Gravitational Wave Astronomy - ICTP – SAIFR · Gravitational Wave Astronomy Riccardo Sturani...
Embed Size (px)
Transcript of Gravitational Wave Astronomy - ICTP – SAIFR · Gravitational Wave Astronomy Riccardo Sturani...
-
Gravitational Wave Astronomy
Riccardo Sturani
International Institute of Physics - UFRN - Natal (Brazil)
Dark Universe ICTP-SAIFR, Oct 25th, 2019
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 1 / 29
-
GW basics in 1 slide
Gauged fixed metric perturbations hµν after discarding h0µ components,which are not radiative → transverse waves
hij =
h+ h× 0h× −h+ 00 0 0
2 pol. state like any mass-less particle
h+
h×
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 2 / 29
-
LIGO and Virgo: very precise rulers
Robert Hurt (Caltech)
Light intensity ∝ light travel difference in perpendicular armsEffective optical path increased by factor N ∼ 500 via Fabry-Perot cavitiesPhase shift ∆φ ∼ 10−8 can be measured ∼ 2πN∆L/λ→ ∆L ∼ 10−15/N m
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 3 / 29
-
Almost omnidirectional detectors
Detectors measure hdet : linear combination F+h+ + F×h×
-1 0 1F+
F×
L H
h+,× depend on sourcepattern functions F+,× depend on orientation source/detector
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 4 / 29
-
Almost omnidirectional detectors
Detectors measure hdet : linear combination F+h+ + F×h×
-1 0 1F+
F×
L V
h+,× depend on sourcepattern functions F+,× depend on orientation source/detector
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 4 / 29
-
Pattern functions:√
F 2+ + F2×
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 5 / 29
-
The LIGO and Virgo observatories
• Observation run O1 Sept ’15 - Jan ’16∼ 130 days, with 49.6 days of actual data, PRX(2016) 4, 041014, 2 detectors, 3BBH
• O2 Dec. ’16 – Jul’17 2 det’s + Aug ’17 3 det’s3(+4) BBH + 1BNS in double (triple) coinc.
• O3a: 3 detectors, Apr 2nd - Oct 1st 2019• O3b: Nov 1st – 6 monthsIn ∼ end of 2019 Japanese KAGRA and ∼ 2025Indian INDIGO will join the collaboration
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 6 / 29
-
Wave generation: localized sources
Einstein formula relates hij to the source quadrupole moment Qij
Qij =
∫d3xρ
(xixj −
1
3δijx
2
), v 2 ' GNM/r , η ≡ m1m2/M2
hij ∼ g(θLN )2GND
d2Qijdt2
' 2GNηMv2
Dcos(2φ(t))
f = 2kHz( r
30Km
)−3/2( M3M�
)1/2< fMax ' 12kHz
(M
3M�
)−1v = 0.3
(f
1kHz
)1/3(M
M�
)1/3<
1√6
Geometric factor g(θLN ) takes account of transversality projection(angular momentum L of the binary, observation direction N)
h+ ∼1 + cos2(θLN )
2ηMv 2
Dcosφ(ts/M, η, S
2i /m
4i , . . .)
h× ∼ cos(θLN ) ηMv 2
Dsinφ(ts/M, η, . . .)
Amplitudes of 2 polarizations modulated by θLN (h↗ for θLN ↘0), never both vanishingunlike dipolar motion for the electromagnetic case
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 7 / 29
-
Wave generation: localized sources
Einstein formula relates hij to the source quadrupole moment Qij
Qij =
∫d3xρ
(xixj −
1
3δijx
2
), v 2 ' GNM/r , η ≡ m1m2/M2
hij ∼ g(θLN )2GND
d2Qijdt2
' 2GNηMv2
Dcos(2φ(t))
f = 2kHz( r
30Km
)−3/2( M3M�
)1/2< fMax ' 12kHz
(M
3M�
)−1v = 0.3
(f
1kHz
)1/3(M
M�
)1/3<
1√6
Geometric factor g(θLN ) takes account of transversality projection(angular momentum L of the binary, observation direction N)
h+ ∼1 + cos2(θLN )
2ηM(1 + z)v 2
D(1 + z)cosφ(tO/(M(1 + z)), η, S
2i /m
4i , . . .)
h× ∼ cos(θLN ) ηM(1 + z)v 2
D(1 + z)sinφ(tO/(M(1 + z)), η, . . .)
Amplitudes of 2 polarizations modulated by θLN (h↗ for θLN ↘0), never both vanishingunlike dipolar motion for the electromagnetic case
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 7 / 29
-
Wave generation: localized sources
Einstein formula relates hij to the source quadrupole moment Qij
Qij =
∫d3xρ
(xixj −
1
3δijx
2
), v 2 ' GNM/r , η ≡ m1m2/M2
hij ∼ g(θLN )2GND
d2Qijdt2
' 2GNηMv2
Dcos(2φ(t))
f = 2kHz( r
30Km
)−3/2( M3M�
)1/2< fMax ' 12kHz
(M
3M�
)−1v = 0.3
(f
1kHz
)1/3(M
M�
)1/3<
1√6
Geometric factor g(θLN ) takes account of transversality projection(angular momentum L of the binary, observation direction N)
h+ ∼1 + cos2(θLN )
2ηMv 2
dLcosφ(tO/M, η, S2i /m4i , . . .)
h× ∼ cos(θLN ) ηMv 2
dLsinφ(tO/M, η, . . .)
Amplitudes of 2 polarizations modulated by θLN (h↗ for θLN ↘0), never both vanishingunlike dipolar motion for the electromagnetic case
h sensitive to red-shifted masses M → M(1 + z) ≡M
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 7 / 29
-
Binary systems and compact detected so far
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 8 / 29
-
https://www.gw-openscience.org/catalog/
See however Princeton’s groupresultsarXiv:1904.07214
20 40 60 80 100Msourcetot (M )
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00
eff
Binary black hole events in O1 and O2
LVC-reportedThis workZackay et al. (2019)
0.0
0.2
0.4
0.6
0.8
1.0
p ast
ro
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 9 / 29
-
Sky localization of GW binary systems detected so far
0h 21h 18h 15h 12h 9h 6h 3h 0h0°
30°
60°60°
30°
-30°
-60° -60°
-30°GW
1708
17
GW17
0104
GW170104
GW170104
GW17
0823
GW170823
GW170608
GW17
0809
GW170814
0h 21h 18h 15h 12h 9h 6h 3h 0h0°
30°
60°60°
30°
-30°
-60° -60°
-30°
GW170
818
GW15
1012
GW151012
GW150914
GW15
1226
GW151226
GW17
0729
GW170729
Sky localization regions shrinks when Virgo in: 3rd detector matters!
LIGO/Virgo 1811.12907
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 10 / 29
-
Astro sources emitting transient GWs/EM/ν radiation
Coalescing binary systems of compact objects: η ≡ m1m2/M2
∆EGW ∼ 4× 10−2M�η(
M
3M�
)5/3(fmax
1 kHz
)2/3A good proxy of the fmax is the Innermost Stable Circular Orbit frequency
fISCO =1
6√
6
1
M' 2kHz
(M
M�
)−1For NS-NS/BH ejected material supposed to produce short (< 2 sec) GRBsEγ ∼keV-MeV, ejected sub-relativistic material may produce radio signalsν: baryon loaded jets may emit νs:
TeV-PeV ν @ γ emissionPeV-EeV ν @ optical afterglow
NS-NS/BH → energetic outflows at different timescale/wavelengthRapid neutron capture in the sub-relativistic ejecta can produce a kilonova ormacronova, with optical and near-infrared signal (hours - weeks)
Eventually radio blast from sub-relativistic outflow (months to years)
LIGO/Virgo + EM partners ApJ Let. 2016
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 11 / 29
-
Association with 20 short GRB during O1(before GW170817)
redshift
10−2 10−1 100
cumulativedistribution
10−2
10−1
100
BNS exclusion
NS-BH exclusion
BNS extrapolation
NS-BH extrapolation
EM observation
GW searched in a [-5,+1) sec window with GRBGW constraints far from EM exclusion distance, but extrapolation to design AdvancedLIGO sensitivity (2 years of data) will lead to detection/non-trivial constraints
LIGO/Virgo Astrophys.J. 841 (2017) no.2, 89Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 12 / 29
-
GW170817
GW trigger on Aug 17th, 2017,ended at 12h 41’ 04.4” UTC, first inin LIGO Hanford, then confirmed asa triple coincidence → localized inan area of ∼ 28 deg2
GRB trigger from Fermi-GBM 1.7”after
first optical image 10.87 hrafterwards by One-Meter TwoHemisphere team with Swopetelescope at Las CampanasObservatory in Chile
X obtained by the X-Ray Telescopeon Swift after 14.9 h(NuSTAR 16.8 h)
radio (∼ 3, 6 GHz) by VLA 16 daysafter GW event
LIGO/Virgo & Partner Astronomy groups, Astrophys.J. 848 (2017) no.2, L12
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 13 / 29
-
An example of the optical image
Transient Optical Robotic Observatory of the South
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 14 / 29
-
GW170817 and ν detectors
Potential νs down-going for Antares and IceCube, grazing for Auger
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 15 / 29
-
GW170817 and ν detectors
Potential νs down-going for Antares and IceCube, grazing for AugerSource location at optical detection
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 15 / 29
-
ANTARES and ICECube look for ν
IceCube and ANTARES looked forµ − ν at ±500sec , observation for 2weeksno detectionPierre Auger for > 1017 eV, grazinggood for τ production at 1018 eV
10 3
10 2
10 1
100
101
102
103
E2 F
[Ge
Vcm
2 ]
±500 sec time-window
AugerIceCube
ANTARES
Kimura et al.EE optimistic
04
8
Kimura et al.EE moderate
04
Kimura et al.prompt0
GW170817 Neutrino limits (fluence per flavor: x + x)
102 103 104 105 106 107 108 109 1010 1011E/GeV
10 3
10 2
10 1
100
101
102
103
E2 F
[Ge
Vcm
2 ]
14 day time-window
Auger
IceCube
ANTARES
Fang &Metzger30 days
Fang &Metzger3 days
LIGO/Virgo, ANTARES, ICECUBE and Pierre Auger, Astrophys.J. 850 ’17 2, L35
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 16 / 29
-
BNS NSBH BBH
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
Rat
eE
stim
ates( M
pc−
3yr−
1)
Astrophysical predictions, upper limit from S5/6/O1 and observation from O1/O2
LIGO/Virgo CQG (’10) 27 173001, PRX (’16), APJ (2016), PRL 119 (’17)
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 17 / 29
-
Fundamental physics of Neutron stars
Tidal deformability Λ ' R−5Qab/ (∂a∂bUtidal ) depends on Equation ofState
Determinaton of Λ1,2(assuming same EoS for 1,2)
0 250 500 750 1000 1250Λ1
0
500
1000
1500
2000
Λ2
WFF1
APR4
SLy
MPA1
H4
MS1b
MS1
More Compact
Less Compact
Shading Common EoS for 2 bodies and constrain for mmax > 1.97M�Lines 50%, 90% countours, No mimimum mmax , independent EoSs
LIGO/Virgo collaboration, arXiv:1805.11581
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 18 / 29
-
Fundamental physics of Neutron stars II
Parametrizing EoS with Γ ≡ �+pp
dpd�
, Γ(x) = exp(∑
k γkxk), x ≡ log p
p0
γ0 ∈ [0.2, 2], γ1 ∈ [1.6, 1.7], γ2 ∈ [0.6, 0.6]γ3 ∈ [0.02, 0.02], Γ(p) ∈ [0.6, 4.5]
L. Lindblom PRD 82, 103011 (2010)
Constraints on Mass vs- radius and p vs. rho
8 10 12 14
R (km)
0.5
1.0
1.5
2.0
2.5
3.0
m(M�
)
WF
F1
AP
R4
SL
yM
PA
1
H4
BHlim
it
Buch
dahl
limit
0
1
0 1 1014 1015
ρ [g/cm3]
1032
1033
1034
1035
1036
1037
p[d
yn/c
m2 ]
ρnuc
2ρnuc
6ρnuc
lighter, heavier 90% prior, posterior
LIGO/Virgo collaboration, arXiv:1805.11581
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 19 / 29
-
Cosmology
From GWs only: luminosity distancedL ∼ 40+8−14Mpc, viewing angleθLN > 125
o
Fixing dL from info from EM location
+ Hubble relation dLH0 = z
1 Hubble constant fromSuperNovae (SHoES)148o < θLN < 166
o
Riess et al. ApJ 826, 56 ’16
2 from Planck157 < θLN < 177
o
Planck A&A, 594, A13 ’16
GW almost coincident with EM=⇒ ∆vGW /c ∼ 10−15
LIGO/Virgo, Fermi Gamma-Ray BurstMonitor, INTEGRAL Ap.J. 848 (2017)2, L13
50 60 70 80 90 100 110 120H0 (km s 1 Mpc 1)
1.0
0.9
0.8
0.7
0.6
0.5
0.4
cos
180170
160
150
140
130
120
(deg
)
GW170817Planck17
SHoES18
LIGO/Virgo Nature 551 ’17 7678, 85
h′′+× + 2
a′
ah′+,× + c
2s∇2h+,× = 0
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 20 / 29
-
Determining H0 without EM counterpart
Hubble law: z = H0dLDL can be measured, z degenerate with M, however if
the source in the sky has been localised (α, δ)
GW sources are in the galaxy catalogue with known red-shift
P(z ,DL|ci ) =∫
dM d~θ dα dδ P(DLM, ~θ, α, δ|ci )π(z , |α, δ)
Schutz, Nature (1986)323 310W. Del Pozzo,Phys.Rev.D86 (2012)043011
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 21 / 29
-
Galaxy catalogs and H0
20 40 60 80 100 120 140
H0 (km s−1 Mpc−1)
0.00
0.01
0.02
0.03
0.04
0.05
0.06
p(H
0)
(km−
1s
Mp
c)
Joint BBH+GW170817 Counterpart
Joint BBH
GW170817 Counterpart
Prior (Uniform)
Planck
SH0ES
sky localization from DES-Y1(GW170814)
GWENS (GW170818)
GLADE (GW150914, GW151226,
GW170608)
LIGO/Virgo, arXiv:1908.06060
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 22 / 29
-
Upper bounds on sub-solar mass compact binariescoalescence rate
Mass/M� Rate(Gpc−3yr−1) Horizon(Mpc)
1 < 106 1000.2 < 2× 104 30
SNR ∝ M5/6c , Mc ≡ η3/5MLIGO/Virgo arXiv:1808.04771, 1904.08976
Fraction f of MACHOs in binary∼ 10%× ΩMacho =⇒∼ 10−3ΩMacho in coalescing bina-ries coalescing within H−10
T. Nakamura et al. in Astrophys.J.L.
487 (1997) L139-L142
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 23 / 29
-
Ongoing O3: towards measuring merger distribution
At https://gracedb.ligo.org/superevents/public/O3Summary of candidate detections from O3a:33 candidate events, 7 of which possibly involving at least a NS
Expected merger distribution from Star Formation Rate (−) orSFR+Poissian distributed delay (−−)
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 24 / 29
-
Ongoing O3: towards measuring merger distribution
At https://gracedb.ligo.org/superevents/public/O3Summary of candidate detections from O3a:33 candidate events, 7 of which possibly involving at least a NS
Expected merger distribution from Star Formation Rate (−) orSFR+Poissian distributed delay (−−)
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 24 / 29
-
Fundamental GR: inspiral analytic model
Inspiral h = A cos(φ(t)) ȦA � φ̇Virial relation:
v ≡ (GNMπfGW )1/3 η =m1m2
(m1 + m2)2
E (v) = −12ηMv2
(1 + #(η)v2 + #(η)v4 + . . .
)
P(v) ≡ −dEdt
=32
5GNv10(1 + #(η)v2 + #(η)v3 + . . .
)
E(v)(P(v)) known up to 3(3.5)PN
1
2πφ(T ) =
1
2π
∫ Tω(t)dt = −
∫ v(T ) ω(v)dE/dvP(v)
dv
∼∫ (
1 + #(η)v2 + . . .+ #(η)v6 + . . .) dvv6
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 25 / 29
-
Fundamental GR: inspiral analytic model
Inspiral h = A cos(φ(t)) ȦA � φ̇Virial relation:
v ≡ (GNMπfGW )1/3 η =m1m2
(m1 + m2)2
E (v) = −12ηMv2
(1 + #(η)v2 + #(η)v4 + . . .
)
P(v) ≡ −dEdt
=32
5GNv10(1 + #(η)v2 + #(η)v3 + . . .
)
E(v)(P(v)) known up to 3(3.5)PN
1
2πφ(T ) =
1
2π
∫ Tω(t)dt = −
∫ v(T ) ω(v)dE/dvP(v)
dv
∼∫ (
1 + #(η)v2 + . . .+ #(η)v6 + . . .) dvv6
PN Coefficients (tidal ∼ v10)Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 25 / 29
-
Parameter estimation from φ(t)
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 26 / 29
-
Testing the PN series with O1/2
−1PN 0 P
N0.5
PN 1 PN
1.5PN 2 P
N
2.5PN
(l)
3 PN
3 PN(l)
3.5PN
10−3
10−2
10−1
100
101
|δϕ̂i|
GW150914GW151226GW170104GW170608GW170814CombinedCombined (SEOBNRv4)
Precision in measuring the PN coefficients ∼ 100%: one cannot both measure the astroparameters and test GR with same detection! Unique probe of high PN-orders
LIGO/Virgo arXiv:1903.04467
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 27 / 29
-
Precision gravity
Future 3rd generetaion detectors (Einstein Telescope, Cosmic Explore) / spacetelescope LISA will detect BBH binary signals with SNR 10− 102, with few goldenevents with SNR ∼ 103.Templates few % accurate OK for characterising a source with SNR O(10) (typical forLIGO/Virgo)for SNR ∼ 103 residual after extracting that source will have SNR ∼ O(10)
1 baising parameter estimation
2 contaminating the extraction of additional sources.
h(f ) ∝ f −7/6M5/6c
∆ti→m ∝ M−5/3c (f −8/3i − f−8/3
m )
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 28 / 29
-
Conclusions (Actually just the beginning!)
After the beginning of GW astronomy, we have witnessed the start ofmulti-messenger astronomy
New era for Cosmology: H0 from GWs! (and EM)
New input for fundamental physics: test of gravity in the strong fieldat short scale, radiative gravity sector tested at large distances andsoon precision gravity is going to be needed
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 29 / 29
-
Spare slides
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 30 / 29
-
How binary systems progenitors formed? I
Izzard et al. Proc. IAU 2012
A binary system of massive stars(Mbinary < 100Modot) can gothrough a common envelope phasethat shrinks considerably the orbit andalign the spins→ collapse to compactobjectsBNS requires complex evolution frommassive binaries + mass transfer and2 core-collapse SN explosions throughwhich the binary system survivesAsymmetries in collapse imparts na-tal kick to the (galactic pulsar propermotion)
LIGO/Virgo Ap.J. 850 (2017) L40
vs.
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 31 / 29
-
For BBH another mechanism is possible
Globular Cluster: medium with high density of black holes/stars, when 3black holes meet one is ejected and the binary shrinks
LIGO/VirgoAstrophys.J. 818 (2016) no.2, L22
Remnants of the first stars, produced at z ∼ 6 can give only a smallcontribution to the total rate
T. Hartwig et al. Mon.Not.Roy.Astron.Soc. 460 (2016) L74
Primordial black-holes? viable if 10−2 . MBH/M� . 1 (constraints fromevaporation, microlensing and CMB) but could grow later to 20-100 M�by mergerIf present in globular cluster may also explain their cosmologicalabundance as dark matter
Sasaki M. et al. PRL 2016, Bird S. et al. PRL 2016, Clesse S. and Garćıa-Bellido Phys.
Dark Univ. 2017
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 32 / 29
-
Metzer & Berger Astrophys.J. 746 (2012) 48
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 33 / 29
-
NS merger → short γRB → kilonova
Jet models for the ejecta (spherical fireball model)
↓BNS merger emitted γ rays, expected opening angles θj ' 3o − 10o :early time θj ∼ 1/γ (jet collimated and relativistic), prompt emission from energydissipation inside relativistic jet: X rays ∼ energy output and geometryShock wave from sGRB jet hitting surrounding medium, θj < 1/γlate
↓broadband synchrotron afterglow, with radio source ∼ months and UV, optical &IR emission from sub-relativistic ejectaνs expected only from near GRB (or in late emission by flares and plateaus)
Alexander et al., Astrophys. J. 848 (2017) no.2, L21
NS merger frees neutron-rich radioactive species, decaying in kilonova in ∼ daysObservation: Faint gamma ray emission: 1046 erg (isotropic), raising Xray flux 2.4- 5.4 day, continued up to 15 days (Chandra), delayed afterglow
↓short GRB viewed off-axis θobs & 20o
Berger E, 2014, ARA&A, 52, 43Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 34 / 29
-
GW170817
BNS horizon (Mpc) was 218 for LL, 107 for LH, 58 for V
LIGO/Virgo Phys.Rev.Lett. 119 (2017) 161101
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 35 / 29
-
Detected waves (best fit)
0 6 12 18 24 30 36 42 48 54 60
time observable (seconds)
GW150914
LVT151012
GW151226
GW170104
GW170608
GW170814
GW170817
LIGO/University of Oregon/Ben Farr
Smaller objects can get closer =⇒ reach higher frequency before merger
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 36 / 29
-
Parameter estimation for GW170817
Low spin prior High spin prior
m1,2
1.4 1.5 1.6 1.7 1.8m1 (M�)
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40m
2(M�
)TaylorF2
PhenomDNRT
PhenomPNRT
SEOBNRT
1.4 1.6 1.8 2.0 2.2 2.4m1 (M�)
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
m2
(M�
)
TaylorF2
PhenomDNRT
PhenomPNRT
SEOBNRT
Spin χeff = (m1S1z + m2S2z )/M - mass ratio q, distance - inclination
−0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.12χeff
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
q
χ < 0.89
χ < 0.05
100◦ 120◦ 140◦ 160◦ 180◦
θJN
10
15
20
25
30
35
40
45
50
55
DL
(Mp
c)
volumetric prior
EM distance prior
LIGO/Virgo PRL 119, 161101 (2017), arXiv:1805.11579Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 37 / 29
-
Templates need to be 2 orders of magnitude more accurate for use in LISA than inAdvanced LIGO/Virgo.
SNR ∝ GNM5/6c
D
(∫f −4/3
Sn(f )
df
f
)1/2=
(GNMc )5/6
DS−1/2n (f̄ )
(f−4/3
i − f−4/3
f
)1/2=
(GNMc )5/6
DS−1/2n (fi )
f−2/3
i√∆f
f7/3
i
' 200(
S1/2n Hz
1/2
10−24
)−1 (η
0.25
)1/2 ( M10M�
)5/6 (f
150Hz
)−2/3 ( D500Mpc
)−1' 40
(S
1/2n Hz
1/2
10−21
)−1 (η
0.25
)1/2 ( M70M�
)5/6 (f
10−4Hz
)−7/6 ( D100Mpc
)−1×(
∆f10−5Hz
)1/2
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 38 / 29
-
Long duration signals
Remember that:dt
df=
5
96πη(πGNMf )
−5/3 f −2
t = 10yrs
(M
70M�
)−5/3( f10−2Hz
)−8/3
∆f ' 96π5
(πGNMc f )5/3 f 2∆t ' 10−3Hz
( η0.25
)( M70M�
)5/3( f10−2Hz
)2
fISCO ' 1.5kHz(
M
3M�
)−1fmax ' 20kHz
(M
3M�
)−1
fgw ' 134Hz(
1.21M�Mc
)5/8(1secτ
)3/8
τ ' 2.2sec(
1.21M�Mc
)5/3(100Hzfgw
)8/3
Need for longer duration templates, as for the third-generation groundbased detectors, since the signals are present in the data stream for months
〈F 〉 ∼ 1− D − 12SNR2
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 39 / 29
-
Upper bounds on sub-solar mass compact binariescoalescence rate
Mass/M� Rate(Gpc−3yr−1) Horizon(Mpc)
1 < 106 1000.2 < 2× 104 30
SNR ∝ M5/6c , Mc ≡ η3/5MLIGO/Virgo arXiv:1808.04771
Fraction f of MACHOs in binary∼ 10%× ΩMacho =⇒∼ 10−3ΩMacho in coalescing bina-ries coalescing within H−10
T. Nakamura et al. in Astrophys.J. 487
(1997) L139-L142Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 40 / 29
-
Formula for the N of cycles x ≡ v2 ≡ (Mωs)2/3 = (πMfGW )2/3
N = 2
∫ v
v0
ω(v ′)dE/dv ′(v ′)
F (v)dv ′ =
2ηGNM
η2GNM
∫1
v6(1 + #v2 + . . .
)∝ 1ηv−5
v = 0.12
(M
10M�
fGW10Hz
)1/3=⇒ v−5 = 4.7×104
(M
10M�
fGW10Hz
)−5/35×104
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 41 / 29
-
The EFT point of view on the 2-body problem
Different scales in EFT (borrowing ideas from NRQCD):
Very short distance. rs = GNMnegligible up to 5PN(effacement principle)
Short distance: potentialgravitons Hµν , kµ ∼ (v/r , 1/r)with r ∼ rs/v2Long distance: GW’skµ ∼ (v/r , v/r) GWs hGWµνcoupled to point particles withmoments
M. Beneke and V. A. Smirnov, NPB ’98; I. Stewart and W. Manohar, PRD ’07; W.Goldberger and I. Rothstein, PRD ’06
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 42 / 29
-
EFT for compact binary systems
Fundamental
Fundamental gravitationalfields
Fundamental coupling toparticle world line
Effective
Generic v -dependent potentialterms
Instantaneous couplings betweenworld-line particles
exp [iSeff (xa, hGW )] =
∫DH(x) exp [iSEH (H + hGW ) + iSpp(H + hGW )]
Spp = −m∫
dτ
(√GN(h00/2 + vih0i + v
iv jhij/2)
+ GNh200 . . .
)
SEH =1
32πGN
∫d4x
[(∂h)2 + h(∂h)2 + h2(∂h)2 . . .
]
Seff = m1
∫dt d3x
[1
2v 21 +
GNm22r
+1
8v 41 +
G 2Nm22r 2
(GNm1
2r+ v 21 + v1rv2r
)+ 1↔ 2
]3PN: Jaranowski, Schäfer, Damour; Blanchet, Faye; Itoh Futamase; Foffa & RS
4PN: Jaranowski, Schäfer, Damour; Blanchet et al, RS Foffa; RS Foffa, Mastrolia, Sturm
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 43 / 29
-
EFT for compact binary systems
Fundamental
Fundamental gravitationalfields
Fundamental coupling toparticle world line
Effective
Generic v -dependent potentialterms
Instantaneous couplings betweenworld-line particles
exp [iSeff (xa, hGW )] =
∫DH(x) exp [iSEH (H + hGW ) + iSpp(H + hGW )]
Spp = −m∫
dt d3x δ(~x − ~xa(t))(h00/2 + vih0i + v
iv jhij/2 + h200 . . .
)
(√GN(h00/2 + vih0i + v
iv jhij/2)
+ GNh200 . . .
)
SEH =1
32πGN
∫d4x
[(∂ih)
2 − (∂th)2 + h(∂h)2 + h2(∂h)2 . . .]
Seff = m1
∫dt d3x
[1
2v 21 +
GNm22r
+1
8v 41 +
G 2Nm22r 2
(GNm1
2r+ v 21 + v1rv2r
)+ 1↔ 2
]3PN: Jaranowski, Schäfer, Damour; Blanchet, Faye; Itoh Futamase; Foffa & RS
4PN: Jaranowski, Schäfer, Damour; Blanchet et al, RS Foffa; RS Foffa, Mastrolia, Sturm
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 43 / 29
-
EFT for compact binary systems
Fundamental
Fundamental gravitationalfields
Fundamental coupling toparticle world line
Effective
Generic v -dependent potentialterms
Instantaneous couplings betweenworld-line particles
exp [iSeff (xa, hGW )] =
∫DH(x) exp [iSEH (H + hGW ) + iSpp(H + hGW )]
Spp = −m∫
dt d3x δ(~x − ~xa(t))(√
GN(h00/2 + vih0i + v
iv jhij/2)
+ GNh200 . . .
)SEH =
1
2
∫d4x
[(∂ih)
2 − (∂th)2 +√
GNh(∂h)2 + GNh
2(∂h)2 . . .]
Seff = m1
∫dt d3x
[1
2v 21 +
GNm22r
+1
8v 41 +
G 2Nm22r 2
(GNm1
2r+ v 21 + v1rv2r
)+ 1↔ 2
]3PN: Jaranowski, Schäfer, Damour; Blanchet, Faye; Itoh Futamase; Foffa & RS
4PN: Jaranowski, Schäfer, Damour; Blanchet et al, RS Foffa; RS Foffa, Mastrolia, Sturm
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 43 / 29
-
EFT for compact binary systems
Fundamental
Fundamental gravitationalfields
Fundamental coupling toparticle world line
Effective
Generic v -dependent potentialterms
Instantaneous couplings betweenworld-line particles
exp [iSeff (xa, hGW )] =
∫DH(x) exp [iSEH (H + hGW ) + iSpp(H + hGW )]
Spp = −m∫
dt d3x δ(~x − ~xa(t))(√
GN(h00/2 + vih0i + v
iv jhij/2)
+ GNh200 . . .
)SEH =
1
2
∫d4x
[(∂ih)
2 − (∂th)2 +√
GNh(∂h)2 + GNh
2(∂h)2 . . .]
Seff = m1
∫dt d3x
[1
2v 21 +
GNm22r
+1
8v 41 +
G 2Nm22r 2
(GNm1
2r+ v 21 + v1rv2r
)+ 1↔ 2
]3PN: Jaranowski, Schäfer, Damour; Blanchet, Faye; Itoh Futamase; Foffa & RS
4PN: Jaranowski, Schäfer, Damour; Blanchet et al, RS Foffa; RS Foffa, Mastrolia, Sturm
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 43 / 29
-
How to compute effective potential?
Iteratively solve Einstein equations for point particles (J(x) ∼ δ3(x − x̄)):
−∫
dtV1−2(t, r) ∼∫
dt dt′ d3x d3x ′J(x)G(x − x ′)J(x ′)
= 32πGNm1m2
∫dt dt′
d4k
(2π)4e ik
µ(x1(t1)−x2(t2))µ
k2 − ω2
' GN∫
dt dt′δ(t − t′) m1m2|x1(t)− x2(t′)|
where k0 has been neglected. Considering effects of v
V ∝∫
dωd3ke−iωt12+ikx12
k2 − ω2 =∫
dωd3ke−iωt12+ikx12
k2
(1 +
ω2
k2+ . . .
)= δ(t12)
∫d3k
e ikx12
k2
(1 +
∂t1∂t2k2
+ . . .
)=
∫d3k
e ikx12
k2
(1− k · v1k · v2
k2+ . . .
)
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 44 / 29
-
Trading knowledge over the full trajectory with knowledge of all derivativesof the trajectory at equal time
time
→ +v̇ + v̈ + . . .
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 45 / 29
-
Newtonian potential:
Seff ∼∫dt GN m1m2r ∼ L
At 1PN:
Seff =∫dt
G 2N m21m2
r2∼ Lv2
v
v
v2
V1PN = −Gm1m2
2r
[1− GNm1
2r+
3
2(v21 )−
7
2v1v2 −
1
2v1r̂ v2r̂
]+
1↔ 2
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 46 / 29
-
The 4PN sector
G: : 3 diagrams
G2: 21 diagrams, RS and S. Foffa, PRD ’12
G3: 212 diagrams
G4: 317 diagrams RS and S. Foffa ArXiv:1902.xxxx
G5: 50 diagrams, RS et al. PRD ’18
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 47 / 29
-
4PN static G5N topologies
M0,1M1,1 M1,2
M1,3 M1,4 M2,2
M3,6
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 48 / 29
-
G5N master integrals
expressed via integration by parts reduction in terms of 7 master integrals:
M0,1M1,1 M1,2
M1,3 M1,4 M2,2
M3,6Mapping the problem into 4-loop 3-D self-enrgy diagrams
RS, S. Foffa, P. Mastrolia, C. Sturm PRD (2017) 104009
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 49 / 29
-
2 body dynamics expansions (spin-less)
Post-Minkowskian expansion parameter is GNM/r , vs PN expansion
L = −Mc2 + µv2
2+
GMµ
r+
1
c2[. . .] +
1
c4[. . .]
Terms known so far
N 1PN 2PN 3PN 4PN 5PN . . .0PM 1 v2 v4 v6 v8 v10 v12 . . .1PM 1/r v2/r v4/r v6/r v8/r v10/r . . .2PM 1/r2 v2/r2 v4/r2 v6/r2 v8/r2 . . .3PM 1/r3 v2/r3 v4/r3 v6/r3 . . .4PM 1/r4 v2/r4 v4/r4 . . .5PM 1/r5 v2/r5 . . .. . . . . . . . .
3PM recently computed (!) by Z. Bern, C. Cheung et al. arXiv:1901.04424What’s next? Amplitude program with modern methods: generalizedunitarity, gravity as a double copy of gauge theory. . .
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 50 / 29
-
Fundamental Gravity tests at cosmological scale
GWs travel at the speed of light, with deviations . 1015
Model of dark energy/modified gravity with a single scalar degree offreedom drastically constrained
↓
standard conformal coupling to the Ricci scalar (for Horndeski theories)
G. W. Horndeski, Int. J. of Th. Phys. (1974) 10, 6, 363384T. Baker, E. Bellini, P. G. Ferreira, M. Lagos, J. Noller, and I. Sawicki, Phys. Rev. Lett.
119, 251301 (2017)P. Creminelli & F. Vernizzi, Phys. Rev. Lett. 119, 251302 (2017)
J. Sakstein & J. Jain, Phys. Rev. Lett. 119, 251303 (2017)J. M. Ezquiaga & M. Zumalacrregui, Phys. Rev. Lett. 119, 251304 (2017)
L. Amendola, M. Kunz, I. D. Saltas and I. Sawicki arXiv:1711.04825
Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 51 / 29
-
EM/ν from binary black hole coalescences?
BHs with accretion disks may lead to relativistic outflows with TeV - PeVν (hadrons accelerated by jets, if magnetic fields and long-lived debris fromBH progenitor, or dense gaseous environment) exotic but not impossible
e.g. R. Perna et al. Ap.J. 821 (2016) 1, L18, I. Bartos et al., Ap.J. 835 (2017) 2, 165
GW150914:γ,X optical, radio counterparts not found
Ap.J. 826 (2016) 1, L13
ν: E � O(100) GeV, time window ±500 sec, coincidences ∼ backg.Limit on ν spectral fluence (10% - 90%): < 1051 − 1054 erg
LIGO, ANTARES and ICECube Phys.Rev. D93 (2016) no.12, 122010
GW151226 (LVT151012): Eiso < 2× 1051 − 2× 1054 ergLIGO, ANTARES, IceCube, Phys.Rev. D96 (2017) 2, 022005
GW170104: No ν detection with a ±500 sec window, nor in ±3months
ANTARES Eur.Phys.J. C77 (2017) 12, 911
For reference: EGW 150914 ∼ 1054, long(short) GRB Eiso ∼ 1051, (1049 erg)Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 52 / 29
-
EM/ν from binary black hole coalescences? Nope
BHs with accretion disks may lead to relativistic outflows with TeV - PeVν (hadrons accelerated by jets, if magnetic fields and long-lived debris fromBH progenitor, or dense gaseous environment) exotic but not impossible
e.g. R. Perna et al. Ap.J. 821 (2016) 1, L18, I. Bartos et al., Ap.J. 835 (2017) 2, 165
GW150914:γ,X optical, radio counterparts not found
Ap.J. 826 (2016) 1, L13
ν: E � O(100) GeV, time window ±500 sec, coincidences ∼ backg.Limit on ν spectral fluence (10% - 90%): < 1051 − 1054 erg
LIGO, ANTARES and ICECube Phys.Rev. D93 (2016) no.12, 122010
GW151226 (LVT151012): Eiso < 2× 1051 − 2× 1054 ergLIGO, ANTARES, IceCube, Phys.Rev. D96 (2017) 2, 022005
GW170104: No ν detection with a ±500 sec window, nor in ±3months
ANTARES Eur.Phys.J. C77 (2017) 12, 911
For reference: EGW 150914 ∼ 1054, long(short) GRB Eiso ∼ 1051, (1049 erg)Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 52 / 29