HyCal Physics Calibration – Non-Linearity · HyCal Physics Calibration – Non-Linearity θ (deg)...

18
HyCal Physics Calibration – Non-Linearity (deg) θ 0 1 2 3 4 5 6 7 E (MeV) 0 200 400 600 800 1000 1200 1400 1 10 2 10 3 10 θ Cluster E vs Scattering Angle Calibrate to ee 1.1 GeV A linear calorimeter has a constant response (average signal per unit of deposited energy) Electromagnetic calorimeters are in general linear, if not linear might due to instrumental effects (saturation, leakage…) (see www.roma1.infn.it/people/bini/seminars.lecture2.pdf) But this is not the case for HyCal, we need the non-linearity correction in order to have unbiased distribution for ee and ep at the same time 1 (deg) θ 0 1 2 3 4 5 6 7 E (MeV) 0 200 400 600 800 1000 1200 1400 1 10 2 10 3 10 θ Cluster E vs Scattering Angle Calibrate to ep 1.1GeV

Transcript of HyCal Physics Calibration – Non-Linearity · HyCal Physics Calibration – Non-Linearity θ (deg)...

HyCalPhysicsCalibration– Non-Linearity

(deg)θ0 1 2 3 4 5 6 7

E (M

eV)

0

200

400

600

800

1000

1200

1400

1

10

210

310

θCluster E vs Scattering Angle

Calibratetoee1.1GeV

• Alinearcalorimeterhasaconstantresponse(averagesignalperunitofdepositedenergy)• Electromagneticcalorimetersareingenerallinear,ifnotlinearmightduetoinstrumentaleffects

(saturation,leakage…)(seewww.roma1.infn.it/people/bini/seminars.lecture2.pdf)• ButthisisnotthecaseforHyCal,weneedthenon-linearitycorrectioninordertohaveunbiased

distributionforee andepatthesametime1

(deg)θ0 1 2 3 4 5 6 7

E (M

eV)

0

200

400

600

800

1000

1200

1400

1

10

210

310

θCluster E vs Scattering Angle

Calibratetoep1.1GeV

0 200 400 600 800 1000 1200 14000

50

100

150

200

250

300

350

400

310×theta_0.650000_0.750000

0 200 400 600 800 1000 1200 14000

50

100

150

200

250

300

310×theta_0.750000_0.850000

0 200 400 600 800 1000 1200 14000

20

40

60

80

100

120

140

160

180

310×theta_0.850000_0.950000

0 200 400 600 800 1000 1200 14000

20

40

60

80

100

120

140

310×theta_0.950000_1.050000

0 200 400 600 800 1000 1200 14000

20

40

60

80

100

310×theta_1.050000_1.150000

0 200 400 600 800 1000 1200 14000

10000

20000

30000

40000

50000

60000

70000

80000

theta_1.150000_1.250000

0 200 400 600 800 1000 1200 14000

10000

20000

30000

40000

50000

60000

theta_1.250000_1.350000

0 200 400 600 800 1000 1200 14000

10000

20000

30000

40000

50000

60000

theta_1.350000_1.450000

0 200 400 600 800 1000 1200 14000

10000

20000

30000

40000

50000

theta_1.450000_1.550000

0 200 400 600 800 1000 1200 14000

10000

20000

30000

40000

50000

theta_1.550000_1.650000

0 200 400 600 800 1000 1200 14000

5000

10000

15000

20000

25000

30000

35000

40000

45000

theta_1.650000_1.750000

0 200 400 600 800 1000 1200 14000

5000

10000

15000

20000

25000

30000

35000

40000

45000

theta_1.750000_1.850000

Calibratetoee – 1.1GeV0.65 < 𝜃 < 0.75 0.75 < 𝜃 < 0.85 0.85 < 𝜃 < 0.95 0.95 < 𝜃 < 1.05

1.05 < 𝜃 < 1.15 1.15 < 𝜃 < 1.25 1.25 < 𝜃 < 1.35 1.35 < 𝜃 < 1.45

1.45 < 𝜃 < 1.55 1.55 < 𝜃 < 1.65 1.65 < 𝜃 < 1.75 1.75 < 𝜃 < 1.85

MeV

2

Calibratetoep– 1.1GeV

0 200 400 600 800 1000 1200 14000

50

100

150

200

250

300

350

400

310×

theta_0.650000_0.750000

0 200 400 600 800 1000 1200 14000

50

100

150

200

250

300

310×

theta_0.750000_0.850000

0 200 400 600 800 1000 1200 14000

20

40

60

80

100

120

140

160

180

310×

theta_0.850000_0.950000

0 200 400 600 800 1000 1200 14000

20

40

60

80

100

120

140

310×

theta_0.950000_1.050000

0 200 400 600 800 1000 1200 14000

20

40

60

80

100

310×

theta_1.050000_1.150000

0 200 400 600 800 1000 1200 14000

10000

20000

30000

40000

50000

60000

70000

80000

theta_1.150000_1.250000

0 200 400 600 800 1000 1200 14000

10000

20000

30000

40000

50000

60000

theta_1.250000_1.350000

0 200 400 600 800 1000 1200 14000

10000

20000

30000

40000

50000

60000

theta_1.350000_1.450000

0 200 400 600 800 1000 1200 14000

10000

20000

30000

40000

50000

theta_1.450000_1.550000

0 200 400 600 800 1000 1200 14000

10000

20000

30000

40000

50000

theta_1.550000_1.650000

0 200 400 600 800 1000 1200 14000

5000

10000

15000

20000

25000

30000

35000

40000

45000

theta_1.650000_1.750000

0 200 400 600 800 1000 1200 14000

10000

20000

30000

40000

50000

theta_1.750000_1.850000

0.65 < 𝜃 < 0.75 0.75 < 𝜃 < 0.85 0.85 < 𝜃 < 0.95 0.95 < 𝜃 < 1.05

1.05 < 𝜃 < 1.15 1.15 < 𝜃 < 1.25 1.25 < 𝜃 < 1.35 1.35 < 𝜃 < 1.45

1.45 < 𝜃 < 1.55 1.55 < 𝜃 < 1.65 1.65 < 𝜃 < 1.75 1.75 < 𝜃 < 1.85

MeV

3

HowtoDealWiththeNon-LinearityProblem• MethodI:Parameterizationfunctions

• UsingParameterizationfunctiontodescribethenon-linearitybehavior• Requireratheruniformnon-linearitybehaviorforallmodules• Mayneedmultipleparameterizationfunctions(LG,PWO,transitionnon-linearitybehaviornotthesame)

• Ilya hasshownthatitworksforPWOpartat2.2GeVinthecollaborationmeeting• Mightnotworkwellifnon-linearitybehaviorishighlylocalized

4

SeeIlya’s slides forthecollaborationmeeting

UsingParameterizationFunctions

5

Moller Calibration Energy (MeV)0 200 400 600 800 1000

Rec

on E

P en

ergy

/ Ex

pect

ed E

P en

ergy

1

1.02

1.04

1.06

1.08

1.1

Graph

0.3

-0.3

Ilya’s non-linearity constants fromsnakerun

• Calibratetoee,andobservethedeviationoftheeppeakfromexpectedvalue

• Smooth curve forPWO,falloffnearLGandtransition

• Highlylocalizednon-linearitybehavior observed fromsnake

1.1Gev

• MethodII:Obtainnon-linearityconstantmodulebymodule• Foreachmodule,obtaintwocalibrationconstants,onefromepandtheotherfromee• Similartowhatwedidwiththesnakerun,foreachmodule:

• Ecali isthecalibrationenergythatweusedtocalibratethemodule,Erecon isthereconstructedenergyonthismodule,alphaisthenon-linearityconstant

• Forphysicscalibration,weonlyhavetwopointsforeachmodule,onefromee andtheotherfromep

• Oneofthetwopointsneedtobeusedasthecalibrationenergy,sowearebasicallysolvingequation,notevenfitting

• Thisdoesn’tworkifthemoduleismissingoneofthetwopoints(happenquiteoftennearedgeandcorner)

• Currently,Ihavetwosetsofcalibrationconstantsforrun1288~1345,eachafter5iterations

HowtoDealWiththeNon-LinearityProblem

𝐸/011 =𝐸34506

1 + 𝛼(𝐸34506 − 𝐸/;<=)

6

7

1.02

0.98

Meanvalueof(ERecon/EEexpect )forepcalibration

0

Sigmaof(ERecon/EEexpect )forepcalibration

0.5

8

1.02

0.98

Meanvalueof(ERecon/EEexpect )foreecalibration

0

Sigmaof(ERecon/EEexpect )foreecalibration

0.5

• Solvingthefollowingequationtogetalpha:

• Erecon/Eexpect veryclosetotheratiobetweenthetwocalibrationconstans• Erecon andEcali obtainedfromfittingenergydistributionofeachmodule

9

𝛼 =

𝐸34506𝐸@AB45C

− 1

𝐸34506 − 𝐸/;<=

ee_energy0575Entries 58403Mean 135.6RMS 32.27

0 200 400 600 800 1000 1200 14000

2000

4000

6000

8000

10000

ee_energy0575Entries 58403Mean 135.6RMS 32.27

ee_energy0575ep_energy0575

Entries 2299Mean 855.4RMS 358.1

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

80

90

ep_energy0575Entries 2299Mean 855.4RMS 358.1

ep_energy0575

(MeV) (MeV)

Moller peakfrommodule G575 eppeakfrommodule G575

CompareNon-linearityConstants

10

0.3 0.3

-0.3-0.3

Mynon-linearity constants fromproduction run Ilya’s non-linearity constants fromsnakerun

ApplyingtheNon-linearityConstants

11

(deg)θ0 1 2 3 4 5 6 7

E (M

eV)

0

200

400

600

800

1000

1200

1400

1

10

210

310

θCluster E vs Scattering Angle

Startwithcalibrationconstants fromep

(deg)θ0 1 2 3 4 5 6 7

E (M

eV)

0

200

400

600

800

1000

1200

1400

1

10

210

310

θCluster E vs Scattering Angle

Startwithcalibrationconstants fromee

ResolutionPWOforepEvents

12

resolutionEntries 828341

Mean -0.02398

RMS 0.05885

/ ndf 2χ 2917 / 21

Prob 0

Constant 9.599e+01± 6.247e+04

Mean 0.000029± -0.004774

Sigma 0.00002± 0.02291

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.50

10000

20000

30000

40000

50000

60000

resolutionEntries 828341

Mean -0.02398

RMS 0.05885

/ ndf 2χ 2917 / 21

Prob 0

Constant 9.599e+01± 6.247e+04

Mean 0.000029± -0.004774

Sigma 0.00002± 0.02291

resolutionresolution

Entries 825315

Mean -0.02446

RMS 0.0587

/ ndf 2χ 2804 / 21

Prob 0

Constant 9.611e+01± 6.247e+04

Mean 0.000029± -0.005294

Sigma 0.00002± 0.02282

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.50

10000

20000

30000

40000

50000

60000

resolutionEntries 825315

Mean -0.02446

RMS 0.0587

/ ndf 2χ 2804 / 21

Prob 0

Constant 9.611e+01± 6.247e+04

Mean 0.000029± -0.005294

Sigma 0.00002± 0.02282

resolution

𝜎 = 2.3%× 1.1 = 2.4% 𝜎 = 2.3%× 1.1 = 2.4%

Startwithcalibrationconstants fromep Startwithcalibrationconstants fromee

∆𝐸/𝐸∆𝐸/𝐸

13

ResolutionTransitionforepEvents

resolutionEntries 6237

Mean -0.001471

RMS 0.06772

/ ndf 2χ 27.96 / 21

Prob 0.1413

Constant 6.6± 337.8

Mean 0.000492± 0.002034

Sigma 0.00052± 0.03007

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.50

50

100

150

200

250

300

350resolution

Entries 6237

Mean -0.001471

RMS 0.06772

/ ndf 2χ 27.96 / 21

Prob 0.1413

Constant 6.6± 337.8

Mean 0.000492± 0.002034

Sigma 0.00052± 0.03007

resolutionresolution

Entries 6242

Mean -0.002101

RMS 0.07231

/ ndf 2χ 49.99 / 21

Prob 0.0003663

Constant 6.5± 327.7

Mean 0.000506± -0.002946

Sigma 0.00054± 0.03031

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.50

50

100

150

200

250

300

350

resolutionEntries 6242

Mean -0.002101

RMS 0.07231

/ ndf 2χ 49.99 / 21

Prob 0.0003663

Constant 6.5± 327.7

Mean 0.000506± -0.002946

Sigma 0.00054± 0.03031

resolution

𝜎 = 3.0%× 1.1 = 3.1% 𝜎 = 3.0%× 1.1 = 3.1%

Startwithcalibrationconstants fromep Startwithcalibrationconstants fromee

∆𝐸/𝐸∆𝐸/𝐸

14

ResolutionLGforepEvents

resolutionEntries 8695

Mean -0.009658

RMS 0.09467

/ ndf 2χ 35.98 / 37

Prob 0.5166

Constant 4.1± 244.7

Mean 0.000941± 0.004524

Sigma 0.00109± 0.06027

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.50

50

100

150

200

250

resolutionEntries 8695

Mean -0.009658

RMS 0.09467

/ ndf 2χ 35.98 / 37

Prob 0.5166

Constant 4.1± 244.7

Mean 0.000941± 0.004524

Sigma 0.00109± 0.06027

resolutionresolution

Entries 8304Mean -0.01672RMS 0.1011

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.50

50

100

150

200

250resolution

Entries 8304Mean -0.01672RMS 0.1011

resolution

𝜎 = 6.0%× 1.1 = 6.3% 𝜎 = 6.4%× 1.1 = 6.7%

Startwithcalibrationconstants fromep Startwithcalibrationconstants fromee

∆𝐸/𝐸∆𝐸/𝐸

ModulebyModuleComparison

15Startwithcalibrationconstants fromep

Before non-linearity correctionMeanvalueof(Erecon/Eexpect)forep

After non-linearity correctionMeanvalueof(Erecon/Eexoect)forep1.02 1.02

0.980.98

ModulebyModuleComparison

16Startwithcalibrationconstants fromep

Before non-linearity correctionMeanvalueof(Erecon/Eexpect)foree

After non-linearity correctionMeanvalueof(Erecon/Eexoect)foree1.1 1.1

0.90.9

CalibratingtheInnerModules• Innermodulesarebehindcollimator,hardtocalibratedirectly• Butwecanusetheshowerprofileandthetailofaclusterhittingmodulerightnexttothem• Forparticlehittingthecenterpartofamodule,theprofileshouldbesymmetric(otherthantheeffectofincidentangle)

17

X

0 1 2 34 5 6

7

Y

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

profile_1592Entries 49Mean x 2.665Mean y 3.056RMS x 0.9109RMS y 0.4833

profile_1592Entries 49Mean x 2.665Mean y 3.056RMS x 0.9109RMS y 0.4833

profile_1592

X

0 1 2 34 5 6

7

Y

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

profile_1593Entries 49Mean x 2.366Mean y 3.13RMS x 1.315RMS y 0.4356

profile_1593Entries 49Mean x 2.366Mean y 3.13RMS x 1.315RMS y 0.4356

profile_1593

ModulenumberModulenumber

Modulenumber

Modulenumber

RatioofEdep RatioofEdep

Requiring particlehittingthecenterofamodule

Requiring particlehittingthecenterofamodule

BetteruseGEMprojectedposition forthispurpose

Todo• Non-linearitycorrectionshowsimprovementonthebiasofthedistribution,butcannotbefullycorrected• Betterapproachfortheproblem?• IsitreallyjusttheissuewithlinearityforLG,istheresomethingelse?

• Calibratingmodulesnearthecentralholeseemsdoable,wanttouseGEMprojectedposition inordertogetridofthedependencyonHyCalreconstructedposition

18