hep4.nucl.phys.titech.ac.jphep4.nucl.phys.titech.ac.jp/workshop/pacific-spin... · HERA at DESY...
Embed Size (px)
Transcript of hep4.nucl.phys.titech.ac.jphep4.nucl.phys.titech.ac.jp/workshop/pacific-spin... · HERA at DESY...
-
How do the Quarks and Gluons spin in theProton ?
— The View from HERMES —
E.C. Aschenauer
DESY
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 1
-
The Spin Structure of the Nucleon
Naive Parton Model:∆uv + ∆dv = 1
=⇒ ∆uv =4
3,∆dv =
−13
BUT
1988 EMC measured:Σ = 0.123 ± 0.013 ± 0.019
=⇒ Spin Puzzle
1
2=
1
2(∆uv + ∆dv)
F2 from HERA tells:
Gluons are important !
=⇒ sea quarks ∆qs=⇒ ∆G
1
2=
1
2(∆uv + ∆dv + ∆qs
︸︷︷︸) + ∆G
∆us,∆ds,∆ū,∆d̄,∆s,∆s̄
Full description of Jq & Jgneeds
orbital angular momentum1
2=
1
2(∆uv + ∆dv + ∆qs)︸ ︷︷ ︸
+Lq + (∆G + Lg)
∆Σ
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 2
-
The Spin Structure of the Nucleon
Naive Parton Model:∆uv + ∆dv = 1
=⇒ ∆uv =4
3,∆dv =
−13
BUT
1988 EMC measured:Σ = 0.123 ± 0.013 ± 0.019
=⇒ Spin Puzzle
1
2=
1
2(∆uv + ∆dv)
F2 from HERA tells:
Gluons are important !
=⇒ sea quarks ∆qs=⇒ ∆G
1
2=
1
2(∆uv + ∆dv + ∆qs
︸︷︷︸) + ∆G
∆us,∆ds,∆ū,∆d̄,∆s,∆s̄
Full description of Jq & Jgneeds
orbital angular momentum1
2=
1
2(∆uv + ∆dv + ∆qs)︸ ︷︷ ︸
+Lq + (∆G + Lg)
∆Σ
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 2
-
The Spin Structure of the Nucleon
Naive Parton Model:∆uv + ∆dv = 1
=⇒ ∆uv =4
3,∆dv =
−13
BUT
1988 EMC measured:Σ = 0.123 ± 0.013 ± 0.019
=⇒ Spin Puzzle
1
2=
1
2(∆uv + ∆dv)
F2 from HERA tells:
Gluons are important !
=⇒ sea quarks ∆qs=⇒ ∆G
1
2=
1
2(∆uv + ∆dv + ∆qs
︸︷︷︸) + ∆G
∆us,∆ds,∆ū,∆d̄,∆s,∆s̄
Full description of Jq & Jgneeds
orbital angular momentum1
2=
1
2(∆uv + ∆dv + ∆qs)︸ ︷︷ ︸
+Lq + (∆G + Lg)
∆Σ
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 2
-
HERA at DESY
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 3
-
HERA at DESY
BeamDirection
Polarimeter
TransversePolarimeter
Spin Rotator
Spin Rotator
pe
Spin RotatorSpin Rotator
Spin Rotator
Spin Rotator
Longitudinal
� � �� � �
� � �� � �
� � �� � �
� � �� � �
� � �� � �
� � �� � �
� � � �� � � �
� � � �� � � �
� � � �� � � �
� � �� � �
� � �� � �
� � �� � �
� � �� � �
� � �
� � �� � �
� � �
� � �� � �
� � �
� � �� � �
� � �
� � �� � �
� � �� � �
� � �� � �
� � �
� � �� � �
� � �� � �
� � �� � �
• HERA-e self-polarizing by emissionof synchrotron radiation−→ Transverse Polarization
• Longitudinal polarization at HERMESvia spin-rotators
• Online measurement of beampolarization with two Comptonback scattering polarimeters
Comparison of rise time curves
0
20
40
60
80
6 6.5 7 7.5 8Time [hours]
Pol
ariz
atio
n [%
]
Transverse Polarimeter
Longitudinal Polarimeter
Beam Polarisation < PB >∼ 55%∆PB/PB = 1.8− 3.4%
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 3
-
The HERMES Detector
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 4
-
The HERMES Detector
1
0
2
−1
−2
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
m
LUMINOSITY
CHAMBERSDRIFT
FC 1/2
TARGETCELL
DVC
MC 1−3
HODOSCOPE H0
MONITOR
BC 1/2
BC 3/4 TRD
PROP.CHAMBERS
FIELD CLAMPS
PRESHOWER (H2)
STEEL PLATE CALORIMETER
DRIFT CHAMBERS
TRIGGER HODOSCOPE H1
0 1 2 3 4 5 6 7 8 9 10
RICH
SILICON
270 mrad
270 mrad
MUON HODOSCOPEWIDE ANGLE
FRONTMUONHODO
MAGNET
m
IRON WALL
MUON HODOSCOPES
e+
27.5 GeV
140 mrad
170 mrad
170 mrad
140 mrad
Kinematic Range: 0.02 ≤ x ≤ 0.8 at Q2 ≥ 1GeV2 and W ≥ 2GeVΘx ≤ 175 mrad, 40 mrad ≤ Θy ≤ 140 mrad
Reconstruction: δp/p 1.0 - 2.0%, δΘ ≤ 1.0mrad
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 4
-
The HERMES Detector
1
0
2
−1
−2
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
m
LUMINOSITY
CHAMBERSDRIFT
FC 1/2
TARGETCELL
DVC
MC 1−3
HODOSCOPE H0
MONITOR
BC 1/2
BC 3/4 TRD
PROP.CHAMBERS
FIELD CLAMPS
PRESHOWER (H2)
STEEL PLATE CALORIMETER
DRIFT CHAMBERS
TRIGGER HODOSCOPE H1
0 1 2 3 4 5 6 7 8 9 10
RICH
SILICON
270 mrad
270 mrad
MUON HODOSCOPEWIDE ANGLE
FRONTMUONHODO
MAGNET
m
IRON WALL
MUON HODOSCOPES
e+
27.5 GeV
140 mrad
170 mrad
170 mrad
140 mrad
Kinematic Range: 0.02 ≤ x ≤ 0.8 at Q2 ≥ 1GeV2 and W ≥ 2GeVΘx ≤ 175 mrad, 40 mrad ≤ Θy ≤ 140 mrad
Reconstruction: δp/p 1.0 - 2.0%, δΘ ≤ 1.0mrad
Internal Gas Target:−→He ,
−→D ,
−→H ,H↑ unpol: H2, D2, He, N2, Ne, Ar, Kr, Xe
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 4
-
The HERMES Detector
1
0
2
−1
−2
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
m
LUMINOSITY
CHAMBERSDRIFT
FC 1/2
TARGETCELL
DVC
MC 1−3
HODOSCOPE H0
MONITOR
BC 1/2
BC 3/4 TRD
PROP.CHAMBERS
FIELD CLAMPS
PRESHOWER (H2)
STEEL PLATE CALORIMETER
DRIFT CHAMBERS
TRIGGER HODOSCOPE H1
0 1 2 3 4 5 6 7 8 9 10
RICH
SILICON
270 mrad
270 mrad
MUON HODOSCOPEWIDE ANGLE
FRONTMUONHODO
MAGNET
m
IRON WALL
MUON HODOSCOPES
e+
27.5 GeV
140 mrad
170 mrad
170 mrad
140 mrad
Kinematic Range: 0.02 ≤ x ≤ 0.8 at Q2 ≥ 1GeV2 and W ≥ 2GeVΘx ≤ 175 mrad, 40 mrad ≤ Θy ≤ 140 mrad
Reconstruction: δp/p 1.0 - 2.0%, δΘ ≤ 1.0mrad
Internal Gas Target:−→He ,
−→D ,
−→H ,H↑ unpol: H2, D2, He, N2, Ne, Ar, Kr, Xe
Particle ID: TRD, Preshower, Calorimeter⇒ 1997: Čerenkov 1998 ⇒: RICH + Muon-ID
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 4
-
DIS Kinematics
Inclusive Scattering:
u
*γ
u
(E’, p’)
d
e
q
(E, p)
N
detect scattered lepton
Q2lab= 4EE′ sin2( θ2) ν
lab= E − E′
W 2lab= M2 + 2Mν − Q2
xlab= Q
2
2Mν ylab= ν
E= p·q
p·k
Q2 determines what can be resolved in theproton
Semi-Inclusive Scattering:
u
*γ
π+
u
(E’, p’)
d
e
q
π
(E, p)
p
KN
detect scattered lepton and
produced hadrons
η =log(Ehcm−p
h||)
2∗(Ehcm+ph||)
zlab= Eh
ν
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 5
-
DIS Kinematics
Inclusive Scattering:
u
*γ
u
(E’, p’)
d
e
q
(E, p)
N
detect scattered lepton
Q2lab= 4EE′ sin2( θ2) ν
lab= E − E′
W 2lab= M2 + 2Mν − Q2
xlab= Q
2
2Mν ylab= ν
E= p·q
p·k
Q2 determines what can be resolved in theproton
Semi-Inclusive Scattering:
u
*γ
π+
u
(E’, p’)
d
e
q
π
(E, p)
p
KN
detect scattered lepton and
produced hadrons
η =log(Ehcm−p
h||)
2∗(Ehcm+ph||)
zlab= Eh
ν
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 5
-
Deep Inelastic Scattering
Cross Section: d2σ
dΩdE2= α
2E′
Q2ELµν(k, q, s)︸ ︷︷ ︸
Wµν(P, q, S)︸ ︷︷ ︸
leptonic hadronic
Lµν : purely electromagnetic =⇒ calculable in QED
Wµν = −gµνF1(x,Q2
)+p
µpν
νF2
(x,Q2
)
+i�µνλσ qλν
(Sσg1
(x,Q2
)+ 1
ν(p · qSσ − S · qpσ)g2
(x,Q2
))
(for spin 1) −b1(x,Q2
)rµν +
16b2
(x,Q2
)(sµν + tµν + uµν)
+12b3
(x,Q2
)(sµν − uµν) + 12b4
(x,Q2
)(sµν − tµν)
F1,F2: Unpolarized Structure Functions=⇒ describe momentum distribution of quarks
g1,g2: Polarized Structure Functions=⇒ describe helicity distribution of quarks
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 6
-
Virtual Photon Asymmetry
σ3/2 ∼ q−(x)
~Sγ + ~SN = 3/2
~SN = − ~Sq
• Virtual photon γ∗ can only couple to quarks of opposite helicity
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 7
-
Virtual Photon Asymmetry
σ3/2 ∼ q−(x)
~Sγ + ~SN = 3/2
~SN = − ~Sq
σ1/2 ∼ q+(x)
~Sγ + ~SN = 1/2
~SN = ~Sq
• Virtual photon γ∗ can only couple to quarks of opposite helicity• Select q+(x) or q−(x) by changing the orientation of target nucleon
spin or helicity of incident lepton beam
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 7
-
Virtual Photon Asymmetry
σ3/2 ∼ q−(x)
~Sγ + ~SN = 3/2
~SN = − ~Sq
σ1/2 ∼ q+(x)
~Sγ + ~SN = 1/2
~SN = ~Sq
• Virtual photon γ∗ can only couple to quarks of opposite helicity• Select q+(x) or q−(x) by changing the orientation of target nucleon
spin or helicity of incident lepton beam
• Different targets =⇒ sensitivity to different quark flavors
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 7
-
Virtual Photon Asymmetry
σ3/2 ∼ q−(x)
~Sγ + ~SN = 3/2
~SN = − ~Sq
σ1/2 ∼ q+(x)
~Sγ + ~SN = 1/2
~SN = ~Sq
• Virtual photon γ∗ can only couple to quarks of opposite helicity• Select q+(x) or q−(x) by changing the orientation of target nucleon
spin or helicity of incident lepton beam
• Different targets =⇒ sensitivity to different quark flavors
Quark Helicity Distributions:
∆qf (x) := q+f (x) − q−f (x) ( f : u,d, s,u,d, s )
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 7
-
F1(x) = 12∑
i e2i (q
+i (x) + q
−
i (x)) =12
∑
i e2qi(x)
momentum distribution of quarks
g1(x) = 12∑
i e2i (q
+i (x) − q−i (x)) = 12
∑
i e2∆qi(x)
helicity distribution of quarks
Virtual Photon Asymmetries:
A1 =σ 1
2−σ 3
2
σ 12+σ 3
2
= g1−γ2g2
F1A2 =
σTLσT
= γ(g1+g2)F1
Measurable Asymmetries:
A‖ =σ→⇐−σ
→⇒
σ→⇐+σ
→⇒
A⊥ =σ↑→−σ↑←σ↑→+σ↑←
A‖ = D(A1 + ηA2) A⊥ = d(A2 + ξA1)
With: D, d,R, �, γ, ξ, η being kinematic factorsE.C. Aschenauer Pan Pacific, Tokyo, July 2005 8
-
World data on g1/F1Proton > Deuterium
0
0.2
0.4
0.6
0.8
1
10-4
10-3
10-2
10-1
1
E 143
E 155 (Q2-averaged by HERMES)
SMC
HERMES
g1p /
F1p
x
/GeV
2
10-1
1
10
10-4
10-3
10-2
10-1
1
-0.1
0
0.1
0.2
0.3
0.4
0.5
0.6
10-4
10-3
10-2
10-1
1
HERMES
E 143
E 155 (Q2-averaged by HERMES)
SMC
COMPASS
g1d /
F1d
x
/GeV
2
10-1
1
10
10-4
10-3
10-2
10-1
1
Data given at measured < Q2 >: 0.02 - 58 GeV2
A|| =1
PbPt
N→⇐L
→⇒
− N→⇒L
→⇐
N→⇐L
→⇒ + N
→⇒L
→⇐
g1
F1=
1
1 + γ2
»
A||
D+ (γ − η)A2
–
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 9
-
World data on xg1(x,Q2)
0
0.02
0.04
0.06
10-4
10-3
10-2
10-1
0
0.02
0.04
10-4
10-3
10-2
10-1
-0.04
-0.02
0
0.02
10-4
10-3
10-2
10-1
xg1
HERMESSMCE155E143
proton
COMPASS
deuteron
E142E154JLAB
neutron (3He)
x
gp1 > g
D1 > g
3He1
very precise proton data
most precise deuteron data
0
0.02
0.04
0.06
10-4
10-3
10-2
10-1
0
0.02
0.04
10-4
10-3
10-2
10-1
-0.04
-0.02
0
0.02
10-4
10-3
10-2
10-1
xg1
HERMESSMCE155E143
proton
COMPASS
deuteron
x
neutron (from g1p and g1
d)
gp1 > g
D1 > g
n1
very precise proton data
most precise deuteron data
most precise neutron data
gd1 =1
2(1− 3
2wD)(g
p1 + g
n1)
in measured range (0.021-0.9):∫
gp1 = 0.1246 ± 0.0032 ± 0.0074
∫
gd1 = 0.0452 ± 0.0015 ± 0.0017
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 10
-
World data on xg1(x,Q2)
0
0.02
0.04
0.06
10-4
10-3
10-2
10-1
0
0.02
0.04
10-4
10-3
10-2
10-1
-0.04
-0.02
0
0.02
10-4
10-3
10-2
10-1
xg1
HERMESSMCE155E143
proton
COMPASS
deuteron
E142E154JLAB
neutron (3He)
x
gp1 > g
D1 > g
3He1
very precise proton data
most precise deuteron data
0
0.02
0.04
0.06
10-4
10-3
10-2
10-1
0
0.02
0.04
10-4
10-3
10-2
10-1
-0.04
-0.02
0
0.02
10-4
10-3
10-2
10-1
xg1
HERMESSMCE155E143
proton
COMPASS
deuteron
x
neutron (from g1p and g1
d)
gp1 > g
D1 > g
n1
very precise proton data
most precise deuteron data
most precise neutron data
gd1 =1
2(1− 3
2wD)(g
p1 + g
n1)
in measured range (0.021-0.9):∫
gp1 = 0.1246 ± 0.0032 ± 0.0074
∫
gd1 = 0.0452 ± 0.0015 ± 0.0017
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 10
-
The structure function b1(x,Q2)
Tensor structure function:
b1 =1
2
∑
q
e2q(2q0 − (q+ + q−))
Adzz =(σ
→⇐ + σ
→⇒) − 2σ0
σ→⇐ + σ
→⇒ + σ0
= −32
b1
F1
L µν
Wµν
k
e
k’e’
γ∗ q
p
d
Θ
γ∗
z q q+ 0q
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 11
-
The structure function b1(x,Q2)
• First measurement of Adzz and bd1• Adzz 6= 0• Adzz ∼ 1%
• bd1 > 0 at small x• in measured range (0.002-0.85):∫
bd1 = (1.05± 0.34± 0.35) · 10−2
• Qualitative agreement withcoherent double-scatteringmodels
-0.02
-0.01
0
0.01
0.02
10-2
10-1
1x
Azzd
-0.05
0
0.05
0.1
0.15
10-2
10-1
1
b1d
10-1
1
10-2
10-1
1x
〈Q2 〉
/GeV
2
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 12
-
The structure function b1(x,Q2)
• First measurement of Adzz and bd1• Adzz 6= 0• Adzz ∼ 1%• bd1 > 0 at small x• in measured range (0.002-0.85):∫
bd1 = (1.05± 0.34± 0.35) · 10−2
• Qualitative agreement withcoherent double-scatteringmodels
-0.02
-0.01
0
0.01
0.02
10-2
10-1
1x
Azzd
-0.05
0
0.05
0.1
0.15
10-2
10-1
1
b1d
10-1
1
10-2
10-1
1x
〈Q2 〉
/GeV
2
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 12
-
Semi-inclusive DIS
String Breaking
u_
d_
π0
u_
u_
u_
ρ−
ud0
ud0
π0
π+
π0
−π
u_
u
ud
u
d
u
uu
u
p
incoming leptonscattered lepton
virtual photon
uud
target nucleon
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 13
-
Semi-inclusive DIS
String Breaking
u_
d_
π0
u_
u_
u_
ρ−
ud0
ud0
π0
π+
π0
−π
u_
u
ud
u
d
u
uu
u
p
incoming leptonscattered lepton
virtual photon
uud
target nucleon
Correlation between detected hadron and struck qf=⇒ ’Flavor - Separation’
Inclusive DIS:∆Σ = (∆u + ∆ū + ∆d + ∆d̄ + ∆s + ∆s̄)Semi-inclusive DIS:∆u,∆ū,∆d,∆d̄,∆s,∆s̄
In LO-QCD:
Ah1(x,Q2) =
σh1/2 − σh3/2
σh1/2 + σ
h3/2
=1 + R(x,Q2)
1 + γ2·∑
f e2f ∆qf (x,Q
2)∫
dzDhf (z,Q2)
∑
f e2f qf (x,Q
2)∫
dzDhf (z,Q2)
(∆qf ),qf (Polarized) quark distributionsDhf (z) fragmentation functions giving the probability that a (struck) quark
of flavor f fragments into a hadron of type h
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 14
-
∆q-Extraction• Rewrite Photon-Nucleon Asymmetry
Ah1(x)g2=0' C ·
∑
q
e2qq(x)∫
dzDhq (z)∑
q′ e2q′q′(x)
∫dzDhq′(z)
︸ ︷︷ ︸
∆q(x)
q(x)
Phq (x, z)
• Purity P hq (x, z): probability hadron h originates from an event with struckquark f; completely unpolarized quantity
• Extract ∆q by solving:
~A = P ~Q
~A= (A1,p(x),A1,d(x),Aπ±
1,p(x),Aπ±
1,d(x),AK±
1,d(x))
~Q= (∆uu
, ∆dd
, ∆ūū
, ∆d̄d̄
, ∆ss
, ∆s̄s̄
)
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 15
-
Measured Hadron Asymmetries
-0.1
0
0.1
0.2
0.3
0.4
0.5
10 -1
0.03 0.1
x
-0.1
0
0.1
0.2
0.3
0.4
0.5A1
A1,d
-0.1
0
0.1
0.2
0.3
0.4
0.5
10 -1
A1,dAh+
SMC
-0.1
0
0.1
0.2
0.3
0.4
0.5
10 -1
A1,dAπ+
-0.1
0
0.1
0.2
0.3
0.4
0.5
10 -1
A1,dAK+
-0.1
0
0.1
0.2
0.3
0.4
0.5
10 -1
0.03 0.1 0.4
x
-0.1
0
0.1
0.2
0.3
0.4
0.5A1,dA
h−
SMC
-0.1
0
0.1
0.2
0.3
0.4
0.5
10 -1
0.03 0.1 0.4
x
A1,dAπ−
-0.1
0
0.1
0.2
0.3
0.4
0.5
10 -1
0.03 0.1 0.4x
A1,dAK−
0
0.2
0.4
0.6
0.8
10 -1
0.03 0.1
x
A1
A1,p
0
0.2
0.4
0.6
0.8
10 -1
A1,pAh+
SMC
0
0.2
0.4
0.6
0.8
10 -1
A1,pAπ+
0
0.2
0.4
0.6
0.8
10 -1
0.03 0.1 0.4
x
A1,pAh−
SMC
0
0.2
0.4
0.6
0.8
10 -1
0.03 0.1 0.4x
A1,pAπ−
Deuterium
Proton
-0.1
0
0.1
0.2
0.3
0.4
0.5
10 -1
0.03 0.1
x
-0.1
0
0.1
0.2
0.3
0.4
0.5A1
A1,d
-0.1
0
0.1
0.2
0.3
0.4
0.5
10 -1
A1,dAh+
SMC
-0.1
0
0.1
0.2
0.3
0.4
0.5
10 -1
A1,dAπ+
-0.1
0
0.1
0.2
0.3
0.4
0.5
10 -1
A1,dAK+
-0.1
0
0.1
0.2
0.3
0.4
0.5
10 -1
0.03 0.1 0.4
x
-0.1
0
0.1
0.2
0.3
0.4
0.5A1,dA
h−
SMC
-0.1
0
0.1
0.2
0.3
0.4
0.5
10 -1
0.03 0.1 0.4
x
A1,dAπ−
-0.1
0
0.1
0.2
0.3
0.4
0.5
10 -1
0.03 0.1 0.4x
A1,dAK−
0
0.2
0.4
0.6
0.8
10 -1
0.03 0.1
x
A1
A1,p
0
0.2
0.4
0.6
0.8
10 -1
A1,pAh+
SMC
0
0.2
0.4
0.6
0.8
10 -1
A1,pAπ+
0
0.2
0.4
0.6
0.8
10 -1
0.03 0.1 0.4
x
A1,pAh−
SMC
0
0.2
0.4
0.6
0.8
10 -1
0.03 0.1 0.4x
A1,pAπ−
Deuterium
Proton
• AK−1 (x) ≈ 0 !! =⇒ K− = (ūs)is an all–sea object
• statistics sufficient for5-parameter fit
Q̃ = (∆u
u,∆d
d,∆ū
ū,∆d̄
d̄,∆s
s,∆s̄
s̄= 0)
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 16
-
Measured Hadron Asymmetries
-0.1
0
0.1
0.2
0.3
0.4
0.5
10 -1
0.03 0.1
x
-0.1
0
0.1
0.2
0.3
0.4
0.5A1
A1,d
-0.1
0
0.1
0.2
0.3
0.4
0.5
10 -1
A1,dAh+
SMC
-0.1
0
0.1
0.2
0.3
0.4
0.5
10 -1
A1,dAπ+
-0.1
0
0.1
0.2
0.3
0.4
0.5
10 -1
A1,dAK+
-0.1
0
0.1
0.2
0.3
0.4
0.5
10 -1
0.03 0.1 0.4
x
-0.1
0
0.1
0.2
0.3
0.4
0.5A1,dA
h−
SMC
-0.1
0
0.1
0.2
0.3
0.4
0.5
10 -1
0.03 0.1 0.4
x
A1,dAπ−
-0.1
0
0.1
0.2
0.3
0.4
0.5
10 -1
0.03 0.1 0.4x
A1,dAK−
0
0.2
0.4
0.6
0.8
10 -1
0.03 0.1
x
A1
A1,p
0
0.2
0.4
0.6
0.8
10 -1
A1,pAh+
SMC
0
0.2
0.4
0.6
0.8
10 -1
A1,pAπ+
0
0.2
0.4
0.6
0.8
10 -1
0.03 0.1 0.4
x
A1,pAh−
SMC
0
0.2
0.4
0.6
0.8
10 -1
0.03 0.1 0.4x
A1,pAπ−
Deuterium
Proton
-0.1
0
0.1
0.2
0.3
0.4
0.5
10 -1
0.03 0.1
x
-0.1
0
0.1
0.2
0.3
0.4
0.5A1
A1,d
-0.1
0
0.1
0.2
0.3
0.4
0.5
10 -1
A1,dAh+
SMC
-0.1
0
0.1
0.2
0.3
0.4
0.5
10 -1
A1,dAπ+
-0.1
0
0.1
0.2
0.3
0.4
0.5
10 -1
A1,dAK+
-0.1
0
0.1
0.2
0.3
0.4
0.5
10 -1
0.03 0.1 0.4
x
-0.1
0
0.1
0.2
0.3
0.4
0.5A1,dA
h−
SMC
-0.1
0
0.1
0.2
0.3
0.4
0.5
10 -1
0.03 0.1 0.4
x
A1,dAπ−
-0.1
0
0.1
0.2
0.3
0.4
0.5
10 -1
0.03 0.1 0.4x
A1,dAK−
0
0.2
0.4
0.6
0.8
10 -1
0.03 0.1
x
A1
A1,p
0
0.2
0.4
0.6
0.8
10 -1
A1,pAh+
SMC
0
0.2
0.4
0.6
0.8
10 -1
A1,pAπ+
0
0.2
0.4
0.6
0.8
10 -1
0.03 0.1 0.4
x
A1,pAh−
SMC
0
0.2
0.4
0.6
0.8
10 -1
0.03 0.1 0.4x
A1,pAπ−
Deuterium
Proton
• AK−1 (x) ≈ 0 !! =⇒ K− = (ūs)is an all–sea object
• statistics sufficient for5-parameter fit
Q̃ = (∆u
u,∆d
d,∆ū
ū,∆d̄
d̄,∆s
s,∆s̄
s̄= 0)
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 16
-
Quark Polarizations0
0.5
10-1
∆u/u
-0.5
0
10-1
∆d/d
-1
0
1
10-1
∆u–/u–
-1
0
1
10-1
∆d–/d–
-1
0
1
10-1
∆s/s
0
5
10
10-1
〈Q2〉/GeV2
0.03 0.1 0.6
x
∆qf (x)
qf (x):=
q+f (x)
qf (x)− q
−f (x)
qf (x)
• ∆u(x)/u(x) > 0=⇒ polarized parallel to theproton spin
• ∆d(x)/d(x) < 0=⇒ polarized opposite tothe proton spin
• ∆ūū
∼ ∆d̄d̄
∼ ∆ss
∼ 0
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 17
-
Quark Polarizations0
0.5
10-1
∆u/u
-0.5
0
10-1
∆d/d
-1
0
1
10-1
∆u–/u–
-1
0
1
10-1
∆d–/d–
-1
0
1
10-1
∆s/s
0
5
10
10-1
〈Q2〉/GeV2
0.03 0.1 0.6
x
∆qf (x)
qf (x):=
q+f (x)
qf (x)− q
−f (x)
qf (x)
• ∆u(x)/u(x) > 0=⇒ polarized parallel to theproton spin
• ∆d(x)/d(x) < 0=⇒ polarized opposite tothe proton spin
• ∆ūū
∼ ∆d̄d̄
∼ ∆ss
∼ 0
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 17
-
Quark Polarizations0
0.5
10-1
∆u/u
-0.5
0
10-1
∆d/d
-1
0
1
10-1
∆u–/u–
-1
0
1
10-1
∆d–/d–
-1
0
1
10-1
∆s/s
0
5
10
10-1
〈Q2〉/GeV2
0.03 0.1 0.6
x
∆qf (x)
qf (x):=
q+f (x)
qf (x)− q
−f (x)
qf (x)
• ∆u(x)/u(x) > 0=⇒ polarized parallel to theproton spin
• ∆d(x)/d(x) < 0=⇒ polarized opposite tothe proton spin
• ∆ūū
∼ ∆d̄d̄
∼ ∆ss
∼ 0
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 17
-
Quark Polarizations0
0.5
10-1
∆u/u
-0.5
0
10-1
∆d/d
-1
0
1
10-1
∆u–/u–
-1
0
1
10-1
∆d–/d–
-1
0
1
10-1
∆s/s
0
5
10
10-1
〈Q2〉/GeV2
0.03 0.1 0.6
x
∆qf (x)
qf (x):=
q+f (x)
qf (x)− q
−f (x)
qf (x)
• ∆u(x)/u(x) > 0=⇒ polarized parallel to theproton spin
• ∆d(x)/d(x) < 0=⇒ polarized opposite tothe proton spin
• ∆ūū
∼ ∆d̄d̄
∼ ∆ss
∼ 0
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 17
-
Polarized Quark Densities
0
0.2
10-1
x⋅∆u
-0.2
0
10-1
x⋅∆d
-0.1
0
10-1
GRSV 2000LO val
BB 01 LOx⋅∆u
–
Q2=2.5GeV2
-0.1
0
10-1
x⋅∆d–
-0.1
0
10-1
x⋅∆s
0.03 0.1 0.6
x
∆qf (x) := q+f (x) − q−f (x)
• ∆u(x) and ∆d(x)good agreement with NLO-QCD fit
• ∆ū(x),∆d̄(x) ∼ 0
• No indication for ∆s(x) < 0• in measured range (0.023-0.6):
∫
∆ū = -0.002 ± 0.043∫
∆d̄ = -0.054 ± 0.035∫
∆s = +0.028 ± 0.034
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 18
-
Polarized Quark Densities
0
0.2
10-1
x⋅∆u
-0.2
0
10-1
x⋅∆d
-0.1
0
10-1
GRSV 2000LO val
BB 01 LOx⋅∆u
–
Q2=2.5GeV2
-0.1
0
10-1
x⋅∆d–
-0.1
0
10-1
x⋅∆s
0.03 0.1 0.6
x
∆qf (x) := q+f (x) − q−f (x)
• ∆u(x) and ∆d(x)good agreement with NLO-QCD fit
• ∆ū(x),∆d̄(x) ∼ 0
• No indication for ∆s(x) < 0• in measured range (0.023-0.6):
∫
∆ū = -0.002 ± 0.043∫
∆d̄ = -0.054 ± 0.035∫
∆s = +0.028 ± 0.034
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 18
-
Polarized Quark Densities
0
0.2
10-1
x⋅∆u
-0.2
0
10-1
x⋅∆d
-0.1
0
10-1
GRSV 2000LO val
BB 01 LOx⋅∆u
–
Q2=2.5GeV2
-0.1
0
10-1
x⋅∆d–
-0.1
0
10-1
x⋅∆s
0.03 0.1 0.6
x
∆qf (x) := q+f (x) − q−f (x)
• ∆u(x) and ∆d(x)good agreement with NLO-QCD fit
• ∆ū(x),∆d̄(x) ∼ 0
• No indication for ∆s(x) < 0• in measured range (0.023-0.6):
∫
∆ū = -0.002 ± 0.043∫
∆d̄ = -0.054 ± 0.035∫
∆s = +0.028 ± 0.034
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 18
-
SU(2)-Flavor Symmetry Breaking(?)
Unpolarized
0
0.5
1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Systematic Error
x
d_ -
u_
CTEQ5M CTEQ4M
MRST GRV98
HermesE866
Strong breaking of SU(2)-Flavor Symmetry
Polarized
-0.2
-0.15
-0.1
-0.05
0
0.05
0.1
0.15
0.2
10 -1
0.03 0.1 0.6
x
χQSMmeson cloud
x(∆u–-∆d
–)
Q2 = 2.5 GeV2
No significant breaking ofSU(2)-Flavor Symmetry ∆ū ∼ ∆d̄More Data needed
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 19
-
SU(2)-Flavor Symmetry Breaking(?)
Unpolarized
0
0.5
1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Systematic Error
x
d_ -
u_
CTEQ5M CTEQ4M
MRST GRV98
HermesE866
Strong breaking of SU(2)-Flavor Symmetry
Polarized
-0.2
-0.15
-0.1
-0.05
0
0.05
0.1
0.15
0.2
10 -1
0.03 0.1 0.6
x
χQSMmeson cloud
x(∆u–-∆d
–)
Q2 = 2.5 GeV2
No significant breaking ofSU(2)-Flavor Symmetry ∆ū ∼ ∆d̄More Data needed
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 19
-
How to measure ∆G• ”Indirect” from scaling violation
Remember unpolarized case:HERA F2
0
1
2
3
4
5
1 10 102
103
104
105
F2 em
-log
10(x
)
Q2(GeV2)
ZEUS NLO QCD fit
H1 PDF 2000 fit
H1 94-00
H1 (prel.) 99/00
ZEUS 96/97
BCDMS
E665
NMC
x=6.32E-5 x=0.000102x=0.000161
x=0.000253
x=0.0004x=0.0005
x=0.000632x=0.0008
x=0.0013
x=0.0021
x=0.0032
x=0.005
x=0.008
x=0.013
x=0.021
x=0.032
x=0.05
x=0.08
x=0.13
x=0.18
x=0.25
x=0.4
x=0.65
Remember unpolarized case:HERA F2
0
1
2
3
4
5
1 10 102
103
104
105
F2 em
-log
10(x
)
Q2(GeV2)
ZEUS NLO QCD fit
H1 PDF 2000 fit
H1 94-00
H1 (prel.) 99/00
ZEUS 96/97
BCDMS
E665
NMC
x=6.32E-5 x=0.000102x=0.000161
x=0.000253
x=0.0004x=0.0005
x=0.000632x=0.0008
x=0.0013
x=0.0021
x=0.0032
x=0.005
x=0.008
x=0.013
x=0.021
x=0.032
x=0.05
x=0.08
x=0.13
x=0.18
x=0.25
x=0.4
x=0.65
=⇒ big Q2 − xbj lever arm=⇒ very accurate G(x)
0
5
10
15
20
-410 -310 -210 -110 10
5
10
15
20
x
xg
2 = 5 GeV2Q
2 = 20 GeV2Q
2 = 200 GeV2Q
0
5
10
15
20 ZEUS-JETS (prel.) 94-00
H1 PDF 2000
total uncert.
exp. uncert.
total uncert.
H1+ZEUS
Remember unpolarized case:HERA F2
0
1
2
3
4
5
1 10 102
103
104
105
F2 em
-log
10(x
)
Q2(GeV2)
ZEUS NLO QCD fit
H1 PDF 2000 fit
H1 94-00
H1 (prel.) 99/00
ZEUS 96/97
BCDMS
E665
NMC
x=6.32E-5 x=0.000102x=0.000161
x=0.000253
x=0.0004x=0.0005
x=0.000632x=0.0008
x=0.0013
x=0.0021
x=0.0032
x=0.005
x=0.008
x=0.013
x=0.021
x=0.032
x=0.05
x=0.08
x=0.13
x=0.18
x=0.25
x=0.4
x=0.65
=⇒ big Q2 − xbj lever arm=⇒ very accurate G(x)
0
5
10
15
20
-410 -310 -210 -110 10
5
10
15
20
x
xg
2 = 5 GeV2Q
2 = 20 GeV2Q
2 = 200 GeV2Q
0
5
10
15
20 ZEUS-JETS (prel.) 94-00
H1 PDF 2000
total uncert.
exp. uncert.
total uncert.
H1+ZEUS
Polarized case:
10-4
10-3
10-2
10-1
1
10
10 2
10 3
10 4
10-1
1 10 102
E143
Q2, GeV2
HERMES
E155
EMC
SMC
• fixed target experiments=⇒ small Q2 − xbj lever arm
• determines only sign of ∆G(x)
-0.4
-0.2
0
0.2
0.4
0.6
0.8
10-3
10-2
10-1
1x
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 20
-
How to measure ∆G• ”Indirect” from scaling violation
Remember unpolarized case:HERA F2
0
1
2
3
4
5
1 10 102
103
104
105
F2 em
-log
10(x
)
Q2(GeV2)
ZEUS NLO QCD fit
H1 PDF 2000 fit
H1 94-00
H1 (prel.) 99/00
ZEUS 96/97
BCDMS
E665
NMC
x=6.32E-5 x=0.000102x=0.000161
x=0.000253
x=0.0004x=0.0005
x=0.000632x=0.0008
x=0.0013
x=0.0021
x=0.0032
x=0.005
x=0.008
x=0.013
x=0.021
x=0.032
x=0.05
x=0.08
x=0.13
x=0.18
x=0.25
x=0.4
x=0.65
Remember unpolarized case:HERA F2
0
1
2
3
4
5
1 10 102
103
104
105
F2 em
-log
10(x
)
Q2(GeV2)
ZEUS NLO QCD fit
H1 PDF 2000 fit
H1 94-00
H1 (prel.) 99/00
ZEUS 96/97
BCDMS
E665
NMC
x=6.32E-5 x=0.000102x=0.000161
x=0.000253
x=0.0004x=0.0005
x=0.000632x=0.0008
x=0.0013
x=0.0021
x=0.0032
x=0.005
x=0.008
x=0.013
x=0.021
x=0.032
x=0.05
x=0.08
x=0.13
x=0.18
x=0.25
x=0.4
x=0.65
=⇒ big Q2 − xbj lever arm=⇒ very accurate G(x)
0
5
10
15
20
-410 -310 -210 -110 10
5
10
15
20
x
xg
2 = 5 GeV2Q
2 = 20 GeV2Q
2 = 200 GeV2Q
0
5
10
15
20 ZEUS-JETS (prel.) 94-00
H1 PDF 2000
total uncert.
exp. uncert.
total uncert.
H1+ZEUS
Remember unpolarized case:HERA F2
0
1
2
3
4
5
1 10 102
103
104
105
F2 em
-log
10(x
)
Q2(GeV2)
ZEUS NLO QCD fit
H1 PDF 2000 fit
H1 94-00
H1 (prel.) 99/00
ZEUS 96/97
BCDMS
E665
NMC
x=6.32E-5 x=0.000102x=0.000161
x=0.000253
x=0.0004x=0.0005
x=0.000632x=0.0008
x=0.0013
x=0.0021
x=0.0032
x=0.005
x=0.008
x=0.013
x=0.021
x=0.032
x=0.05
x=0.08
x=0.13
x=0.18
x=0.25
x=0.4
x=0.65
=⇒ big Q2 − xbj lever arm=⇒ very accurate G(x)
0
5
10
15
20
-410 -310 -210 -110 10
5
10
15
20
x
xg
2 = 5 GeV2Q
2 = 20 GeV2Q
2 = 200 GeV2Q
0
5
10
15
20 ZEUS-JETS (prel.) 94-00
H1 PDF 2000
total uncert.
exp. uncert.
total uncert.
H1+ZEUS
Polarized case:
10-4
10-3
10-2
10-1
1
10
10 2
10 3
10 4
10-1
1 10 102
E143
Q2, GeV2
HERMES
E155
EMC
SMC
• fixed target experiments=⇒ small Q2 − xbj lever arm
• determines only sign of ∆G(x)
-0.4
-0.2
0
0.2
0.4
0.6
0.8
10-3
10-2
10-1
1x
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 20
-
How to measure ∆G• ”Indirect” from scaling violation
Remember unpolarized case:HERA F2
0
1
2
3
4
5
1 10 102
103
104
105
F2 em
-log
10(x
)
Q2(GeV2)
ZEUS NLO QCD fit
H1 PDF 2000 fit
H1 94-00
H1 (prel.) 99/00
ZEUS 96/97
BCDMS
E665
NMC
x=6.32E-5 x=0.000102x=0.000161
x=0.000253
x=0.0004x=0.0005
x=0.000632x=0.0008
x=0.0013
x=0.0021
x=0.0032
x=0.005
x=0.008
x=0.013
x=0.021
x=0.032
x=0.05
x=0.08
x=0.13
x=0.18
x=0.25
x=0.4
x=0.65
Remember unpolarized case:HERA F2
0
1
2
3
4
5
1 10 102
103
104
105
F2 em
-log
10(x
)
Q2(GeV2)
ZEUS NLO QCD fit
H1 PDF 2000 fit
H1 94-00
H1 (prel.) 99/00
ZEUS 96/97
BCDMS
E665
NMC
x=6.32E-5 x=0.000102x=0.000161
x=0.000253
x=0.0004x=0.0005
x=0.000632x=0.0008
x=0.0013
x=0.0021
x=0.0032
x=0.005
x=0.008
x=0.013
x=0.021
x=0.032
x=0.05
x=0.08
x=0.13
x=0.18
x=0.25
x=0.4
x=0.65
=⇒ big Q2 − xbj lever arm=⇒ very accurate G(x)
0
5
10
15
20
-410 -310 -210 -110 10
5
10
15
20
x
xg
2 = 5 GeV2Q
2 = 20 GeV2Q
2 = 200 GeV2Q
0
5
10
15
20 ZEUS-JETS (prel.) 94-00
H1 PDF 2000
total uncert.
exp. uncert.
total uncert.
H1+ZEUS
Remember unpolarized case:HERA F2
0
1
2
3
4
5
1 10 102
103
104
105
F2 em
-log
10(x
)
Q2(GeV2)
ZEUS NLO QCD fit
H1 PDF 2000 fit
H1 94-00
H1 (prel.) 99/00
ZEUS 96/97
BCDMS
E665
NMC
x=6.32E-5 x=0.000102x=0.000161
x=0.000253
x=0.0004x=0.0005
x=0.000632x=0.0008
x=0.0013
x=0.0021
x=0.0032
x=0.005
x=0.008
x=0.013
x=0.021
x=0.032
x=0.05
x=0.08
x=0.13
x=0.18
x=0.25
x=0.4
x=0.65
=⇒ big Q2 − xbj lever arm=⇒ very accurate G(x)
0
5
10
15
20
-410 -310 -210 -110 10
5
10
15
20
x
xg
2 = 5 GeV2Q
2 = 20 GeV2Q
2 = 200 GeV2Q
0
5
10
15
20 ZEUS-JETS (prel.) 94-00
H1 PDF 2000
total uncert.
exp. uncert.
total uncert.
H1+ZEUS
Polarized case:
10-4
10-3
10-2
10-1
1
10
10 2
10 3
10 4
10-1
1 10 102
E143
Q2, GeV2
HERMES
E155
EMC
SMC
• fixed target experiments=⇒ small Q2 − xbj lever arm
• determines only sign of ∆G(x)
-0.4
-0.2
0
0.2
0.4
0.6
0.8
10-3
10-2
10-1
1x
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 20
-
How to measure ∆G• ”Indirect” from scaling violation
Remember unpolarized case:HERA F2
0
1
2
3
4
5
1 10 102
103
104
105
F2 em
-log
10(x
)
Q2(GeV2)
ZEUS NLO QCD fit
H1 PDF 2000 fit
H1 94-00
H1 (prel.) 99/00
ZEUS 96/97
BCDMS
E665
NMC
x=6.32E-5 x=0.000102x=0.000161
x=0.000253
x=0.0004x=0.0005
x=0.000632x=0.0008
x=0.0013
x=0.0021
x=0.0032
x=0.005
x=0.008
x=0.013
x=0.021
x=0.032
x=0.05
x=0.08
x=0.13
x=0.18
x=0.25
x=0.4
x=0.65
Remember unpolarized case:HERA F2
0
1
2
3
4
5
1 10 102
103
104
105
F2 em
-log
10(x
)
Q2(GeV2)
ZEUS NLO QCD fit
H1 PDF 2000 fit
H1 94-00
H1 (prel.) 99/00
ZEUS 96/97
BCDMS
E665
NMC
x=6.32E-5 x=0.000102x=0.000161
x=0.000253
x=0.0004x=0.0005
x=0.000632x=0.0008
x=0.0013
x=0.0021
x=0.0032
x=0.005
x=0.008
x=0.013
x=0.021
x=0.032
x=0.05
x=0.08
x=0.13
x=0.18
x=0.25
x=0.4
x=0.65
=⇒ big Q2 − xbj lever arm=⇒ very accurate G(x)
0
5
10
15
20
-410 -310 -210 -110 10
5
10
15
20
x
xg
2 = 5 GeV2Q
2 = 20 GeV2Q
2 = 200 GeV2Q
0
5
10
15
20 ZEUS-JETS (prel.) 94-00
H1 PDF 2000
total uncert.
exp. uncert.
total uncert.
H1+ZEUS
Remember unpolarized case:HERA F2
0
1
2
3
4
5
1 10 102
103
104
105
F2 em
-log
10(x
)
Q2(GeV2)
ZEUS NLO QCD fit
H1 PDF 2000 fit
H1 94-00
H1 (prel.) 99/00
ZEUS 96/97
BCDMS
E665
NMC
x=6.32E-5 x=0.000102x=0.000161
x=0.000253
x=0.0004x=0.0005
x=0.000632x=0.0008
x=0.0013
x=0.0021
x=0.0032
x=0.005
x=0.008
x=0.013
x=0.021
x=0.032
x=0.05
x=0.08
x=0.13
x=0.18
x=0.25
x=0.4
x=0.65
=⇒ big Q2 − xbj lever arm=⇒ very accurate G(x)
0
5
10
15
20
-410 -310 -210 -110 10
5
10
15
20
x
xg
2 = 5 GeV2Q
2 = 20 GeV2Q
2 = 200 GeV2Q
0
5
10
15
20 ZEUS-JETS (prel.) 94-00
H1 PDF 2000
total uncert.
exp. uncert.
total uncert.
H1+ZEUS
Polarized case:
10-4
10-3
10-2
10-1
1
10
10 2
10 3
10 4
10-1
1 10 102
E143
Q2, GeV2
HERMES
E155
EMC
SMC
• fixed target experiments=⇒ small Q2 − xbj lever arm
• determines only sign of ∆G(x)
-0.4
-0.2
0
0.2
0.4
0.6
0.8
10-3
10-2
10-1
1x
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 20
-
Direct Measurements of ∆G/G
Isolate the photon-gluon fusion process (PGF)
• Select pairs of high-PT oppositely charged hadronsOR
Select single high-PT hadrons
• Reaction: γ∗p → h±1 + h∓2 + X OR γ∗p → h±1 + X
• A|| =N
→⇐h
±1h
∓2
−N→⇒h
±1h
∓2
N→⇐h
±1h
∓2
+ N→⇒h
±1h
∓2
vs. pT(h±1 ,h∓2 ); A|| =
N→⇐h
±1
− N→⇒h
±1
N→⇐h
±1
+ N→⇒h
±1
vs. pT(h±1 )
• low Q2 range (Q2 > 0 GeV2)=⇒ increase statistics=⇒ scale of hard sub-processes p̂2T
• require pT (h1,h2) > 0.5 GeV,M(2π) > 1.0 GeV =⇒ removes resonances ρ and φ
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 21
-
Direct Measurements of ∆G/G
Isolate the photon-gluon fusion process (PGF)
• Select pairs of high-PT oppositely charged hadronsOR
Select single high-PT hadrons
• Reaction: γ∗p → h±1 + h∓2 + X OR γ∗p → h±1 + X
• A|| =N
→⇐h
±1h
∓2
−N→⇒h
±1h
∓2
N→⇐h
±1h
∓2
+ N→⇒h
±1h
∓2
vs. pT(h±1 ,h∓2 ); A|| =
N→⇐h
±1
− N→⇒h
±1
N→⇐h
±1
+ N→⇒h
±1
vs. pT(h±1 )
• low Q2 range (Q2 > 0 GeV2)=⇒ increase statistics=⇒ scale of hard sub-processes p̂2T
• require pT (h1,h2) > 0.5 GeV,M(2π) > 1.0 GeV =⇒ removes resonances ρ and φ
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 21
-
Interpretation ?!
Four different processes can contribute:
γ
T T
e+
e+’
’
q
V
h,v
*q
h,
q
+
−
l
−
+
lt
VMDAVMD = 0 DIS
ADIS ∼∆q
q
QCDC
AQCDC ∼∆q
q
PGF
APGF ∼∆G
G
A‖ ∼4∑
i=1
fi ·Ai ∼ (fQCDCAQCDC + fPGFAPGF + fDISADIS + fXAX)
APGF ≈ 〈â(γg → qq̄)〉〈∆G
G
〉= 〈âPGF〉
︸ ︷︷ ︸
〈∆G
G
〉
-1
AQCDC ≈ 〈â(γq → qg)〉〈∆q
q
〉= 〈âQCDC〉
︸ ︷︷ ︸
〈∆q
q
〉
+ 12
.. estimate theirrelative contributions fiusing Monte Carlo (PYTHIA-6)=⇒ ∆G/G
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 22
-
Interpretation ?!
Four different processes can contribute:
γ
T T
e+
e+’
’
q
V
h,v
*q
h,
q
+
−
l
−
+
lt
VMDAVMD = 0 DIS
ADIS ∼∆q
q
QCDC
AQCDC ∼∆q
q
PGF
APGF ∼∆G
G
A‖ ∼4∑
i=1
fi ·Ai ∼ (fQCDCAQCDC + fPGFAPGF + fDISADIS + fXAX)
APGF ≈ 〈â(γg → qq̄)〉〈∆G
G
〉= 〈âPGF〉
︸ ︷︷ ︸
〈∆G
G
〉
-1
AQCDC ≈ 〈â(γq → qg)〉〈∆q
q
〉= 〈âQCDC〉
︸ ︷︷ ︸
〈∆q
q
〉
+ 12
.. estimate theirrelative contributions fiusing Monte Carlo (PYTHIA-6)=⇒ ∆G/G
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 22
-
Interpretation ?!
Four different processes can contribute:
γ
T T
e+
e+’
’
q
V
h,v
*q
h,
q
+
−
l
−
+
lt
VMDAVMD = 0 DIS
ADIS ∼∆q
q
QCDC
AQCDC ∼∆q
q
PGF
APGF ∼∆G
G
A‖ ∼4∑
i=1
fi ·Ai ∼ (fQCDCAQCDC + fPGFAPGF + fDISADIS + fXAX)
APGF ≈ 〈â(γg → qq̄)〉〈∆G
G
〉= 〈âPGF〉
︸ ︷︷ ︸
〈∆G
G
〉
-1
AQCDC ≈ 〈â(γq → qg)〉〈∆q
q
〉= 〈âQCDC〉
︸ ︷︷ ︸
〈∆q
q
〉
+ 12
.. estimate theirrelative contributions fiusing Monte Carlo (PYTHIA-6)=⇒ ∆G/G
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 22
-
Interpretation ?!
Four different processes can contribute:
γ
T T
e+
e+’
’
q
V
h,v
*q
h,
q
+
−
l
−
+
lt
VMDAVMD = 0 DIS
ADIS ∼∆q
q
QCDC
AQCDC ∼∆q
q
PGF
APGF ∼∆G
G
A‖ ∼4∑
i=1
fi ·Ai ∼ (fQCDCAQCDC + fPGFAPGF + fDISADIS + fXAX)
APGF ≈ 〈â(γg → qq̄)〉〈∆G
G
〉= 〈âPGF〉
︸ ︷︷ ︸
〈∆G
G
〉
-1
AQCDC ≈ 〈â(γq → qg)〉〈∆q
q
〉= 〈âQCDC〉
︸ ︷︷ ︸
〈∆q
q
〉
+ 12
.. estimate theirrelative contributions fiusing Monte Carlo (PYTHIA-6)=⇒ ∆G/G
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 22
-
Pairs of high-PT Hadrons
pTh2 (GeV/c)
f i (i
= Q
CD
C, P
GF
, VM
D)
pTh1>1.5 GeV/c
fPGFfQCDCfVMD
0
0.2
0.4
0.6
0.8
1
0.6 0.8 1 1.2 1.4 1.6 1.8-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.6 0.8 1 1.2 1.4 1.6 1.8 2
GSA ( ~ 0.4)GSB ( ~ 0.3)GSC ( ~ -0.1)
pTh2 (GeV/c)
A||(
pTh
1 ,p
Th2 )
pTh1>1.5 GeV/c ∆G/G=-1
∆G/G=0
∆G/G=+1
∆G/G=0.41
Published: within LO pQCD and PYTHIA5 MC model
∆G/G = 0.41 ± 0.18 (stat.) ± 0.03 (exp.syst.)at 〈xG〉 = 0.17 and 〈p̂2T 〉 = 2.1 GeV2
6 x more data on polarized Deuterium and new Pythia modified for HERMES
SMC Q2 > 1 GeV2
COMPASS Q2 < 1 GeV2
COMPASS Q2 > 1 GeV2
HERMES Q2
-
Pairs of high-PT Hadrons
pTh2 (GeV/c)
f i (i
= Q
CD
C, P
GF
, VM
D)
pTh1>1.5 GeV/c
fPGFfQCDCfVMD
0
0.2
0.4
0.6
0.8
1
0.6 0.8 1 1.2 1.4 1.6 1.8-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.6 0.8 1 1.2 1.4 1.6 1.8 2
GSA ( ~ 0.4)GSB ( ~ 0.3)GSC ( ~ -0.1)
pTh2 (GeV/c)
A||(
pTh
1 ,p
Th2 )
pTh1>1.5 GeV/c ∆G/G=-1
∆G/G=0
∆G/G=+1
∆G/G=0.41
Published: within LO pQCD and PYTHIA5 MC model
∆G/G = 0.41 ± 0.18 (stat.) ± 0.03 (exp.syst.)at 〈xG〉 = 0.17 and 〈p̂2T 〉 = 2.1 GeV2
6 x more data on polarized Deuterium and new Pythia modified for HERMES
SMC Q2 > 1 GeV2
COMPASS Q2 < 1 GeV2
COMPASS Q2 > 1 GeV2
HERMES Q2
-
Why is a FF extraction important for HERMES
• enter in ∆q, δq and f⊥1T extraction• test factorization at HERMES
energies√
s ∼ 7GeV• are the FF from e+e− applicable at ep
and/or〈Q2
〉= 2.5GeV
Extract π,K,p multiplicities:
1
NDIS· dN
h(z,Q2)
dz=
∑
f
e2f∫ 1
0dxqf (x,Q
2)Dhf (z,Q2)
∑
f
e2f∫ 1
0dxqf (x,Q2)
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 24
-
Why is a FF extraction important for HERMES
• enter in ∆q, δq and f⊥1T extraction• test factorization at HERMES
energies√
s ∼ 7GeV• are the FF from e+e− applicable at ep
and/or〈Q2
〉= 2.5GeV
Extract π,K,p multiplicities:
1
NDIS· dN
h(z,Q2)
dz=
∑
f
e2f∫ 1
0dxqf (x,Q
2)Dhf (z,Q2)
∑
f
e2f∫ 1
0dxqf (x,Q2)
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 24
-
How to extract FF/Multiplicities at HERMESunpolarisedH & D data
experimentalmultiplicitiesin acceptance
unpolarisedH & D data
e+
e−c.s. background
correction
experimentalmultiplicitiesin acceptance
γ
T T
e+
e+’
’
q
V
h,v
*q
h,
q
+
−
l
−
+
lt
excl. VM correction
PID using RICH
MC
unpolarisedH & D data
e+
e−c.s. background
correction
experimentalmultiplicitiesin acceptance
born levelmultiplicities
γ
T T
e+
e+’
’
q
V
h,v
*q
h,
q
+
−
l
−
+
lt
excl. VM correction
PID using RICH
MC
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16Born level z bin (j)
Exp
erim
enta
l bin
(i)
n(i,j) for all pions
0.04
0.05
0.060.070.080.090.1
0.2
0.3
0.4
0.5
0.60.70.80.9
1
2
0 20 40 60 80 100
Q2 (GeV2/c2)
Du
π+ in
PK
H p
aram
etri
sati
on
z = 0.3
z = 0.7
LONLO
unpolarisedH & D data
e+
e−c.s. background
correction
experimentalmultiplicitiesin acceptance
born levelmultiplicities
Q − Evolution2
acceptance correctionradiative unfolding
γ
T T
e+
e+’
’
q
V
h,v
*q
h,
q
+
−
l
−
+
lt
excl. VM correction
PID using RICH
MC
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 25
-
How to extract FF/Multiplicities at HERMES
unpolarisedH & D data
experimentalmultiplicitiesin acceptance
unpolarisedH & D data
e+
e−c.s. background
correction
experimentalmultiplicitiesin acceptance
γ
T T
e+
e+’
’
q
V
h,v
*q
h,
q
+
−
l
−
+
lt
excl. VM correction
PID using RICH
MC
unpolarisedH & D data
e+
e−c.s. background
correction
experimentalmultiplicitiesin acceptance
born levelmultiplicities
γ
T T
e+
e+’
’
q
V
h,v
*q
h,
q
+
−
l
−
+
lt
excl. VM correction
PID using RICH
MC
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16Born level z bin (j)
Exp
erim
enta
l bin
(i)
n(i,j) for all pions
0.04
0.05
0.060.070.080.090.1
0.2
0.3
0.4
0.5
0.60.70.80.9
1
2
0 20 40 60 80 100
Q2 (GeV2/c2)
Du
π+ in
PK
H p
aram
etri
sati
on
z = 0.3
z = 0.7
LONLO
unpolarisedH & D data
e+
e−c.s. background
correction
experimentalmultiplicitiesin acceptance
born levelmultiplicities
Q − Evolution2
acceptance correctionradiative unfolding
γ
T T
e+
e+’
’
q
V
h,v
*q
h,
q
+
−
l
−
+
lt
excl. VM correction
PID using RICH
MC
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 25
-
How to extract FF/Multiplicities at HERMES
unpolarisedH & D data
experimentalmultiplicitiesin acceptance
unpolarisedH & D data
e+
e−c.s. background
correction
experimentalmultiplicitiesin acceptance
γ
T T
e+
e+’
’
q
V
h,v
*q
h,
q
+
−
l
−
+
lt
excl. VM correction
PID using RICH
MC
unpolarisedH & D data
e+
e−c.s. background
correction
experimentalmultiplicitiesin acceptance
born levelmultiplicities
γ
T T
e+
e+’
’
q
V
h,v
*q
h,
q
+
−
l
−
+
lt
excl. VM correction
PID using RICH
MC
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16Born level z bin (j)
Exp
erim
enta
l bin
(i)
n(i,j) for all pions
0.04
0.05
0.060.070.080.090.1
0.2
0.3
0.4
0.5
0.60.70.80.9
1
2
0 20 40 60 80 100
Q2 (GeV2/c2)
Du
π+ in
PK
H p
aram
etri
sati
on
z = 0.3
z = 0.7
LONLO
unpolarisedH & D data
e+
e−c.s. background
correction
experimentalmultiplicitiesin acceptance
born levelmultiplicities
Q − Evolution2
acceptance correctionradiative unfolding
γ
T T
e+
e+’
’
q
V
h,v
*q
h,
q
+
−
l
−
+
lt
excl. VM correction
PID using RICH
MC
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 25
-
How to extract FF/Multiplicities at HERMES
unpolarisedH & D data
experimentalmultiplicitiesin acceptance
unpolarisedH & D data
e+
e−c.s. background
correction
experimentalmultiplicitiesin acceptance
γ
T T
e+
e+’
’
q
V
h,v
*q
h,
q
+
−
l
−
+
lt
excl. VM correction
PID using RICH
MC
unpolarisedH & D data
e+
e−c.s. background
correction
experimentalmultiplicitiesin acceptance
born levelmultiplicities
γ
T T
e+
e+’
’
q
V
h,v
*q
h,
q
+
−
l
−
+
lt
excl. VM correction
PID using RICH
MC
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16Born level z bin (j)
Exp
erim
enta
l bin
(i)
n(i,j) for all pions
0.04
0.05
0.060.070.080.09
0.1
0.2
0.3
0.4
0.5
0.60.70.80.9
1
2
0 20 40 60 80 100
Q2 (GeV2/c2)
Du
π+ in
PK
H p
aram
etri
sati
on
z = 0.3
z = 0.7
LONLO
unpolarisedH & D data
e+
e−c.s. background
correction
experimentalmultiplicitiesin acceptance
born levelmultiplicities
Q − Evolution2
acceptance correctionradiative unfolding
γ
T T
e+
e+’
’
q
V
h,v
*q
h,
q
+
−
l
−
+
lt
excl. VM correction
PID using RICH
MC
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 25
-
Data - MC Agreement• MC: Lepto in combination with JETSET; PDF: CTEQ-6L
Fragmentation parameters tuned to HERMES multiplicities in acceptance
• Data: Q2 > 1GeV2,W2 > 10GeV2, z > 0.2,2GeV < p(π,K,p)± < 15GeVPID and background corrections as described before applied
0
0.1
0.2
0.3
0 0.25 0.5 0.75 1 1.25
pt
Mu
ltip
licit
y
pip
0
0.1
0.2
0.3
0 0.25 0.5 0.75 1 1.25
pt
Mu
ltip
licit
y
pim
0
0.02
0.04
0.06
0 0.25 0.5 0.75 1 1.25
pt
Mu
ltip
licit
y
kp
0
0.01
0.02
0.03
0 0.25 0.5 0.75 1 1.25
pt
Mu
ltip
licit
y
km
0
0.05
0.1
0.15
0 0.25 0.5 0.75 1 1.25
pt
Mu
ltip
licit
y
pp
0
0.005
0.01
0.015
0 0.25 0.5 0.75 1 1.25
pt
Mu
ltip
licit
y
pm
Exp.
2004c
2004a
F. all W2
Jetset
0
0.02
0.04
0.06
0.08
0.1
0 1 2 3
rap
Mu
ltip
licit
y
pip
0
0.02
0.04
0.06
0.08
0.1
0 1 2 3
rap
Mu
ltip
licit
y
pim
0
0.01
0.02
0.03
0.04
0 1 2 3
rap
Mu
ltip
licit
y
kp
0
0.005
0.01
0.015
0.02
0 1 2 3
rap
Mu
ltip
licit
y
km
0
0.02
0.04
0.06
0.08
0.1
0 1 2 3
rap
Mu
ltip
licit
y
pp
0
0.002
0.004
0.006
0 1 2 3
rap
Mu
ltip
licit
y
pm
Exp.
2004c
2004a
F. all W2
Jetset
Excellent agreement; also on cross section level (Data/MC < 10%)
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 26
-
Data - MC Agreement• MC: Lepto in combination with JETSET; PDF: CTEQ-6L
Fragmentation parameters tuned to HERMES multiplicities in acceptance
• Data: Q2 > 1GeV2,W2 > 10GeV2, z > 0.2,2GeV < p(π,K,p)± < 15GeVPID and background corrections as described before applied
0
0.1
0.2
0.3
0 0.25 0.5 0.75 1 1.25
pt
Mu
ltip
licit
y
pip
0
0.1
0.2
0.3
0 0.25 0.5 0.75 1 1.25
pt
Mu
ltip
licit
y
pim
0
0.02
0.04
0.06
0 0.25 0.5 0.75 1 1.25
pt
Mu
ltip
licit
y
kp
0
0.01
0.02
0.03
0 0.25 0.5 0.75 1 1.25
pt
Mu
ltip
licit
y
km
0
0.05
0.1
0.15
0 0.25 0.5 0.75 1 1.25
pt
Mu
ltip
licit
y
pp
0
0.005
0.01
0.015
0 0.25 0.5 0.75 1 1.25
pt
Mu
ltip
licit
y
pm
Exp.
2004c
2004a
F. all W2
Jetset
0
0.02
0.04
0.06
0.08
0.1
0 1 2 3
rap
Mu
ltip
licit
y
pip
0
0.02
0.04
0.06
0.08
0.1
0 1 2 3
rap
Mu
ltip
licit
y
pim
0
0.01
0.02
0.03
0.04
0 1 2 3
rap
Mu
ltip
licit
y
kp
0
0.005
0.01
0.015
0.02
0 1 2 3
rap
Mu
ltip
licit
y
km
0
0.02
0.04
0.06
0.08
0.1
0 1 2 3
rap
Mu
ltip
licit
y
pp
0
0.002
0.004
0.006
0 1 2 3
rap
Mu
ltip
licit
y
pm
Exp.
2004c
2004a
F. all W2
Jetset
Excellent agreement; also on cross section level (Data/MC < 10%)
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 26
-
Exclusive VM Contamination
• exclusive VM production:totally different process than SIDIS
• estimate contribution from PYTHIA-6:changes: QED-radiation, VMD-model,...
• ratio: Nhexcl.VM(z)/NhSIDIS(z)• large contribution for π at high z
contribution for K moderate vs z• contribution growing for small xbj for
both π and K
00.5
11.5
22.5
33.5
44.5
0 5 10 15
∆E (GeV)
σ (p
b)
00.20.40.60.8
11.21.41.61.8
2
0 5 10 15
∆E (GeV)
σ Dat
a/σ M
C
0
0.2
0.4
0.6
0.8
1
1.2
0.4 0.6 0.8 1
M(π+π-) (GeV)
σ (p
b)
00.20.40.60.8
11.21.41.61.8
2
0.4 0.6 0.8 1
M(π+π-) (GeV)
σ Dat
a/σ M
C
zN
h V
M(z
)/N
h(z
)
0
0.2
0.4
0.6
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
0.2
0.4
0.6
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
π+ Target:ProtonNeutronDeuterium
0
0.2
0.4
0.6
0.8
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
0.2
0.4
0.6
0.8
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
π-
0
0.025
0.05
0.075
0.1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
0.025
0.05
0.075
0.1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
K+
0
0.1
0.2
0.3
0.4
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
0.1
0.2
0.3
0.4
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
K-
xBjN
h V
M(x
Bj)/
Nh(x
Bj)
0
0.2
0.4
0.6
10 -1 1
0
0.2
0.4
0.6
10-1
1
π+ Target:ProtonNeutronDeuterium
0.25 < z < 0.350.60 < z < 0.75
0
0.2
0.4
0.6
10-1
1
0
0.2
0.4
0.6
10-1
1
π-
0
0.025
0.05
0.075
0.1
10-1
1
0
0.025
0.05
0.075
0.1
10-1
1
K+
0
0.025
0.05
0.075
0.1
10-1
10
0.025
0.05
0.075
0.1
10-1
1
K-
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 27
-
Exclusive VM Contamination
• exclusive VM production:totally different process than SIDIS
• estimate contribution from PYTHIA-6:changes: QED-radiation, VMD-model,...
• ratio: Nhexcl.VM(z)/NhSIDIS(z)• large contribution for π at high z
contribution for K moderate vs z
• contribution growing for small xbj forboth π and K
00.5
11.5
22.5
33.5
44.5
0 5 10 15
∆E (GeV)
σ (p
b)
00.20.40.60.8
11.21.41.61.8
2
0 5 10 15
∆E (GeV)
σ Dat
a/σ M
C
0
0.2
0.4
0.6
0.8
1
1.2
0.4 0.6 0.8 1
M(π+π-) (GeV)
σ (p
b)
00.20.40.60.8
11.21.41.61.8
2
0.4 0.6 0.8 1
M(π+π-) (GeV)
σ Dat
a/σ M
C
zN
h V
M(z
)/N
h(z
)
0
0.2
0.4
0.6
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
0.2
0.4
0.6
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
π+ Target:ProtonNeutronDeuterium
0
0.2
0.4
0.6
0.8
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
0.2
0.4
0.6
0.8
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
π-
0
0.025
0.05
0.075
0.1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
0.025
0.05
0.075
0.1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
K+
0
0.1
0.2
0.3
0.4
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
0.1
0.2
0.3
0.4
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
K-
xBj
Nh V
M(x
Bj)/
Nh(x
Bj)
0
0.2
0.4
0.6
10 -1 1
0
0.2
0.4
0.6
10-1
1
π+ Target:ProtonNeutronDeuterium
0.25 < z < 0.350.60 < z < 0.75
0
0.2
0.4
0.6
10-1
1
0
0.2
0.4
0.6
10-1
1
π-
0
0.025
0.05
0.075
0.1
10-1
1
0
0.025
0.05
0.075
0.1
10-1
1
K+
0
0.025
0.05
0.075
0.1
10-1
10
0.025
0.05
0.075
0.1
10-1
1
K-
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 27
-
Exclusive VM Contamination
• exclusive VM production:totally different process than SIDIS
• estimate contribution from PYTHIA-6:changes: QED-radiation, VMD-model,...
• ratio: Nhexcl.VM(z)/NhSIDIS(z)• large contribution for π at high z
contribution for K moderate vs z• contribution growing for small xbj for
both π and K
00.5
11.5
22.5
33.5
44.5
0 5 10 15
∆E (GeV)
σ (p
b)
00.20.40.60.8
11.21.41.61.8
2
0 5 10 15
∆E (GeV)
σ Dat
a/σ M
C
0
0.2
0.4
0.6
0.8
1
1.2
0.4 0.6 0.8 1
M(π+π-) (GeV)
σ (p
b)
00.20.40.60.8
11.21.41.61.8
2
0.4 0.6 0.8 1
M(π+π-) (GeV)
σ Dat
a/σ M
C
zN
h V
M(z
)/N
h(z
)
0
0.2
0.4
0.6
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
0.2
0.4
0.6
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
π+ Target:ProtonNeutronDeuterium
0
0.2
0.4
0.6
0.8
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
0.2
0.4
0.6
0.8
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
π-
0
0.025
0.05
0.075
0.1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
0.025
0.05
0.075
0.1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
K+
0
0.1
0.2
0.3
0.4
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
0.1
0.2
0.3
0.4
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
K-
xBjN
h V
M(x
Bj)/
Nh(x
Bj)
0
0.2
0.4
0.6
10 -1 1
0
0.2
0.4
0.6
10-1
1
π+ Target:ProtonNeutronDeuterium
0.25 < z < 0.350.60 < z < 0.75
0
0.2
0.4
0.6
10-1
1
0
0.2
0.4
0.6
10-1
1
π-
0
0.025
0.05
0.075
0.1
10-1
1
0
0.025
0.05
0.075
0.1
10-1
1
K+
0
0.025
0.05
0.075
0.1
10-1
10
0.025
0.05
0.075
0.1
10-1
1
K-
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 27
-
π± - Multiplicity vs. z
10-2
10-1
1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1z
mu
ltip
licit
y
HERMES Preliminary
π+
excl. VM substractedexcl. VM included
proton target
Q2=2.5 GeV2/c210
-2
10-1
1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1z
mu
ltip
licit
y
HERMES Preliminary
π-
excl. VM substractedexcl. VM included
proton target
Q2=2.5 GeV2/c2
• Systematic uncertainty mainly from hadron PID correction• Q2 > 1GeV2,W2 > 10GeV2
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 28
-
π± - Multiplicity vs. z
10-2
10-1
1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1z
mu
ltip
licit
y
HERMES Preliminary
π+
excl. VM substractedexcl. VM includedEMC D(u→π+) FF
proton target
Q2=25.0 GeV2/c2
10-3
10-2
10-1
1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1z
mu
ltip
licit
y
HERMES Preliminary
π-
excl. VM substractedexcl. VM includedEMC D(u→π-) FF
proton target
Q2=25.0 GeV2/c2
• Comparison with EMC, Nucl. Phys. B321 (1989) 541
• EMC: Fragmentation Function Dπ±u
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 29
-
π± - Multiplicity vs. Q2 and xbj
10-1
1
1 10 Q2
(d2 N
π /d
z d
Q2 )
/ (d
Nd
is/d
Q2 )
: 0.25 < z < 0.35: 0.35 < z < 0.45
: 0.45 < z < 0.60: 0.60 < z < 0.75
HERMES Preliminary
π+/-
excl. VM substractedexcl. VM included
Kretzer FF
proton target
10-1
1
10
10-1
1xbj(d
2 (N
π++N
π-)
/dz
dx)
/ (d
Nd
is/d
x)
: 0.25 < z < 0.35: 0.35 < z < 0.45
: 0.45 < z < 0.60: 0.60 < z < 0.75
HERMES 2000 Preliminary
π
excl. VM substractedexcl. VM includedEMC (charged had.)
proton target
Q2 = 2.5 GeV2/c2
• Reasonable agreement with results using S. Kretzter FF• very weak xbj dependence
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 30
-
K± - Multiplicity vs. z
10-2
10-1
1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1z
mu
ltip
licit
y
HERMES Preliminary
K+
excl. VM substractedexcl. VM included
proton target
Q2=2.5 GeV2/c2
10-3
10-2
10-1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1z
mu
ltip
licit
y
HERMES Preliminary
K-
excl. VM substractedexcl. VM included
proton target
Q2=2.5 GeV2/c2
• charge separated Kaon multiplicities• Systematic uncertainty mainly from hadron PID correction• low K− statistics =⇒ more statistics under way
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 31
-
and Summary
• HERMES continues happily taking data with a transverse polarized p-target
Integrated DIS HERA Run II (polarized)
0
500
1000
1500
2000
2500
3000
x 10 3
0 50 100 150 200 250 300Day of Running
Nu
mb
er o
f p
ol.
DIS
eve
nts
2002/03
2003
2004
2005
• Transversity, Sivers and friends =⇒ G. Schnell• Exclusive reactions =⇒ Lq
DVCS: AUT =⇒ sensitive to GPD H + E =⇒ Ju =⇒ Y. Miyachiexclusive ρ0 / π+: AUT =⇒ sensitive to GPD E / H̃+ Ẽ =⇒ A. Rostomyan
• finalize most of HERA-I analysis• gd1 ,gp1 ,gn1 ,b1,∆q
• Extraction of FF very close• new Millennium extraction of ∆q (Purity free)• new ∆s + ∆s̄ extraction using isoscalor method
• the nice description of HERMES data by Monte Carlo will allowa new extraction of ∆G/G
Many more results to come from physics topics not touched in this talk
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 32
-
and Summary
• HERMES continues happily taking data with a transverse polarized p-targetIntegrated DIS HERA Run II (polarized)
0
500
1000
1500
2000
2500
3000
x 10 3
0 50 100 150 200 250 300Day of Running
Nu
mb
er o
f p
ol.
DIS
eve
nts
2002/03
2003
2004
2005
• Transversity, Sivers and friends =⇒ G. Schnell• Exclusive reactions =⇒ Lq
DVCS: AUT =⇒ sensitive to GPD H + E =⇒ Ju =⇒ Y. Miyachiexclusive ρ0 / π+: AUT =⇒ sensitive to GPD E / H̃+ Ẽ =⇒ A. Rostomyan
• finalize most of HERA-I analysis• gd1 ,gp1 ,gn1 ,b1,∆q
• Extraction of FF very close• new Millennium extraction of ∆q (Purity free)• new ∆s + ∆s̄ extraction using isoscalor method
• the nice description of HERMES data by Monte Carlo will allowa new extraction of ∆G/G
Many more results to come from physics topics not touched in this talk
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 32
-
and Summary
• HERMES continues happily taking data with a transverse polarized p-target
Integrated DIS HERA Run II (polarized)
0
500
1000
1500
2000
2500
3000
x 10 3
0 50 100 150 200 250 300Day of Running
Nu
mb
er o
f p
ol.
DIS
eve
nts
2002/03
2003
2004
2005
• Transversity, Sivers and friends =⇒ G. Schnell• Exclusive reactions =⇒ Lq
DVCS: AUT =⇒ sensitive to GPD H + E =⇒ Ju =⇒ Y. Miyachiexclusive ρ0 / π+: AUT =⇒ sensitive to GPD E / H̃+ Ẽ =⇒ A. Rostomyan
• finalize most of HERA-I analysis• gd1 ,gp1 ,gn1 ,b1,∆q
• Extraction of FF very close• new Millennium extraction of ∆q (Purity free)• new ∆s + ∆s̄ extraction using isoscalor method
• the nice description of HERMES data by Monte Carlo will allowa new extraction of ∆G/G
Many more results to come from physics topics not touched in this talk
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 32
-
and Summary
• HERMES continues happily taking data with a transverse polarized p-target
Integrated DIS HERA Run II (polarized)
0
500
1000
1500
2000
2500
3000
x 10 3
0 50 100 150 200 250 300Day of Running
Nu
mb
er o
f p
ol.
DIS
eve
nts
2002/03
2003
2004
2005
• Transversity, Sivers and friends =⇒ G. Schnell• Exclusive reactions =⇒ Lq
DVCS: AUT =⇒ sensitive to GPD H + E =⇒ Ju =⇒ Y. Miyachiexclusive ρ0 / π+: AUT =⇒ sensitive to GPD E / H̃+ Ẽ =⇒ A. Rostomyan
• finalize most of HERA-I analysis• gd1 ,gp1 ,gn1 ,b1,∆q
• Extraction of FF very close• new Millennium extraction of ∆q (Purity free)• new ∆s + ∆s̄ extraction using isoscalor method
• the nice description of HERMES data by Monte Carlo will allowa new extraction of ∆G/G
Many more results to come from physics topics not touched in this talk
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 32
-
and Summary
• HERMES continues happily taking data with a transverse polarized p-target
Integrated DIS HERA Run II (polarized)
0
500
1000
1500
2000
2500
3000
x 10 3
0 50 100 150 200 250 300Day of Running
Nu
mb
er o
f p
ol.
DIS
eve
nts
2002/03
2003
2004
2005
• Transversity, Sivers and friends =⇒ G. Schnell• Exclusive reactions =⇒ Lq
DVCS: AUT =⇒ sensitive to GPD H + E =⇒ Ju =⇒ Y. Miyachiexclusive ρ0 / π+: AUT =⇒ sensitive to GPD E / H̃+ Ẽ =⇒ A. Rostomyan
• finalize most of HERA-I analysis• gd1 ,gp1 ,gn1 ,b1,∆q
• Extraction of FF very close• new Millennium extraction of ∆q (Purity free)• new ∆s + ∆s̄ extraction using isoscalor method
• the nice description of HERMES data by Monte Carlo will allowa new extraction of ∆G/G
Many more results to come from physics topics not touched in this talk
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 32
-
and Summary
• HERMES continues happily taking data with a transverse polarized p-target
Integrated DIS HERA Run II (polarized)
0
500
1000
1500
2000
2500
3000
x 10 3
0 50 100 150 200 250 300Day of Running
Nu
mb
er o
f p
ol.
DIS
eve
nts
2002/03
2003
2004
2005
• Transversity, Sivers and friends =⇒ G. Schnell• Exclusive reactions =⇒ Lq
DVCS: AUT =⇒ sensitive to GPD H + E =⇒ Ju =⇒ Y. Miyachiexclusive ρ0 / π+: AUT =⇒ sensitive to GPD E / H̃+ Ẽ =⇒ A. Rostomyan
• finalize most of HERA-I analysis• gd1 ,gp1 ,gn1 ,b1,∆q
• Extraction of FF very close• new Millennium extraction of ∆q (Purity free)• new ∆s + ∆s̄ extraction using isoscalor method
• the nice description of HERMES data by Monte Carlo will allowa new extraction of ∆G/G
Many more results to come from physics topics not touched in this talk
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 32
-
and Summary
• HERMES continues happily taking data with a transverse polarized p-target
Integrated DIS HERA Run II (polarized)
0
500
1000
1500
2000
2500
3000
x 10 3
0 50 100 150 200 250 300Day of Running
Nu
mb
er o
f p
ol.
DIS
eve
nts
2002/03
2003
2004
2005
• Transversity, Sivers and friends =⇒ G. Schnell• Exclusive reactions =⇒ Lq
DVCS: AUT =⇒ sensitive to GPD H + E =⇒ Ju =⇒ Y. Miyachiexclusive ρ0 / π+: AUT =⇒ sensitive to GPD E / H̃+ Ẽ =⇒ A. Rostomyan
• finalize most of HERA-I analysis• gd1 ,gp1 ,gn1 ,b1,∆q
• Extraction of FF very close• new Millennium extraction of ∆q (Purity free)• new ∆s + ∆s̄ extraction using isoscalor method
• the nice description of HERMES data by Monte Carlo will allowa new extraction of ∆G/G
Many more results to come from physics topics not touched in this talk
E.C. Aschenauer Pan Pacific, Tokyo, July 2005 32
The Spin Structure of the NucleonHERA at DESYThe HERMES DetectorDIS KinematicsDeep Inelastic Scattering Virtual Photon AsymmetryWorld data on $mathbf {g_1/F_1}$World data on $mathbf {xg_1(x,Q^2)}$The structure function $mathbf {b_1(x,Q^2)}$The structure function $mathbf {b_1(x,Q^2)}$Semi-inclusive DISSemi-inclusive DIS$Delta $q-ExtractionMeasured Hadron AsymmetriesQuark PolarizationsPolarized Quark DensitiesSU(2)-FlavorSymmetry Breaking(?)How to measure $Delta G$Direct Measurements of $displaystyle mathbf {Delta G/G}$ Interpretation ?!Pairs of high-$P_T$ HadronsWhy is a FF extraction important for HERMESHow to extract FF/Multiplicities at HERMESData - MC AgreementExclusive VM Contamination$displaystyle mathbf {pi ^{pm }}$ - Multiplicity vs. z$ displaystyle mathbf {pi ^{pm }}$ - Multiplicity vs. z$displaystyle mathbf {pi ^{pm }}$ - Multiplicity vs. $displaystyle mathbf {Q^2}$ and $displaystyle mathbf {x_{bj}}$ $ displaystyle mathbf {K^{pm }}$ - Multiplicity vs. zand Summary