Hydrodynamic Instability Centrifugal Instability: T Driving force:...

10
Hydrodynamic Instability Low T: motionless, pure thermal conduction Higher T: steady convection roll Even Higher T: unsteady, turbulent Τ∆T T fluid Rayleigh-Benard Instability: 1. Why turbulence occur? q Driving force: buoyancy q Damping force: viscous dissipation stability of a heated plate Hydrodynamic Instability Low Ω: laminar, concentric streamlines Higher : steady convection roll Even Higher : unsteady, turbulent Centrifugal Instability: q Driving force: centrifugal force q Damping force: viscous dissipation Hydrodynamic Instability Low Re: steady, axisymmetric, parallel, parabolic Poiseuille flow Re >2000: sporadic bursts of turbulence alternate with laminar (intermittence) High Re: fully turbulent Reynolds’ experiment: circular pipe flow v Transition from laminar to turbulent flow need not be simply a function of the base flow considered, but also of the amplitude and type of perturbations. vMultiple paths to transition through different sequences of laminar flow instabilities are extremely possible. Hopf bifurcation 2 2 2 2 2 2 2 2 2 2 ) ( ) ( 2 ) ( ) ( 2 y x y y x y y x dt dy y x x y x x y x dt dx - σ μ = - σ - μ = Use polar coordinates: 1 2 5 3 = θ - σ μ = dt d r r r dt dr 0 2 at 0 : orbit periodic ) 0 , 0 ( ) , ( : point fixed 4 2 = - σ μ = = c c r r dt dr y x dynamic system: μ < < μ < σ - σ - < μ 0 if one 0 if s ' two if such no 2 2 c c c r r r

Transcript of Hydrodynamic Instability Centrifugal Instability: T Driving force:...

  • 1

    Hydrodynamic Instability

    Low ∆T: motionless, pure thermal conduction

    Higher ∆T: steady convection roll

    Even Higher ∆T: unsteady, turbulent

    Τ+∆T

    T

    fluid

    Rayleigh-Benard Instability:

    1. Why turbulence occur?

    q Driving force: buoyancy

    q Damping force: viscous dissipation

    stability of a heated plate

    Hydrodynamic Instability

    Low Ω: laminar, concentric streamlines

    Higher Ω: steady convection roll

    Even Higher Ω: unsteady, turbulent

    Centrifugal Instability: Ω

    q Driving force: centrifugal force

    q Damping force: viscous dissipation

    Hydrodynamic Instability

    Low Re: steady, axisymmetric, parallel, parabolic Poiseuille flow

    Re >2000: sporadic bursts of turbulence alternate with laminar

    (intermittence)

    High Re: fully turbulent

    Reynolds’experiment: circular pipe flow

    v Transition from laminar to turbulent flow need not be simply a function of the base flow considered, but also of the amplitude and type of perturbations.

    vMultiple paths to transition through different sequences of laminar flow instabilities are extremely possible.

    Hopf bifurcation

    22222

    22222

    )()(2

    )()(2

    yxyyxyyxdtdy

    yxxyxxyxdtdx

    +−+σ+µ+=

    +−+σ+−µ=

    Use polar coordinates:

    1

    2 53

    −σ+µ=

    dtd

    rrrdtdr

    02at 0 :orbit periodic

    )0,0(),( :point fixed

    42 =−σ+µ=

    =

    cc rrdtdr

    yx

    dynamic system:

    µ<

  • 2

    Hopf bifurcation

    101.1for no 2 −=σ−

  • 3

    3. Vorticity and Vortex Stretching

    landing

    3. Vorticity and Vortex Stretching

    3. Vorticity and Vortex Stretching

    Mixing layer between helium and nitrogen

    U2/U1 = 0.38;

    (L is the width of the picture)

    411112 106 ;7 ×=µρ=ρρ LU

    Tensor Notation

    ( ) +=ε≠≠±

    =εotherwise 0

    1 if 1 123kjiijk

    =

    =δotherwise 0 if 1 ji

    ij

    iω⇔ω r

    j

    j

    j j

    j

    x

    u

    x

    uu

    ∂⇔

    ∂⇔⋅∇ ∑

    =

    3

    1

    r

    =δii = 3

    jrisjsirmrsmij δδ−δδ=εε

    332211

    3

    1

    δ+δ+δ=δ∑=i

    ii

  • 4

    Tensor Notation

    j

    kijk

    j k j

    kijk x

    uxu

    u∂∂

    ε⇔∂∂

    ε⇔×∇ ∑∑= =

    3

    1

    3

    1

    r

    kjijkj k

    kjijk uuu ωε⇔ωε⇔ω× ∑∑= =

    3

    1

    3

    1

    rr

    ( )j

    ij

    j j

    ij x

    ba

    xb

    aba∂∂

    ⇔∂∂

    ⇔∇⋅ ∑=

    3

    1

    rrPhysical Significance

    1. related to the rotational tensor

    xr

    δConsider the relative velocity of two nearby fluid particles separated by a distance :

    ji

    j

    j

    ij

    i

    j

    j

    i

    j

    iji xx

    u

    xu

    xx

    u

    xu

    xu

    xu δ

    ∂−

    ∂∂

    ∂+

    ∂∂

    =∂∂

    δ=δ21

    21

    jijjiji xxSu δΩ+δ=δ

    ij

    ijS

    = strain tensor (angular deformation; straining)

    = rotational tensor

    kijkijjkijki ωε−=ΩΩε−=ω 21 ;

    3. Vorticity and Vortex Stretching

    2. Twice the average angular velocity

    Consider an infinitesimal circle around a point in space:

    ( ) ∫∫∫∫ ⋅ωπ=⋅×∇π=AA

    Adr

    Adur

    rrrr21

    21

    sdr ∫

    ⋅π r

    sdur

    rr21

    average angular velocity =

    As r →0, ( ) nn rr ω=πωπ= 212

    21

    The average angular velocity around an infinitesimal circle =

    half the vorticity component in the direction of the area enclosed by the circle.

    Physical Significance

    3. Proportional to the angular momentum of fluid particles whose inertia tensor has spherical symmetry

    ∫∫∫δ

    δ×δρ=δV

    VduxArrr

    angular momentum about its centroid :

    Consider a fluid region centered at : Vδ xr

    Physical Significance

    lkmlkm ωε−=Ω 21

    jijjiji xxSu δΩ+δ=δ

    ∫∫∫δ

    δδρ=V

    mjjm VdxxI = inertia tensor

    ( ) jijmmijjmkmijk IIISA ω−δ+ε=δ 21r

    If spherical symmetry , ( )ijij II δ= ω=δω=δ rr

    IAIA ii or

  • 5

    3. Vorticity and Vortex Stretching Mathematical Description

    Incompressible Navier-Stokes flows of Newtonian fluid with constant properties:

    ×∇ ( ) ugpuuutu rrrrrrr 2

    21

    21 1 ∇

    ρµ

    ++∇ρ

    −=ω×−⋅∇+∂∂

    ( ) ugpuutu

    urrrrr

    r

    210

    ∇ρµ

    ++∇ρ

    −=∇⋅+∂∂

    =⋅∇

    ( ) ( ) ω∇ρµ

    +×∇+∇×ρ

    −∇=∇⋅ω−ω∇⋅+∂ω∂ rrrrrrr 21 gpuut

    DtDω

    r= Lagrangian time change rate of vorticity

    Mathematical Description

    ω∇ρµ

    +×∇+∇×ρ

    −∇=rr 21 gpRHS

    pressure toque

    zero if barotropic, i.e. ρ = ρ(p)

    nonzero when the geometric centroid is not the mass centroid

    body-force torque

    zero if body force is irrotational or conservative, i.e. , where U is some scalar function, called potential function

    Ug −∇=r

    nonzero if rotational body force, e.g. Coriolis force

    viscous diffusion

    ( ) ω∇ρµ

    +×∇+∇×ρ

    −∇=−ω∇⋅+∂ω∂ rrrrr 21 gput

    ( )urr ∇⋅ωvortex stretching

    Consider an infinitesimal material line element :lrδ

    )(tlr

    δ )( dtt +δlr

    ( )uuDt

    D rlrrlr

    ∇⋅δ=δ=δ = rate at which two initially infinitely

    close-by fluid particles separate

    barotropic fluids, conservative body force, inviscid:

    ( )uDtD rrr

    ∇⋅ω=ω

    3. Vorticity and Vortex Stretching

  • 6

    3. Vorticity and Vortex Stretching

    powerfulness of turbulent stretching

    ∫∫∫ ∂∂

    ω=ω

    =ωA j

    ij

    A

    i

    Ai dAx

    udA

    DtD

    dADtD

    ( ) 0=ω=ω∂∂

    = ∫∫C

    jjiA

    jij

    dsnudAux

    3. Vorticity and Vortex Stretching

    vorticity/material tube:

    ( )uDtD rrr

    ∇⋅ω=ω

    stretched (thinning) ð rotation speed up

    compressed (flatten)ð rotation slow down

    barotropic fluids, conservative body force:

    ( ) ω∇ν+∇⋅ω=ω rrrr

    2uDtD

    stretching + diffusion

    nonlinear + linear

    magnitude:

    ( )j

    i

    j

    i

    j

    ii

    jj

    ijiii xxxxx

    uDtD

    ∂ω∂

    ∂ω∂

    ν−

    ∂ω∂

    ω∂∂

    ν+∂∂

    ωω=ωω21

    usually > 0, production (stretching) ⇒ finer, stronger structures

    viscous diffusion

    always < 0,

    viscous dissipation

    coarse, weaker structures

    3. Vorticity and Vortex Stretching 3. Vorticity and Vortex Stretching

  • 7

    3. Vorticity and Vortex Stretching 3. Vorticity and Vortex Stretching

    Ref: Couder and Basdevant, JFM 173, 225-251 (1986)

    3. Vorticity and Vortex Stretching

    vortex merging

    3. Vorticity and Vortex Stretching

    The image at the right depicts two counter-rotating vortices as they interact with a rigid circular cylinder. Their initial translation is caused by their interaction and the upward directed jet produced in the gap between them. Once they collide with the cylinder, they produce an unsteady separation and another pair of vortices having a rotation which opposes the original pair of vortices. This image was generated by Dr. S. Subramaniam and is undoubtedly part of the unsteady separation work being conducted by Professor van Dommelen's group in FSU.

  • 8

    3. Vorticity and Vortex Stretching

    barotropic fluids, conservative body force:

    ( ) ω∇ν+∇⋅ω=ω rrrr

    2uDtD

    ( )j

    i

    j

    i

    j

    ii

    jj

    ijiii xxxxx

    uDtD

    ∂ω∂

    ∂ω∂

    ν−

    ∂ω∂

    ω∂∂

    ν+∂∂

    ωω=ωω21

    •When a balance between the stretching and the diffusion/dissipation processes, the finest scale (Kolmogorov’s, η) is reached.

    •When ν is very small (or Reynolds number is extremely large), diffusion won’t be significant until the gradients have become sufficiently large. That is, η decreases with decreasing ν.

    •Will η → 0 as ν → 0?

    3. Vorticity and Vortex Stretching

    Vortex stretching does not exist in two-dimensional flows.

    ( )( )),,(,0,0

    0),,,(),,,(tyxu

    tyxvtyxuuω=×∇=ω

    = rrr

    ( ) 0=∂∂

    ω=∇⋅ωzu

    urrr

    ð Turbulence is always three-dimensional

    3. Vorticity and Vortex Stretchingexample

    ( )( ) vzyxvUu rrrr

    +β+α−βα=+= ,,

    nal)(irrotatio 0 and sible)(incompres 0 =×∇=⋅∇ UUrr

    vurrr

    ×∇=×∇=ω

    Townsend, Proc. Roy. Soc. A208, 534 (1951)

    Consider only special cases when : Uvrr

    >ω=ω yExpect when steady,

    ( ) 323333 ω∇ν+∂∂

    ω=ω∇⋅+∂ω∂

    zU

    Ut

    r

    ( ) ( ) ω∇ν+∇⋅ω=ω∇⋅+∂ω∂ rrrrrr 2UUt

    23

    2

    33

    dy

    ddy

    dy

    ων+αω=

    ωα−⇒

  • 9

    3. Vorticity and Vortex Stretching

    ( )( )αν−⋅=ω=ω⇒

    ων+αω=

    ωα−

    223

    23

    2

    33

    exp)0()( yyy

    dy

    ddy

    dy

    model (1): ( )zyU αα−= ,,0r

    i.e. vortex sheet structures of thickness

    rate stretchingratediffusion

    ~2αν

    Check:

    ( ) ( )0,0),( )(,0,0 13 yvvy =⇒ω=ωrr ( ) ( ) 0=ω∇⋅=∇⋅ω⇒ rrrr vv

    3. Vorticity and Vortex Stretching

    model (2): ( )zyxU αα−α−= 2,,r

    ( ) ( )321 2,, αωαω−αω−=∇⋅ω Urr

    Vortex stretching:

    0,)( 2133 ≈ωω>>ω=ω r

    Expect when steady,

    ( ) 323333 ω∇ν+∂∂

    ω=ω∇⋅+∂ω∂

    zU

    Ut

    r

    ων+αω=

    ωα−⇒

    drd

    rdrd

    rdrd

    r 333 2

    3. Vorticity and Vortex Stretching

    model (2): ( )zyxU αα−α−= 2,,r

    ( )αν−⋅=ω=ω⇒

    ων+αω=

    ωα−

    2233

    33

    3

    exp)0()(

    2

    rrr

    drd

    rdrd

    rdrd

    r

    i.e. vortex tube structures of radius

    rate stretchingratediffusion

    ~2αν

    Check:

    ( ) ( )0),(,0 )(,0,0 3 rvvr θ=⇒ω=ωrr ( ) ( ) 0=ω∇⋅=∇⋅ω⇒ rrrr vv

    3. Vorticity and Vortex Stretchingexample

    ( )( ) vzyxvUu rrrr

    +β+α−βα=+= ,,

    nal)(irrotatio 0 and sible)(incompres 0 =×∇=⋅∇ UUrr

    vurrr

    ×∇=×∇=ω

    Consider only special cases when is two-dimensional, i.e..vr

    ( )( ) ),,(,0,0

    0),,,(),,,( 21tyx

    tyxvtyxvv

    ω=ω

    =rr

    ( ) ( )( ) ( )UvUu rrrrrrr ∇⋅ω=+∇⋅ω=∇⋅ωvortex stretching:

    Buntine and Pullin, JFM 205, 263 (1989)

    convection: ( ) ( ){ } ( )ω∇⋅≠ω∇⋅+=ω∇⋅ rrrrrrr UvUu

  • 10

    3. Vorticity and Vortex Stretching 3. Vorticity and Vortex Stretching

    3. Vorticity and Vortex StretchingexampleT.S. Lundgren, Phys. Fluids 25, 2193 (1982)

    ~ same with those used by Buntine and Pullin

    ~ analytical solutions

    ( ) )( ,0 ,2)( ztaUUrtaUU zr ==−== θr

    ~ tube core surrounded by spiral vortex sheets

    Nonlinearity Generates Scales

    ( ) ugpuutu

    urrrrr

    r

    210

    ∇ρµ

    ++∇ρ

    −=∇⋅+∂∂

    =⋅∇

    mxBvkxAu

    coscos

    ==

    If at some instant time, the flow has

    then,

    =∂∂

    =∂∂

    xv

    u

    xu

    u

    mxBmkxA

    kxAkkxA

    sincos

    sincos

    ⋅−

    ⋅− ( )

    ( ) ( )( )xkmxkmABm

    kxkA

    −++−=

    −=

    sinsin2

    2sin2

    2