Gijs van der Schot Simone Wanningen

26
Gijs van der Schot Simone Wanningen

description

Gijs van der Schot Simone Wanningen. Bacteriophages. Bacteriophages. Bacteriophages. Host cell lysis. Large double stranded DNA phages: Employ an invariable holin Make use of endolysin Single stranded nucleic acid bacteriophages: Expression of single gene No muralytic enzyme needed - PowerPoint PPT Presentation

Transcript of Gijs van der Schot Simone Wanningen

Page 1: Gijs van der Schot Simone Wanningen

Gijs van der Schot

Simone Wanningen

Page 2: Gijs van der Schot Simone Wanningen

Bacteriophages

Page 3: Gijs van der Schot Simone Wanningen

Bacteriophages

Page 4: Gijs van der Schot Simone Wanningen

Bacteriophages

Page 5: Gijs van der Schot Simone Wanningen

Host cell lysis

• Large double stranded DNA phages:– Employ an invariable holin– Make use of endolysin

• Single stranded nucleic acid bacteriophages:– Expression of single gene– No muralytic enzyme needed

– Example: Gene E from Microviridae ΦX174

Page 6: Gijs van der Schot Simone Wanningen

Gene E from ΦX174

• Encodes a membrane protein of 91 residues• α-helical shape• Causes lysis of several Gram-negative hosts

• Protein E causes lysis by inhibiting MraY

Page 7: Gijs van der Schot Simone Wanningen

MraY

out

inA AA E KMUDP

A AA E KM

Lipid I

MraY

UDPG

Lipid IIMurG

G

A AA E KM

AA AEK M

G

Lipid II

A AA E KM

G

A AA E KM

G

Page 8: Gijs van der Schot Simone Wanningen

MraY and E

out

inA AA E KMUDP

A AA E KM

Lipid I

MraY

UDPG

Lipid IIMurG

G

A AA E KM

AA AEK M

G

Lipid II

A AA E KM

G

A AA E KM

G

Page 9: Gijs van der Schot Simone Wanningen

MraY and E

out

inA AA E KMUDP

A AA E KM

Lipid I

MraY

UDPG

Lipid IIMurG

G

A AA E KM

AA AEK M

G

Lipid II

A AA E KM

G

A AA E KM

G

Page 10: Gijs van der Schot Simone Wanningen

MraY catalyzes formation of Lipid I

Phytol Phosphate

Page 11: Gijs van der Schot Simone Wanningen

Mechanism Inhibition MraY (I)

• Mutations in MraY lead to E-resistance

• MraY from Bacillus suptilis is resistant (BSMraY)

Page 12: Gijs van der Schot Simone Wanningen

Mechanism Inhibition MraY (II)

• Two models explaining Inhibition:– E affects functioning MraY directly– E affects functioning MraY indirectly

(i.e. assembly heteromultimeric complex)

• Epep fragment contains 37 N-terminal residues:– Lysis of membrane containing overexpressed MraY– No lysis in detergent-solubilized membranes

Page 13: Gijs van der Schot Simone Wanningen

In this article/study:

• First purifiction of full-length E-protein• Characterization of the ability of E-protein to inhibit MraY

Page 14: Gijs van der Schot Simone Wanningen

Overproduction of E6his

• Induction E allele lethal

Page 15: Gijs van der Schot Simone Wanningen

Overproduction of E6his

• Induction E allele and BsMraY overcomes lethality

Page 16: Gijs van der Schot Simone Wanningen

Purification of E6his

• Yield of extracted protein: 54uM, 84% pure

Page 17: Gijs van der Schot Simone Wanningen

Quantification of E6his in vivo

• Previous indirect in vivo approaches:

– ~100-300 molecules/cell

– ~1000 molecules/cell

• This study used purified E6his

– ~500 molecules/cell

• We think:– ~750

molecules/cell

Page 18: Gijs van der Schot Simone Wanningen

Fluorescent analysis of MraY

Substrates used:– UDP-MurNAc-pentapeptide-DNS

– Phytol-P

• Fluorescent labeled product:– Phytol-P-P-MurNAc-pentapeptide-DNS

Page 19: Gijs van der Schot Simone Wanningen

Michaelis-Menten kinetics

V0 = Initial reaction rate

VMax = Maximum rate

KM = Michaels constant[S] = substrate concentration

Page 20: Gijs van der Schot Simone Wanningen

Determination of Km values

Al-Dabbagh et al. (ref 27):C55-P – 0.2 mM

UM5 – 0,94 mM

E resistance is not due to an altered substrate affinity

Page 21: Gijs van der Schot Simone Wanningen

E-mediated inhibition of MraY (I)

• E inhibits MraY specifically when both are present in same membrane

Page 23: Gijs van der Schot Simone Wanningen

E-mediated inhibition of MraY (II)

Km parameters for both substrates unchanged in presence of E

Vmax in both substrates decreased in presence of E

E is a non-competitive inhibitor of MraY with respect to both lipid and sugar-nucleotide substrates

– Ki averages of 0,53 +/- 0,12 uM

Page 24: Gijs van der Schot Simone Wanningen

Sensitivity of MraY mutant alleles

• Ability of E to inhibit the MraY proteins form the 5 mutant alleles

• 5 mutants in 3 classes:– MraYG186S and MraYV291M

– MraYp170L and MraY∆L172

– MraYF288L

• Matches classes of apparent affinities

Page 25: Gijs van der Schot Simone Wanningen

Conclusions

• Overproduction of protein E achieved– Possible to do structural and biophysical characterization of E

• E acts as a non-competitive inhibitor with respect to both lipid and sugar-nucleotide substrates of MraY

Page 26: Gijs van der Schot Simone Wanningen

New model: Inhibition by direct binding

• Interaction of one TMD of E and TMD 5 and 9 of MraY• Non-competitive binding results in conformational change