Higgs Boson and New Particles at the LHC - Miami

52
Higgs Boson and New Particles at the LHC Qaisar Shafi Bartol Research Institute Department Physics and Astronomy University of Delaware, USA in collaboration with Adeel Ajaib, Howard Baer, Ilia Gogoladze, Azar Mustafayev, Fariha Nasir, Shabbar Raza and Cem Salih Un. Miami 2012

Transcript of Higgs Boson and New Particles at the LHC - Miami

Page 1: Higgs Boson and New Particles at the LHC - Miami

Higgs Boson and New Particles at the LHC

Qaisar Shafi

Bartol Research InstituteDepartment Physics and Astronomy

University of Delaware, USA

in collaboration with Adeel Ajaib, Howard Baer, Ilia Gogoladze, Azar Mustafayev,Fariha Nasir, Shabbar Raza and Cem Salih Un.

Miami 2012

Page 2: Higgs Boson and New Particles at the LHC - Miami

Topics

Motivation

b-τ Yukawa Unification in SUSY SU(5) (NLSP stop)

t-b-τ Yukawa Unification:

SO(10)/NUHM2 (gluino lightest colored sparticle)SO(10)/NUGM (Higgs mass ∼ 124(±)GeV preferred; NLSPstau)SU(4)c × SU(2)L × SU(2)R (4− 2− 2) (NLSP gluino)

Non-Universal Gaugino Masses and Natural SUSY (Thirdfamily sfermions relatively light; gluino ∼ 2.5− 3.5 TeV)

Summary

1 / 50

Page 3: Higgs Boson and New Particles at the LHC - Miami

Low Scale (∼ TeV) Supersymmetry (SUSY):

Arguably the most compelling extension of the StandardModel;

‘Resolves’ the gauge hierarchy problem;

Provides cold dark matter candidate (LSP);

Implements radiative electroweak symmetry breaking;

Predicts new particles accessible at the LHC, and therebyenables unification of the SM gauge couplings;

MSSMΑ1-1

Α2-1

Α3-1

2 4 6 8 10 12 14 16

10

20

30

40

50

60

Log10@LGeVD

Αi-

1

SMΑ1-1

Α2-1

Α3-1

2 4 6 8 10 12 14 16

10

20

30

40

50

60

Log10@LGeVD

Αi-

1

2 / 50

Page 4: Higgs Boson and New Particles at the LHC - Miami

Grand Unification (GUTs)

Unification of SM / MSSM gauge couplings;

Unification of matter/quark-lepton multiplets;

Electric charge quantization ; Monopoles;

Seesaw physics / neutrino oscillations;

Quark-Lepton mass relations;

Baryo-leptogenesis;

Inflation / Observable gravity waves (PLANCK) ifEinf ∼ MGUT .

3 / 50

Page 5: Higgs Boson and New Particles at the LHC - Miami

Lightest Higgs Boson Mass in MSSM:1

m2h '

M2Z cos2 2β+ 3

4π2m4

tv2

[12 Xt + t + 1

16π2

(32m2

tv2 − 32πα3

)(Xtt + t2

)],

wheret = log

M2SUSY

m2t

The parameter Xt is given by

Xt = 2A2t

M2SUSY

(1− A2

t

12M2SUSY

),

At = At − µ cotβ

here At is the trilinear Higgs-stop coupling and µ is the Higgsinomass parameter.For TeV scale SUSY we expect mh . 130GeV

1M. Carena, J. Espinosa, M. Quirs and C. Wagner Phys. Lett. B 355 (1995) 209 .

4 / 50

Page 6: Higgs Boson and New Particles at the LHC - Miami

Recent Limits on SUSY (Jets + Missing ET ) 2

2ATLAS-CONF-2012-109

5 / 50

Page 7: Higgs Boson and New Particles at the LHC - Miami

b-τ Yukawa Unification

SUSY SU(5): 53 × 103 × 5Hd

↑ ↑(L, bc), (Q, τ c) =⇒yb = yτ

SUSY SO(10): 163 × 163 × 10u,d

Third family Yukawa coupling ψ ψc H yields

Suppose 10u ≡ Hu

while 10d ≡ Hd cos δ + . . .

=⇒ yb = yτ

Quantify b-τ Yukawa unification(YU) by

Rbτ = max(yb,yτ )min(yb,yτ )

6 / 50

Page 8: Higgs Boson and New Particles at the LHC - Miami

b-τ YU and finite threshold corrections 1

Dominant contributions to the bottom quark mass from the gluinoand chargino loop

δyb ≈g2

312π2

µmg tanβ

m21

+ y2t

32π2µAt tanβ

m22

+ . . .

where m1 ≈ (mb1+ mb2

)/2 and m2 ≈ (mt2+ µ)/2

where λb = yb and λt = yt1

L. J. Hall, R. Rattazzi and U. Sarid, Phys. Rev.D 50, 7048 (1994)

7 / 50

Page 9: Higgs Boson and New Particles at the LHC - Miami

Importance of finite SUSY threshold corrections

8 / 50

Page 10: Higgs Boson and New Particles at the LHC - Miami

b-τ Yukawa Unification in SU(5)

We perform random scans using ISAJET 7.80 3 for thefollowing parameter range:

m10 : 0 → 20 TeVm5 : 0 → 20 TeVM1/2 : 0 → 2 TeV

At : −60 → 60 TeVAb = Aτ : −60 → 60 TeVmHu : 0 → 20 TeVmHd

: 0 → 20 TeVtanβ : 1.1 → 60µ > 0, mt = 173.3(GeV )

3F. E. Paige, S. D. Protopopescu, H. Baer and X. Tata, arXiv:0312045 [hep-ph] .

9 / 50

Page 11: Higgs Boson and New Particles at the LHC - Miami

Constraints

mχ±1(chargino mass) & 103.5 GeV,

123 . mh (lightest Higgs mass) . 127 GeV,

mτ (stau mass) & 105 GeV,

mg (gluino mass) & 850 GeV(mg & 400 GeV if NLSP),

2.0× 10−9 ≤ BR(Bs → µ+µ−) < 4.7× 10−9 (2σ),

0.15 <BR(Bu → τντ )MSSM

BR(Bu → τντ )SM< 2.03 (2σ),

2.99× 10−4 ≤ BR(b → sγ) ≤ 3.87× 10−4 (2σ),

ΩCDMh2 = 0.111+0.028−0.037 (5σ),

3.4× 10−10 ≤ ∆aµ ≤ 55.6× 10−10 (3σ).

10 / 50

Page 12: Higgs Boson and New Particles at the LHC - Miami

H. Baer, I. Gogoladze, A. Mustafayev, S. Raza and Q. Shafi, JHEP 1203 (2012) 047 .

Gray points satisfy REWSB and neutralino as LSP conditions. Red and green points satisfy additional sparticlemass and B-physics bounds and have tan β < 20 and tan β > 20, respectively. The horizontal dashed lineindicates the 5% b-τ Yukawa unification.

11 / 50

Page 13: Higgs Boson and New Particles at the LHC - Miami

Gray points satisfy REWSB and neutralino as LSP conditions. Red and green points satisfy additional sparticlemass and B-physics bounds and have tan β < 20 and tan β > 20, respectively. The horizontal dashed lineindicates the 5% b-τ Yukawa unification.

12 / 50

Page 14: Higgs Boson and New Particles at the LHC - Miami

Gray points satisfy REWSB and neutralino as LSP conditions. Red and green points satisfy additional sparticlemass and B-physics bounds and have tan β < 20 and tan β > 20, respectively. The vertical dashed red linesrepresent the SM predictions and vertical solid black lines represent experimental bounds.

13 / 50

Page 15: Higgs Boson and New Particles at the LHC - Miami

All points satisfy mass bounds, B-physics bounds, WMAP bounds and have R < 1.05. Red and green pointssatisfy additional sparticle mass and B-physics bounds and have tan β < 20 and tan β > 20, respectively.

14 / 50

Page 16: Higgs Boson and New Particles at the LHC - Miami

Point 1 Point 2 Point 3 Point 4m10 2604 3849 19160 16800m5 3443 900.1 17140 18960m1/2 1049 1056 359 358.6

tan β 8.3 4.77 45 45At -5140 -7455 -46880 -39510Ab = Aτ 41070 40830 -8786 23640mHd

3424 905 18320 17340

mHu 1380 4700 14950 10410sign(µ) + + + +

mh 120.9 119.6 125 125.2mA 929 797 17871 13544µ 2934 2345 17356 17394mχ0

1,2461, 882 467, 887 209, 430 179, 354

mχ0

3,42857, 2859 2291, 2295 17517, 17517 16406,16406

mχ±1,2

881, 2857 887, 2311 436,17576 357,116429

mg 2385 2431 1271 1165

muL,R3314, 3211 4336, 4405 19155, 19085 16788, 16608

mt1,21211, 1798 1007, 2825 243, 10245 3289, 7153

mdL,R

3315, 3984 4337, 2033 19155, 17168 16788, 19095

mb1,2

1375, 2082 489, 2841 10253, 11668 7139, 12709

meL,R3479, 2719 1321, 3731 17036, 19292 18850, 17052

mτ1,2876, 2939 803, 341 14650,14972 11256, 16464

Ωh2 0.113 0.074 0.098 2269 1

〈σv〉(v → 0) [cm3/s] 3.886×10−27 9.512×10−29 1.014×10−26 4.385×10−31

σSI (p)× 1012 [pb] 5.639 9.689 1.43 0.127R 1.02 1.02 1.00 1.0

15 / 50

Page 17: Higgs Boson and New Particles at the LHC - Miami

t-b-τ Yukawa Unification in SO(10)

Fermion families reside in 16i˜ (i=1,2,3);

predicts ’right handed’ neutrino ⇒ non-zero neutrino massesthrough seesaw mechanism.

Automatic Z2 ’matter’ parity if SO(10) → MSSM using onlytensor repsns.

Yukawa couplings include

16i16j10, 16i16j126, etc.

16316310 yields t − b − τ unification

Yt = Yb = Yτ = Yν (not so in non-SUSY SO(10))

In the ‘old days’ (B. Ananthanarayan, G. Lazarides and Q.Shafi, 1999) it was used to predict the top quark mass

16 / 50

Page 18: Higgs Boson and New Particles at the LHC - Miami

Nowadays, one employs t − b − τ unification to makepredictions, such as sparticle masses, which can be tested atthe LHC/Tevatron (Baer et al.,Raby et al., ....);

t − b − τ Yukawa unification can also be realized inSU(4)c × SU(2)L × SU(2)R , a maximal subgroup of SO(10);

17 / 50

Page 19: Higgs Boson and New Particles at the LHC - Miami

Supersymmetric SO(10):References

B. Ananthanarayan, G. Lazarides and Q. Shafi, Phys. Rev. D 44, 1613 (1991) and Phys. Lett. B 300, 24 (1993)5;

Q. Shafi and B. Ananthanarayan, Trieste HEP Cosmol.1991:233-244.L. J. Hall, R. Rattazzi and U. Sarid, Phys.

Rev. D 50, 7048 (1994); M. Olechowski and S. Pokorski, Phys. Lett. B 214, 393 (1988); T. Banks, Nucl. Phys. B

303, 172 (1988); V. Barger, M. Berger and P. Ohmann, Phys. Rev. D 49, (1994) 4908; M. Carena, M. Olechowski,

S. Pokorski and C. Wagner, Nucl. Phys. B 426, 269 (1994); B. Ananthanarayan, Q. Shafi and X. Wang, Phys.

Rev. D 50, 5980 (1994); G. Anderson et al. Phys. Rev. D 47, (1993) 3702 and Phys. Rev. D 49, 3660 (1994); R.

Rattazzi and U. Sarid, Phys. Rev. D 53, 1553 (1996); T. Blazek, M. Carena, S. Raby and C. Wagner, Phys. Rev.

D 56, 6919 (1997); T. Blazek, S. Raby and K. Tobe, Phys. Rev. D 62, 055001 (2000); H. Baer, M. Diaz, J.

Ferrandis and X. Tata, Phys. Rev. D 61, 111701 (2000); H. Baer, M. Brhlik, M. Diaz, J. Ferrandis, P. Mercadante,

P. Quintana and X. Tata, Phys. Rev. D 63, 015007(2001); S. Profumo, Phys. Rev. D 68 (2003) 015006; C. Balazs

and R. Dermisek, JHEP 0306, 024 (2003); C. Pallis, Nucl. Phys. B 678, 398 (2004); M. Gomez, G. Lazarides and

C. Pallis, Phys. Rev. D 61 (2000) 123512, Nucl. Phys. B 638, 165 (2002) and Phys. Rev. D 67, 097701(2003); U.

Chattopadhyay, A. Corsetti and P. Nath, Phys. Rev. D 66 035003, (2002); T. Blazek, R. Dermisek and S. Raby,

Phys. Rev. Lett. 88, 111804 (2002) and Phys. Rev. D 65, 115004 (2002); M. Gomez, T. Ibrahim, P. Nath and S.

Skadhauge, Phys. Rev. D 72, 095008 (2005); K. Tobe and J. D. Wells, Nucl. Phys. B, 663, 123 (2003); W.

Altmannshofer, D. Guadagnoli, S. Raby and D. M. Straub, Phys. Lett. B 668, 385 (2008); S. Antusch and M.

Spinrath, Phys. Rev. D 78, 075020 (2008); S. Antusch and M. Spinrath, Phys. Rev. D 79, 095004 (2009); D.

Guadagnoli, S. Raby and D. M. Straub, JHEP 0910, 059 (2009); H. Baer, S. Kraml and S. Sekmen, JHEP 0909

...., 005 (2009); K. Choi, D. Guadagnoli, S. H. Im and C. B. Park, arXiv:1005.0618 [hep-ph]. H. Baer, S. Kraml, S.

Sekmen and H. Summy, JHEP 0803, 056 (2008); H. Baer, M. Haider, S. Kraml, S. Sekmen and H. Summy, JCAP

0902, 002 (2009). I. Gogoladze, R. Khalid and Q. Shafi, Phys. Rev. D 79, 115004 (2009) H. Baer, S. Kraml, A.

Lessa and S. Sekmen, JHEP 1002, 055 (2010); I. Gogoladze, R. Khalid and Q. Shafi, Phys. Rev. D 80, 095016

(2009), I. Gogoladze, R. Khalid, S. Raza and Q. Shafi, arXiv:1008.2765 [hep-ph]

18 / 50

Page 20: Higgs Boson and New Particles at the LHC - Miami

SUSY and t − b − τ Yukawa coupling unification

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

2 4 6 8 10 12 14 16 18

y i

log10

(Q/GeV)

yt

yb

19 / 50

Page 21: Higgs Boson and New Particles at the LHC - Miami

t-b-τ Yukawa Unification in NUHM2

m16, M1/2, A0, mHu , mHdtanβ, sign(µ)

m16 ≡ Universal soft SUSY breaking sfermion mass

M1/2 ≡ Universal SSB gaugino mass

A0 ≡ Universal SSB trilinear interaction

mHu ≡ SSB Higgs mass term

mHd≡ SSB Higgs mass term

tanβ = vuvd

µ ≡ SUSY bilinear Higgs parameter µ > 0

20 / 50

Page 22: Higgs Boson and New Particles at the LHC - Miami

Random scans performed over the parameter space:

m16 : 0 → 30 TeVM1/2 : 0 → 5 TeV

A0/m0 : −3 → 3mHu : 0 → 35 TeVmHd

: 0 → 35 TeVtanβ : 30 → 60sign(µ) > 0, mt = 173.3(GeV )

Quantify Yukawa unification by

Rtbτ = max(yt ,yb,yτ )min(yt ,yb,yτ )

21 / 50

Page 23: Higgs Boson and New Particles at the LHC - Miami

H. Baer, S. Raza and Q. Shafi, Phys.Lett. B712 (2012) 250-254

Gray points are consistent with REWSB and neutralino LSP. Orange points satisfy mass bounds (including mh inthe range 115-131 GeV and mg ≥ 0.85TeV ) and constraints from B-physics. Blue points belong to a subset oforange points and represent mh in the range 123-127 GeV.

22 / 50

Page 24: Higgs Boson and New Particles at the LHC - Miami

Gray points are consistent with REWSB and neutralino LSP. Orange points satisfy mass bounds (including mh inthe range 115-131 GeV and mg ≥ 0.85TeV ) and constraints from B-physics. Blue points belong to a subset oforange points and represent mh in the range 123-127 GeV. The vertical dashed red lines represent the SMpredictions and vertical solid black lines represent experimental bounds. The vertical solid black lines in the lastfigure represent the ratio of expt./SM.

23 / 50

Page 25: Higgs Boson and New Particles at the LHC - Miami

Point 2 Point 3 Point 4m16 25560 17630 25790m1/2 128 615.9 776

A0/m16 -2.38 -2.06 -2.09tan β 55.6 51.7 51.2mHd

29900 23670 34830

mHu 22390 20590 30160

mh 126.8 125.0 124.9mH 9053 4867 8070mA 8994 4835 8016m

H± 9054 4868 8071

mg 908 1916 2432mχ0

1,2150,348 337,684 440 ,894

mχ0

3,418942 ,18942 4037 ,4037 5660 ,5660

mχ±1,2

350,18932 686 ,4009 897 ,5619

muL,R25577,25337 17656 ,17549 25828 ,25667

mt1,26548 ,7958 3134 ,5189 4558 ,7601

mdL,R

25577,25716 17655 ,17744 25828 ,25959

mb1,2

7798 ,8339 5314 ,6168 7837,9098

mν125387 17541 25657

mν318765 13042 19092

meL,R25383,25901 17535,17799 25648,26045

mτ1,29596 ,18727 6687 ,13047 9892 ,19097

ΩCDMh2 13160 1 784 1 1807 1Rtbτ 1.00 1.07 1.07

Note:g is the lightest colored sparticle24 / 50

Page 26: Higgs Boson and New Particles at the LHC - Miami

t-b-τ YU in SO(10)[NUHM1/NUGM]:

m16, m10, Mi , A0, tanβ, sign(µ)

m16 ≡ Universal soft SUSY breaking (SSB) sfermion mass

m10 ≡ Universal SSB MSSM Higgs mass. mHu = mHdat

MGUT

Mi ≡ SSB gaugino masses. M1 : M2 : M3 = 1 : 3 : −2 atMGUT

A0 ≡ Universal SSB trilinear interaction

tanβ = vuvd

µ ≡ SUSY bilinear Higgs parameter sign(µ) > 0

24 / 50

Page 27: Higgs Boson and New Particles at the LHC - Miami

Random scans performed over the parameter space:

m16 : 0 → 5 TeVm10 : 0 → 5 TeVM1/2 : 0 → 2 TeV

A0/m0 : −3 → 3tanβ : 35 → 55sign(µ) > 0, mt = 173.3(GeV )

M1 = M1/2,M2 = 3M1/2,M3 = −2M1/2

25 / 50

Page 28: Higgs Boson and New Particles at the LHC - Miami

Ilia Gogoladze, Q. Shafi and C. Salih Un arXiv:1112.2206 [hep-ph](2011) .

All points are consistent with REWSB and neutralino LSP. Green points satisfy particle mass bounds and B-physics

bounds. Red points belong to a subset of green points and satisfy the WMAP bounds on neutralino dark matter

abundance. The dashed line indicates Yukawa unification within 5%

26 / 50

Page 29: Higgs Boson and New Particles at the LHC - Miami

Higgs mass and rare decays. Color coding is the same as in previous figures. The vertical dashed orange lines

represent the SM predictions, vertical solid black lines represent experimental bounds and horizontal dashed black

line represents Rbτ ≤ 1.05. The vertical solid black lines in the last figure represent the ratio of expt./SM.

27 / 50

Page 30: Higgs Boson and New Particles at the LHC - Miami

Plots in mτ − mχ0

1, mq − mg planes. Color coding is same as in previous figure.

28 / 50

Page 31: Higgs Boson and New Particles at the LHC - Miami

Point 1 Point 2m16 2405 1774M1 2000 1608M2 6000 4824M3 -4000 -3216m10 1414 1046tan β 46.4 47.1A0/m0 2.81 2.14mt 173.1 173.1µ 4046 2983Bµ 11.6 5.5mh 124.5 123.5mH 1186 556mA 1179 552m

H± 1190 565

mχ0

1,2946,4057 757, 2995

mχ0

3,44060, 5102 2998, 4097

mχ±1,2

4109, 5052 3037, 4055

mg 8108 6606

muL,R8123, 7238 6573, 5856

mt1,25505, 6854 4605, 5644

mdL,R

8123, 7228 6574, 5848

mb1,2

5814, 6821 4787, 5614

mν14457 3518

mν34131 3309

meL,R4462, 2505 3523, 1861

mτ1,2949, 4147 874, 3322

∆(g − 2)µ 0.27× 10−10 0.44× 10−10

σSI (pb) 0.39× 10−11 0.67× 10−10

σSD (pb) 0.33× 10−9 0.13× 10−8

ΩCDMh2 0.64 4.5R 1.08 1.01 29 / 50

Page 32: Higgs Boson and New Particles at the LHC - Miami

Suspect vs. Isajet

R − mh and R − µ planes. All points are consistent with REWSB and LSP neutralino. Green points satisfy mass

and b-physics bounds, and brown points are a subset of green points for which Ωh2 < 1.

30 / 50

Page 33: Higgs Boson and New Particles at the LHC - Miami

Suspect ISAJETm16 2210 2210m1/2 1351 1351

tan β 48.9 48.9A0/m16 1.28 1.28m10 3268 3268sign(µ) + +mh 124.3 122.3mH 549 1633mA 549 1622m

H± 556 1636

µ 921.7 1040.8mχ0

1,2633, 923 630, 1061

mχ0

3,4924, 3389 1061, 3447

mχ±1,2

921, 3389 1084, 3412

mg 5292 5637

muL,R5755, 5190 5819, 5248

mt1,23892, 4756 3872, 4877

mdL,R

5755, 5185 5819, 5245

mb1,2

4140, 4778 4316, 4858

meL,R3364, 2257 3388, 2260

mτ1,2953, 3044 863, 3042

R 1.08 1.3

31 / 50

Page 34: Higgs Boson and New Particles at the LHC - Miami

Yukawa Unification and NLSP gin SU(4)c × SU(2)L × SU(2)R (4-2-2)

SM fermions: ψi = (4, 2, 1) and ψci = (4, 1, 2)

MSSM Higgs: H = (1, 2, 2)

Third family Yukawa coupling ψ ψc H yields

Yt = Yb = Yτ = Yν

Asymptotic relation between the three MSSM gaugino masseswith left-right symmetry

M1 = 35M2 + 2

5M3

One additional parameter (from gaugino non-universality)compared to the SO(10) model

32 / 50

Page 35: Higgs Boson and New Particles at the LHC - Miami

We perform random scans for the following parameter range(NUHM2/NUGM):

0 ≤ m16 ≤ 30TeV,

0 ≤ M2 ≤ 2TeV,

0 ≤ M3 ≤ 2TeV,

−3 ≤ A0/m16 ≤ 3,

0 ≤ MD/m10 ≤ 1,

0 ≤ m10 ≤ 45TeV

40 ≤ tanβ ≤ 60,

sign(µ) > 0, mt = 173.3GeV.

mHd ,Hu = m10

√1± (MD/m10)2

33 / 50

Page 36: Higgs Boson and New Particles at the LHC - Miami

S. Raza and Q. Shafi (in preparation) .

Gray points are consistent with REWSB and neutralino LSP. Orange points satisfy mass bounds (including mh inthe range 123-127 GeV and mg ≥ 0.4TeV ) constraints from B-physics. Purple points belong to a subset of orangepoints and and satisfy WMAP bound and represent mg/mχ0

1< 1.2. 34 / 50

Page 37: Higgs Boson and New Particles at the LHC - Miami

Gray points are consistent with REWSB and neutralino LSP. Orange points satisfy mass bounds (including mh inthe range 123-127 GeV and mg ≥ 0.4TeV ) constraints from B-physics. Purple points belong to a subset of orangepoints and and satisfy WMAP bound and represent mg/mχ0

1< 1.2. The vertical dashed red lines represent the

SM predictions and vertical solid black lines represent experimental bounds. The vertical solid black lines in the lastfigure represent the ratio of expt./SM.

35 / 50

Page 38: Higgs Boson and New Particles at the LHC - Miami

Gray points are consistent with REWSB and neutralino LSP. Orange points satisfy mass bounds (including mh inthe range 123-127 GeV and mg ≥ 0.4TeV ) constraints from B-physics. Green points belong to a subset of orangepoints and satisfy WMAP bounds and Rtbτ ≤ 1.05

36 / 50

Page 39: Higgs Boson and New Particles at the LHC - Miami

Point 1 Point 2 Point 3m0 27620 27530 31860M1 917.9 1315 1372M2 1526 2135 3131M3 5.75 85.29 199.4m10/m0 0.705 0.991 0.776mD/m10 0.498 0.425 0.932A0/m0 -2.5 -2.4 -2.05-2.3 tan β 53.8 52.5 51.9mh 126.6 125.0 126.3mH 11077 14611 15163mA 11005 14515 15064m

H± 11078 14611 15163

mχ0

1,2543,1660 732, 2197 1058, 3122

mχ0

3,428040,28040 23540,23540 20873,20873

mχ±1,2

1666 ,28015 2203 ,23520 3128,20842

mg 609 802 1150

muL,R27650,27424 27600,27249 31964,31583

mt1,211193,11653 9382 ,9748 9043,9529

mdL,R

27650,27757 27600,27721 31964,32079

mb1,2

11162,11574 8685,9515 8251,9533

mν127502 27352 31697

mν318847 17952 20731

meL,R27501 ,27921 27350,27968 31694,32321

mτ1,213298,18778 11322,17946 12453,20768

σSI (pb) 9.46× 10−14 6.23× 10−14 3.45× 10−14

σSD (pb) 2.59× 10−14 1.40× 10−14 2.11× 10−13

ΩCDMh2 0.11 0.076 0.11Rtbτ 1.00 1.02 1.02

37 / 50

Page 40: Higgs Boson and New Particles at the LHC - Miami

Non Universal Gaugino Masses and Natural SUSYI. Gogoladze, F. Nasir, Q. Shafi arXiv:1212.2593

Little Hierarchy Problem in the MSSM

At tree level CP-even Higgs boson mass mh in the MSSM isbounded from above by mh ≤ MZ

Significant radiative corrections are needed in order toaccommodate value mh ∼ 125 GeV

In the MSSM, through minimizing the tree level scalarpotential, MZ can be computed as:

1

2M2

Z = −µ2 +

(m2

Hd−m2

Hutan2β

tan2β − 1

)' −µ2 −m2

Hu.

Unless µ and mHu values are of order MZ some fine-tunning ofthese parameters are required.

38 / 50

Page 41: Higgs Boson and New Particles at the LHC - Miami

Electroweak scale Fine-tuning condition is given as 4:

∆EW ≡ max(Ci )/(M2Z/2).

where Ci are defined as:

CHd≡ |m2

Hd/(tan2 β − 1)|,

CHu ≡ | −m2Hu

tan2 β/(tan2 β − 1)|,Cµ ≡ | − µ2|

From RGE running we can also have High Scale fine-tuning as:

∆HS ≡ max(Bi )/(M2Z/2).

4H. Baer, V. Barger, P. Huang, D. Mickelson, A. Mustafayev and X. Tata, arXiv:1210.3019 [hep-ph].

39 / 50

Page 42: Higgs Boson and New Particles at the LHC - Miami

We perform random scans using ISAJET7.84 5for the followingparameter range:

0 ≤ m0 = mHu = mHd≤ 20TeV,

0 ≤ M2 ≤ 5TeV,

0 ≤ M3 ≤ 5TeV,

−3 ≤ A0/m0 ≤ 3,

2 ≤ tanβ ≤ 60,

sign(µ) > 0, mt = 173.3GeV.

5F. E. Paige, S. D. Protopopescu, H. Baer and X. Tata, arXiv:0312045 [hep-ph] .

40 / 50

Page 43: Higgs Boson and New Particles at the LHC - Miami

Plots in the ∆HS − ∆EW planes for CMSSM and 4-2-2 cases. Gray points are consistent with REWSB and

neutralino to be LSP. The orange points form a subset of the gray ones and satisfy B-physics bounds and for

∆(g − 2)µ we require that the model does no worse than SM. Green points belong to the subset of orange points

and satisfy the Higgs mass range 123 GeV ≤ mh ≤ 127 GeV.

41 / 50

Page 44: Higgs Boson and New Particles at the LHC - Miami

Plots in ∆EW − mh and ∆HS − mh plains for CMSSM and 4-2-2 cases. Gray points are consistent with REWSBand neutralino to be LSP. The orange points form a subset of the gray ones and satisfy B-physics bounds and for∆(g − 2)µ we require that the model does no worse than SM. Green points belong to the subset of orange pointsand satisfy the Higgs mass range 123 GeV ≤ mh ≤ 127 GeV.

42 / 50

Page 45: Higgs Boson and New Particles at the LHC - Miami

Plots in the mq − mg , mχ+

1− m

χ01

, mt1− m

χ01

and mτ1− m

χ01

planes for 4-2-2 case. Gray points are

consistent with REWSB and neutralino to be LSP. The orange points form a subset of the gray ones and satisfyB-physics bounds and for ∆(g − 2)µ we require that the model does no worse than SM. Green points belong tothe subset of orange points and satisfy the Higgs mass range 123 GeV ≤ mh ≤ 127 GeV. In addition, we haveused maroon color to denote a subset of the green points, that have ∆HS < 100 and ∆EW < 100.

43 / 50

Page 46: Higgs Boson and New Particles at the LHC - Miami

CMSSM 4-2-2 4-2-2m16 1090 461 498M1 979 3310 3610M2 979 4580 4910M3 979 1410 1650A0 -3240 -1270 -1390tan β 28.49 15.41 16.47µ 1853 176 746mh 124.06 124 124.1mH 1862 2856 3109mA 1850 2838 3088m

H± 1864 2857 3110

mχ0

1,2424, 807 180, 182 759, 762

mχ0

3,41845, 1847 1477, 3757 1620, 4032

mχ±1,2

810, 1850 188, 3754 780, 423

mg 2180 3048 3515muL,R

2239, 2174 3842, 2719 4253, 3118

mt1,21084, 1744 1039, 3394 1467, 3768

mdL,R

2240, 2166 3843, 2629 4254, 3025

mb1,2

1721, 1947 2524, 3436 2905, 3808

mν11261 2980 3182

mν31098 2972 3164

meL,R1265, 1144 2978, 1296 3181, 1407

mτ1,2719, 1107 1189, 2961 1276, 3156

σSI (p) [pb] 9.24× 10−12 1.79× 10−10 2.84× 10−10

σSDI (p) [pb] 2.46× 10−9 2.29× 10−6 2.36× 10−7

Ωh2 7.06 0.007 0.11∆EW 827 15.4 134∆HS 1110 51.3 181

44 / 50

Page 47: Higgs Boson and New Particles at the LHC - Miami

Summary

Several interesting, well motivated and distinct scenarios which arebeing tested at the LHC:

b-τ YU in SU(5) yields NLSP stop with tanβ & 30.

t-b-τ YU in SO(10) with non-universal Higgs(NUHM2) yieldsgluino as the lightest colored sparticle; LSP neutralino notviable as CDM.

t-b-τ YU in SO(10) with non-universal gaugino masses(NUGM) works best for mh 124-126 GeV and yields NLSPstau.

45 / 50

Page 48: Higgs Boson and New Particles at the LHC - Miami

t-b-τ YU in 4-2-2 with sign(µ) > 0 yields NLSP gluino.

The little hierarchy problem is ameliorated in supersymmetricmodels based on the gauge symmetrySU(4)c × SU(2)L × SU(2)R supplemented by a discreteleft-right symmetry (C-parity).

By imposing conditions for natural SUSY (∆EW < 100 and∆HS < 100) and requiring 123GeV < mh < 127GeV , adistinctive particle spectra is obtained characterized byrelatively light third generation sfermions.

Challenge: Measure various properties of the Higgs boson and findsome SUSY particles.

46 / 50

Page 49: Higgs Boson and New Particles at the LHC - Miami

Thank you !!

47 / 50

Page 50: Higgs Boson and New Particles at the LHC - Miami

Backup slides

48 / 50

Page 51: Higgs Boson and New Particles at the LHC - Miami

SUSY contribution to BR(b → sγ)

The diagrams contributing to b → sγ decay in the SM and in the MSSM.

BRSUSY(b → sγ) ∝ µAtmb tanβf (m2t1, m2

t1,mχ±)

49 / 50

Page 52: Higgs Boson and New Particles at the LHC - Miami

SUSY contribution to BR(Bs → µ+µ−)

The diagrams contributing to Bs → µ+µ− decay in the SM and in the

MSSM.

BRSUSY (Bs → µ+µ−) ∝

tan6 βm2

bm2tm

2µµ

2

M4Wm4

(m2

t1log

m2t1µ

mu2−m2t1

−m2

t2log

m2t2µ

mu2−m2t2

)2

50 / 50