Heavy quarkonia production at STAR

of 22 /22
D. Kikola, ICHEP 2010 1 Heavy quarkonia production at STAR Daniel Kikoła for the STAR collaboration Daniel Kikoła for the STAR collaboration Warsaw University of Technology/ Warsaw University of Technology/Lawrence Berkeley National La

Embed Size (px)

description

Heavy quarkonia production at STAR. Daniel Kikoła for the STAR collaboration Warsaw University of Technology/ Lawrence Berkeley National Laboratory. Why heavy quarks?. Large mass = early production (at RHIC) Quarkonia family: c  c : J/ ψ ψ ’,  c ... - PowerPoint PPT Presentation

Transcript of Heavy quarkonia production at STAR

  • Heavy quarkonia production at STAR

    Daniel Kikoa for the STAR collaborationWarsaw University of Technology/Lawrence Berkeley National Laboratory

    D. Kikola, ICHEP 2010

  • Why heavy quarks?Large mass = early production (at RHIC)

    Quarkonia family: cc: J/ , c ...bb: (1S), (2S), (3S) ...

    J/ suppression classic QGP signatureT. Matsui, H. Satz, Phys. Lett. B178, 416 (1986). due to the color screening of the binding potential

    Quarkonia suppression pattern QGP temperatureT and binding energy determine suppressionmodel dependentA.Mocsy Eur.Phys.J.C61:705-710,2009

    D. Kikola, ICHEP 2010

  • J/ suppression: complicationsProduction mechanism in p+p not well understoodno model describes pT spectrum and polarization simultaneously (Int.J.Mod.Phys.A21:3857-3916,2006, arXiv:hep-ph/0602091v2)

    Feed-down (up to 50% of all J/) (C. da Silva, arXiv:0907.4696v2)

    Cold matter effects: shadowing, nuclear absorption, co-mover absorption ... (E. G. Ferreiro at al: arXiv:0903.4908v1, A. D. Frawley at al: arXiv:0806.1013v2 )

    Hot matter effects: regeneration, dissociation by gluons, ...(R.Rapp, arXiv:0807.2470v2)

    D. Kikola, ICHEP 2010

  • Basic strategybaseline - p+p

    normal suppression - d+Au

    anomalous suppression - Au+Au

    RAA (dAu) = 1 if no modification of the production in the medium

    D. Kikola, ICHEP 2010

  • STAR detectorJ/ e+e-, e+e-Large acceptance: full 2 coverage in ||< 1Barrel E-M CalorimeterTPC

    D. Kikola, ICHEP 2010

  • J/ production at STAR

    D. Kikola, ICHEP 2010

  • Low-pT J/ in Au+Au 200 GeV

    Model (green band) includes: color screening in QGP, dissociation in hadronic phase, statistical recombination, B J/ feed-down and formation time effectsNew Au+Au results with minimum inner material soon (5x higher statistics)STAR PreliminarySTAR PreliminaryPHENIX: Phys. Rev. Lett. 98, 232301 (2007)STAR Preliminary0-20%20-80%STAR Preliminary0-20%20-80%

    D. Kikola, ICHEP 2010

  • J/ production test: high-pT measurementsNRQCD (LO CO+CS) describes data well, little room for feed down from y, cc, BG. C. Nayak, M. X. Liu, and F. Cooper, Phys. Rev. D68, 034003 (2003), and private communication

    NNLO CS predicts a steeper pt dependenceP. Artoisenet et al., Phys. Rev. Lett. 101, 152001 (2008), and J.P. Lansberg private communication Phys.Rev.C80:041902,2009

    D. Kikola, ICHEP 2010

  • J/ production test: high-pT measurements Contrast to strong suppression of open charm B.Abedev et al.,Phys.Rev.Lett. 98 (2007), 192301, S.Adler et al., Phys.Rev.Lett. 96(2006) 032301, [4] A. Adil and I. Vitev, Phys. Lett. B649, 139 (2007), and I. Vitev private communication; [3] S. Wicks et al., Nucl. Phys. A784, 426 (2007), and W. A. Horowitz private communication.

    Rising trend reproduced when B feed-down and formation time effects included [2] R. Rapp, X. Zhao, nucl-th/0806.1239No suppression at high pTRAA(pT > 5 GeV/c) = 1.4 0.4 0.2

    Phys.Rev.C80:041902,2009

    D. Kikola, ICHEP 2010

  • How important is B J/ feed-down ? If B J/ then strong near side correlation No significant near side correlation observed B mesons contribution to J/ yield : (13 5)% for pTJ/ > 5 GeV/c STAR PreliminaryJ/- hadron azimuthal angle correlationPhys.Rev.C80:041902,2009

    D. Kikola, ICHEP 2010

  • Next level:

    D. Kikola, ICHEP 2010

  • The GoodSmall regeneration and co-mover absorption(Z.W. Lin and C.M Ko PLB 503:104 (2001), R. Rapp at all arXiv:0807.2470v2 )Low combinatorial background

    The BadLow production rate10-9/min-bias pp (3 orders of magnitude smaller than J/)Separation of (1S), (2S), (3S) requires good mass resolution

    D. Kikola, ICHEP 2010

  • baseline: in p+p 200 GeVarXiv:1001.2745v2 [nucl-ex]Color Singlet Model (CSM) PRL 100, 032006(2008), Color Evaporation Model (CEM) Phys. Rept. 462, 125 (2008)Consistent with CEM, (inconsistent with CSM: ~ 2)Consistent with world data trend

    D. Kikola, ICHEP 2010

  • Cold nucl. matter: in d+AuarXiv:0907.4538 Consistent with Nbin scaling Cold Nuclear Matter effects (shadowing) are rather small

    D. Kikola, ICHEP 2010

  • in Au+Au 200 GeV 4.6 significance, 95 Signal counts in 8 < m < 11 GeV/c2 Includes , Drell-Yan + bb Analysis in progress0-60%, L = 496 mb-1

    D. Kikola, ICHEP 2010

  • Summary and OutlookHigh-pT J/measurement in p+p - a crucial test of quarkonia production in QCD(B J/ / J/ = (13 5)% for pT > 5 GeV/c No J/ suppression at high-pT in Cu+Cu 200GeV: RAA ~ 1First cross section measurements at RHIC energies:p+p results consistent with Color Evaporation Modeld+Au: RdAu = 0.78 0.28 (stat.) 0.20 (sys.)

    Outlooknew p+p and Au+Au 200 GeV data with new ToF available soon (5x higher statistics)high-pT J/ in Au+Au and RAA in Au+Au

    D. Kikola, ICHEP 2010

  • Backup

    D. Kikola, ICHEP 2010

  • Heavy quarks = early production

    D. Kikola, ICHEP 2010

  • Cold Nuclear Matter Eff.Initial state(Before cc formation) Final state1. Shadowing2. Initial parton energy lossccD D Nuclear absorption and/or co-movers interaction

    D. Kikola, ICHEP 2010

  • Quarkonia familyH. Satz, J. Phys. G 32 (2006) R25

    D. Kikola, ICHEP 2010

  • Disentangle contributions via Correlations UA1:PLB 200, 380(1988) and PLB 256,112(1991)J/-hadron correlation can shed light on different contribution to J/ production1)2)No near side correlationStrong near side correlation

    D. Kikola, ICHEP 2010

  • Hot wind dissociationHot wind dissociation high pT direct J/ suppression (H. Liu, K. Rajagopal and U.A. Wiedemann, PRL 98, 182301(2007) and hep-ph/0607062, M. Chernicoff, J. A. Garcia, A. Guijosa hep-th/0607089)Hot wind dissociationT. Gunji, QM08AdS+CFT with hydro

    D. Kikola, ICHEP 2010

    Main complications: production mechanism not fully established -> different kinematics2. Unknown feedown from higher exited charmonium states or B-mason3. modification of gluon distribution in nucleon inside nucleus compared to free proton 1,2 and 3 - may change the interpretation of p+A results2 - may change interpretation of A+A results (co-mover absorption, formation time)

    How to measure Quarkonia dissociation in QGPstrategy pp baseline, cold matter effects in p+A, QGP effects in A+A*J/psi is complicated, lets try go to higher stateGoodCo-mover absorption is small and recombination negligible at RHIC ConsLow production rates: of 10-9 per minbias pp interactionProblems:Drell-Yan and b-bar background Good resolution needed to separate 3 S-statesSimulations show this will be possible with high statistics data

    m(1S)=9.46 GeV/c2 m(2S)=10.02 GeV/c2 m(3S)=10.35 GeV/c2STAR has measure upsilon prduction in p+p although with limited precison. Results consistent with color evaporation model and 2 simga form Color singletResults follow world data trend with energy.

    We have also resutls of RdAu for Upsilon.Better signal but still large errors on RdAu due to p+p statistics.Consistent with Nbin scaling Cold Nuclear Matter effects (Shadowing) are not large.no continuum subtracted*Why heavy quarks?large c and b massesproduction in initial hard parton scatterings, event before complete interpenetration of the nuclei formation time at RHIC and SPS short compared to QGP formation ( ~1 fm) can be used as a probe of hot and dense matter created in nucleus - nucleus collisionsCold matter effects are complicated:can be initial1.gluon saturation at low x2. shadowing 3. initial parton energy loss

    of final state: dissociation due to interaction with comers of absorption by nucleusQuarkonia family: charmonium and botomiumsmall radius and high bounding energy for Upsilon compared to others

    dE - bounding energy - biggest for grooun states, J/psi and Upsilon