Gravitational Wave Astronomy - ICTP – SAIFR · Gravitational Wave Astronomy Riccardo Sturani...

of 62 /62
Gravitational Wave Astronomy Riccardo Sturani International Institute of Physics - UFRN - Natal (Brazil) Dark Universe ICTP-SAIFR, Oct 25th, 2019 Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 1 / 29

Embed Size (px)

Transcript of Gravitational Wave Astronomy - ICTP – SAIFR · Gravitational Wave Astronomy Riccardo Sturani...

  • Gravitational Wave Astronomy

    Riccardo Sturani

    International Institute of Physics - UFRN - Natal (Brazil)

    Dark Universe ICTP-SAIFR, Oct 25th, 2019

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 1 / 29

  • GW basics in 1 slide

    Gauged fixed metric perturbations hµν after discarding h0µ components,which are not radiative → transverse waves

    hij =

    h+ h× 0h× −h+ 00 0 0

    2 pol. state like any mass-less particle

    h+

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 2 / 29

  • LIGO and Virgo: very precise rulers

    Robert Hurt (Caltech)

    Light intensity ∝ light travel difference in perpendicular armsEffective optical path increased by factor N ∼ 500 via Fabry-Perot cavitiesPhase shift ∆φ ∼ 10−8 can be measured ∼ 2πN∆L/λ→ ∆L ∼ 10−15/N m

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 3 / 29

  • Almost omnidirectional detectors

    Detectors measure hdet : linear combination F+h+ + F×h×

    -1 0 1F+

    L H

    h+,× depend on sourcepattern functions F+,× depend on orientation source/detector

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 4 / 29

  • Almost omnidirectional detectors

    Detectors measure hdet : linear combination F+h+ + F×h×

    -1 0 1F+

    L V

    h+,× depend on sourcepattern functions F+,× depend on orientation source/detector

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 4 / 29

  • Pattern functions:√

    F 2+ + F2×

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 5 / 29

  • The LIGO and Virgo observatories

    • Observation run O1 Sept ’15 - Jan ’16∼ 130 days, with 49.6 days of actual data, PRX(2016) 4, 041014, 2 detectors, 3BBH

    • O2 Dec. ’16 – Jul’17 2 det’s + Aug ’17 3 det’s3(+4) BBH + 1BNS in double (triple) coinc.

    • O3a: 3 detectors, Apr 2nd - Oct 1st 2019• O3b: Nov 1st – 6 monthsIn ∼ end of 2019 Japanese KAGRA and ∼ 2025Indian INDIGO will join the collaboration

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 6 / 29

  • Wave generation: localized sources

    Einstein formula relates hij to the source quadrupole moment Qij

    Qij =

    ∫d3xρ

    (xixj −

    1

    3δijx

    2

    ), v 2 ' GNM/r , η ≡ m1m2/M2

    hij ∼ g(θLN )2GND

    d2Qijdt2

    ' 2GNηMv2

    Dcos(2φ(t))

    f = 2kHz( r

    30Km

    )−3/2( M3M�

    )1/2< fMax ' 12kHz

    (M

    3M�

    )−1v = 0.3

    (f

    1kHz

    )1/3(M

    M�

    )1/3<

    1√6

    Geometric factor g(θLN ) takes account of transversality projection(angular momentum L of the binary, observation direction N)

    h+ ∼1 + cos2(θLN )

    2ηMv 2

    Dcosφ(ts/M, η, S

    2i /m

    4i , . . .)

    h× ∼ cos(θLN ) ηMv 2

    Dsinφ(ts/M, η, . . .)

    Amplitudes of 2 polarizations modulated by θLN (h↗ for θLN ↘0), never both vanishingunlike dipolar motion for the electromagnetic case

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 7 / 29

  • Wave generation: localized sources

    Einstein formula relates hij to the source quadrupole moment Qij

    Qij =

    ∫d3xρ

    (xixj −

    1

    3δijx

    2

    ), v 2 ' GNM/r , η ≡ m1m2/M2

    hij ∼ g(θLN )2GND

    d2Qijdt2

    ' 2GNηMv2

    Dcos(2φ(t))

    f = 2kHz( r

    30Km

    )−3/2( M3M�

    )1/2< fMax ' 12kHz

    (M

    3M�

    )−1v = 0.3

    (f

    1kHz

    )1/3(M

    M�

    )1/3<

    1√6

    Geometric factor g(θLN ) takes account of transversality projection(angular momentum L of the binary, observation direction N)

    h+ ∼1 + cos2(θLN )

    2ηM(1 + z)v 2

    D(1 + z)cosφ(tO/(M(1 + z)), η, S

    2i /m

    4i , . . .)

    h× ∼ cos(θLN ) ηM(1 + z)v 2

    D(1 + z)sinφ(tO/(M(1 + z)), η, . . .)

    Amplitudes of 2 polarizations modulated by θLN (h↗ for θLN ↘0), never both vanishingunlike dipolar motion for the electromagnetic case

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 7 / 29

  • Wave generation: localized sources

    Einstein formula relates hij to the source quadrupole moment Qij

    Qij =

    ∫d3xρ

    (xixj −

    1

    3δijx

    2

    ), v 2 ' GNM/r , η ≡ m1m2/M2

    hij ∼ g(θLN )2GND

    d2Qijdt2

    ' 2GNηMv2

    Dcos(2φ(t))

    f = 2kHz( r

    30Km

    )−3/2( M3M�

    )1/2< fMax ' 12kHz

    (M

    3M�

    )−1v = 0.3

    (f

    1kHz

    )1/3(M

    M�

    )1/3<

    1√6

    Geometric factor g(θLN ) takes account of transversality projection(angular momentum L of the binary, observation direction N)

    h+ ∼1 + cos2(θLN )

    2ηMv 2

    dLcosφ(tO/M, η, S2i /m4i , . . .)

    h× ∼ cos(θLN ) ηMv 2

    dLsinφ(tO/M, η, . . .)

    Amplitudes of 2 polarizations modulated by θLN (h↗ for θLN ↘0), never both vanishingunlike dipolar motion for the electromagnetic case

    h sensitive to red-shifted masses M → M(1 + z) ≡M

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 7 / 29

  • Binary systems and compact detected so far

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 8 / 29

  • https://www.gw-openscience.org/catalog/

    See however Princeton’s groupresultsarXiv:1904.07214

    20 40 60 80 100Msourcetot (M )

    1.00

    0.75

    0.50

    0.25

    0.00

    0.25

    0.50

    0.75

    1.00

    eff

    Binary black hole events in O1 and O2

    LVC-reportedThis workZackay et al. (2019)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    p ast

    ro

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 9 / 29

  • Sky localization of GW binary systems detected so far

    0h 21h 18h 15h 12h 9h 6h 3h 0h0°

    30°

    60°60°

    30°

    -30°

    -60° -60°

    -30°GW

    1708

    17

    GW17

    0104

    GW170104

    GW170104

    GW17

    0823

    GW170823

    GW170608

    GW17

    0809

    GW170814

    0h 21h 18h 15h 12h 9h 6h 3h 0h0°

    30°

    60°60°

    30°

    -30°

    -60° -60°

    -30°

    GW170

    818

    GW15

    1012

    GW151012

    GW150914

    GW15

    1226

    GW151226

    GW17

    0729

    GW170729

    Sky localization regions shrinks when Virgo in: 3rd detector matters!

    LIGO/Virgo 1811.12907

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 10 / 29

  • Astro sources emitting transient GWs/EM/ν radiation

    Coalescing binary systems of compact objects: η ≡ m1m2/M2

    ∆EGW ∼ 4× 10−2M�η(

    M

    3M�

    )5/3(fmax

    1 kHz

    )2/3A good proxy of the fmax is the Innermost Stable Circular Orbit frequency

    fISCO =1

    6√

    6

    1

    M' 2kHz

    (M

    M�

    )−1For NS-NS/BH ejected material supposed to produce short (< 2 sec) GRBsEγ ∼keV-MeV, ejected sub-relativistic material may produce radio signalsν: baryon loaded jets may emit νs:

    TeV-PeV ν @ γ emissionPeV-EeV ν @ optical afterglow

    NS-NS/BH → energetic outflows at different timescale/wavelengthRapid neutron capture in the sub-relativistic ejecta can produce a kilonova ormacronova, with optical and near-infrared signal (hours - weeks)

    Eventually radio blast from sub-relativistic outflow (months to years)

    LIGO/Virgo + EM partners ApJ Let. 2016

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 11 / 29

  • Association with 20 short GRB during O1(before GW170817)

    redshift

    10−2 10−1 100

    cumulativedistribution

    10−2

    10−1

    100

    BNS exclusion

    NS-BH exclusion

    BNS extrapolation

    NS-BH extrapolation

    EM observation

    GW searched in a [-5,+1) sec window with GRBGW constraints far from EM exclusion distance, but extrapolation to design AdvancedLIGO sensitivity (2 years of data) will lead to detection/non-trivial constraints

    LIGO/Virgo Astrophys.J. 841 (2017) no.2, 89Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 12 / 29

  • GW170817

    GW trigger on Aug 17th, 2017,ended at 12h 41’ 04.4” UTC, first inin LIGO Hanford, then confirmed asa triple coincidence → localized inan area of ∼ 28 deg2

    GRB trigger from Fermi-GBM 1.7”after

    first optical image 10.87 hrafterwards by One-Meter TwoHemisphere team with Swopetelescope at Las CampanasObservatory in Chile

    X obtained by the X-Ray Telescopeon Swift after 14.9 h(NuSTAR 16.8 h)

    radio (∼ 3, 6 GHz) by VLA 16 daysafter GW event

    LIGO/Virgo & Partner Astronomy groups, Astrophys.J. 848 (2017) no.2, L12

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 13 / 29

  • An example of the optical image

    Transient Optical Robotic Observatory of the South

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 14 / 29

  • GW170817 and ν detectors

    Potential νs down-going for Antares and IceCube, grazing for Auger

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 15 / 29

  • GW170817 and ν detectors

    Potential νs down-going for Antares and IceCube, grazing for AugerSource location at optical detection

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 15 / 29

  • ANTARES and ICECube look for ν

    IceCube and ANTARES looked forµ − ν at ±500sec , observation for 2weeksno detectionPierre Auger for > 1017 eV, grazinggood for τ production at 1018 eV

    10 3

    10 2

    10 1

    100

    101

    102

    103

    E2 F

    [Ge

    Vcm

    2 ]

    ±500 sec time-window

    AugerIceCube

    ANTARES

    Kimura et al.EE optimistic

    04

    8

    Kimura et al.EE moderate

    04

    Kimura et al.prompt0

    GW170817 Neutrino limits (fluence per flavor: x + x)

    102 103 104 105 106 107 108 109 1010 1011E/GeV

    10 3

    10 2

    10 1

    100

    101

    102

    103

    E2 F

    [Ge

    Vcm

    2 ]

    14 day time-window

    Auger

    IceCube

    ANTARES

    Fang &Metzger30 days

    Fang &Metzger3 days

    LIGO/Virgo, ANTARES, ICECUBE and Pierre Auger, Astrophys.J. 850 ’17 2, L35

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 16 / 29

  • BNS NSBH BBH

    10−10

    10−9

    10−8

    10−7

    10−6

    10−5

    10−4

    10−3

    Rat

    eE

    stim

    ates( M

    pc−

    3yr−

    1)

    Astrophysical predictions, upper limit from S5/6/O1 and observation from O1/O2

    LIGO/Virgo CQG (’10) 27 173001, PRX (’16), APJ (2016), PRL 119 (’17)

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 17 / 29

  • Fundamental physics of Neutron stars

    Tidal deformability Λ ' R−5Qab/ (∂a∂bUtidal ) depends on Equation ofState

    Determinaton of Λ1,2(assuming same EoS for 1,2)

    0 250 500 750 1000 1250Λ1

    0

    500

    1000

    1500

    2000

    Λ2

    WFF1

    APR4

    SLy

    MPA1

    H4

    MS1b

    MS1

    More Compact

    Less Compact

    Shading Common EoS for 2 bodies and constrain for mmax > 1.97M�Lines 50%, 90% countours, No mimimum mmax , independent EoSs

    LIGO/Virgo collaboration, arXiv:1805.11581

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 18 / 29

  • Fundamental physics of Neutron stars II

    Parametrizing EoS with Γ ≡ �+pp

    dpd�

    , Γ(x) = exp(∑

    k γkxk), x ≡ log p

    p0

    γ0 ∈ [0.2, 2], γ1 ∈ [1.6, 1.7], γ2 ∈ [0.6, 0.6]γ3 ∈ [0.02, 0.02], Γ(p) ∈ [0.6, 4.5]

    L. Lindblom PRD 82, 103011 (2010)

    Constraints on Mass vs- radius and p vs. rho

    8 10 12 14

    R (km)

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    m(M�

    )

    WF

    F1

    AP

    R4

    SL

    yM

    PA

    1

    H4

    BHlim

    it

    Buch

    dahl

    limit

    0

    1

    0 1 1014 1015

    ρ [g/cm3]

    1032

    1033

    1034

    1035

    1036

    1037

    p[d

    yn/c

    m2 ]

    ρnuc

    2ρnuc

    6ρnuc

    lighter, heavier 90% prior, posterior

    LIGO/Virgo collaboration, arXiv:1805.11581

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 19 / 29

  • Cosmology

    From GWs only: luminosity distancedL ∼ 40+8−14Mpc, viewing angleθLN > 125

    o

    Fixing dL from info from EM location

    + Hubble relation dLH0 = z

    1 Hubble constant fromSuperNovae (SHoES)148o < θLN < 166

    o

    Riess et al. ApJ 826, 56 ’16

    2 from Planck157 < θLN < 177

    o

    Planck A&A, 594, A13 ’16

    GW almost coincident with EM=⇒ ∆vGW /c ∼ 10−15

    LIGO/Virgo, Fermi Gamma-Ray BurstMonitor, INTEGRAL Ap.J. 848 (2017)2, L13

    50 60 70 80 90 100 110 120H0 (km s 1 Mpc 1)

    1.0

    0.9

    0.8

    0.7

    0.6

    0.5

    0.4

    cos

    180170

    160

    150

    140

    130

    120

    (deg

    )

    GW170817Planck17

    SHoES18

    LIGO/Virgo Nature 551 ’17 7678, 85

    h′′+× + 2

    a′

    ah′+,× + c

    2s∇2h+,× = 0

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 20 / 29

  • Determining H0 without EM counterpart

    Hubble law: z = H0dLDL can be measured, z degenerate with M, however if

    the source in the sky has been localised (α, δ)

    GW sources are in the galaxy catalogue with known red-shift

    P(z ,DL|ci ) =∫

    dM d~θ dα dδ P(DLM, ~θ, α, δ|ci )π(z , |α, δ)

    Schutz, Nature (1986)323 310W. Del Pozzo,Phys.Rev.D86 (2012)043011

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 21 / 29

  • Galaxy catalogs and H0

    20 40 60 80 100 120 140

    H0 (km s−1 Mpc−1)

    0.00

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    p(H

    0)

    (km−

    1s

    Mp

    c)

    Joint BBH+GW170817 Counterpart

    Joint BBH

    GW170817 Counterpart

    Prior (Uniform)

    Planck

    SH0ES

    sky localization from DES-Y1(GW170814)

    GWENS (GW170818)

    GLADE (GW150914, GW151226,

    GW170608)

    LIGO/Virgo, arXiv:1908.06060

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 22 / 29

  • Upper bounds on sub-solar mass compact binariescoalescence rate

    Mass/M� Rate(Gpc−3yr−1) Horizon(Mpc)

    1 < 106 1000.2 < 2× 104 30

    SNR ∝ M5/6c , Mc ≡ η3/5MLIGO/Virgo arXiv:1808.04771, 1904.08976

    Fraction f of MACHOs in binary∼ 10%× ΩMacho =⇒∼ 10−3ΩMacho in coalescing bina-ries coalescing within H−10

    T. Nakamura et al. in Astrophys.J.L.

    487 (1997) L139-L142

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 23 / 29

  • Ongoing O3: towards measuring merger distribution

    At https://gracedb.ligo.org/superevents/public/O3Summary of candidate detections from O3a:33 candidate events, 7 of which possibly involving at least a NS

    Expected merger distribution from Star Formation Rate (−) orSFR+Poissian distributed delay (−−)

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 24 / 29

  • Ongoing O3: towards measuring merger distribution

    At https://gracedb.ligo.org/superevents/public/O3Summary of candidate detections from O3a:33 candidate events, 7 of which possibly involving at least a NS

    Expected merger distribution from Star Formation Rate (−) orSFR+Poissian distributed delay (−−)

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 24 / 29

  • Fundamental GR: inspiral analytic model

    Inspiral h = A cos(φ(t)) ȦA � φ̇Virial relation:

    v ≡ (GNMπfGW )1/3 η =m1m2

    (m1 + m2)2

    E (v) = −12ηMv2

    (1 + #(η)v2 + #(η)v4 + . . .

    )

    P(v) ≡ −dEdt

    =32

    5GNv10(1 + #(η)v2 + #(η)v3 + . . .

    )

    E(v)(P(v)) known up to 3(3.5)PN

    1

    2πφ(T ) =

    1

    ∫ Tω(t)dt = −

    ∫ v(T ) ω(v)dE/dvP(v)

    dv

    ∼∫ (

    1 + #(η)v2 + . . .+ #(η)v6 + . . .) dvv6

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 25 / 29

  • Fundamental GR: inspiral analytic model

    Inspiral h = A cos(φ(t)) ȦA � φ̇Virial relation:

    v ≡ (GNMπfGW )1/3 η =m1m2

    (m1 + m2)2

    E (v) = −12ηMv2

    (1 + #(η)v2 + #(η)v4 + . . .

    )

    P(v) ≡ −dEdt

    =32

    5GNv10(1 + #(η)v2 + #(η)v3 + . . .

    )

    E(v)(P(v)) known up to 3(3.5)PN

    1

    2πφ(T ) =

    1

    ∫ Tω(t)dt = −

    ∫ v(T ) ω(v)dE/dvP(v)

    dv

    ∼∫ (

    1 + #(η)v2 + . . .+ #(η)v6 + . . .) dvv6

    PN Coefficients (tidal ∼ v10)Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 25 / 29

  • Parameter estimation from φ(t)

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 26 / 29

  • Testing the PN series with O1/2

    −1PN 0 P

    N0.5

    PN 1 PN

    1.5PN 2 P

    N

    2.5PN

    (l)

    3 PN

    3 PN(l)

    3.5PN

    10−3

    10−2

    10−1

    100

    101

    |δϕ̂i|

    GW150914GW151226GW170104GW170608GW170814CombinedCombined (SEOBNRv4)

    Precision in measuring the PN coefficients ∼ 100%: one cannot both measure the astroparameters and test GR with same detection! Unique probe of high PN-orders

    LIGO/Virgo arXiv:1903.04467

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 27 / 29

  • Precision gravity

    Future 3rd generetaion detectors (Einstein Telescope, Cosmic Explore) / spacetelescope LISA will detect BBH binary signals with SNR 10− 102, with few goldenevents with SNR ∼ 103.Templates few % accurate OK for characterising a source with SNR O(10) (typical forLIGO/Virgo)for SNR ∼ 103 residual after extracting that source will have SNR ∼ O(10)

    1 baising parameter estimation

    2 contaminating the extraction of additional sources.

    h(f ) ∝ f −7/6M5/6c

    ∆ti→m ∝ M−5/3c (f −8/3i − f−8/3

    m )

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 28 / 29

  • Conclusions (Actually just the beginning!)

    After the beginning of GW astronomy, we have witnessed the start ofmulti-messenger astronomy

    New era for Cosmology: H0 from GWs! (and EM)

    New input for fundamental physics: test of gravity in the strong fieldat short scale, radiative gravity sector tested at large distances andsoon precision gravity is going to be needed

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 29 / 29

  • Spare slides

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 30 / 29

  • How binary systems progenitors formed? I

    Izzard et al. Proc. IAU 2012

    A binary system of massive stars(Mbinary < 100Modot) can gothrough a common envelope phasethat shrinks considerably the orbit andalign the spins→ collapse to compactobjectsBNS requires complex evolution frommassive binaries + mass transfer and2 core-collapse SN explosions throughwhich the binary system survivesAsymmetries in collapse imparts na-tal kick to the (galactic pulsar propermotion)

    LIGO/Virgo Ap.J. 850 (2017) L40

    vs.

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 31 / 29

  • For BBH another mechanism is possible

    Globular Cluster: medium with high density of black holes/stars, when 3black holes meet one is ejected and the binary shrinks

    LIGO/VirgoAstrophys.J. 818 (2016) no.2, L22

    Remnants of the first stars, produced at z ∼ 6 can give only a smallcontribution to the total rate

    T. Hartwig et al. Mon.Not.Roy.Astron.Soc. 460 (2016) L74

    Primordial black-holes? viable if 10−2 . MBH/M� . 1 (constraints fromevaporation, microlensing and CMB) but could grow later to 20-100 M�by mergerIf present in globular cluster may also explain their cosmologicalabundance as dark matter

    Sasaki M. et al. PRL 2016, Bird S. et al. PRL 2016, Clesse S. and Garćıa-Bellido Phys.

    Dark Univ. 2017

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 32 / 29

  • Metzer & Berger Astrophys.J. 746 (2012) 48

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 33 / 29

  • NS merger → short γRB → kilonova

    Jet models for the ejecta (spherical fireball model)

    ↓BNS merger emitted γ rays, expected opening angles θj ' 3o − 10o :early time θj ∼ 1/γ (jet collimated and relativistic), prompt emission from energydissipation inside relativistic jet: X rays ∼ energy output and geometryShock wave from sGRB jet hitting surrounding medium, θj < 1/γlate

    ↓broadband synchrotron afterglow, with radio source ∼ months and UV, optical &IR emission from sub-relativistic ejectaνs expected only from near GRB (or in late emission by flares and plateaus)

    Alexander et al., Astrophys. J. 848 (2017) no.2, L21

    NS merger frees neutron-rich radioactive species, decaying in kilonova in ∼ daysObservation: Faint gamma ray emission: 1046 erg (isotropic), raising Xray flux 2.4- 5.4 day, continued up to 15 days (Chandra), delayed afterglow

    ↓short GRB viewed off-axis θobs & 20o

    Berger E, 2014, ARA&A, 52, 43Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 34 / 29

  • GW170817

    BNS horizon (Mpc) was 218 for LL, 107 for LH, 58 for V

    LIGO/Virgo Phys.Rev.Lett. 119 (2017) 161101

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 35 / 29

  • Detected waves (best fit)

    0 6 12 18 24 30 36 42 48 54 60

    time observable (seconds)

    GW150914

    LVT151012

    GW151226

    GW170104

    GW170608

    GW170814

    GW170817

    LIGO/University of Oregon/Ben Farr

    Smaller objects can get closer =⇒ reach higher frequency before merger

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 36 / 29

  • Parameter estimation for GW170817

    Low spin prior High spin prior

    m1,2

    1.4 1.5 1.6 1.7 1.8m1 (M�)

    1.05

    1.10

    1.15

    1.20

    1.25

    1.30

    1.35

    1.40m

    2(M�

    )TaylorF2

    PhenomDNRT

    PhenomPNRT

    SEOBNRT

    1.4 1.6 1.8 2.0 2.2 2.4m1 (M�)

    0.7

    0.8

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    m2

    (M�

    )

    TaylorF2

    PhenomDNRT

    PhenomPNRT

    SEOBNRT

    Spin χeff = (m1S1z + m2S2z )/M - mass ratio q, distance - inclination

    −0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.12χeff

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    q

    χ < 0.89

    χ < 0.05

    100◦ 120◦ 140◦ 160◦ 180◦

    θJN

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    DL

    (Mp

    c)

    volumetric prior

    EM distance prior

    LIGO/Virgo PRL 119, 161101 (2017), arXiv:1805.11579Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 37 / 29

  • Templates need to be 2 orders of magnitude more accurate for use in LISA than inAdvanced LIGO/Virgo.

    SNR ∝ GNM5/6c

    D

    (∫f −4/3

    Sn(f )

    df

    f

    )1/2=

    (GNMc )5/6

    DS−1/2n (f̄ )

    (f−4/3

    i − f−4/3

    f

    )1/2=

    (GNMc )5/6

    DS−1/2n (fi )

    f−2/3

    i√∆f

    f7/3

    i

    ' 200(

    S1/2n Hz

    1/2

    10−24

    )−1 (η

    0.25

    )1/2 ( M10M�

    )5/6 (f

    150Hz

    )−2/3 ( D500Mpc

    )−1' 40

    (S

    1/2n Hz

    1/2

    10−21

    )−1 (η

    0.25

    )1/2 ( M70M�

    )5/6 (f

    10−4Hz

    )−7/6 ( D100Mpc

    )−1×(

    ∆f10−5Hz

    )1/2

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 38 / 29

  • Long duration signals

    Remember that:dt

    df=

    5

    96πη(πGNMf )

    −5/3 f −2

    t = 10yrs

    (M

    70M�

    )−5/3( f10−2Hz

    )−8/3

    ∆f ' 96π5

    (πGNMc f )5/3 f 2∆t ' 10−3Hz

    ( η0.25

    )( M70M�

    )5/3( f10−2Hz

    )2

    fISCO ' 1.5kHz(

    M

    3M�

    )−1fmax ' 20kHz

    (M

    3M�

    )−1

    fgw ' 134Hz(

    1.21M�Mc

    )5/8(1secτ

    )3/8

    τ ' 2.2sec(

    1.21M�Mc

    )5/3(100Hzfgw

    )8/3

    Need for longer duration templates, as for the third-generation groundbased detectors, since the signals are present in the data stream for months

    〈F 〉 ∼ 1− D − 12SNR2

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 39 / 29

  • Upper bounds on sub-solar mass compact binariescoalescence rate

    Mass/M� Rate(Gpc−3yr−1) Horizon(Mpc)

    1 < 106 1000.2 < 2× 104 30

    SNR ∝ M5/6c , Mc ≡ η3/5MLIGO/Virgo arXiv:1808.04771

    Fraction f of MACHOs in binary∼ 10%× ΩMacho =⇒∼ 10−3ΩMacho in coalescing bina-ries coalescing within H−10

    T. Nakamura et al. in Astrophys.J. 487

    (1997) L139-L142Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 40 / 29

  • Formula for the N of cycles x ≡ v2 ≡ (Mωs)2/3 = (πMfGW )2/3

    N = 2

    ∫ v

    v0

    ω(v ′)dE/dv ′(v ′)

    F (v)dv ′ =

    2ηGNM

    η2GNM

    ∫1

    v6(1 + #v2 + . . .

    )∝ 1ηv−5

    v = 0.12

    (M

    10M�

    fGW10Hz

    )1/3=⇒ v−5 = 4.7×104

    (M

    10M�

    fGW10Hz

    )−5/35×104

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 41 / 29

  • The EFT point of view on the 2-body problem

    Different scales in EFT (borrowing ideas from NRQCD):

    Very short distance. rs = GNMnegligible up to 5PN(effacement principle)

    Short distance: potentialgravitons Hµν , kµ ∼ (v/r , 1/r)with r ∼ rs/v2Long distance: GW’skµ ∼ (v/r , v/r) GWs hGWµνcoupled to point particles withmoments

    M. Beneke and V. A. Smirnov, NPB ’98; I. Stewart and W. Manohar, PRD ’07; W.Goldberger and I. Rothstein, PRD ’06

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 42 / 29

  • EFT for compact binary systems

    Fundamental

    Fundamental gravitationalfields

    Fundamental coupling toparticle world line

    Effective

    Generic v -dependent potentialterms

    Instantaneous couplings betweenworld-line particles

    exp [iSeff (xa, hGW )] =

    ∫DH(x) exp [iSEH (H + hGW ) + iSpp(H + hGW )]

    Spp = −m∫

    (√GN(h00/2 + vih0i + v

    iv jhij/2)

    + GNh200 . . .

    )

    SEH =1

    32πGN

    ∫d4x

    [(∂h)2 + h(∂h)2 + h2(∂h)2 . . .

    ]

    Seff = m1

    ∫dt d3x

    [1

    2v 21 +

    GNm22r

    +1

    8v 41 +

    G 2Nm22r 2

    (GNm1

    2r+ v 21 + v1rv2r

    )+ 1↔ 2

    ]3PN: Jaranowski, Schäfer, Damour; Blanchet, Faye; Itoh Futamase; Foffa & RS

    4PN: Jaranowski, Schäfer, Damour; Blanchet et al, RS Foffa; RS Foffa, Mastrolia, Sturm

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 43 / 29

  • EFT for compact binary systems

    Fundamental

    Fundamental gravitationalfields

    Fundamental coupling toparticle world line

    Effective

    Generic v -dependent potentialterms

    Instantaneous couplings betweenworld-line particles

    exp [iSeff (xa, hGW )] =

    ∫DH(x) exp [iSEH (H + hGW ) + iSpp(H + hGW )]

    Spp = −m∫

    dt d3x δ(~x − ~xa(t))(h00/2 + vih0i + v

    iv jhij/2 + h200 . . .

    )

    (√GN(h00/2 + vih0i + v

    iv jhij/2)

    + GNh200 . . .

    )

    SEH =1

    32πGN

    ∫d4x

    [(∂ih)

    2 − (∂th)2 + h(∂h)2 + h2(∂h)2 . . .]

    Seff = m1

    ∫dt d3x

    [1

    2v 21 +

    GNm22r

    +1

    8v 41 +

    G 2Nm22r 2

    (GNm1

    2r+ v 21 + v1rv2r

    )+ 1↔ 2

    ]3PN: Jaranowski, Schäfer, Damour; Blanchet, Faye; Itoh Futamase; Foffa & RS

    4PN: Jaranowski, Schäfer, Damour; Blanchet et al, RS Foffa; RS Foffa, Mastrolia, Sturm

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 43 / 29

  • EFT for compact binary systems

    Fundamental

    Fundamental gravitationalfields

    Fundamental coupling toparticle world line

    Effective

    Generic v -dependent potentialterms

    Instantaneous couplings betweenworld-line particles

    exp [iSeff (xa, hGW )] =

    ∫DH(x) exp [iSEH (H + hGW ) + iSpp(H + hGW )]

    Spp = −m∫

    dt d3x δ(~x − ~xa(t))(√

    GN(h00/2 + vih0i + v

    iv jhij/2)

    + GNh200 . . .

    )SEH =

    1

    2

    ∫d4x

    [(∂ih)

    2 − (∂th)2 +√

    GNh(∂h)2 + GNh

    2(∂h)2 . . .]

    Seff = m1

    ∫dt d3x

    [1

    2v 21 +

    GNm22r

    +1

    8v 41 +

    G 2Nm22r 2

    (GNm1

    2r+ v 21 + v1rv2r

    )+ 1↔ 2

    ]3PN: Jaranowski, Schäfer, Damour; Blanchet, Faye; Itoh Futamase; Foffa & RS

    4PN: Jaranowski, Schäfer, Damour; Blanchet et al, RS Foffa; RS Foffa, Mastrolia, Sturm

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 43 / 29

  • EFT for compact binary systems

    Fundamental

    Fundamental gravitationalfields

    Fundamental coupling toparticle world line

    Effective

    Generic v -dependent potentialterms

    Instantaneous couplings betweenworld-line particles

    exp [iSeff (xa, hGW )] =

    ∫DH(x) exp [iSEH (H + hGW ) + iSpp(H + hGW )]

    Spp = −m∫

    dt d3x δ(~x − ~xa(t))(√

    GN(h00/2 + vih0i + v

    iv jhij/2)

    + GNh200 . . .

    )SEH =

    1

    2

    ∫d4x

    [(∂ih)

    2 − (∂th)2 +√

    GNh(∂h)2 + GNh

    2(∂h)2 . . .]

    Seff = m1

    ∫dt d3x

    [1

    2v 21 +

    GNm22r

    +1

    8v 41 +

    G 2Nm22r 2

    (GNm1

    2r+ v 21 + v1rv2r

    )+ 1↔ 2

    ]3PN: Jaranowski, Schäfer, Damour; Blanchet, Faye; Itoh Futamase; Foffa & RS

    4PN: Jaranowski, Schäfer, Damour; Blanchet et al, RS Foffa; RS Foffa, Mastrolia, Sturm

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 43 / 29

  • How to compute effective potential?

    Iteratively solve Einstein equations for point particles (J(x) ∼ δ3(x − x̄)):

    −∫

    dtV1−2(t, r) ∼∫

    dt dt′ d3x d3x ′J(x)G(x − x ′)J(x ′)

    = 32πGNm1m2

    ∫dt dt′

    d4k

    (2π)4e ik

    µ(x1(t1)−x2(t2))µ

    k2 − ω2

    ' GN∫

    dt dt′δ(t − t′) m1m2|x1(t)− x2(t′)|

    where k0 has been neglected. Considering effects of v

    V ∝∫

    dωd3ke−iωt12+ikx12

    k2 − ω2 =∫

    dωd3ke−iωt12+ikx12

    k2

    (1 +

    ω2

    k2+ . . .

    )= δ(t12)

    ∫d3k

    e ikx12

    k2

    (1 +

    ∂t1∂t2k2

    + . . .

    )=

    ∫d3k

    e ikx12

    k2

    (1− k · v1k · v2

    k2+ . . .

    )

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 44 / 29

  • Trading knowledge over the full trajectory with knowledge of all derivativesof the trajectory at equal time

    time

    → +v̇ + v̈ + . . .

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 45 / 29

  • Newtonian potential:

    Seff ∼∫dt GN m1m2r ∼ L

    At 1PN:

    Seff =∫dt

    G 2N m21m2

    r2∼ Lv2

    v

    v

    v2

    V1PN = −Gm1m2

    2r

    [1− GNm1

    2r+

    3

    2(v21 )−

    7

    2v1v2 −

    1

    2v1r̂ v2r̂

    ]+

    1↔ 2

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 46 / 29

  • The 4PN sector

    G: : 3 diagrams

    G2: 21 diagrams, RS and S. Foffa, PRD ’12

    G3: 212 diagrams

    G4: 317 diagrams RS and S. Foffa ArXiv:1902.xxxx

    G5: 50 diagrams, RS et al. PRD ’18

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 47 / 29

  • 4PN static G5N topologies

    M0,1M1,1 M1,2

    M1,3 M1,4 M2,2

    M3,6

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 48 / 29

  • G5N master integrals

    expressed via integration by parts reduction in terms of 7 master integrals:

    M0,1M1,1 M1,2

    M1,3 M1,4 M2,2

    M3,6Mapping the problem into 4-loop 3-D self-enrgy diagrams

    RS, S. Foffa, P. Mastrolia, C. Sturm PRD (2017) 104009

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 49 / 29

  • 2 body dynamics expansions (spin-less)

    Post-Minkowskian expansion parameter is GNM/r , vs PN expansion

    L = −Mc2 + µv2

    2+

    GMµ

    r+

    1

    c2[. . .] +

    1

    c4[. . .]

    Terms known so far

    N 1PN 2PN 3PN 4PN 5PN . . .0PM 1 v2 v4 v6 v8 v10 v12 . . .1PM 1/r v2/r v4/r v6/r v8/r v10/r . . .2PM 1/r2 v2/r2 v4/r2 v6/r2 v8/r2 . . .3PM 1/r3 v2/r3 v4/r3 v6/r3 . . .4PM 1/r4 v2/r4 v4/r4 . . .5PM 1/r5 v2/r5 . . .. . . . . . . . .

    3PM recently computed (!) by Z. Bern, C. Cheung et al. arXiv:1901.04424What’s next? Amplitude program with modern methods: generalizedunitarity, gravity as a double copy of gauge theory. . .

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 50 / 29

  • Fundamental Gravity tests at cosmological scale

    GWs travel at the speed of light, with deviations . 1015

    Model of dark energy/modified gravity with a single scalar degree offreedom drastically constrained

    standard conformal coupling to the Ricci scalar (for Horndeski theories)

    G. W. Horndeski, Int. J. of Th. Phys. (1974) 10, 6, 363384T. Baker, E. Bellini, P. G. Ferreira, M. Lagos, J. Noller, and I. Sawicki, Phys. Rev. Lett.

    119, 251301 (2017)P. Creminelli & F. Vernizzi, Phys. Rev. Lett. 119, 251302 (2017)

    J. Sakstein & J. Jain, Phys. Rev. Lett. 119, 251303 (2017)J. M. Ezquiaga & M. Zumalacrregui, Phys. Rev. Lett. 119, 251304 (2017)

    L. Amendola, M. Kunz, I. D. Saltas and I. Sawicki arXiv:1711.04825

    Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 51 / 29

  • EM/ν from binary black hole coalescences?

    BHs with accretion disks may lead to relativistic outflows with TeV - PeVν (hadrons accelerated by jets, if magnetic fields and long-lived debris fromBH progenitor, or dense gaseous environment) exotic but not impossible

    e.g. R. Perna et al. Ap.J. 821 (2016) 1, L18, I. Bartos et al., Ap.J. 835 (2017) 2, 165

    GW150914:γ,X optical, radio counterparts not found

    Ap.J. 826 (2016) 1, L13

    ν: E � O(100) GeV, time window ±500 sec, coincidences ∼ backg.Limit on ν spectral fluence (10% - 90%): < 1051 − 1054 erg

    LIGO, ANTARES and ICECube Phys.Rev. D93 (2016) no.12, 122010

    GW151226 (LVT151012): Eiso < 2× 1051 − 2× 1054 ergLIGO, ANTARES, IceCube, Phys.Rev. D96 (2017) 2, 022005

    GW170104: No ν detection with a ±500 sec window, nor in ±3months

    ANTARES Eur.Phys.J. C77 (2017) 12, 911

    For reference: EGW 150914 ∼ 1054, long(short) GRB Eiso ∼ 1051, (1049 erg)Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 52 / 29

  • EM/ν from binary black hole coalescences? Nope

    BHs with accretion disks may lead to relativistic outflows with TeV - PeVν (hadrons accelerated by jets, if magnetic fields and long-lived debris fromBH progenitor, or dense gaseous environment) exotic but not impossible

    e.g. R. Perna et al. Ap.J. 821 (2016) 1, L18, I. Bartos et al., Ap.J. 835 (2017) 2, 165

    GW150914:γ,X optical, radio counterparts not found

    Ap.J. 826 (2016) 1, L13

    ν: E � O(100) GeV, time window ±500 sec, coincidences ∼ backg.Limit on ν spectral fluence (10% - 90%): < 1051 − 1054 erg

    LIGO, ANTARES and ICECube Phys.Rev. D93 (2016) no.12, 122010

    GW151226 (LVT151012): Eiso < 2× 1051 − 2× 1054 ergLIGO, ANTARES, IceCube, Phys.Rev. D96 (2017) 2, 022005

    GW170104: No ν detection with a ±500 sec window, nor in ±3months

    ANTARES Eur.Phys.J. C77 (2017) 12, 911

    For reference: EGW 150914 ∼ 1054, long(short) GRB Eiso ∼ 1051, (1049 erg)Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 52 / 29