GP170/2001 #13 Vs Predictionpangea.stanford.edu/~jack/GP170/GP170#13.pdf · Gassmann’s fluid...
Embed Size (px)
Transcript of GP170/2001 #13 Vs Predictionpangea.stanford.edu/~jack/GP170/GP170#13.pdf · Gassmann’s fluid...

1
Vs PredictionGP170/2001 #13
Gassmann’s fluid substitution requires knowledge of the bulk modulus K
Bulk Modulus ofRock w/Fluid
Bulk Modulus ofMineral Phase
Bulk Modulus ofDry Rock Bulk Modulus of
Pore Fluid
Porosity
KSat = K s
φKDry − (1 + φ)K f KDry / K s + K f
(1− φ )K f + φKs − K f KDry / Ks
Often, when only Vp is available, it is required to predict Vs from Vp to calculate K.
However, this need can be eliminated if the Vp-only fluid substitution (approximate) equation is used
K = ρb(Vp2 − 4Vs
2 / 3)
CompressionalModulus of
Rock w/Fluid
CompressionalModulus of
Mineral Phase
Compressional Modulus ofDry Rock
Bulk Modulus ofPore Fluid
Porosity
MSat = Ms
φMDry − (1+ φ )K f MDry / Ms + K f
(1 − φ)K f + φMs − K f MDry / Ms
Need 1:Fluid
Substitution
Need 2:Rock Diagnostic
Seismic Forward ModelingFluid and Lithology Prediction
1
2
3
3 4 5
Vs
(km
/s)
Vp (km/s)
Experimental Fitsfor Water-Saturated Rocks
Mudrock
WilliamsSand
WilliamsShale
Limestone
Dolomite
0
.1
.2
.3
.4
.5
3 4 5
Poi
sson
's R
atio
Vp (km/s)
Experimental Fitsfor Water-Saturated Rocks
Mudrock
WilliamsSand
WilliamsShaleLimestone
Dolomite

2
Experimental Vp/Vs Relations Often Work WellEXAMPLE: MARLS
2
3
3 4 5 6
Vs
(km
/s)
Vp (km/s)
MudrockLine
LimestoneCurves
Well A
Well B
WilliamsShale
2.0 2.2 2.4 2.6RHOB
0 0.2 0.4 0.6Porosity
PhiRHO
1 2 3 4 5Velocity (km/s)
VpVs
2 4 6 8 10 12 14P-Impedance
0.2 0.3 0.4Poisson's Ratio
Well A
25 50 75100GR
Dep
th (m
)
100 m
~ 1800 m
MARL
1 10Resistivity
2.0 2.2 2.4 2.6RHOB
0 0.2 0.4 0.6Porosity
PhiRHONPHI
1 2 3 4 5Velocity (km/s)
VpVs
2 4 6 8 10 12 14P-Impedance
0.2 0.3 0.4Poisson's Ratio
20 40 60 80GR
Dep
th (m
)
100 m
~ 1800 m
MARL?
Well B
GP170/2001 #13

3
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0 0.1 0.2 0.3 0.4 0.5
Poi
sson
's R
atio
of
Pac
k
Poisson's Ratio of Solid
Hertz-MindlinDry Sphere Pack
Effective-Medium Models and Vs (Poisson’s Ratio) Prediction
GP170/2001 #13
0.5
1.0
1.5
0 10 20 30 40 50 60 70 80
YinWinklerAzra
Vs
(km
/s)
Pressure (MPa)
DRY GLASS BEADS
HertzMindlin
0.5
1.0
1.5
2.0
2.5
0 10 20 30 40 50 60 70 80
YinWinklerAzra
Vp (km
/s)
Pressure (MPa)
DRY GLASS BEADS
HertzMindlin
SpherePack
0
0.1
0.2
0.3
0.4
0 10 20 30 40 50 60 70 80
YinWinklerAzra
Poi
sson
's R
atio
Pressure (MPa)
DRY GLASS BEADS
HertzMindlin
Hertz-Mindlin Contact Theory
KHM = [n2 (1− φ c)
2 Gs2
18π 2(1− νs )2 P]
13
GHM = 5 − 4νs
5(2 − νs )[3n2 (1− φc )2 Gs
2
2π 2 (1− ν s)2 P]
1
3
KHM
GHM
=5(2 − ν s)
3(5 − 4νs )
νHM = 3KHM − 2GHM
2(3KHM + GHM )= 3νs
2(15 − 9νs )
2.0
2.5
0 10 20 30 40 50 60 70 80
YinWinklerAzra
Vp (km
/s)
Pressure (MPa)
GLASS BEADSw/Water
Gassmann HertzMindlin
0
0.1
0.2
0.3
0.4
0.5
0 10 20 30 40 50 60 70 80
YinWinklerAzra
Poi
sson
's R
atio
Pressure (MPa)
HertzMindlin
GLASS BEADSw/Water
Gassmann
Gassmann’sWater Saturation
Vp
Vs
=2(1− ν)
1− 2ν⇒ V s = V p
1 − 2ν2(1− ν )

4
Experimental Sphere Pack and Sand Results
GP170/2001 #13
SpherePack
0
1
2
3
4
0 10 20 30
Vp (km
/s)
Pressure (MPa)
DRY LEAD SHOT #92 mm Size
HertzMindlin
0
1
2
3
0 10 20 30
Vs
(km
/s)
Pressure (MPa)
DRY LEAD SHOT #92 mm Size
HertzMindlin
-0.2
-0.1
0
0.1
0.2
0.3
0.4
0 10 20 30
Poi
sson
's R
atio
Pressure (MPa)
DRY LEAD SHOT #92 mm Size
HertzMindlin
0.3
0.4
0.5
0 10 20
Sand ASand B
Poi
sson
's R
atio
Pressure (MPa)
Sand w/WaterUltrasonic
Experiment
HertzMindlin
1.9
2.0
2.1
2.2
2.3
0 10 20
Sand A
Sand B
Vp (km
/s)
Pressure (MPa)
Sand w/WaterUltrasonic
Experiment
HertzMindlin
0.3
0.5
0.7
0.9
1.1
0 10 20
Sand ASand B
Vs
(km
/s)
Pressure (MPa)
Sand w/WaterUltrasonic
ExperimentHertz
Mindlin
Lead SpheresSand/Water
Ultrasonic Experiment
0
0.02
0.04
0.08
0.10
0.12
0 4 8 12 16 20
Sand ASand B1
/Q
s
Pressure (MPa)
Sand w/WaterUltrasonic
Experiment
0
0.02
0.04
0.08
0.10
0.12
0 4 8 12 16 20
Sand ASand B
1/Q
p
Pressure (MPa)
Sand w/WaterUltrasonic
Experiment
0
1
2
3
0 4 8 12 16 20
Sand A
Sand B
(1/Q
s)/(1
/Q
p)
Pressure (MPa)
Sand w/WaterUltrasonic
Experiment

5
Poisson’s Ratio in North Sea Sands
GP170/2001 #13
-0.1
0
0.1
0.2
0.3
0.4
0.5
0.1 0.2 0.3 0.4
Poi
sson
's R
atio
Porosity
5 MPa
30 MPa
DRY
GassmannWater
TROLL SANDS
5
10
15
20
25
30
0.1 0.2 0.3 0.4
Com
pre
ssio
nal
Mod
ulu
s (G
pa)
Porosity
DRY DATA20 MPa
TROLL
OSEBERG
-0.1
0
0.1
0.2
0.3
0.4
0.5
0.1 0.2 0.3 0.4
Poi
sson
's R
atio
Porosity
20 MPa
40 MPa
DRY
GassmannWater
OSEBERG SANDS
2
4
6
8
10
12
14
0.1 0.2 0.3 0.4
Sh
ear
Mod
ulu
s (G
pa)
Porosity
DRY DATA20 MPa
TROLL
OSEBERG
-0.1
0
0.1
0.2
0.3
0.4
0.5
-0.1 0 0.1 0.2 0.3 0.4 0.5
Poi
sson
's R
atio
30 M
Pa
Poisson's Ratio 5 MPa
DRY GassmannWater
TROLL SANDS
-0.1
0
0.1
0.2
0.3
0.4
0.5
-0.1 0 0.1 0.2 0.3 0.4 0.5
Poi
sson
's R
atio
40 M
Pa
Poisson's Ratio 20 MPa
DRY
GassmannWater
OSEBERG SANDS
Pressure-Dependent Behavior of SandsInput Experimental Data
2
3
0 0.1 0.2 0.3 0.4
Vs
(km
/s)
Porosity
5 MPa
30 MPa
DRYSANDSTONES
2
3
4
0 0.1 0.2 0.3 0.4
Vp (km
/s)
Porosity
5 MPa
30 MPa
DRYSANDSTONES
0
0.1
0.2
0.3
0 0.1 0.2 0.3 0.4
Poi
sson
's R
atio
Porosity
5 MPa
30 MPa DRYSANDSTONES
General Sandstone Data

6
Empirical Relations and Well Log Data
GP170/2001 #13
0.1
0.2
0.3
0.4
0.5
2 3 4
Poi
sson
's R
atio
Vp (km/s)
Well ANo Hydrocarbons
MudrockWilliams
1
2
2 3 4
Vs
(km
/s)
Vp (km/s)
Well ANo Hydrocarbons
MudrockWilliams
1
2
2 3 4
Vs
(km
/s)
Vp (km/s)
Well BGas and Oil
MudrockWilliams
0.1
0.2
0.3
0.4
0.5
2 3 4
Poi
sson
's R
atio
Vp (km/s)
Well BGas and Oil
MudrockWilliams
0.1
0.2
0.3
0.4
0.5
2 3 4
Poi
sson
's R
atio
Vp (km/s)
Well CGas and Oil
MudrockWilliams
1
2
2 3 4
Vs
(km
/s)
Vp (km/s)
Well CGas and Oil
MudrockWilliams
0.1
0.2
0.3
0.4
0.5
2 3 4 5 6
Poi
sson
's R
atio
Vp (km/s)
Well EUplifted
Tight SandGas
MudrockWilliams
0.1
0.2
0.3
0.4
0.5
2 3 4 5 6
Poi
sson
's R
atio
Vp (km/s)
Well DUplifted
Tight SandGas
MudrockWilliams
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
2 3 4 5 6
Vs
(km
/s)
Vp (km/s)
Well DUplifted
Tight SandGas
MudrockWilliams
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
2 3 4 5 6
Vs
(km
/s)
Vp (km/s)
Well EUplifted
Tight SandGas
MudrockWilliams
0.5
1.0
1.5
2.0
2.5
3.0
2 3 4 5
Poi
sson
's R
atio
Vp (km/s)
Well FDeeper
Gulf CoastGas Sand
MudrockWilliams
PAY
0.1
0.2
0.3
0.4
0.5
2 3 4 5
Poi
sson
's R
atio
Vp (km/s)
Well FDeeper
Gulf CoastGas Sand
MudrockWilliams
PAY
Empirical relations do not give precise values but can be used to identify hydrocarbons (w/caution)

7
Pore Pressure and Fluid Identification
GP170/2001 #13
0 10 20 301
2
3
Diff. Pressure (MPa)
Vp
Vs
Vel
ocit
y (k
m/s)
0 10 20 30Pore Pressure (MPa)
Vp
Vs
2.0
2.5
5 10 15 20 25 30V
p (km
/s)
Effective Pressure (MPa)
GAS
OIL
BRINE
Phi = 0.35
5 10 15 20 25 30Pore Pressure (MPa)
GAS
OIL
BRINE
Phi = 0.35
5 10 15 20 25 30
2.0
2.5
Pore Pressure (MPa)
GAS
OIL
BRINE
Vp (km
/s)
WaterFlood
GasInjection
Gas out ofSolution
0
.1
.2
.3
.4
3 4 5
Poi
sson
's R
atio
P-Impedance (km/s g/cc)
BRINE
PorePressure
PorePressure
GAS
OIL
PorePressure
NORTH SEASAND
3 4 50
.1
.2
.3
.4
P-Impedance (km/s g/cc)
GAS
OIL
BRINE
Poi
sson
's R
atio
Gas out ofSolution
PorePressure
PDifferential = PConfining - PPore
2.5
3.0
3.5
4.0
4.5
0 20 40 60 80 100
Vp (km
/s)
Differential Pressure (MPa)
DRY
SATURATED
GASSMANN
1.8
2.0
2.2
2.4
2.6
2.8
3.0
0 20 40 60 80 100
Vs
(km
/s)
Differential Pressure (MPa)
Frequency Artifacts

8
Poisson’s Ratio and Pressure in Dry Rocks
GP170/2001 #13
PDifferential = PConfining - PPore
0 5 100
.1
.2
.3
Pressure (MPa)
PR
a
CascoGranite
Pore Pressure
0 10 20 30Pressure (MPa)b
Clay-FreeSandstone
18% Porosity
Pore Pressure0 10 20
Pressure (MPa)c
Ottawa Sand +5% Kaolinite33% Porosity
Pore Pressure
0 10 20Pressure (MPa)d
Sandstone13% Porosity
11% Clay
Pore Pressure
0 10 20 300
.1
.2
Pressure (MPa)
PR
e
Sand36% Porosity
Pore Pressure
0 10 20 30Pressure (MPa)f
Sand27% Porosity
Pore Pressure
0 10 20 30Pressure (MPa)g
Sand35% Porosity
Pore Pressure
0 10 20 30 40Pressure (MPa)h
Sandstone25% Porosity
Pore Pressure
0 20 40 600
.1
.2
Pressure (MPa)
PR
i
DeepTight Gas SS
4.3% Porosity31% Clay
Pore Pressure
0 20 40Pressure (MPa)j
BereaSandstone
19% Porosity
Pore Pressure
0 20 40Pressure (MPa)k
DeepSandstone
13% Porosity44% Clay
Pore Pressure
0 20 40Pressure (MPa)l
Carbonate~ 2% Porosity
Pore Pressure
0.30 0.35Porosityb
at 5 MPaat 20 MPa
0.30 0.35Porosityd
at 5 MPaat 20 MPa
0.30 0.35
1.6
1.8
2.0
2.2
Porositya
Vp (km
/s) Both at
20 MPa
0.30 0.35
.1
.2
Porosityc
Poi
sson
's R
atio
Both at20 MPa
0
.1
.2
0 .1 .2
PR
at
30 M
Pa
PR at 5 MPa
2
3
4
0.1 0.2 0.3
Vp (km
/s)
Porosity
30 MPa5 MPa
0
.1
.2
0.1 0.2 0.3
PR
Porosity

9
Modeling Poisson’s RatioChange in Cracked Rock
GP170/2001 #13
BulkModulus
ShearModulus
0 10 20 30Pressure (MPa)
Pore Pressure
Differential Pressure 35 MPa0 MPa
35 MPa 0 MPa
0
5
10
15Bulk
Modulus
ShearModulus
Ela
stic
Mod
uli (G
Pa)
1e-41e-31e-2
.1
.2
.3
Crack Porosity
PR
Model Data
AxialLoading
RadialDeformation
Physical Meaningof the Result
0
0.1
0.2
0 10 20 30 40 50
OTTAWA SAND (YIN)
GLASS BEADS (TUTUNCU)
Poi
sson
's R
atio
Pressure (MPa)
Pore Pressure
Importance of Cracks
Explanation of the Effect
1e-41e-31e-2
.1
.2
.3
.4
Crack PorosityPR
IncreasingPore Pressure
Dry
w/Water
Synthetic ExampleDry and Saturated

10
0 20 40Pressure (MPa)b
Dry
w/Water
Pore Pressure
GP170/2001 #13
Saturated Rocks
0 20 400
.1
.2
.3
Pressure (MPa)a
Dry
w/Water
PR
Pore Pressure
.20
.25
.30
.35
0 10 20 30 40
Poi
sson
's R
atio
Differential Pressure (MPa)
Pore Pressure
a
b
c
Shale w/WaterUltrasonic Experiment
0
.1
.2
.3
.4
3 4 5
Poi
sson
's R
atio
P-Impedance (km/s g/cc)
BRINE
PorePressure
PorePressure
GAS
OIL
PorePressure
NORTH SEASAND
a
Seismic Diagnostic Crossplots
2
3
4
5
6
7
2 3 4
P-I
mped
ance
(km
/s
g/cc
)
S-Impedance (km/s g/cc)
BRINE
GAS
OIL
NORTH SEASAND
b
Caveats of Texture
0.25 0.30 0.35
3
4
5
6
7
8
9
Porosity
NORTH SEASANDS 20 MPa
a
P-I
mped
ance
(k
m/s
g/cc
)
Oseberg
Troll
GAS
0.25 0.30 0.35Porosity
b
NORTH SEASANDS 20 MPa
Oseberg
Troll
WATER
3 4 5 6 7 8 9
0
.1
.2
.3
.4
P-Impedance (km/s g/cc)
BRINE
ContactCementation
ContactCementation
GAS
NORTH SEASANDS 20 MPa
a
Poi
sson
's R
atio
3 4 5 6 7 8 9P-Impedance (km/s g/cc)
BRINE
PorePressure
PorePressure
GAS
NORTH SEATROLL SAND
b

11
GP170/2001 #13
More on Overpressure
5
10
15
0.2 0.3 0.4
5 MPa15 MPa
Com
pre
ssio
nal
Mod
ulu
s (G
Pa)
Porosity
TROLL SANDROOM DRY
5 MPaPhiC = .4
C = 8
15 MPaPhiC = .4C = 10
2
4
6
0.2 0.3 0.4
5 MPa
15 MPaS
hea
r M
odu
lus
(GPa)
Porosity
TROLL SANDROOM DRY
5 MPaPhiC = .4
C = 8
15 MPaPhiC = .4C = 10
0
0.1
0.2
0.2 0.3 0.4
5 MPa15 MPa
Poi
sson
's R
atio
Porosity
TROLL SANDROOM DRY
5 MPaPhiC = .4
C = 8
15 MPaPhiC = .4C = 10
Uncemented Troll Sand: Pressure Behavior
2 4 6 8 10 12M-Modulus (GPa)
12 MPa
22 MPa
Pore Pressure
0.2 0.3 0.4
1.1
1.2
1.3
Porosity
Dep
th (km
)
1 2 3 4 5G-Modulus (GPa)
12 MPa
22 MPa
Pore Pressure
0 0.1 0.2PR
12 MPa
22 MPa
Pore Pressure
Overpressured Gas Sand
2
4
6
8
10
12
2 4 6 8 10 12
M-M
odu
lus
at 5
MPa
M-Modulus at 15 MPa
1
2
3
4
5
1 2 3 4 5
Sh
ear
Mod
ulu
s at
5 M
Pa
Shear Modulus at 15 MPa
0
.1
.2
0 .1 .2
Poi
sson
's R
atio
at
5 M
Pa
Poisson's Ratio at 15 MPa
PDifferential = PConfining - PPore

12
GP170/2001 #13Two-Layer Model
0.3 0.4Porosity
2Layer
0 0.5 1Sw
2Layer
Gas
Material PropertiesMineral Bulk (GPa) Shear (GPa) Density (g/cc)--------------------------------------------------------------------------------------Quartz 36.6 45 2.65Clay 21 7 2.54Water 2.5 0 1.00Gas .02 0 0.1
Model Parameters (Uncemented Sand Model)Layer PhiC Coordination# Diff. Pressure--------------------------------------------------------------------------------------Shale (Top) 0.4 8 15 MPaSand (Normal) 0.4 8 15 MPaSand (Pressured) 0.4 5 5 MPa
1.6 1.8 2.0 2.2RHOB
2Layer
0 0.5 1
1.00
1.01
1.03
1.04
1.05
1.06
1.07
1.08
Clay (in Solid)
Dep
th (km
)
2Layer
SH
ALE
SA
ND
4
5
6
0.2 0.3 0.4
P-I
mped
ance
Porosity
Top ShaleModel
Ip = 7.32 - 8.88 Phi.37
.38
.39
.40
.41
0.2 0.3 0.4
Poi
sson
's R
atio
Porosity
Top ShaleModel
PR = 0.34 + 0.17 Phi
3
4
5
0.2 0.3 0.4
P-I
mped
ance
Porosity
Gas Sand15 MPa
Ip = 7.84 - 12.76 Phi.01
.03
.05
.07
.09
0.2 0.3 0.4
Poi
sson
's R
atio
Porosity
PR = 0.176 - 0.38 Phi
Gas Sand15 MPa
3
4
5
0.2 0.3 0.4
P-I
mped
ance
Porosity
Gas Sand5 MPa
Ip = 5.83 - 9.73 Phi
.01
.03
.05
.07
.09
0.2 0.3 0.4
Poi
sson
's R
atio
Porosity
PR = 0.19 - 0.39 Phi
Gas Sand5 MPa
Model Results
2 3 4 5Ip
2Layer
15 M
Pa
5 M
Pa
0 0.2 0.4PR
2Layer
15 M
Pa
5 M
Pa
From Model
0 0.2 0.4PR
2Layer
5 M
Pa
15 M
Pa
Rea
list
ic
PR Corrected
SHALEIp = 4.42RP = 0.4
SAND NORMALIp = 3.37RP = 0.15
SAND OVERPRESSUREDIp = 2.42RP = 0.06
PDifferential = PConfining - PPore
R(0 )=Ip2 − Ip1
Ip2 + Ip1
; R(θ1 ) ≈ R(0)cos2 θ1 + (1
1− ν2
−1
1− ν1
)sin 2 θ1.
-0.5
-0.4
-0.3
-0.2
-0.1
0 10 20 30 40
Rpp
Angle
Normal
Overpressure
Overpressurew/Normal PR

13
GP170/2001 #13Backus Average
AndWyllie’s Average
Frequency
Wavelength
Vel
oci
ty
This velocity dispersion mechanism is related to the heterogeneity of natural rocks and reservoirs. The high-frequency wave travels faster than the low-frequencywave.
Consider a layered 1D medium made out of two types of materials: one material is soft and has density ρ1 and the elastic modulus M1; the other has density ρ2
and the elastic modulus M2. If the wavelength is short, the wave sees every layer as an infinite space. Then the travel time through two layers made of differentmaterials but having the same thickness (one length unit) is (Wyllie's time average):
Let now the wavelength be much larger than the individual layers. Then the wave sees the layers as a single elastic body. The effective elastic modulus of thisbody is given by the iso-stress (Reuss) average:
The effective density of the new elastic body is ; the resulting effective velocity is , and the travel time through two layersis
For N layers:
τ Short =
1
V1
+1
V2
=1
M1 / ρ1
+1
M2 / ρ2
= τ1 + τ2 .
1 / MEff = (1/ M1 + 1/ M2 )/ 2.
ρEff = (ρ1 + ρ2 )/ 2 VEff = MEff /ρEff
τ Long = 2 / VEff
τ Backus =hi
i =1
N
∑VBackus
=hi
i =1
N
∑MEff / ρEff
,1
MEff
=1
hii=1
N
∑hi
Mii=1
N
∑ , ρEff =1
hii =1
N
∑hiρi
i =1
N
∑ .
τ Short =
1
M1 / ρ1
+1
M2 / ρ2
< 2(ρ1 + ρ2 )
2
1
2(
1
M1
+1
M2
) = τLong
SHALEVp = 2.147 km/sRHOB = 2.06 g/cc
M = 9.5 GPa
SAND NORMALVp = 1.92 km/s
RHOB = 1.76 g/ccM = 6.5 GPa
Vp_Wyllie = 2.027 m/sVp_Backus = 2.010 m/s
Example: