Geometry for Didactics

146
ΕΥΣΤΑΘΙΟΥ Ε. ΒΑΣΙΛΕΙΟΥ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗ ΔΙΔΑΚΤΙΚΗ ΣΗΜΕΙΩΣΕΙΣ ΑΘΗΝΑ 2012 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

Transcript of Geometry for Didactics

  • .

    2012

  • GEOMETRY FOR DIDACTICS

    AMS (2000) Subject Classification:

    01A20, 01A55, 01A60,

    51A05, 51A10, 51E15,

    53A04, 53A05

    COPYRIGHT 2012 by Efstathios E. Vassiliou

    All rights reserved

  • .

    / -

    .

    / /

    . -

    ,

    ,

    . / / -

    ( )

    . ( ) -

    ,

    .

    , -

    , , ,

    -

    . ,

    -

    .

    -

    . ( )

    , Hilbert. -

    v

  • vi

    -

    . , ,

    , . , -

    ,

    , .

    ,

    / /

    () .

    ,

    . /

    () -

    () .

    (

    , ). -

    , Frenet-Serret,

    .

    -

    ( Egregium

    Gauss) . -

    Einstein .

    , , -

    / / ,

    ,

    . ,

    , / -

    , ,

    .

    ,

    , -

    .

    .

    . , 2012.

    : [email protected]

  • v

    1 1

    1.1 . . . . . . . . . . . . . . . . . . . . . 2

    1.2 . . . . . . . . . . . . . . . . . . . . 5

    1.3 . . . . . . . . . . . . . . . . 8

    1.4 Hilbert . . . . . . . . . . . . . . . . . . 11

    1.5 . . . . . . . . . . . . . . . . . . 16

    1.6 . . . . . . . . . . . . . . . . . . . . . . . . . 18

    1.7 . . . . . . . . . . . . . . . . . . . . . . . . . 22

    1.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    2 27

    2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

    2.1 . . . . . . . . . . . . . . . . . . . . . . . . . 33

    2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 38

    2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

    2.4 . . . . . . . . . . . . . . . . . . . . . . . . 46

    2.5 . . . . . . . . . . . . 52

    2.6 . . . . . . . . . . . . . . . . . . . . 59

    2.7 P2 . . . . . . . . . . . . . . . . . . . . . . . . . 67

    3 73

    3.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

    3.1 . . . . . . . . . . . . . . . . . . . . . . . . . 74

    vii

  • viii

    3.2 . . . . . . . . . . . . . . . . . . . . . . . 79

    3.3 . . . . . . . . . . . . . . . . . . . . . . . . 81

    3.4 . . . . . . . . . . . . . . 91

    3.5 Frenet . . . . . . . . . . . . . . . 93

    3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

    4 101

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

    103

    107

    111

  • 1

    ( )

    180o -

    , ( )

    ,

    ...

    , ,

    , -

    K. F. Gauss (1824) [10, . 109]

    (). , 2012.

  • 2 1.

    -

    .

    ,

    ( 13).

    ( 4)

    () ,

    , Hilbert

    ( 5).

    ( ), -

    19 , 6 7 ,

    .

    1.1

    ,

    , ,

    .

    ,

    , ,

    ,

    .

    ,

    , . -

    ( )

    . , ,

    ,

    (

    ).

    , -

    , . , (

    ) -

    . ()

    .

    ...

    -

    - , ,

    .

  • 1.1. 3

    (, , ). ,

    , .

    , -

    . , (

    ) . -

    (, ),

    .

    , -

    . .

    , ,

    .

    ,

    . ,

    (

    ), , -

    , ,

    , (. -

    , Rhind

    ). L Mlodinow (. [25, . 9]),

    ,

    ,

    .

    , , ,

    , , ,

    .

    ,

    , .

    ,

    . ,

    ,

    . ( )

    .

    (, , -

    ). 585 ..

    . .

    -

    .

    ( -

    .

  • 4 1.

    Kongruenz, congruence),

    , ( ), -

    . ,

    ,

    ,

    .

    ,

    . -

    .

    -

    .

    , .

    , -

    .

    1.

    , , , -

    : ,

    ,

    .

    , (, , ) 2 = 2 + 2. ,

    () ,

    , . ()

  • 1.2. 5

    , -

    Rene Descartes

    [] (15961650) Pierre de Fermat(16011665). ,

    , -

    .

    , , -

    . ,

    ( ),

    ,

    ,

    (. ).

    . , , L. Kronecker

    ( )

    .

    ( )

    .

    ,

    , . -

    , ,

    . ,

    , , -

    , ,

    .

    , ,

    ( ), (

    ), .

    , , -

    [1].

    , ,

    - ,

    ,

    , .

    1.2

    300 ..

    . -

    ,

  • 6 1.

    ,

    . -

    2- ,

    . .

    , .

    .

    .

    ,

    , (

    . ).

    19 , .

    .

    Ba-

    ruch Spinoza (16321677). Immanuel Kant (17241804),

    ,

    ,

    .

    , a priori.

    Karl Friedrich Gauss

    (17751855), ( ) -

    ,

    .

    , -

    . ,

    , . ,

    , -

    . :

    ,

    ;

    . (-

    ) ,

    , -

    ( ). ,

    , ,

    , , -

    , (),

    .

    . -

    . ,

    , .

    1.4.

  • 1.2. 7

    .

    13 ( 13 )

    23 , 5 7 ( 9) ,

    465 ( , , - ).

    14 . 56 -

    , , -

    . 79 . 10

    . 1112

    . 13

    .

    ,

    .

    , -

    , , , . ( , -

    .) , ( , .)

    .

    , ( )

    , ,

    .

    ( )

    . , ,

    , , ,

    (

    , , ).

    (

    ), ,

    ( :

    , [] .).

    , ()

    .

    ( .)

    , , ,

    .

    :

    : , , -

    , ( ,

  • 8 1.

    , )

    .

    : -

    . ,

    ,

    ,

    . , ,

    .

    :

    P .

    . ,

    P,

    .

    , -

    . ,

    () , -

    .

    , ,

    .

    [26].

    1.3

    ()

    , -

    . ,

    .

    [36].

    1. .

    2.

    .

    3. -

    .

    4. .

    5. , ,

    ,

    , (-

    )

    .

  • 1.3. 9

    .

    3 -

    , .

    , -

    . 4 .

    ,

    ( , ,

    ). , 4

    . , 5 , -

    , .

    -

    ,

    .

    5 . -

    28 .

    ,

    ,

    , . 5

    -

    19 , [ 1868

    Eugenio Beltrami (18351900 )].

    ( 28 -

    , ,

    .

    28 -

    . ,

    , , -

    . 5

    .

    1.

    .

    2. .

    3. .

    4. .

    5. () , -

    .

    6. ,

    .

    7. ,

    .

    1 John Playfair (17481819) .

  • 10 1.

    5 , .

    3 John Wallis (16161703).

    5

    (410485 ..), Giovanni Gerolamo Saccheri (16671733) (, -

    ,

    ) Adrien-Marie Legendre (1752 1833).

    5 :

    ) -

    .

    ) .

    .

    , ) , )

    . 19 -

    .

    .

    ,

    ,

    ,

    , .

    ( 310-250

    .), ,

    ( )

    , .,

    ( 275 195 ..),

    , , -

    (2 .),

    ,

    (138180 .), , ,

    .

    , , (287212 ..),

    , . -

    ,

    ,

    . -

    ( 260200 ..), -

    .

    , ,

    . -

  • 1.4. Hilbert 11

    (. 2),

    ( )

    .

    , -

    , ,

    , , .

    , ,

    (5 .. ), ,

    . 16

    . ,

    .

    1.4 -

    D. Hilbert

    , ,

    ,

    , ,

    ,

    .

    , , , 1 ,

    AB.

    A

    AB B, .

    1.1. .

    ; ,

    . ,

  • 12 1.

    .

    : (-)

    , (.

    .. 4) ,

    (

    ,

    .).

    , ,

    ( ). ,

    ,

    ,

    . , ,

    , -

    .

    , Julius Wilhelm

    Richard Dedekind (18311916), Giuseppe Peano (18581932), David Hilbert

    (18621943) George David Birkhoff (18841944).

    -

    Hilbert (. [17]), (

    ) .

    Hilbert

    :

    , (), , () ,

    , / (Kongruenz, congruence)

    , , :

    I: ( ).

    II: .

    III: (Kongruenz, congruence).

    IV: .

    V: .

    , , Hilbert (.

    [10], [17], [36]).

    .

    .

    ,

    , .

    .1 A, B

    . ( : .)

  • 1.4. Hilbert 13

    .2 A, B .

    A, B, ,

    = AB = BA

    .3 . -

    () .

    .4 A, B, C, ,

    .

    .5 A, B ,

    .

    .6 ,

    .

    .7

    .

    .

    ,

    ,

    .

    .1 B A C, A, B, C

    B C A.

    .2 A, C,

    B, A C.

    .3 A, B, C ,

    .

    .4 A, B, C

    , .

    () AB,

    AC, BC.

    Pasch ( -

    Moritz Pasch (18431931)).

    : AB

    A B. AB BA.

    . (congruence)

    , ,

    .

    .1 A B k A

    , k,

    A B, AB

    AB.

  • 14 1.

    : AB AB( AB AB, AB = AB). : ( ) A B

    C AB, A B C.

    , A (

    A), A. A

    A.

    .2 AB AB AB AB, AB AB. (congruence) -

    . ( ) AB AB

    .3 A, B k A, B

    ( k = k , ). C A, B, C

    A, B, AC AC CB CB, AB AB.

    :

    h k () O,

    , h, k,

    O. (h, k). h P k Q ( h = OP k = OQ),

    (h, k) POQ.

    ( ) -

    , ,

    .

    ( ),

    , ..,

    . , -

    , (

    ).

    , A, B, C -

    AB, BC AC. ABC.

    .4 (h, k) ( O)

    ( ).

    . h

    O, k ( O),

    (h, k) (h, k) ( : (h, k) (h, k)) (h, k) .

    .5 ABC ABC AB AB, AC AC BAC BAC, ABC ABC.

  • 1.4. Hilbert 15

    IV.

    IV.1 ( , Playfair)

    P ( P )

    k .

    V.

    V.1 ( ) AB CD -

    , AB A1,

    A2, . . . , A, AA1 A1A2 A2A3 A1A CD B A1 A.

    V.2 ( ) ,

    , (. -

    )

    IIII V.1.

    V.1 ( ) V.2 ( ) -

    () Dedekind :

    ,

    ,

    .

    -

    ,

    [17].

    Hilbert ,

    ,

    . -

    ,

    , , .

    , (

    ) -

    ( ).

    2.

    -

    , , Henri

    Poincare (1854-1912) : (. [33, . 161]):

    ... , , .,

    .

    , -

    .

  • 16 1.

    , -

    ,

    , ,

    , .

    ... , Hilbert, ,

    ,

    ,

    , , .

    ... ,

    ,

    ,

    .

    , Stanley Jevons,

    .

    :

    ... Les expressions "etre situe sur, passer par", etc., ne sont pas de-

    stinees a evoquer des images; elles sont simplement des synonymes du

    mot determiner. Les mots "point, droite et plan" eux-memes ne doivent

    provoquer dans l esprit aucune representation sensible. Ils pourraient

    indifferemment designer des objets d une nature quelconque, pourvu

    qu on put etablir entre ces objets une correspondance telle qu a tout

    systeme de deux objets appeles points correspondit un des objets ap-

    peles droites et un seul.

    ... Ainsi M. Hilbert a, pour ainsi dire, cherche a mettre les axiomes sous

    une forme telle qu ils puissent etre appliquees par quelqu un qui n en

    comprendrait pas le sens, parce qu il n aurait jamais vu ni points, ni

    droite, ni plan.

    ... On pourra ainsi construire toute la geometrie, je ne dirais pas precise-

    ment sans y rien comprendre, puisqu on saisira l enchainement logique

    des propositions, mais tout au moins sans y rien voir. On pourrait confier

    les axiomes a une machine a raisoner, par example au "piano raisoneur"

    de Stanley Jevons, et on en verrair sortir toute la geometrie.

    1.5

    ,

    :

  • 1.5. 17

    ( , - , .).

    ( , , .). ( , Hilbert). ( ). , . (

    , ).

    , :

    1. (consistent), -

    . .

    ;

    2. (independent),

    () . .

    3. (complete), , -

    ,

    . , ,

    .

    , -

    . ,

    [ Kurt Godel(19061978)] -

    ,

    .

    () . , () -

    ,

    .

    .

    . , -

    ( ) .

    .

    , , -

    .

    , , , -

    . ,

    , ( -

    )

    .

    ( ) :

  • 18 1.

    X S. S S, X , - M S. S M, X . , X , S, M, M X . ,

    .

    ,

    2 .

    1.6

    ,

    , 19 -

    . ,

    5 ( -

    ). ,

    , .

    I. Kant 1808, -

    ,

    .

    1.3,

    5 1868 E. Beltrami, -

    (. ).

    :

    S S 5 . S () , - , S, , , 5 .

    ( )

    , -

    .

    (. 10) ,

    5 ,

    :

    ,

    .

    . -

    ( 5 ,

  • 1.6. 19

    ).

    ( -

    ) ,

    , .

    Janos W. Bol-

    yai (18021860) Nikolai I. Lobachewsky (17931856), -

    ( ) 1829

    1832 . K. F. Gauss (17751855)

    ,

    , , -

    . Gauss

    , ,

    ,

    ,

    ,

    . -

    .. [7], [10], [14] [19].

    -

    Gerolamo Saccheri

    (16671773), . -

    5

    ! , (

    ,

    )

    . , , -

    (

    ), ,

    , . Saccheri

    , -

    , , ,

    .

    -

    E. Beltrami 1868.

    , 1.2 .

    Gauss, -

    , ( -

    [6]).

    -

    ,

    . -

    () . ,

  • 20 1.

    , -

    ,

    .

    P (. ).

    P, ,

    .

    .

    1.2. ( [10]).

    , 2, , ,

    .

    ,

    .

    (. [6].

    C ,

    .

    , -

    . Hilbert

    . -

    Beltrami

    .

    Klein-Beltrami, -

    . -

  • 1.6. 21

    , (

    ) 1871.

    1.3. Klein-Beltrami ( [5])

    -

    () ,

    . , P

    AB ( A, B).

    -

    () ,

    .

    2

    , ,

    , .

    (

    180o).

    Poincare

    1.4. Poincare ( [10])

    ( ),

    .

  • 22 1.

    .

    . -

    Poincare

    , [10, . 164170].

    1.7

    Georg Friedrich Bernhard Riemann (18261866).

    10,

    . , 1, 2, 3, 4

    5

    : () ,

    , 2 ,

    ! ,

    , 1, 3, 4

    , 5 ,

    2

    2:

    . ,

    .

    ,

    ! ,

    -

    S1 S2,

    :

    S1: .

    S2: () .

    ,

    1, 2, 3, 4, S1 -

    S2 ,

    1, 2, 3, 4, S2

    S1 -

    .

    , (

    ).

    , , 1.

  • 1.7. 23

    ( )

    . . (

    1.5)

    1.5. ( [9])

    -

    ( R3),

    ,

    . , -

    .

    . ,

    . ,

    .

    , ,

    1.6,

    () .

    (.

    ), .

    1.5. ( [9])

    ,

  • 24 1.

    . , :

    () -

    () -

    ()

    ()

    -

    -

    , ,

    -

    .

    -

    () . ,

    Riemann

    ( Gttingen 1854) "Uber die Hypothesen

    welche der Geometrie zu Grunde liegen (:

    ).

    Poincare (. .

    15), Hilbert,

    ( ..

    ,

    Poincare

    .).

    Riemann,

    , , (. -

    ) . , Riemann

    (manifold), -

    . Albert

    Einstein (18781955) Riemann

    . ,

    ( )

    ( ),

    .

  • 1.8. 25

    ( ) ( -

    ). ,

    (gauge theory), -

    (string theory) . ,

    ,

    .

    , -

    , .

    , , -

    , : J. N. Cederberg [9], R. L. Faber [14], .

    [38] (

    ) M. Spivak [35] [ , ,

    Riemann (:

    ),

    ] H. Poincare [33] ( ,

    ). , ,

    , , -

    E. T. Bell [7], S. Hollingdale [18], L. Mlodinov [25], .

    [27], J. Pierpont [32], D. J. Struik [39], I. M. Yaglom [41].

    .

    [7], [9], [10] [36], .

    1.8

    1. Saccheri (. [10, . 104107]).

    2.

    Poincare (. [10, . 164170]).

    3. (. [10, . 138139

    143162]).

  • 2

    -

    17 -

    . . . , -

    (-

    ) Desargues 1639,

    -

    .

    E. T. Bell [7, . 158]

    ,

    1 2 Hilbert -

    .

    27

  • 28 2.

    ,

    , .

    3 . ,

    , ,

    .

    ( 4) -

    ( , ) -

    .

    5 .

    , ( )

    , . ,

    -

    .

    , 6 -

    . ,

    .

    2.0

    , -

    .

    ,

    . , .

    -

    , ().

    -

    , ,

    Filippo Brunelleschi (13771446), Paolo

    Uccello (13791475), Leone Battista Alberti (14041472), Pierro de la Francesca

    (14161492), Sandro Botticelli (14451510), Leonardo da Vinci (14521519), Al-

    brecht Durer (14711528), Michelangelo Buonarroti (14751564), Raffaello Santi

    Sanzio (14831520) .. -

    -

    ,

    .

    , ,

    . , [ ( ) ] () (E), . P (E) P , OP ( O

  • 2.0. 29

    ) ( ). R R .

    2.1

    , , P

    (E) ( ), P

    AB (. 2.2), ( ) , O

    (E). AB ,

    ( ).

    2.2

  • 30 2.

    , [ (E) ], ,

    AB (. ).

    2.3

    , ,

    (

    CD, AB

    ,

    ).

    , 2.3, -

    :

    .

    , AB.

    . , Gio-

    vanni Antonio Canal, Canaletto (16971768),

    . -

    .

    , .

    , Andrea Mantegna (1431;1506) -

    . , -

    , ( ) . ,

    ,

    , .

  • 2.0. 31

  • 32 2.

    -

    : O ,

    ( ) , , - , ( )

    (E). [

    ( )]. 2.4 , ,

    .

    2.4

    2.5

    , ( )

    , ,

    .

    17

    . 18 ,

    , -

    .

    19 .

    Girard Desargues (15911661), Blaise Pascal

    (16231662), Philippe de la Hire (16401718) ..,

    Gaspar Monge (1746 1818), Jean-

    Victor Poncelet (1788 1867), Charles Brianchon (17851864), August Ferdinand

    Mobius (17901868), Jacob Steiner (17961863), Julius Plucker (18011868)

    Karl Georg Christian von Staudt (17981867).

    : . -

    , .

    . -

    , ,

  • 2.1. 33

    ,

    .

    , -

    . Sophus Lie (18421899), Henrie Poi-

    ncare (18541912) , , Christian Felix Klein (18491925)

    .

    2.1

    , -

    , , , .

    , -

    , ,

    , () -

    . , ,

    . -

    () .

    D. Hilbert [17] :

    P , , (points)

    A, B, C, . . . , P, Q, . . . , ,, . . . , X, Y.

    L , , (lines)

    a, b, c . . . , k, , . . . , , , . . . , x, y.

    I P L, I P L, (incidence).

    .

    .

    ,

    .

    P L = .

    , (P, k) P L, - (P, k) I (P, k) < I.

  • 34 2.

    (P, k) I () :

    P ( ) k,

    P k,

    k P.

    . ,

    P k. (),

    .

    ,

    (. 2.6.8, ,

    ).

    .

    2.1.1 . (P,L,I) . Pi P (collinear), k L,

    (Pi , k) I, i = 1, 2, 3, . . .

    , ki L ( ) (concurrent lines) P P,

    (P, ki) I, i = 1, 2, 3, . . .

    , k, L (parallel), - k//, :

    k = ,

    k , P P : (P, k) I (P, ).2.1.2 . (affine plane)

    (P,L,I), :( 1) (

    ). ,

    :

    [ (P, Q) P P : P , Q ] [ ! k L : (P, k) I (Q, k) ].

    ( 2) ( ).

    . ,

    [ (P, k) P L : (P, k) < I ] [ ! L : (P, ) I, k// ].

    ( 3) ,

    .

  • 2.1. 35

    ( 2), , J. Playfair

    5 () .

    , [36].

    2.1.3 . 1) () -

    . ,

    ,

    I , (). ,

    (P, ) I P .

    2)

    P := {A, B, C, D},L := {{A, B}, {A, C}, {A, D}, {B, C}, {B, D}, {C, D}}

    I , (P,L,I) - .

    , .

    3) () Klein-Beltrami, 20.

    2.1.4 . k ( 1)

    (join) P, Q

    k = P Q = Q P

    ( 1).

    (P,L,I)

    2.1.5 . A, B, C

    ,

    = A B = A C = B C.

    . 2.1.1

    (A, ) I (B, ) I.

    A , B, ( 1) A B

    (A, A B) I (B, A B).

    , ( 1), = A B. .

  • 36 2.

    2.1.6 . k, ,

    P (P, k) I (P, ) I.

    . k, l (k//), ( k , ) P, .

    k //, P (

    ). Q,

    (Q, k) I (Q, ). P = Q. , P , Q, ( 1) P Q. , P, Q k , ( 1) ,

    k = P Q = ,

    k , . , , -

    P = Q.

    2.1.7 . k ,

    ( 2.1.6) (intersect-

    ion) k,

    P = k = k

    2.1.8 . -

    .

    . -

    . , k// //m.

    k = m, . k , m, k//m,

    P (. P = k m),

    (P, k) I, k//,(P, m) I, m//.

    (P, ) < I ( //k //m). , P, - , ( k m).

    ( 2), k//m.

    2.1.9 . -

    , .

    . ( 3) A, B, C,

    , AB B C . , (C, AB) < I. , ( 2), L (C, ) I //A B. m L, (A, m) I m//B C.

  • 2.1. 37

    , m. , = m, A (

    m) , , //AB. , //m. , //m, //A B, m//A B, . ,

    A m A B. , m , D = m (. 2.1.6 2.1.7).

    , , (-

    ) .

    2.5

    , D -

    A, B, C .

    D , A (

    B, C). , D = A,

    A B A = D ()., D ,

    A B. , 2.1.5, A, B, D

    A B. , D A B (, ). D

    , .

    2.1.10 . 1) 2.1.9 -

    4.

    4

    2.1.3(2).

    2) , , -

    ( ) (. [3]). ,

    ( ), , ,

    .

    2.1.11 .

    1. 2.1.3(1) 2.1.3(2).

  • 38 2.

    2.

    .

    3. -

    .

    4. k, , m k//.

    m , .

    2.2

    , (P,L,I), P L , P L = , I P L . P L , , .

    2.1.2.

    2.2.1 . (projective plane)

    (P,L,I), :( 1) P, Q P, P , Q, L, (P, ) I (Q, ).( 2) k, L, k , , P P, (P, k) I (P, ).( 3) ,

    .

    2.2.2 . 1) ( 1) ,

    ( , ) . ,

    ( 1) ( 1). , ( 2)

    . :

    .

    2) ,

    ( 1) P, Q

    = P Q = Q P.

    3) , 2.2.4, -

    P ( 2) . k,

    P = k = k.

  • 2.2. 39

    2.2.3 . 1) :

    P := {Ai |i = 1, . . . , 7},L := {1 = {A1, A2, A3}, 2 = {A1, A4, A6}, 3 = {A1, A5, A7},

    4 = {A2, A4, A7}, 5 = {A2, A5, A6}, 6 = {A3, A4, A5}, 7 = {A3, A6, A7}}

    I . (P,L, ) -

    .

    (

    ).

    [. 2.4.9(2)]

    7. 7

    .

    ( !)

    .

    2.6

    ( )

    ,

    ,

    .

    , .

    ,

    ( )

    .

  • 40 2.

    1 2 3 4 5 6 7

    A1 A2 A3 A4 A5 A6 A7

    2) () R3 :

    P := {P U R3 : dimU = 1},

    L := { V R3 : dimV = 2}, U R3 U R3 ( V R3). , I P L

    (P, ) I U V, P = U = V.

    (P,L,I) , 2 P2.

    P2 R3,

    0 (0, 0, 0), P2 R

    3, 0.

    2.7

    ( , ).

    ( ) -

    (/ , R3 .),

    ( 1) ( 3).

    -

    (P,L,I).

  • 2.2. 41

    2.2.4 . P ( 2) .

    . , Q , P

    (Q, k) I (Q, ). , P, Q k , ( 1)

    k = P Q = , , k , .

    2.2.5 . A, B, C ,

    , ,

    = A B = B C = A C.

    . 2.1.5.

    2.2.6 .

    .

    . .

    ( 3),

    . A, B, C, D,

    . A B, A C A D, [: ,

    ()].

    [: , .., A B = , (A, ) I ()].

    2.8

    , ( )

    X = (A B), Y = (A C), Z = (A D).

    X , Y , Z , X . , , .., X = Y ,

    A B = A X = A Y = A C,

    (. 2.2.5) , A B , A C. A, B, C, D ,

    ,

    .

  • 42 2.

    2.2.7 .

    , .

    . A, B, C, D ( 3).

    A B, B C, C D D A. [: A, B, C,

    D ()].

    . -

    , , , O P A B, B C C D. , A B B C, B = O. , B C C D, C = O, B = O = C.

    2.2.8 . O -

    .

    . , k, ,

    m, n,

    .

    2.9

    O.

    P = k , Q = km R = kn (. 2.9), [: ,

    ()].

    , O [: , ,

    O = P, O k ()]. ,

    x = O P, y = O Q, z = O R.

  • 2.2. 43

    x , y , z , x: , .., x = y,

    P = k x = k y = Q,

    , P , Q.

    O k, , m,

    n, ,

    .

    2.2.9 .

    1. (P,L,I) :( 1) P, Q P P , Q, k L, (P, k) I (Q, k).( 2) k, L k , , P I, (P, k) I (Q, k).( 3) = ( 3).

    ) k ( 1) .

    ) (P,L,I);

    2. P :

    (P, ) < I. ;

    3. . P (P, ) - . , ,

    (x, y, z) R3 , [x, y, z] - (P,L, ): [x, y, z] , .

    2.7.1 . P2 := (P,L, ) , P2.

    . ( 1) [a1, b1, c1] [a2, b2, c2] P [a1, b1, c1] , [a2, b2, c2] (, R, (a2, b2, c2) = (a1, b1, c1)). () . ,

    {a1x + b1y + c1z = 0

    a2x + b2y + c2z = 0(2.7.8)

    , () ,

    1 (. [2, . 135], [4, . 249], [13, . 84]). ,

    (x, y, z) , , , (x , y, z) = (x, y, z) R. (2.7.8) ,

    ( 1).

    ( 2)

    L, [x, y, z].

    {1x + 1y + 1z = 0

    2x + 2y + 2z = 0

    (2.7.8). , ,

    () [x, y, z] ., [1,0, 0], [0,1,0], [0,0,1] [1,1, 1].

    .

    . , [1,0,0], [0,1,0] [1,1,1] , (2.7.7) (x, y, z) = (0,0,0), [. 2.7.2(4) ].

    ( 3).

    (P,L, ) , - () P2 = (P,L,),

  • 70 2.

    R3, : P P : L L

    P {t(a, b, c) | t R} [a, b, c] P,(2.7.9)

    L (, , ) L.(2.7.10)

    . (,) . , P ,

    , P2 P ,

    P = {t(a, b, c) | t R} = (, , ),

    (a, b, c) (, , ) R3 .

    P {t(a, b, c) | t R} (, , ),

    t(a, b, c) t , 0 (2.7.7),

    (ta) + (tb) + (tc) = 0 a + b + c = 0,

    [a, b, c] . , ,

    (P) = [a, b, c] = ((, , )),

    (,) . , 1 1 (

    ), (,) P2 P.

    : 2.7.1, P2 P2, P2 . P2 () :

    2.2.3(2) [ R3],

    , . -

    .

    2.7.2 P2.

    (1) .

    , R, (1, 0,1) = (0, 1,2). , [x, y, z] ,

    {0x + 1y + 2z = 0

    1x + 0y + 1z = 0

  • 2.7. P2 71

    x = z y = 2z.

    [x, y, z] = [z,2z, z] = [z(1,2,1)].

    z , 0 [ (x, y, z) = (0, 0,0), ],

    = [1,2,1].

    (2) = .

    [x, y, z] ,

    [x, y, z] 0x + 1y + 2z = 0 y = 2z,

    [x, y, z] = [x,2z, z]. (x, y, z) , (0,0,0), x , 0, z , 0. x , 0,

    [x, y, z] = [x,2z, z] =[x

    (1,2z

    x,z

    x

    )]=

    [1,2z

    x,z

    x

    ],

    , =z

    x,

    [x, y, z] = [1,2, ], R.(2.7.11)

    z , 0,

    [x, y, z] = [1,2z, z] =[z

    (x

    z, 2,1

    )]=

    [x

    z, 2,1

    ],

    , = x/z,

    [x, y, z] = [,2,1], R.(2.7.12)

    (2.7.11) (2.7.12) : = 0 -

    [1,0,0], , 0

    [x, y, z] =[

    (1

    ,2, 1

    )]=

    [1

    ,2,1

    ],

    () (2.7.12).

    , [1,0,0] [,2, 1], R.(3) [0, 0,1] [1,1,1].

    [0,0,1] , [1,1,1], [0, 0,1] [1,1,1]. ,

    z = 0, x + y + z = 0,

  • 72 2.

    = =

    ( x , 0). ,

    [0,0,1] [1, 1,1] = .

    (4) .

    < x, y, z >,

    [ai , bi , ci], i = 1, 2, 3.

    aix + biy + ciz = 0; i = 1, 2, 3,(2.7.13)

    .

    (2.7.13) . ,

    (2.7.14)

    a1 b1 c1a2 b2 c2a3 b3 c3

    = 0.

    2.7.3 .

    1. (2.7.3), (2.7.6) -

    . (2.7.7)

    .

    2. 2.7.1 (. 3),

    , 11 .

    3.

    ) [2, 1,3] [1,0,1],) [1,0,2] [2, 0,4].

    4.

    ) ,

    ) .

    5. .

  • 3

    -

    -

    , -

    -

    ...

    , 17 18 , -

    , ,

    []

    E. T. Bell [7, . 353]

    , 1 -

    .

    3, -

    .

    ,

    73

  • 74 3.

    , Frenet-Serret. -

    4 5.

    3.0

    , , -

    . ,

    , , , ..

    ( )

    , -

    .

    , .

    ()

    . -

    .

    . -

    R. Descartes, P. Fermat C. Huygens,

    3.

    ,

    .

    -

    , . -

    I. Newton, G. W. Leibniz,

    L. Euler, G. Monge, J. Bernoulli, A. C. Clairaut, F. Frenet, J. A. Serret, Ch. Dupin,

    J. Bertrand, .

    , ,

    , ,

    , ..

    .

    3.1

    , X (

    ) . , -

    -

    (, , .), f : R R, , ...

    X ,

  • 3.1. 75

    , . ,

    :

    3.1.1 . (parametrized curve),

    (space curve) : I R3, I R .

    , ( -

    ) (-

    ) t I. ., t I, (t) R3,

    (3.1.1) = (1, 2, 3).

    ( )

    i : = ui ; i = 1,2,3,

    ui : R3 R i-, .

    i.

    (I) R3, (plane curve). ,

    (I) R2. ( ),

    , X = (I). - (I).

    : R R2 : t 7 (

    2

    2t,

    2

    2t),

    : R R2 : t 7 (t, t) : R R2 : t 7 (t3, t3)

    : R R2 : t 7(t, t) : t 0(t2, t2) : t > 0,

    (R) = (R) = (R) = (R) = R, R2

    (. 3.1 ).

    ,

    , (t) = 1, t R, , (t) , 0, t R, , 0, (0) = (0,0), ( , -

    0).

  • 76 3.

    x

    D

    y

    3.1

    : (1) R -

    () (2)

    ( )

    R.

    , -

    ,

    .

    : I R3 to - (to) , 0. (tangent line)

    x

    y

    ( )ota

    ( )ota

    3.2

  • 3.1. 77

    (to),

    (3.1.2) (s) = (to) + s(to) , s R.

    (to) to . -

    , .

    (regular),

    ,

    ( ).

    -

    ( 3), -. , , -

    11. , ,

    , Cr-, r 3.

    ,

    (3.1.3) (t) = (1(t), 2(t),

    3(t))

    (tangent vector) (velocity)

    (t),

    v(t) := (t) = (1(t)2 + 2(t)2 + 3(t)2)1/2

    (speed) t.

    ,

    (3.1.4) (t) = (1 (t), 2 (t),

    3 (t))

    (acceleration) t.

    : I R3, (length)

    (3.1.5) L() :=

    I

    (t)dt.

    , : I R3, < , >

    (3.1.6) : I R : t 7

    (3.1.7) : I R3 : t 7 (t) (t).

  • 78 3.

    (3.1.6) (3.1.7) , -

    R3.

    :

    < , > (t) =< (t), (t) > + < (t), (t) >,(3.1.8)

    ( )(t) = ((t) (t)) + ((t) (t)).(3.1.9)

    : -

    [. (3.1.1)]

    ,

    < (t), (t) >= 1(t)1(t) + 2(t)2(t) + 3(t)3(t),

    (t) (t) =(2(t)3(t) 3(t)2(t), 3(t)1(t) 1(t)3(t), 1(t)2(t) 2(t)1(t)

    ),

    .

    (I),

    3.1.2 . (1) : I R3 . (t) = 0, t I , .

    ,

    (t) = 0 (t) = (t) = t + .

    .

    (2) 0. (to) 0 (to) , 0, (to) (to).

    , t I - (t) 0,

    : I R : t 7 (t)2 = 1(t)2 + 2(t)2 + 3(t)2 =< (t), (t) > .

    to, (to) = 0, , (3.1.8),

    0 = (to) =< (to), (to) > + <

    (to), (to) >= 2 < (to), (to) >,

    (to) (to).(3) : I R2 , (t) , 0, t I.

    (I) 0, (t) (t), t I.

  • 3.2. 79

    , (t) 0

    : I R : t 7< (t), (t) > .

    , = 0.

    (t) = < , > (t) =< (t), (t) > + < (t), (t) >= 2 < (t), (t) > .

    = 0 (t) (t), t I, .

    (4) P Q -

    P, Q.

    p q P Q ,

    P, Q

    : [0,1] R3 : t 7 (t) := p + t(q p)

    [. (3.1.5)]

    L() = 1

    0

    (t)dt = 1

    0

    q pdt = q p.

    : [x, y] R3 (x) = p (y) = q. u R3 u = 1,

    < a, u > (t) = < (t), u > + < (t), u > = < (t), u >

    (t)u = (t),

    L() = y

    x

    (t)dt y

    x

    < (t), u > dt = < (t), u > |yx

    = < q, u > < p, u > = < q p, u >,

    u R3 u = 1. u = (q p)/q p,

    L() / q p = q p = L().

    3.2

    3.2.1 . : I R3 , : J R3 - (reparametrization) ,

    h : J I, = h (. ).

  • 80 3.

    , t s, t = h(s).

    I - X R3

    J

    h

    6

    -

    3.1

    h h

    1 1 .

    , h

    1 1 h(s) , 0, s J . .

    ,

    .

    X := (I) = (J) X .

    3.2.2 . , L() = L().

    . : [a, b] R3 : [a, b] R3 = h, h : [a, b] [a, b] .

    L() = b

    a(s)ds =

    b

    a( h)(s)ds

    =

    b

    a(h(s)) |h(s)|ds.

    h > 0, h ,

    L() = b

    a(h(s))h(s)ds =

    h(b)

    h(a)(h(s))dh(s)

    =

    b

    a

    (t)dt = L().

    h < 0, h ,

    L() = b

    a(h(s))h(s)ds =

    h(b)

    h(a)(h(s))dh(s)

    = a

    b

    (t)dt = L(),

    .

  • 3.3. 81

    .

    , .

    ,

    , X = (I). , ,

    , 1.

    3.2.3 . : I R3 : J R3 (s) = 1, s J .

    . I := [a, b]. ( )

    s : [a, b] [0, L()] : t 7 t

    a

    (u)du.

    ,

    s(t) = (t) = v(t) > 0,

    (. ),

    h : [0, L()] [a, b]

    (3.2.1) h(s) = 1/s(h(s)), s [0, L()].

    := h,

    (s) = (h(s)) |h(s)| = (h(s))/|s(h(s))| = 1,

    .

    3.2.4 . : J R3 (s) = 1, s J , . ,

    ,

    ()

    . .

    3.3

    -

    X = (I), . , X

  • 82 3.

    . , -

    , .

    (s), s J , .

    (3.3.1) T (s) := (s) s J.

    , T (s) (s). T (s) = 1, s J , T (s) R3.

    s J

    (3.3.1) T : J s 7 T (s) = (s) R3.

    3.3.1 . (s), s J , ,

    T T,

    T (s) T (s), s J.

    . T (s) , T (s)2 =< T (s), T (s) > ,

    < T, T > (s) = 2 < T (s), T (s) >= 0, s J,

    .

    T (s) = (s) () 1, T (s) =(s) () T (s).

    T (s)

    (3.3.2) k(s) := T (s)

    (s). k(s) - . k(s) = 0, s 1. ()

    (3.3.2) k : J s 7 k(s) [0, ).

    3.3.4, -

    .

    1,

    . k(s) , 0, ,

    (3.3.3) (s) :=1

    k(s)

  • 3.3. 83

    . , s J ,

    (3.3.4) N(s) :=1

    k(s)T (s)

    (normal vector)

    (s). ( 3.3.1) .

    (3.3.4) N : J s 7 N(s) R3.

    , s J ,

    (3.3.5) B(s) := T (s) N(s)

    (3.3.5) B : J s 7 B(s) R3.

    B(s) (binormal vector) (s). - T (s), N(s) .

    , s J ,

    {T (s), N(s), B(s)}

    x

    y

    z

    ( )T s

    ( )B s

    ( )N s

    ( )T s

    ( )B s

    ( )N s

    ( )sb

    3.3

  • 84 3.

    R3, (moving

    frame) Frenet (Frenet frame) (s) . ,

    {T, N, B}

    Frenet .

    ,

    , -

    (s), (s) . ,

    . .

    3.3.

    , -

    , . , s J , T (s) N(s) E. () (s) E ( T (s), N(s)) (osculating plane) (s). , (s) N(s) B(s) (normal plane) (s), (s) T (s) B(s) (rectifying plane) (s).

    ( )T s

    ( )B s

    ( )N s

    3.4

    , ( (s)) B(s), T (s)

  • 3.3. 85

    N(s). - ,

    .

    3.3 3.4 .

    {T (s), N(s), B(s)} (s), T (s), N(s)) ...

    , ,

    . < N(s), B(s) >= 0, s J , < N,B >= 0 [. (3.1.6), (3.1.8)]

    < N (s), B(s) > + < N(s), B(s) >= 0.

    (3.3.6) (s) := < N(s), B(s) >=< N (s), B(s) >

    (torsion) (s).

    (3.3.6) : J s 7 (s) R.

    (3.3.6) , B(s), ,

    .

    ,

    , .

    ( ) 3.3.5.

    Frenet

    , -

    .

    3.3.2 . u, v R3 u = 1 u v,

    (u v) u = v.

    . u = (a, b, c) v = (x, y, z).

    u v =

    e1 e2 e3a b c

    x y z

    = (bz cy)e1 (az cx)e2 + (ay bx)e3

    = (bz cy, cx az, ay bx).

  • 86 3.

    ,

    (u v) u =

    e1 e2 e3bz cy cx az ay bxa b c

    = [c(cx az) b(ay bx)]e1 [c(bz cy) a(ay bx)]e2+

    + [b(bz cy) a(cx az)]= (c2x acz aby + b2x)e1 (cbz c2y a2y + abx)e2+

    + (b2z bcy acx + a2z)e3 =

    = ((1 a2)x acz aby, (1 b2)y abx cbz,(1 c2)z bcy acx)

    = (x a(ax + by + cz), y b(ax + by + cz),z c(ax + by + cz))

    = (x a < u, v >, y b < u, v >, z c < u, v >)= (x, y, z) = v,

    .

    3.3.3 . :

    T (s) N(s) = B(s),N(s) B(s) = T (s),B(s) T (s) = N(s).

    . (3.3.5), B(s).

    B(s) T (S) = (T (s) N(s)) T (s) = N(s).

    , :

    N(s) B(s) = N(s) (T (S) N(s)) == (T (S) N(s)) N(s) = (N(S) T (s)) N(s) = T (s).

    () Frenet-Serret,

    T (s), N (s), B(s) - .

    () F. Frenet J. Serret.

    3.3.4 . : J R3 , k > 0 {T, N, B} Frenet . ( Frenet-Serret):

    (F . 1) T = kN

    (F . 2) N = kT + B(F . 3) B = N .

  • 3.3. 87

    . (F. 1) N(s) [. (3.3.4)]. (F. 2) : , s J ,

    T (s), N(s) B(s) , - a, b, c : J R,

    (3.3.7) N (s) = a(s)T (s) + b(s)N(s) + c(s)B(s), s J.

    a, b, c -

    (3.3.7) T (s), N(s), B(s).

    < N (s), T (s) > = a(s)< T (s), T (s) > + b(s)< N(s), T (s) >

    + c(s)< B(s), T (s) >

    = a(s)1 + b(s)0 + c(s)0 = a(s).

    , < T, N >= 0

    < T, N > =< T , N > + < T,N >= 0,

    , (F. 1),

    < T,N >= < T , N >= < kN,N >= k 1 = k.

    a(s) = k(s),

    (3.3.7)

    (3.3.8) N (s) = k(s)T (s) + b(s)N(s) + c(s)B(s), s J.

    "" N(s)

    < N (s), N(s) > = k(s)< T (s), N(s) > + b(s)< N(s), N(s) >+ c(s)< B(s), N(s) >

    = k(s)0 + b(s)1 + c(s)0 = b(s).

    < N,N >= 1

    < N,N > = 2 < N,N >= 0,

    b(s) = 0,

    (3.3.8)

    (3.3.9) N (s) = k(s)T (s) + 0N(s) + c(s)B(s), s J.

  • 88 3.

    ,

    < N (s), B(s) > = k(s)< T (s), B(s) > + 0< N(s), B(s) >+ c(s)< B(s), B(s) >

    = k(s)0 + 0 + c(s)1 = c(s).

    < B,N >= 0

    < B, N > =< B, N > + < B,N >= 0,

    , (3.3.6),

    < B(s), N (s) >= < B(s), N(s) >= (s),

    c(s) = (s),

    (3.3.9)

    N (s) = k(s)T (s) + (s)B(s); s J,

    (F. 2).

    (F. 3) B = T N , (F. 1), (F. 2) 3.3.3. ,

    B = T N + T N

    = kN N + T (kT + B)= k 0 + (kT T + T B)= k 0 + T B= N.

    Frenet-Serret :

    (3.3.10)

    T

    N

    B

    =

    0 k 0

    k 0 0 0

    .

    T

    N

    B

    .

    , -

    (F. 1) (F. 3):

    ( ), 2 2 ,

    .

    -

    .

    3.3.5 . : J R3 . :

    (i) k = 0 .

    (ii) k > 0, = 0 .

  • 3.3. 89

    . (i) k = 0 T = = 0 (s) = (s) = s + [. 3.1.2(1)]. , ,

    = 1.(ii) B = N = < N,B > = 0

    B = 0, B = T N , so J ,

    B(s) = B(so), s J.

    = 0 B(s) = B(so) s J T (s) B(so), s J < T (s), B(so) >=< (s), B(so) >= 0, s J < (s), B(so) > = 0, s J < (s), B(so) >= , s J < (s), B(so) >=< (so), B(so) >, s J < (s) (so), B(so) >= 0, s J (s) (so) B(so), s J.

    (s) (so) Eo T (so) N(so), (s) Eo + (so), s J .

    , (s) E, E, Eo ( R2, 2) E 0.

    ,

    E = (s) + Eo, s J. so J ,

    (s) (so) + Eo, s J.

    Eo {u, v},

    (3.3.11) (s) = (so) + (s)u + (s)v; s J,

    , : J R . , : (3.3.11)

    (s) (so) = (s)u + (s)v; s J,

    , u

    < (s) (so), u > = < (s)u, u > + < (s)v, u >= (s)1 + (s)0 = (s),

  • 90 3.

    =< (so), u >, . - .

    (3.3.11)

    T (s) = (s) = (s)u + (s)v Eo; s J,

    N(s) =1

    k(s)T (s) =

    1

    k(s)((s)u + (s)v) Eo, s J.

    , T (s) N(s) Eo B(s) - Eo. ,

    B(s) (3.3.6), = 0.

    3.3.6 . : J R3 . k > 0.

    . (xo, yo) r,

    (s) = r(cos

    s

    r, sin

    s

    r

    )+ (xo, yo); s J [0,2],

    T (s) = (s) =( sin s

    r, cos

    s

    r

    ),

    T (s) = (s) =1

    r

    ( cossr, sins

    r

    )

    k(s) = T (s) = 1r

    .

    , k > 0 .

    (s) := (s) +1

    kN(s).

    (s) = (s) +1

    kN (s)

    = T (s) +1

    k(kT (s) + B(s))

    = T (s) T (s) + 0 = 0,

    . a := (s) R3 ,

    (s) a = 1kN(s) = 1

    k= r,

    . (s) a r. , .

  • 3.4. 91

    3.3.7 . 1)

    [. (3.3.3)],

    (s) + 1kN(s).

    2) 3.3.5 3.3.6

    ,

    .

    3.4

    Frenet, -

    .

    : I R3 , -

    . , .. ,

    3.2.3 ,

    .

    ,

    X = (I) (-) . , .

    3.4.1 .

    (. 3.2.3). {T , N , B}, k, Frenet, , T, N, B, k,

    T (t) := T (s(t)),( i )

    N(t) := N(s(t)),( ii )

    B(t) := B(s(t)),( iii )

    k(t) := k(s(t)),( iv )

    (t) := (s(t)).( v )

    3.4.2 . : I R3 () ,

    k = 3

    .

    . = h , h = s1 s . = s, , t I,

    (t) = ( s)(t) = s(t)(s(t)) = s(t)T (s(t)),(3.4.1)(t) = s(t)T (s(t)) + s(t)2(T (s(t))

    = s(t)T (s(t)) + s(t)2k(s(t))N (s(t))(3.4.2)

  • 92 3.

    (t) (t) = s(t)T (s(t)) [s(t)T (s(t))++ s(t)2k(s(t))N (s(t))],

    (3.4.3)

    (t) (t) = s(t)s(t)[T (s(t)) T (s(t))]++ s(t)3k(s(t))[T (s(t)) N(s(t))]

    = 0 + s(t)3k(s(t))B(s(t))

    = (t)3k(s(t))B(s(t)).

    (t) (t) = (t)3k(s(t)),

    k(t) := k(s(t)) =(t) (t)(t)3

    ,

    .

    3.4.3 . k > 0,

    =< , > 2 =

    [] 2

    .

    . ,

    . (3.4.2)

    (t) = s(t)T (s(t)) + s(t)s(t)T (s(t)) +

    +[s(t)2k(s(t))]N(s(t)) + s(t)3k(s(t))N (s(t))

    = s(t)T (s(t)) + s(t)s(t)k(s(t))N (s(t)) +

    +[s(t)2k(s(t))]N(s(t)) s(t)3k(s(t))2T (s(t)) ++s(t)3k(s(t))(s(t))B(s(t))

    = X (t)T (s(t)) + Y (t)N (s(t)) + Z (t)B(s(t)),

    X (t) = s(t) s(t)3k(s(t))2,Y (t) = s(t)s(t)k(s(t)) + [s(t)2k(s(t))],

    Z (t) = s(t)3k(s(t))(s(t)).

  • 3.5. Frenet 93

    (3.4.3) B(s(t)) T (s(t)) N(s(t)), :

    < (t) (t) , (t) > = s(t)3k(s(t)) < B(s(t)), (t) >= s(t)3k(s(t))X (t) < B(s(t)), T (s(t)) > +

    + s(t)3k(s(t))Y (t) < B(s(t)), N (s(t)) > +

    + s(t)3k(s(t))Z (t) < B(s(t)), B(s(t)) >

    = 0 + 0 + s(t)6k(s(t))2 (s(t))

    = (t) (t)2 (s(t)),

    (t) := (s(t)) =< (t) (t), (t) >(t) (t)2

    ,

    .

    3.5 Frenet

    T (t), N(t) B(t) (. 3.4.1), , .

    3.5.1 . : I R3 , - , , {T (t), N(t), B(t)} Frenet.

    T (t) =(t)(t)

    ,(3.5.1)

    N(t) =

    ((t) (t)) (t)(t) (t) (t)

    ,(3.5.2)

    B(t) =(t) (t)(t) (t)

    .(3.5.3)

    . = h (. - 33.2.2), h = s1 s .

    T (t) = T (s(t)) = (s(t)) = ( h)(s(t))

    = (h(s(t)))h(s(t)) = (t) 1s(t)

    =(t)(t)

    .

  • 94 3.

    , T = T s, T = T h,

    N(t) = N(s(t)) =T (s(t))

    k(s(t))=

    (T h)(s(t))k(t)

    =T (h(s(t)))h(s(t))

    k(t)=

    T (t)k(t)s(t)

    =T (t)s(t)

    (t)3

    (t) (t)

    = T (t)(t)2

    (t) (t).

    , T (t) N(t) . T (t) N(t), T (t) T (t). T (t) = 1. , 3.3.2 u = T (t) v = T (t),

    T (t) = (T (t) T (t)) T (t).

    T (t) =(t)s(t)

    [. (3.5.1)]

    T (t) =(t)s(t) (t)s(t)

    s(t)2,

    T (t) =

    ((t)s(t)

    (t)s(t) (t)s(t)

    s(t)2

    )

    (t)s(t)

    =1

    s(t)4[((t) (t)s(t) (t) (t)s(t)] (t)

    =1

    s(t)3[((t) (t)) (t)],

    N(t) =((t) (t)) (t)(t) (t) (t)

    .

    ,

    B(t) = B(s(t)) = T (s(t)) N(s(t)) = T (t) N(t)

    =(t)(t)

    ((t) (t)) (t)(t) (t) (t)

    =(t)(t)

    ((t) (t)(t) (t)

    (t)(t)

    )

    =(t) (t)(t) (t)

    ,

  • 3.5. Frenet 95

    , 3.3.2,

    u =(t)(t) v =

    (t) (t)(t) (t)

    .

    3.5.2 . : I R3 , - , , {T, N, B} Frenet ( ). () Frenet-Serret:

    (F . 1) T = kvN ,

    (F . 2) N = kvT + vB,(F . 3) B = vN , v(t) := (t) t I.

    . : J R3 Frenet {T , N, B} . t I,

    T (t) = (T s)(t) = T (s(t))s(t) = k(s(t))N (s(t))s(t)= k(t)v(t)N(t),

    N (t) = (N s)(t) = N (s(t))s(t)= k(s(t))s(t)T (s(t)) + (s(t))s(t)B(s(t))= k(t)v(t)T (t) + (t)v(t)B(t),

    B(t) = (B s)(t) = B(s(t))s(t) = (s(t))N (s(t))s(t)= (t)v(t)N(t),

    .

    , ,

    , .

    , -

    , .

    , : -

    (translation) ( ) h R3

    h : R3 R3 : u 7 h(u) := u + h.

    (rotation) R3

    , f : R3 R3 ,

    < f (u), f (v) >=< u, v >; u, v R3,

    . , f

    ( ).

  • 96 3.

    : h h, -

    , .

    f c = f (c) f.

    (rigid mo-

    tion).

    -

    , .

    3.5.3 . k(s) > 0 (s), s J = [0, c], - . : J R3 k . ,

    .

    x

    y

    z

    0( )T s

    0( )B s

    0( )N s

    0( )T s

    0( )B s

    0( )N s

    0( )sa

    1e

    2e0

    3e

    a

    b

    3.5

    ,

    , [6].

    3.6

    1. : (i) ,

    () P Q R3. (ii) . (iii)

  • 3.6. 97

    . (iv)

    .

    2. (0,0) r

    : [0,2] R2 : t 7 (r cost, r sint).

    : (i) . (ii) -

    . (iii)

    . (iv) . (v)

    k .

    3. y = x2

    . (t) = (t3, t6), t R;

    4. f : R R. - T , N , B

    .

    5. ,

    : [0, 2] R3 : t 7 ( 12

    cost, sint,1

    2cost

    ).

    6.

    (t) = (a cost, b sint), t [0,2], a, b > 0.

    ;

    7. ()

    : [0,2] R3 : t 7 (r cost, r sint, bt); r > 0, b R.

    (circular helix),

    .

    (i) . (ii)

    . (iii)

    zOz . (iv)

    zOz .

    .

  • 98 3.

    2 bp

    z

    x

    t

    y

    3.5

    8.

    (t) :=

    (t,t2

    2

    ), 0 t 1.

    9.

    : R R2 : t 7 (t2, t3).

    ; .

    10. a(0) = (0,1), .

    11. : I R3 v R3,

    (0) v (t) v, t I.

    (t) v, t I.

    12.

    : R R3 : t 7 (3t, 3t2, 2t3)

  • 3.6. 99

    y = 0, x = z.

    13. r (0,0) x Ox . (i) A,

    (0,0). (ii)

    t = 0, t = t = 2. (iii)

    , t [0, 2]. -

    .

    14. (s) . (i) - w (: Darboux) : T = T , N = N B = B. (ii) T T = k2. [ , , s].

    15. : J R3 : (s) P. .

    16. a : J R3 .

    P.

    17. a : J R3 , a .

    18. : J R3 . 0 , u R3 .

    19. -

    .

    (t) = (a sin2 t, a sint cost, a cost)

    (0, 0,0).

    20. -

    . : (t) = (cost, sint, t), t R. () (t) (to),

    to =

    2.

    21.

    . : (t) =(t,t2

    2,t3

    3

    ), t R.

    .

  • 100 3.

    (t) to = 1.

    22. : I R3 , k(s) > 0 s I, (s). (s) := T (s), T (s) . (i) . (ii)

    ( so), (s) = k(s),

    s I. (iii) k .. (spherical indicatrix)

    () T . N B.

    R3 0.

    23. : I R2 k(s) < 1, s I.

    (s) := (s) + N(s), s I.

    ( ), N(s) . k

    k =k

    1 k .

    24. (s) (s) , 0. k B(s).

    25.

    , .

  • 4

    , , ( -

    ) , -

    (), ,

    .

    Euler Gauss. Egregium Gauss -

    ,

    . -

    ( ) Riemann,

    () .

    Riemann

    Einstein -

    (.

    ). , ,

    .

    ( )

    101

  • [1] . : , ,

    1985.

    [2] . : . , 1980.

    [3] . . : ,

    , 1985.

    [4] . .. ( ): ,

    , , , 2003.

    [5] . : , , ,

    2009.

    [6] . . : -

    , , 2009.

    [7] E. T. Bell: The Development of Mathematics, Dover, New York, 1992.

    [8] J. W. Blattner: Projective plane geometry, Holden-Day, San Francisco, 1968.

    [9] J. N. Cederberg: A Course in Modern Geometries, Springer, New York, 1989.

    [10] D. D. Davis: , -

    , , 2005.

    [11] M. P. Do Carmo: Differential geometry of Curves and Surfaces, Prentice-Hall,

    Englegood Cliffs, New Jersey , 1976.

    103

  • 104

    [12] P. Dombrowski: 150 Years after Gauss "disquisitiones generales circa super-

    ficies curvas", Asterisque 62, Soc. Math. de France, Paris, 1979.

    [13] N. V. Efimov E. R. Rozendorn: Linear Algebra and Multidimensional Geo-

    metry, MIR Publishers, Moscow, 1975

    [14] R. L. Faber: Foundations of Euclidean and non-Euclidean Geometry, Marcel

    Dekker, New York, 1983.

    [15] G. H. Hardy: A MAthematicians Apology, Cambridge Univ. Press, Canto edi-

    tion, Cambridge, 2002.

    [16] M. Henle: Modern Geometry: The Analytic Approach, Prentice Hall, New Jer-

    sey, 1997.

    [17] D. Hilbert: Foundations of Geometry (Grunlangen der Geometrie), Open

    Court, Illinois, 1971. : , -

    , , 1995.

    [18] S. Hollingdale: Makers of Mathematics, Penguin, London, 1991.

    [19] M. Kline: Mathematics in Western Culture, Oxford Univ. Press, 1953. -

    : ( -), ,

    , 2002.

    [20] W. Klingenberg: A Course in Differential Geometry, Springer, New York,

    1978.

    [21] . : , Leader Books, ,

    2006.

    [22] M. Lipschutz: Differential Geometry, Schaums Outline Series, McGraw Hill,

    New York, 1974. : , , . -

    , , 1981.

    [23] J. McCleary: Geometry from a Differential Point of View, Cambridge Univ.

    Press, Cambridge, 1994.

    [24] R. J. Mihalek: Projective Geometry and Algebraic Structures, Academic

    Press, New York, 1972.

    [25] L. Mlodinov: Euclids Window. The Story of Geometry from Parallel Lines to

    Hyperspace, Allen Lane, The Penguin Press, London, 2002.

    [26] S. NegrepontisD. Lamprinidis: The Platonic Anthyphairetic Interpretation of

    Pappus account of analysis and synthesis, History and Epistemology in Ma-

    thematics Education, Proceedings of the 5th European Summer University,

    Prague, 2007, pp. 501511

  • 105

    [27] . : , , 1964.

    [28] B. ONeil: Elementary Differential Geometry, Academic Press, New York,

    1997. : , -

    , 2002.

    [29] J. Oprea: Differential Geometry and its Applications, Prentice Hall, Upper

    Saddle River, New Jersey, 1997.

    [30] . : I: , , 1996.

    [31] A. Pressley: Elementary Differential Geometry, Springer, London, 2001.

    [32] J. Pierpont: The history of mathematics in the nineteenth century, Bull.

    Amer. Math. Soc. 37 (2000), 38 [reprinted from Bull. Amer. Math. Soc. 11

    (1905), 238246].

    [33] H. Poincare: Dernieres Pensees, Flammarion, Paris, 1913.

    [34] C. Reid: , , , 2007.

    [35] M. Spivak: Differential Geometry, Vol. II, Publish or Perish, Wilmington, 1979.

    [36] . : , ( IIV),

    . , , 1952.

    [37] F. W. Stevenson: Projetive Planes, W. H. Freeman, San Francisco, 1972.

    [38] . :

    ( ), , , 1987.

    [39] D. J. Struik: , . ,

    , 1982.

    [40] M. B. W. Tent: , , -

    , , 2007.

    [41] I. M. Yaglom: Felix Klein and Sophus Lie, Birkhauser, Boston, 1988.

  • , 7

    , 83

    , 79

    , 81

    , 126

    , 7

    2, 22

    , 15

    , 22

    , 9

    (), 15

    , 18

    Dedekind, 15

    Pasch, 13

    Playfair, 9

    , 17

    , 17

    , 17

    , 47

    , 8

    , 8

    , 7

    , 9

    , 56

    , 12

    , 44, 45

    , 8

    , 19

    , 9

    , 10, 22

    , 9

    , 10, 18

    Klein, 66

    , 47

    , 47

    Darboux, 99

    , 83

    , 77, 82

    , 83

    , 83

    , 77, 82

    , 66

    , 60

    107

  • 108

    Klein-Beltrami, 20

    Poincare, 21

    , 44

    , 50

    , 37

    (), 97

    , 19

    , 10

    , 22

    , 22

    , 35, 38

    , 84

    , 84

    , 84

    , 38

    , 58

    , 34

    , 77

    , 76

    , 77

    , 33, 38

    , 76

    , 53

    , 53

    , 53

    , 34

    , 7

    , 96

    , 61

    , 60

    , 59

    , 61

    , 48

    , 48

    , 83

    , 83

    , 83

    (), 97, 125, 130

    (), 99, 130

    , 75

    , 126

    , 77

    , 75

    , 77

    , 81

    , 77

    , 100

    , 75

    , 75

    , 82, 91

    , 47

    , 7

    , 99

    , 95

    , 77

    , 77

    , 17

    , 59

    , 60

    11, 61

    , 61

    , 7

    , 9

    , 81

    , 81

    , 53

    , 7

    , 38

    , 44

    , 49

    2, 40

  • 109

    , 39

    , 34

    , 33, 38

    , 77

    , 52

    , 82

    , 52

    , 36

    , 52

    , 47

    , 96

    , 47

    , 85, 91

    , 95

    , 66

    ,

    , 100

    , 33, 38

    , 51

    , 36, 38

    Frenet, 84, 91, 93

    , 84

    , 84

    , 84

    Frenet-Serret, 86

    , 95

    , 10

    , 18, 19

  • 2

    ( )

    2.6.10(2). .

    2.1.9, 4 A,B, C, D, 3

    . ( ) A,B, C, D

    , .

    :

    i) .

    AB, AC AD, (. 2.2.6). ,

    , AD. , AB,A C X Y . X , Y , A B = A X = A Y = A C ().

    (). , 2012.

  • 112

    ii) A,B, C, D , A.

    Z , A ,

    .

    2.6.10(3). : P .. -

    , P. , ( 3)

    3 A, B, C. P

    ,

    . P ,

    3 2 A,B, C,

    .

    ,

    , P. 2.6.10(2), -

    , X Y .

    X , P , Y , P X P Y . , ( 2), k, P.

    k, PX, PY 3 P.

    : 4 A,B, C, D 2.1.9

    , P A, B, C, D.

    i) P , .. A.

    PB, PC PD , [ , , P B = P C, P = A B,C ()].

    ii) P , 2

  • 113

    A,B, C, D, .

    , , P = (A C) (B D), C k//B D D //A C. k , [ k = C ()]. k // [

    B D// ()]. E = k . E , P, P E. P E, A C B D , [, .., P E = A C, E A C ()].

  • 114

    iii) P 2

    , A B (. ). P C P D A B. , P C = P D

    C = (P C) (C D) = (P D) (C D) = D,

    . , A B = P C, , A,B, C , . A B, P C, P D .

    iv) P A, B, C, D,

    P A, P B, P C, .

    2.6.10(4). S = k m m ,

    S , ( 2).

    2.2.9(2). ( 3) [

    ( 3)].

    2.2.9(3). , , 4 ( 3), -

    2 . P, 2

    , 4 , P.

    2.2.9(4). S = k , A k, A , S, B , B , S. A , B, A B. 2.2.6,

  • 115

    A B C A B. C . ,

    , (C, k) I, k = A C = A B, (B, k) I (). :

    i) k , S = k .

    k A , S [. 2.6.10(2)],

    A () //. O , A.

    O .

    ii) k . k

    A, B A, B. 4

    , .

    4, X .

    X k, , . X ,

    , k, A A B A, X B.

    O .

  • 116

    X .

    2.2.9(5). .

    1 1 P2. ,

    R3, 0,

    . ,

    , 0. ,

    0 .

    2.3.4(1). 7 .

    2.3.4(2). . :

    ( 1),

    .

    ( 2),

    [ ,

    , ( ),

    ( 1)].

    2.6.10(3)

    3 , (: -

    ).

    2.3.4(3). , ( 3)

    ( 1) ( 3). 2.2.4 2.2.7.

    2.4.10(1).

    2.4.4.

    2.4.10(2). 2.4.7.

    2.4.10(3). O . , -

    2.4.6, |J(A)| = |J(O)| = |J()|. 2.4.6 O m .

    2.4.10(4). -

    4 ( 7 ).

    , 32 + 3 + 1 = 13.

    2.4.10(6). O m,

    -

    2.4.4 2.4.6 2.4.7.

    , 2.4.6

    |J(m)| = |J(O)| 1. [ 2.2.9(4) ], |J(k)| = |J()|, 2.4.7.

    2.4.10(7). 2.4.8:

    O . n O Ai, Ai (i = 1, . . . , n)

  • 117

    . O m .

    n1 O. , O, (n + 1)(n 1) + 1 = n2 . : Q

    , O Q, m, O Ai. Q n2 .

    2.4.10(8). Ai (i = 1, . . . , n) . P

    , , [. 2.4.10(6)

    ] |J(P)| = |J()| + 1 = n + 1.

    P , Ai.

    P = A1. O .

    P , PO kj //OAj (j = 2, . . . , n), n + 1 (. ).

    .

    2.5.8(3). {A,B} {C,D} ,

    k = {A,B} = {C,D}.

    , {A,D} {B,C}

    l = {A,D} = {B,C},

    {A,C}, {B,D}

    m = {A,C} = {B,D}.

    , A,B, C, D

    k, l, m, 7 .

    , ,

    {A,B, k}, {C,D, k}, {A,D, l}, {B,C, l}, {A,C,m}, {B,D,m}, = {k, l, m}.

  • 118

    .

    2.5.8(4). , {A1, A5, A7} - 4 , -

    .

    2.6.10(1). (P) (). X , (X ) (). X , P, X P, (X P) = (X ) (P) = ()., 1 1 X P = ().

    1 1,

    , Q P k L, Q < k (Q) (k). , 1 1, k, m, k , m (k) = (m). S = km m Q , S. Q < k. , (,) , Q m (Q) (m) = (k), .

    2.6.10(2).

    [: P < , (P) < () ()].

    2.6.10(3). (P , ) P L P . P P L, (P) = P () = . (P) (). - 2.6.10(2), P ,, , 1(P ) 1(), .2.6.10(4). :

    , A, B. () = (AB) = (A)(B)., , C, D ( A, C,

  • 119

    7 , 3 )

    = A B = C D, () = (C) (D) = (A) (B). .

    2.6.10(5). . -

    , () = (A) (B) = (), A,B . L, = .2.6.10(7). (P, ) P1 L1 P , , .

    (P, ) I1(1, 1) - (1(P), 1()

    ) I2

    (2(1(P)), 2(1())

    ) I3

    (2, 2)

    ?(2 1, 2 1)

    -

    2.6.10(8). () := (A) (B), A,B - . : ,

    C D,

    ( A,C, 3 ), -

    A, B, C, D

    (A), (B), (C), (D). , () = (A)(B) = (C)(D), () .

    (,) - : (P, ) P , = A B, , , (P) (A) (B) = ().

    1 1 , (,) (. 2.1.6)., 2.6.10(5).

    2.6.10(9). ,

    2.6.10(7).

    (1P, 1L). (, ) Aut(P) ,

    (,)1 := (1, 1)

    [. 2.6.10(3)].

    , .

    2.7.3(3). ) [2, 1,3] [1,0,1] =.) [2,0, 4] = [2(1,0,2)] = [1,0,2], - .

    2.7.3(4). ) . ) = [0,1,2].

    2.7.3(5). [t, 1,0], t R.

  • 120

    3

    ( )

    3.6(1). (i) p, q P, Q,

    PQ

    : [0, 1] R3 : t 7 (t) := p + t(q p).

    (ii)

    (t) = q p , 0, ,

    L() = 1

    0

    (u)du = 1

    0

    q pdu = q p.

    , (t) = 0, 1.4.2 k(t) = 0, t [0, 1].(iii)

    s(t) = t

    0

    (u)du = t

    0

    q pdu = q pt,

    s : [0,1] [0, q p] : t 7 q pt

    h := s1 : [0, q p] [0,1] : s 7 sq p,

    : [0, q p] R3

    (s) := ( h)(s) = (

    s

    q p

    )= p +

    s

    q p (q p).

    (iv) (s) = q pq p ,

    L() = qp

    0

    (u)du = qp

    0

    du = q p.

    , k T (s) = (s) =q pq p , T

    (s) = 0

    [ (3.3.2)] k(s) = 0.

    3.6(2). (i)

    (t) = (r sint, r cost),

  • 121

    ||(t)|| = r , 0, (t) = r , 0, .

    (ii) t ,

    (t) (t). ,

    < (t), (t) >= r2 cost sint + r2 cost sint = 0,

    (t) (t).(iii) (t) = (r cost,r sint) = (t).(iv) (t) = r,

    L() = 2

    0

    (t)dt = 2

    0

    rdt = 2r.

    (v) (t) = r , 0.

    s : [0,2] R : t 7 s(t) := t

    0

    (u)du = rt.

    s : [0,2] [0, 2r] ,

    h := s1 : [0, 2r] [0,2] : s sr

    ,

    : [0,2r] R2

    (s) = ( h)(s) = (s

    r

    )=

    (r cos

    s

    r, r sin

    s

    r

    ).

    T (s) = (s) =( sin s

    r, cos

    s

    r

    ),

    T (s) =(1r

    coss

    r,1r

    sins

    r

    ),

    k(s) = T (s) = 1r

    3.6(3). ,

    (t) = (t, t2); t R,

    . ,

    (t) = (1, 2t) , 0, t R.

  • 122

    ,

    3.4.2.

    (t) = (1,2t) (1,2t, 0),(t) = (0, 2) (0,2,0),(t) (t) = (0,2,0)

    k(t) = 2(1 + 4t2

    )3/2.

    ,

    , (t) = (3t2,6t5), t = 0 .

    3.6(4). (t) = (t, f (t)), t R, f .

    (t) = (1, f (t)) (1, f (t), 0),(t) = (0, f (t)) (0, f (t), 0),(t) = (0, f (t)) (0, f (t), 0),(t) (t) = (0, 0, f (t)).

    (t) = (1 + f (t)2)1/2 , 0; t R, , . ,

    3.5.1, :

    T (t) =1

    (1 + f (t)2

    )1/2 .(1, f (t), 0

    ) 1(1 + f (t)2

    )1/2 .(1, f (t)

    ),

    N(t) =f (t)

    |f (t)| (1 + f (t)2)1/2.( f (t), 1, 0)

    f(t)

    |f (t)| (1 + f (t)2)1/2.( f (t), 1),

    B(t) =

    (0,0,

    f

    |f |

    )= (0, 0,1) = e3.

    , 3.4.2,

    k(t) =|f (t)|

    (1 + f (t)2

    )3/2 .

    B(t) = e3 (). . [6]. , (t) , = 0 (. 3.3.5).

  • 123

    3.6(5).

    T (t) = (t) =

    ( 1

    2sint, cost, 1

    2sint

    ),

    (t) =(1

    2sin2 t + cos2 t +

    1

    2sin2 t

    )1/2= 1,

    ,

    L() = 2

    0

    (t)dt = 2

    0

    1dt = 2.

    T (t) = (t) =

    ( 1

    2cost, sint, 1

    2cost

    ),

    k(t) = T (t) =(1

    2cos2 t + sin2 t +

    1

    2cos2 t

    )1/2= 1.

    B(t) = T (t) N(t) = (t) (t) = 12

    (e1 + e3) = c

    B(t) = 0, (t) = < N(t), B(t) >= 0,

    , , .

    3.6(6). x = a cost y = b sint,

    x2

    a2+y2

    b2= 1,

    .

    :

    (t) = (a sint, b cost) (a sint, b cost, 0),

    (t) = (a2 sin2 t + b2 cos2 t)1/2.

    (t) = (a cost,b sint) (a cost,b sint, 0)

    (t) (t) = abe3,

  • 124

    (t) (t) = ab,

    k(t) =(t) (t)(t)3 =

    ab

    (a2 sin2 t + b2 cos2 t)3/2.

    3.6(7). (i)

    (t) = (r sint, r cost, b),

    (t) = (r2 + b2)1/2 =: c > 0.

    s : [0,2] R : t 7 t

    0

    (u)du = tc

    h : [0,2c] [0,2] : s 7 sc

    .

    : [0, 2c] R3 : s 7 (s) = ( h)(s) =(r cos

    s

    c, r sin

    s

    c,b

    cs).

    (ii)

    T (s) = (s) =( rc

    sins

    c,r

    ccos

    s

    c,b

    c

    ),

    T (s) =( rc2

    coss

    c, r

    c2sin

    s

    c, 0

    )

    k(s) = T (s) = rc2, 0.

    , :

    N(s) =1

    k(s)T (s) =

    ( coss

    c, sin s

    c, 0

    ),

    B(s) =

    e1 e2 e3T1 T2 T3N1 N2 N3

    = (

    b

    csin

    s

    c, b

    ccos

    s

    c,r

    c),

    B(s) =( bc2

    coss

    c,b

    c2sin

    s

    c, 0

    )

  • 125

    (s) = < N(s), B(s) >= bc2

    .

    (iii)

    cos =< (t), e3 >(t) e3

    =b

    c.

    cos =< T (s), e3 >T (s) e3

    = < T (s), e3 > =b

    c.

    (iv) (s)

    s(t) = (s) + tB(s); t R,

    (s) B(s). ,

    cos =< B(s), e3 >B(s) e3

    = < B(s), e3 > =r

    c.

    3.6(8). :

    (t) = (1, t) (1, t, 0),(t) = (1 + t2)1/2 > 0,(t) = (0,1) (0,1,0),

    (t) (t) =

    e1 e2 e31 t 0

    0 1 0

    = e3,

    (t) (t) = 1.

    ,

    k(t) =(t) (t)(t)3 =

    1

    (1 + t2)3/2.

    3.6(9).

    (t) = (2t,3t2)

  • 126

    (0) = (0, 0) R. (, 0) (0,+). t , 0

    (t) = (4t2 + 9t4)1/2,(t) = (2,6t),

    (t) (t) =

    e1 e2 e32t 3t2 0

    2 6t 0

    = 6t2e3 = (0,0,6t

    2),

    (t) (t) = 6t2,

    k(t) =(t) (t)(t)3 =

    6t2

    (4t2 + 9t4)3/2.

    3.6(10). (t) = (cost, sint) (0) = (1, 0).

    (t) = (cos(t + /2), sin(t + /2)) , (0) = (0,1).

    ,

    (t) = (t) = (cos(/2 t), sin(/2 t)),

    (0) = (0) = (0,1).

    3.6(11). < (0), v >= 0, < (t), v > ,, < (t), v >= 0. ,

    < (t), v > < , v > (t) = < (t), v > + < (t), v >= 0+ < (t), 0 >= 0.

    3.6(12). (t)

    t(s) = (t) + s(t); t R,

    (t) = (3,6t,6t2) ( s ). y = 0

    x = z v = (1, 0,1). ,

    cos =< (t), v >(t) v =

    3 + 6t2

    9 + 36t2 + 36t4

    2=

    2

    2= cos(

    4).

    3.6(13). (i) A, (0,0), A = (x, y), K = (0, r) a

  • 127

    K = (a, r).

    x

    y

    K K

    r

    A

    AA

    B

    q

    rp 2 rpO

    x Ox B AB a.

    AKB a = r. A A A

    K B KK .

    x = OB AA = r r sin = r( sin),y = OK AA = r r cos = r(1 cos),

    () =(r( sin), r(1 cos)).

    (ii)

    () =(r(1 cos), r sin),

    (0) = (0,0), () = (2r,0), (2) = (0,0).

    , = 0 = 2, , =

    (s) = () + s()

    =(r( sin), r(1 cos)) + s(r(1 cos), r sin)

    = (r,2r) + s(2r,0) = (r + 2rs, 2r).

    (iii) ,

    ()2 = r2(1 + cos2 2 cos + sin2 )

    = 2r2(1 cos) = 2r2(1 cos2

    2+ sin2

    2

    )

    = 4r2 sin2

    2,

  • 128

    () = 2r sin

    2

    = 2r sin

    2, 0 2.

    ,

    L() = 2

    0

    ()d = 2r 2

    0

    sin

    2d

    = 2r

    0

    2 sind = 4r( cos

    0

    )

    = 4r( cos + cos0) = 8r.

    -

    (2k,2(k + 1)), k Z. .

    3.6(14) (i) = xT + yN + zB,

    x, y, z.

    T = xT T + yN T + zB T= x0 yB + zN = yB + zN

    , T = T ,

    yB + zN = T = kN,

    y = 0 z = k. ,

    N = xT N + yN N + zB N= xB + y0 + zT = xB zT

    , N = N ,

    xB zT = N = kT + B

    x = z = k. , ,

    = T + kB.

    :

    B = (T + kB) B = (T B) + kB B = N + 0 = B.

    ( ) .

  • 129

    (ii) T = kN

    T = kN + kN = kN + k(kT + B) = k2T + kN + kB.

    ,

    T T = kN (k2T + kN + kB)= k3(N T ) + kk(N N) + k2(N B)= k3B + 0 + k2T = k2(kB + T ) = k2.

    3.6(15). (s) s(t) = (s) + t(s), t R. , ts R, s(ts) = p, p R3 P,

    (s) + ts(s) = p.

    , .. (s), , s(t) = (s) + t(s) ts,

    (s) + ts(s) = p,

    s J . , s J , (s) R

    ( ) (s) + (s)(s) = p,

    .

    s 7 (s) ,

    ( ) (s)(s) = p (s) < (s)(s), (s) >=< p (s), (s) > (s) < T (s), T (s) >=< p (s), (s) > (s) =< p (s), (s) >.

    ( ) , s J :

    ( ) (s) + (s)(s) + (s)(s) = 0 T (s) + (s)T (s) + (s)T (s) = 0 (1 + (s))T (s) + (s)k(s)N(s) = 0 1 + (s) = (s)k(s) = 0 (s) = 1 (s)k(s) = 0 (s) = c s (c s)k(s) = 0 k(s) = 0,

  • 130

    . c s , 0, (s) = 0 (). , (s) = 0 (s) = p, s J , ( ).

    3.6(16). (s)

    s(t) = (s) + tN(s); t R,

    (s) N(s). , , s J , (s) R

    ( * ) (s) + (s)N(s) = p,

    (: p P). : ( ) -

    (s) =< (s)N(s), N(s) >=< p (s), N(s) >.

    ( ) :

    () (s) + (s)N(s) + (s)N (s) = 0 T (s) + (s)N(s) + (s)(k(s)T (s) + (s)B(s)) = 0 (1 (s)k(s))T (s) + (s)N(s) + (s)(s)B(s) = 0 1 (s)k(s) = (s) = (s)(s) = 0 = c (), k(s) = 1 (s) = 0.

    , 0, = 0,

    , k(s) = 1/ = . : P .

    3.6(17). (s) [. 3.6(7)] (s) B(s),

    s(t) = (s) + tB(s); t R.

    , ,

    s J , (s) R

    ( ) (s) + (s)B(s) = p.

    (s) =< (s)B(s), B(s) >=< P (s), B(s) >,

  • 131

    , ( ),

    (s) + (s)B(s) + (s)B(s) = 0,

    , ,

    T (s) (s)(s)N(s) + (s)B(s) = 0,

    1 = (s)(s) = (s) = 0,

    .

    3.6(18). () : .() : , s J , (s) R

    ( ) (s)T (s) = u = .

    (s) =< (s)T (s), T (s) >=< u, T (s) >,

    (s) . ( ) :

    ( ) (s)T (s) + (s)T (s) = 0 (s)T (s) + (s)k(s)N(s) = 0 (s) = (s)k(s) = 0.

    (s) = 0 (s) = c. c = 0, u = c T = 0, . c , 0, c k(s) = 0 k = 0, .

    3.6(19). (i) (s) . (x, y, z) R3 (so) (x, y, z)(so) N(so) B(so), T (so) = (so). (x, y, z) (so)

    ( ) < (x, y, z) (so), T (so) >= 0,

    , ,

    < (x, y, z) (so), (so) >= 0.(ii) (t), - . (x, y, z) (to) ()

    < (x, y, z) (to), T (to) >= 0.

  • 132

    (3.5.1),

    < (x, y, z) (to),(to)(to)

    >= 0,

    , ,

    < (x, y, z) (to), (to) >= 0.

    . , (0,0,0) (t),

    < (0,0, 0) (t), (t) >=< (t), (t) >= 0, t R.

    (t) =(2a sint cost, a(cos2 t sin2 t),a sint).

    ,

    < (t), (t) >=

    < (a sin2 t, a sint cost, a cost), (2a sint cost, a(cos2 t sin2 t),a sint) >=2a2 sin3 t cost + a2 sint cos3 t a2 sin3 t cost a2 sint cost =

    a2 sin3 t cost + a2 sint cos3 t a2 sint cost =a2 sint cost(sin2 t + cos2 t) a2 sint cost = 0.

    3.6(20). (i) (s) . (x, y, z) R3 (so) (x, y, z) (so) T (so) N(so), B(so). (x, y, z) (so)

    ( ) < (x, y, z) (so), B(so) >= 0.

    B(so) = T (so) N(so) = (so) T (so)k(so)

    = (so) (so)k(so)

    ,

    ( )

    < (x, y, z) (so), (so) (so) >= 0.

    (ii) (t), . (x, y, z) (to) ( )

    < (x, y, z) (to), B(to) >= 0.

  • 133

    [. (3.5.3)]

    B(to) =(to) (to)(to) (to)

    < (x, y, z) (to),(to) (to)(to) (to)

    >= 0,

    , ,

    < (x, y, z) (to), (to) (to) >= 0.

    . -

    < (x, y, z) (2

    ),

    (2

    )

    (2

    )>= 0.

    :

    (2

    )=

    (cos

    2, sin

    2,

    2

    )=

    (0, 1,

    2

    )

    (t) = ( sint, cost, 1)

    (2

    )=

    ( sin

    2, cos

    2,1

    )= (1, 0,1)

    (t) = ( cost, sint, 0)

    (2

    )=

    ( cos

    2, sin

    2,0

    )= (0,1, 0)

    < (x, y, z) (0,1, 2

    ), (1,0,1) (0,1, 0) >= 0

    < (x, y 1, z 2

    ), (1,0,1) (0,1,0) >= 0

    x y 1 z 2

    1 0 10 1 0

    = 0

    x + z =

    2.

    3.6(21). (i) (s) . (x, y, z) R3 (so) (x, y, z) (so) T (so) B(so), N(so). (x, y, z) (so)

    ( ) < (x, y, z) (so), N(so) >= 0.

  • 134

    N(so) =T (so)k(so)

    =(so)k(so)

    ,

    ( )

    < (x, y, z) (so),(so)k(so)

    >= 0,

    , ,

    < (x, y, z) (so), (so) >= 0.(ii) (t), . (x, y, z) (to) ( )

    < (x, y, z) (to), N(to) >= 0. [. (3.5.2)]

    N(to) =

    ((to) (to)

    ) (to)(to) (to) (to)

    ,

    < (x, y, z) (to),((to) (to)

    ) (to)(to) (to) (to)

    >= 0,

    , ,

    ( ) < (x, y, z) (to), ((to) (to)) (to) >= 0.

    . ( ), -

    < (x, y, z) (1), ((1) (1)) (1) >= 0.

    :

    (1) =(1,

    1

    2,1

    3

    )

    (x, y, z) (1) = (x 1, y 12, z 1

    3

    )

    (t) =(1, t, t2

    )

    (1) = (1, 1,1)

    (t) = (0,1,2t)

    (1) = (0, 1,2)

    (1) (1) =

    e1 e2 e31 1 1

    0 1 2

    = (1,2, 1)

  • 135

    < (x 1, y 1/2, z 1/3), (1,2, 1) (1,1,1) >=

    e1 e2 e31 2 11 1 1

    = 0,

    x z = 23

    .

    3.6(22). (i) (s) = T (s) = k(s)N(s). , (s) = k(s) , 0, .

    (ii)

    (s) = s

    so

    (u)du,

    (s) = (s) = T (s) = k(s)N(s) = k(s).

    (iii) (

    k = 1, ),

    1.4.2 1.4.3 -

    .

    ( s):

    = T = kN,

    = kN + kN

    = kN + k(kT + B)= k2T + kN + kB,

    = kN (k2 + kN + kB)= k3N T + kkN N + k2N B= k2T + 0 + k3B = k2T + 0N + k3B,

    2 = k6 + k42 = k4(k2 + 2).

    ,

    k = 3 =

    k2(k2 + 2

    )1/2

    k3=

    (k2 + 2

    )1/2

    k.

  • 136

    .

    , , :

    = 2kkT k2T + kN + kN + kB + kB + kB

    = 2kkT k3N + kN + k(kT + B) + (k + k)B + k(N)= 3kkT + (k3 + k k2)N + (2k + k)B.

    ,

    =< , > 2 =

    k3(k k)k4(k2 + 2)

    =k kk(k2 + 2)

    .

    3.6(23). () :

    (s) = (s) + N (s) = T (s) k(s) T (s) = (1 k(s)) T (s) , 0.

    () , -

    3.4.2. s,

    = (1 k)T = |1 k| = 1 k

    = (1 k)T + (1 k)T = (1 k)T + (1 k)kN

    = (1 k)T ((1 k)T + (1 k)kN= (1 k)(1 k)T T + (1 k)2kT N= k(1 k)B

    = k(1 k)2

    k =k(1 k)2(1 k)3 =

    k

    1 k .

    3.6(24). Frenet-Serret B,

    N(s) = B(s)(s)

    ,

    :

    k(s) = T (s) = (N(s) B(s))

    = ( B(s)(s)

    B(s))

    = ( B(s)(s)

    ) B(s) + ( B(s)(s)

    ) B(s)

    = B(s)(s) + B(s)(s)

    (s)2 B(s) + 0

    =1

    (s)2((s)B(s) (s)B(s)) B(s).

  • 137

    3.6(25). , -

    . 1518,

    (*) p = (s) + (s)(N(s) + B(s)),

    p (s) . (*) , s,

    T + (N + B) + (kT + B N) = 0,

    , ,

    (1 k)T + ( )N + ( + )B = 0,

    1 k = 0, = 0, + = 0. = 0, = c =

    1 ck = 0, c = 0.

    c , 0 k = 1/c , = 0.

    c.