L. Vinnikov, A. Geim (Manchester) V. Oboznov, S. Dubonos (Chernogolovka)

Magic numbers… third shell appears at L>14 in the form of one vortex in the centre …

L=17 (1,5,11) L=18 (1,6,11)… after that additional vortices nucleate in either first, second or third shell until L3 reaches 16…

L=22 (2,7,13) L=24 (3,7,14)

Page 16: I. Grigorieva, L. Vinnikov, A. Geim (Manchester) V. Oboznov, S. Dubonos (Chernogolovka)

Magic numbers

… fourth shell appears at L3>18 in the form of one vortex in the centre, and so on …

L=35 (1,5,11,18)

rules of shell filling similar to electrons in artificial atoms (V.M. Bedanov and F.M. Peeters, Phys. Rev.B 49,667, 1994)

magic numbers: one shell L1=6 two shells L2=10 three shells L3=18 …..

Page 17: I. Grigorieva, L. Vinnikov, A. Geim (Manchester) V. Oboznov, S. Dubonos (Chernogolovka)

Vortex states in triangular dots

Page 18: I. Grigorieva, L. Vinnikov, A. Geim (Manchester) V. Oboznov, S. Dubonos (Chernogolovka)

Vortex states in square dots

Page 19: I. Grigorieva, L. Vinnikov, A. Geim (Manchester) V. Oboznov, S. Dubonos (Chernogolovka)

Conclusions

direct observations of multiple vortex states in confined geometry

low-vorticity states (L<4) are stable over surprisingly large intervals of magnetic field

well defined shell structures in circular geometry

magic numbers for vortex shell filling

Page 20: I. Grigorieva, L. Vinnikov, A. Geim (Manchester) V. Oboznov, S. Dubonos (Chernogolovka)
Page 21: I. Grigorieva, L. Vinnikov, A. Geim (Manchester) V. Oboznov, S. Dubonos (Chernogolovka)
Page 22: I. Grigorieva, L. Vinnikov, A. Geim (Manchester) V. Oboznov, S. Dubonos (Chernogolovka)

L=20 (1,6,13)Hext=160 Oe

L=18 (1,6,11)Hext = 30 Oe

L=21 (1,7,13)Hext=160 Oe

vortex configurations do not change with increasing external field